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P

rogramming languages are thought by many to provide as a notation form
for program description. This view does not take into account – or does not
even know –, how high level or user-centered languages can aid in managing

program complexity. Different languages with their possibilities suggest different
programming approaches, so the common practice, which is still used nowadays
in many places, is highly dangerous, when programming methodology is taught
through particular programming languages, not independently from them – this
could only lead to narrow concerning all the programming possibilities.

The goal of programming is to produce a good quality software product, so
the education of programming must start with the general definition of the
task and its solving program [Fot83]. Then based on this principle, the different
concrete language tools should be acquainted to the programmers, which support
the implementation. However, as it is questionable to teach the methodology
through particular concrete programming languages, it also leads to a dead end,
if the used programming language is said to be not important for the sake of the
methodology. This is – as described by Bertrand Meyer [Mey00] – like “a bird
without wings”. The idea is inseparable from the possibilities of formulation. It is
not a coincidence that in programming no single language has become dominant,
nor that always newer programming languages are designed, which support even
more the adaptation of different methodological concepts and requirements into
practice.

Designers of programming languages must deal with three problems [Hor94]:

• The representation provided by the language must fit the hardware and
the software at the same time.

• The language must provide a good nomenclature for the description of
algorithms.

• The language must serve as a tool to manage program complexity.
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Aspets of software quality

The software is a product, and as for every product, it has – as defined by many
([Mey00], [Hor94] and [LG96]) – different quality characteristics and require-
ments. One of the most important goals of the programming methodology is
to specify a theoretical approach for creating good quality program products.
The design and the evaluation of already existing programming languages are
definitely influenced by methodological considerations.

Next, characteristics of “good” software will be discussed according to the
work of Bertrand Meyer [Mey00]. After that, language features will be examined
for supporting the methodology – through numerous programming languages.

Software quality is influenced by many factors. One part of these – such
as reliability, speed, or ease of use – are basically perceived by the user of the
program. Others – such as how easy it is to reuse some parts of it for a different,
but similar problem – affect program developers.

Corretness

Correctness of the program product means that the program solves exactly the
problem and fits the desired specification. This is the first and most important
criterion, since if a program is not working like it should, other requirements
do not really count. The elementary basis for this is the precise and the most
complete specification.

Reliability

A program is called reliable if it is correct, and abnormal – not described in
the specification – circumstances do not lead to catastrophe, but are handled in
some “reasonable” way.

This definition shows, that reliability is by far not as a precise notion as
correctness. One could say, of course with a more specific specification reliability
would mean correctness exactly, but in practice there are always cases which are
not covered by specification explicitly. That is why reliability is of high priority
for the program product quality.

Maintainability

Maintainability refers to how easy it is to adjust the program product to speci-
fication changes.

The users often demand further development, modification, adjustment of the
program product to new external conditions. According to some surveys 70 %
of program product costs are spent on maintenance, so it is understandable
that this requirement significantly affects the quality of the program. (This is
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relevant especially if developing big programs and program systems, since for
small programs usually no change is too complex.)

To increase maintainability, design simplicity and decentralization (to have
independent modules) can be seen as the two most important basic principles.

Reusability

Reusability is the feature of the software products, that they can be partly or as
a whole reused in new applications.

This is different to maintainability, since the same specification was modified
there, but now the experience should be utilized, that many elements of software
systems follow common patterns, and reimplementing already solved problems
should be avoided.

This question is particularly important, not only when producing individual
program products, but for a global optimization of software development, as
the more reusable components are available to help problem solving, the more
energy remains to improve other quality characteristics (at the same costs).

Compatibility

Compatibility shows how easy it is to combine the software products with each
other. Programs are not developed isolated, so efficiency can go up by orders
of magnitude, if ready software can be simply connected to other systems.
(Communication between programs is based on some standards, such as, for
example, in Unix.)

Other harateristis

From the quality characteristics of the program product, portability, efficiency,
user friendliness, testability, clarity etc. are also important to pay attention to.

Portability regards how easy it is to port the program to another machine,
configuration or operating system – usually to have it run in different runtime
environments.

The efficiency of a program is proportional to the running time and used
memory size – the faster, or the less memory is used, the more efficient it is.
(These requirements often contradict each other, a faster run is often set off by
bigger memory requirements, and vice versa.)

The user friendliness is very important for the user: this requires data input
to be logical and simple, the output of the results must be clearly formatted.

Testability and clarity are important for the developers and maintainers of
the program, without these the reliability of the program cannot be guaranteed.
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Aspets of software design

Some of these requirements – the improvement of correctness and reliability
– require primarily the development of specification tools. The easier it is to
verify if a piece of program code is really an implementation according to the
specification, the easier it will be to developed correct and reliable programs.
The main role here have programming language features for specification (type
invariant, pre- and postconditions) descriptions – this is supported for example
by Eiffel [Mey00], by Ada 2012 [Nyek98] etc.

Implementation of another group of requirements – mainly maintainability,
reusability and compatibility – can be best supported by designing the programs
as independent program units having well defined interconnections. This is the
basis of the so called modular design. (A module here is not a programming
language concept, but a unit of the design.) This question will be handled in
more detail in Chapter 9.3.

Our goal is to examine the features of different programming languages to
support professional programmers in developing reliable software of good quality.

Study of the tools of programming languages

It is a natural question, why it is not enough to know one programming language,
for what purpose it is good to deal with all the possible features of different
programming languages. In the following – primarily based on the work of
Robert W. Sebesta [Seb13] – we will try to summarize the advantages coming
from this:

Inrease of the expressive power

Our thinking and even abstraction skills are strongly influenced by the possi-
bilities of the language used. Only that can be expressed, for which there are
words. Likewise during program development and designing the solution, the
knowledge of diverse programming language features can help programmers to
widen their horizon. This is also true if a particular language must be used, since
good principles can be applied in any environments.

Choosing the appropriate programming language

Many programmers have learnt programming through one or two languages.
Others know older languages which are now considered obsolete, and they are
not familiar with the features of modern languages. This could result in not
selecting the most appropriate language if there would be more programming
languages as options to choose from for a new task – since they do not know the
possibilities the other languages could offer. If these programmers would know
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the unique features of the available tools, they could make considerably better
decisions.

Better attainment of new tools

Newer and newer programming languages will appear, thus quality programming
requires continuous learning. The more the basic elements of the programming
languages are known, the easier it will be to learn and keep up with progress.

In our book most examples are in Ada, C/C++ or Java language for certain
language constructs, there are only a few chapters (except of course those about
logical and functional programming) where these languages are not referenced
in almost every paragraph.

Our book is aimed at facilitating primarily, the studies of university and
college students to learn about programming languages, and to help the work
of IT and computer specialists. Some degree of knowledge of informatics is a
prerequisite to fully understand our book: readers must have already solved
some programming tasks on some programming languages.
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Language Design1

In this chapter, we provide a general overview of
the concepts of programming language design (such
as syntax, semantics and pragmatics) and discuss
the various implementation options (compiler,
interpreter, etc.). We then discuss the evolution of
programming languages. We identify the features of
a good programming language. We also examine the
consequences of the dramatic increase in the
number of novel programming languages, how that
explosion has affected the principles of computer
programming and what historical and
methodological categories the large number of
languages can be grouped into. Finally, we analyze
how external factors, such as programming and
communication environments, have shaped the
development of programming languages.



T

here are thousands of high-level programming languages, and new ones
continue to emerge. However, most programmers only use a handful of
those languages during their work. Then why are there so many languages?

There are several possible answers to that question:

• Evolution of programming paradigms. Programming languages and the
principles behind them are being continuously improved. The late 1960s
and the early 1970s saw the revolution in ”structured programming”. In
the late 1980s the nested block structure of languages such as Pascal
began to give way to the object-oriented structure of C++ and Eiffel.

• Different problem domains. Many languages were specifically designed
for a special problem domain. For example, LISP works well for manip-
ulating symbolic data and complex data structures. Prolog is suitable
for reasoning about logical relationships between data sets. Most of the
programming languages can be used successfully for a wide range of tasks,
but some of them are better than others in solving specific problems.

• Personal preferences. Different people like different things. Some people
like to work with pointers, others prefer the implicit dereferencing of Java,
ML, or LISP.

• Expressive power. The expressive power of a language is the spectrum of
ideas that can be expressed using the given language. Though this could,
in theory, be an important basis for comparison, the majority of languages
are all suitable for implementing any algorithm (a feature closely related
to Turing completeness). Therefore, the expressive power of the various
languages is mostly equivalent.

• Easy to learn. The success of Basic was in part due to its simplicity. Pascal
was taught for many years as an introductory language because it was
very easy to learn.

• Ease of implementation. Basic became successful not only because it was
easy to learn but also because it could easily be implemented on smaller
machines with limited resources.
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• Standardization. Almost every language in use has an official international
standard, or a canonical implementation. Standardization of the language
is an effective way of ensuring the portability of the code across different
platforms.

• Open source. Many programming languages have open source compilers
or interpreters, but some languages are more closely associated with freely
distributed, peer-reviewed, community-supported computing than others.

• Excellent compilers. Fortran owes much of its success to extremely good
compilers. Some other languages (e.g. Common Lisp) are successful, at
least in part, because they have compilers and supporting tools that
effectively help programmers.

• Patronage. Technical features are not the only relevant factors, though.
Cobol and Ada owe their existence to the U.S. Department of Defense
(DoD): Ada contains a wealth of excellent features and ideas, but the
sheer complexity of implementation would have killed it without the
DoD backing. Similarly, C# probably would not have received the same
attention without the backing of Microsoft.

Clearly no single factor determines whether a language is ”good” or ”bad”.
Therefore, the study and assessment of programming languages requires a careful
look at a number of issues [Sco09].

1.1 Programming languages: syntax, semantis, and prag-

matis

Programming languages are artificial formalisms designed to express algorithms
in a clearly defined and unambiguous form. Despite their artificial nature, they
nevertheless fully conform to the criteria of a language. Programming languages
are structured around several descriptional/structural levels [Hor94]. Three such
levels discussed below are syntax, semantics and pragmatics [GM10].

• Syntax describes the correct grammar of the language, i.e. how to formu-
late a grammatically correct phrase in the language.

• Semantics defines the meaning of a syntactically correct phrase, i.e. it
gives meaning and significance to each phrase of the language.

• Pragmatics determines the usefulness of a meaningful phrase of the lan-
guage, i.e. it defines how to use the given phase for a useful purpose within
the program.

The three structural levels can be illustrated in the assignment let year =
2013. At the syntax level, the question is whether this formula is grammatically
correct (let us assume that it is). At the level of semantics, the question is what
this phrase means (in this case, the meaning is that the value of the variable year
is set to 2013). At the level of pragmatics, the question is what this assignment
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is used for (e.g. to calculate, by using another formula, the remaining value of a
mortgage at the end of year 2013).

As programming languages are bona fide languages, their structural levels are
very similar to those of natural languages. Indeed, a novel written in a natural
language can be analogous to a program written in a programming language. At
the syntax level, ”fishes swim in the ocean” and ”suitcases drive pine trees” are
both correct. Yet, at the level of semantics, the latter one is wrong due to the
lack of an appropriate meaning. At the level of pragmatics, the former sentence
would make sense as part of a story on a little mermaid but it would most likely
not fit into a technical guide on how to survive for a week in the Saharan desert.

In technical terms, syntax defines how programs are written and read by
programmers, and parsed by computers. Semantics determines how programs
are composed and understood by programmers, and interpreted by computers.
Finally, pragmatics guides programmers in how to design and implement pro-
grams in real life [Wat06].

In the following sections, we will discuss each of the above structural levels
of programming languages in more detail.

1.1.1 Syntax

As mentioned above, syntax in principle corresponds to the grammatical rules
of the language. Like natural languages, programming languages are also sets of
characters (symbols) of a predefined alphabet. At the lowest level, syntax requires
definitions of the sequences of characters that constitute the smallest logical
units (words or tokens) of the language. Once the alphabet and the words have
been defined, syntax describes which sequences of words constitute legitimate
phrases, the smallest meaningful units of the language. At a higher syntactic
level, strings of those phrases combine into sentences or statements, which are
then again combined into program modules or entire programs.

The syntactic rules of a language specify which strings of characters are
valid, i.e. grammatically correct. The theoretical basis of syntactic descriptions
date back to the mid 20th century. In the 1950s, the American linguist Noam
Chomsky developed techniques to describe syntactic phenomena in natural lan-
guages in a formal manner. Though his descriptions originally used formalisms
designed to limit the ambiguity present in natural languages, this formalism
also applies to the syntax of artificial languages, such as programming languages
[GM10]. Shortly after Chomsky’s work on language classes and structures, the
ACM-GAMM group begun designing ALGOL 58, one of the early programming
languages. John Backus, a prominent member of this group introduced a new
formal notation for specifying programming language syntax. This notation was
then modified by Peter Naur; this revised method of syntax description is now
known as the Backus-Naur form or BNF. Though the development of BNF
occurred independently from Chomsky’s work, it is remarkable that the basic
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principles of BNF are very similar to those of one of Chomsky’s language classes,
the so-called context-free languages [Seb13].

For the different lexical elements of programming languages, see Chapter 2.

1.1.2 Semantis

While syntax only concerns itself with the appropriate format of the language,
semantics is a higher level feature that deals with the meaning and significance
of the given phrase [GM10]. The meaning of a phrase can be very diverse, such
as a mathematical function, a relationship between program components, or an
exchange of information between the different parts of the program and the
environment, etc. The semantics of the programming language describes what
processes the computer will follow during the execution of the program. The
description of the semantics of a programming language is more complex than
its syntactic description. This complexity is caused by technical problems in de-
scribing abstract features, as well as by the need to balance between the opposing
requirements for exactness and flexibility of implementation [GM10]. Indeed, it
is relatively easy to design exact semantics if only one route of implementa-
tion is expected. However, as soon as the implementation platform changes,
additional questions arise which further complicate the semantic definition. It
is also relatively difficult to describe semantic issues in computer language.
Therefore, most semantic definitions are provided in natural languages and are
then implemented/translated to a computer language [GM10].

1.1.3 Pragmatis

Semantics defines whether a given phrase is meaningful, i.e. whether it can be
interpreted and executed, but it does not tell whether the phrase is used for
any purpose. The level of pragmatics ensures that the program composed of
meaningful phrases makes sense and that it is indeed a useful tool for a given
purpose [GM10]. The precise description of the pragmatics of a programming
language is difficult, if at all possible. This is in part due to the highly abstract
nature of pragmatics. In addition, pragmatics deals with the purpose or use of a
syntactically and semantically correct phrase. While both syntax and semantics
may be clearly defined and unambiguously understood, the same phrase may
be used for a number of different purposes, and its uses may change during the
use of the language. Therefore, no single definition of the pragmatics of a given
phrase is possible. One component of pragmatics is programming style. While
it is relatively easy to clearly describe some programming style issues (such
as the avoidance of jumps or gotos), others are more of vague guidance than
clear instructions. Undoubtedly, pragmatics is an integral part of the concept
of programming languages and it strongly affects the usefulness of a given
programming language for a particular purpose.
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In this book, we will discuss semantic and pragmatic issues in detail, while lit-
tle emphasis will be placed on the syntax of the various programming languages.
Readers interested in syntactic issues of a given language are referred to the vast
literature on the technical details of the different programming languages.

1.2 Implementation of omputer programs

Besides the above issues of syntax, semantics and pragmatics, the overall per-
formance of a computer program also strongly depends on how the program
is implemented on a given run-time environment. This implementation level
therefore is added on top of the above three levels. A program written in a given
programming language can eventually be implemented using several separate and
even conceptually different implementation approaches. Nevertheless, most pro-
gramming languages are designed for a given implementation strategy and there
is little communication between the different strategies in the case of a given lan-
guage. Though implementation is in most cases beyond the programmer’s scope
and perspective, the actual implementation may strongly influence the eventual
efficiency of the program, and thus the possible ways of implementation may also
determine the choice of the most suitable programming language. Here we will
outline the different strategies for the automated translation and implementation
of programs developed using higher-level programming languages. The most
widely used implementation strategies use one of the following methods:

• compiler implementation;
• pure interpretation;
• hybrid implementation systems.

Compiler implementation

In the case of compiler implementation, the program is first translated to machine
language to generate a code that can later be executed directly on a computer.
The original program code is called the source code while its language is known
as the source language. The resulting machine-executable code is the object code
and its language is the object language. The translation of the source code to
machine language is called compilation, which is completely separated from the
execution of the program. This approach has several advantages, mainly in large-
scale industrial program development. Given that no re-translation of the source
code is required, the execution of the program is very fast. Another advantage
is that the final executable program can be distributed without distributing the
source code, thus providing protection for the programmer’s intellectual property
rights. Disadvantages, on the other hand, include the compilation process itself
which is rather slow. The program needs to be re-compiled every time the source
code is altered, and there is a limited number of opportunities for checking and
correcting the code. However, the widely available professional code writing,
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compilation and de-bugging tools make the compiler implementation approach
a very viable strategy overall.

The process of compilation takes place in several phases, the most important
of which are shown in Figure 1.1 and discussed in the next paragraphs.

Lexical analysis 

Syntactic 

analysis 

Semantic 

analysis 

Optimization 

Generation of 

intermediate forms 

Source code 

Results 

Object code 

Compiler 

Code generation 

Figure 1.1: Organisation of a compiler

Lexical analysis - The aim of lexical analysis is to read the program text and
to group the characters (symbols) into meaningful logical units called tokens.
The input text of the source program is scanned in a sequential manner, taking
a single pass to recognize tokens. No further analysis of whether, for instance,
the separators or the number of attributes are correct, is performed at this point.

Syntactic analysis - Once the list of tokens has been constructed, the syntactic
analyzer (or parser) attempts to construct a derivation tree (or parse tree),
a structured composition of the input string (the source code), in line with
the grammatical restrictions of the language. At the end of syntactic analysis,
each unit (leaf) of the derivation tree has to form a correct phrase in the given
language.

Semantic analysis - The derivation tree, which is a structured representation
of the input string, is subject to checks of the language’s various context-based
constraints. It is at this stage that declarations, types, number of function
parameters, etc., are processed. As these checks are performed, the derivation
tree is complemented with the relevant additional information and new structural
complexities are generated.

Generation of intermediate forms - In this phase, an initial intermediate code
is generated from the derivation tree. This intermediate code is not yet in the
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object langage since a substantial amount of code optimization – independent
of the object language – has to be performed, and this optimization can best be
done without restrictions of the object language.

Code optimization - The code obtained in the first translation attempt is
usually inefficient. Therefore, several steps of optimization need to be performed
at this phase. This includes removal of the redundant code, optimization of loop
structures, etc. All this optimization precedes the generation of the object code.

Generation of object code - Once an optimized intermediate code has been
generated, it has to be translated to the object language to obtain the final
object code. This will be a machine-readable code that will be directly executed
by the computer. An important part of the object code generation is the register
assignment.

Pure interpretation

Program code 

Results 

Pure Interpreter 

Figure 1.2: Pure interpretation

A conceptually different approach from compiler implementation is that the
program is interpreted by another program, called an interpreter, every time
the program is executed. This interpretation occurs parallel to the execution
itself, and thus no separate translation of the entire program to machine code
is performed, and no executable machine code is generated. In principle, the
interpreter simulates a machine that is capable of dealing with high-level pro-
gramming languages and statements rather than with low-level machine code
only. Since such a machine does not physically exist (it is only simulated by
the interpreter), the execution environment generated by the interpreter is often
called a virtual machine. The advantage of this approach is that it makes the
execution and optimization of the program code relatively easy. In particular, the
de-bugging of programs in pure interpretation languages is straightforward since
run-time error messages can directly be connected to the units of the original
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program code. On the other hand, the pure interpreter approach is not quite
suitable for large-scale industrial development of highly complex and structured
programs due to the time consuming nature of the interpretation of the entire
program code at every instance of program execution.

For the functioning of an interpreter, see Figure 1.2.

Hybrid implementation systems

Results 

Lexical analysis 
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Source code 
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Figure 1.3: Hybrid implementation system

As described above, compiler implementation allows the fastest execution
of the program but its compilation phase is time consuming and de-bugging is
more difficult; on the other hand, pure interpretation allows immediate execution
(without delay of compilation) and de-bugging is fast and straightforward, but
ultimately the execution of the program is slow. Some language implementation
systems combine the two approaches so as to exploit the advantages of both
the compiler and the interpreter systems. In such cases, the high-level language
is translated (partially compiled) to an intermediate level code which is then
executed by an interpreter of the intermediate code (the virtual machine). The
language of the intermediate code is designed in such a way that it allows very
fast interpretation for machine execution. As a result, the source code is trans-
lated only once in a faster manner than in the case of compiler implementation,
and the resulting intermediate code is executed rapidly by the intermediate
code interpreter (the virtual machine). A classical example of such a hybrid
system is Java which first translates the Java source code to an intermediate
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code called byte code, which is then executed by an interpreter approach using
the Java Virtual Machine. A similar system is used by Perl, another hybrid
implementation system. An additional advantage of such systems is that the
intermediate code (e.g. Java byte code) is independent of the execution platform
and can be run on virtual machines (e.g. Java Virtual Machines) implemented
on any operating system. In addition, the intermediate code is different from
the source code, and therefore, it can be distributed without compromising the
intellectual property linked to the source code.

The process used in a hybrid implementation system is shown in Figure 1.3.
After the discussion of the various features of program design and implemen-
tation, we next describe the emergence of the programming languages from a
historical and evolutionary perspective.

1.3 The evolution of programming languages

1.3.1 The early years

Thousands of programming languages have been developed over the last 50 years,
but only the ones with the best features have received wider recognition. Every
language is judged on the basis of its features. Initially, languages were developed
for specific purposes which limited their scope of use. However, as computer use
became widespread, the languages had to be adjusted to cater for many different
interests and needs.

Though building computing machines dates back to the ancient Greeks, the
first ”true” computer program was written for the Analytical Engine by a math-
ematician called Ada Lovelace to calculate a sequence of Bernoulli Numbers.
A number of factors, including the synthesis of numerical calculation, prede-
termined operation and output, and ways to organize and input instructions
in a manner relatively easy for humans to conceive and produce, led to the
development of modern computer programming [Sam69].

The first high-level programming language, the Plankalkül was designed by
Konrad Zuse [Zus72] for engineering purposes between 1943 and 1945. Plankalkül
has shared many features with APL, a programming language to be developed
later (named after the book A Programming Language), and relational algebra.
It included assignment statements, subroutines, conditional statements, itera-
tion, floating point arithmetic, arrays, hierarchical record structures, assertions,
exception handling, and other advanced features such as goal-directed execution.

The example below shows a Plankalkül program which computes the maxi-
mum of three variables by calling the function max [Zus72]:

P1 max3 (V0[:8.0],V1[:8.0],V2[:8.0]) => R0[:8.0]

max(V0[:8.0],V1[:8.0]) => Z1[:8.0]

max(Z1[:8.0],V2[:8.0]) => R0[:8.0]

END
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P2 max (V0[:8.0],V1[:8.0]) => R0[:8.0]

V0[:8.0] => Z1[:8.0]

(Z1[:8.0] < V1[:8.0]) -> V1[:8.0] =>Z1[:8.0]

Z1[:8.0] => R0[:8.0]

END

Each data item was denoted with V (variable), C (constant), Z (intermediate
result), or R (result), an integer number to mark them, and a powerful notation
was used to denote the data structure of the variable. Zuse used the term ”plan”
to describe the current notion ”program”. The language supported bit, integer,
floating-point scalar data, array and record data structures. It also included some
advanced features of modern programming languages, such as iterative control
statements and recursion. As Plankalkül was not implemented in Zuse’s lifetime,
it was only a theoretical contribution and it did not directly influence subsequent
early languages.

The first electronic computers appeared in the 1940s and were programmed
in machine language by sequences of 0’s and 1’s that explicitly defined the
operations and the order in which they were to be executed. The operations were
low-level ones, e.g. move data from one location to another, compare two values,
etc. This kind of programming was very slow, error-prone and the ultimate code
was difficult to understand and modify.

1.3.2 The move to higher-level languages

The first step towards more user-friendly programming languages was the de-
velopment of the mnemonic assembly language in the early 1950s. Initially, the
instructions in assembly language were just mnemonic representations of ma-
chine instructions. Later, macro instructions were added to assembly languages
so that a programmer could define the instruction parameters.

A great step towards higher-level languages was made in the late 1950s with
the development of FORTRAN (The IBM Mathematical FORmula TRANslating
System) for scientific computation, Cobol (COmmon Business-Oriented Lan-
guage) for business data processing, and LISP (LISt Processing) for symbolic
computation.

FORTRAN was the first important high-level language, developed in 1957. It
introduced symbolic expressions and arrays, and also procedures (”subroutines”
) with parameters. In other respects, FORTRAN, in its original form, was fairly
low-level; for example, a significant part of control flow was determined by
conditional and unconditional jumps. FORTRAN underwent a significant change
since its original design with the latest version standardized as recently as 1997.

ALGOL 60 (ALGOrithmic Language) was an important step forward even
though it is no longer used. It was the first major programming language to
be designed for communicating with algorithms, not just for programming a
computer. It was developed mainly because IBM, the owner of the FORTRAN
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programming language, refused to relinquish proprietary control over what it
considered to be its sole property. This lack of freedom to improve FORTRAN
motivated the computing community of the late 1950s to develop another lan-
guage. The new language (ALGOL 60) had several important new developments,
such as:

• The concept of block structure was introduced. This allowed ”blocks”
of program to be created that could later be nested into other program
components;

• Two different means of passing parameters to subprograms were allowed:
pass by value, and pass by name;

• Procedures were allowed to be recursive;
• Stack-dynamic arrays were allowed. A stack-dynamic array is one for

which the subscript range or ranges are specified by variables, so that the
size of the array is set at the time storage is allocated for the array.

In some ways, ALGOL 60 was a great success, in other ways, it was a dismal
failure. It succeeded in becoming, almost immediately, the only acceptable formal
way of communicating algorithms in computing literature. Every imperative
programming language designed after 1960 owes something to ALGOL 60, most
of them being its direct or indirect descendants. ALGOL 60 was the first language
that was designed to be machine independent. It was also the first language
whose syntax was formally described. This successful use of the BNF formalism
encouraged the development of several important fields of computer science. The
structure of ALGOL 60 also affected machine architecture. On the other hand,
ALGOL 60 has never become widespread, the main reason for which was that
some of its features were rather difficult to understand.

COBOL was another important early high-level language. Its most important
contribution was the concept of data descriptions, the forerunner of today’s data
types. Similar to FORTRAN, COBOL’s control flow was fairly low-level. Just
like FORTRAN, COBOL has also been significantly improved after its original
design, the latest version having been standardized in 2002.

FORTRAN and ALGOL 60 were particularly useful for the purpose of nu-
merical computation, whereas COBOL for that of commercial data processing.
PL/I (Programming Language One) was an attempt to design a general-purpose
programming language by merging features from the above three languages. On
top of the existing ones, it also introduced many new features, including low-
level forms of exceptions and concurrency. The resulting language was complex,
incoherent, and difficult to implement. The PL/I showed that simply adding
many new features on top of others is not the right way to make a programming
language more powerful and suitable for widespread use.

BASIC (Beginner’s All-purpose Symbolic Instruction Code) was designed at
Dartmouth College by two mathematicians, who in the early 1960s produced
compilers for a variety of dialects of FORTRAN and ALGOL 60. They decided
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to design a new language that would use terminals as the method of computer
access. The goals of the system were as follows:

• It must be easy to learn and use for inexperienced people (such as stu-
dents);

• It must be pleasant and friendly;
• It must consider user time more important than computer time.

The original BASIC language had only fourteen different statement types,
and a single data type. It was a very limited programming language, and thus
easy to learn. The designers of the language decided to make the compiler
available free of charge so that the language would become widespread. The
introduction of the first microcomputers in the mid-1970s made BASIC very
popular in the wider public, and especially among young computer fans.

From the late 1960s to the late 1970s many new programming languages
emerged. Most of the language paradigms currently in use were invented at that
time.

• Simula was the first language designed to support object-oriented pro-
gramming.

• C was an early systems programming language.
• Smalltalk (mid 1970s) provided a complete design of an object-oriented

language.
• Prolog was the first logic programming language.
• ML built a polymorphic type system on top of LISP, and was the basis

for statically typed functional programming languages.

Parallelly, in the 1960s and 1970s there was also a considerable debate on
the merits of ”structured programming”, which essentially meant programming
without the use of GOTO. This debate concerned language design: some lan-
guages did not include GOTO, which forced structured programming by the
programmer. By now, nearly all programmers agree that, even in languages
that allow GOTO statements, it is better not to use it at all, or only in some
exceptional situations.

Pascal was developed around 1970 by Niklaus Wirth as an improvement and
simplification of ALGOLW. It was the most widely used educational language
until the end of the 1980s. One of the unique features of Pascal was that it
was the first language which, preceding Java by nearly 20 years, introduced
the concept of intermediate code as an instrument for program portability. A
Pascal program was translated into P-code by the Pascal compiler, which was
also written in Pascal. P-code was a language for an intermediate machine with
a stack architecture, which was then implemented in an interpretative way on
the host machine. In this way, to port Pascal to a different machine, it was
only necessary to re-write the P-code interpreter. In addition, Pascal was also
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implemented in a compilative way that did not use an intermediate machine,
thus allowing greater efficiency.

The 1980s was the time of relative consolidation. C++ combined object-
oriented and systems programming. Objective-C added Smalltalk-style messag-
ing to the C programming language, and it became the main programming lan-
guage used by Apple for the OS X and iOS operating systems. The government
of the United States standardized Ada, a systems programming language derived
from Pascal and used by defense contractors.

One important trend in language design during the 1980s for programming
large-scale systems was that programmers placed an increased emphasis on the
use of modules, or large-scale organizational units of code. Modula-2, Ada, and
ML all developed notable module systems in the 1980s, although other languages,
such as PL/I, already had extensive support for modular programming. Module
systems were often wedded to generic programming constructs [Ben06].

The rapid growth of the Internet in the mid-1990s created opportunities
for new languages. Perl, originally a Unix scripting tool first released in 1987,
became common in dynamic web sites. Java came to be used for server-side
programming, and byte code virtual machines became popular, too. This era
began to witness the spread of scripting languages (Python, Ruby, PHP). These
did not directly descend from other languages, but rather featured new syntax
and more liberal incorporation of features, thus making these scripting languages
more productive than others. They came to be the most prominent languages
used on the World Wide Web.

The evolution of programming languages continues in both industry and
academic research. Current trends include the following features:

• Massively parallel languages for utilizing several thousand processors (e.g.
graphics processing units or GPUs) and supercomputer arrays including
OpenCL;

• Open source as a developmental philosophy for languages;
• New languages (e.g. XML) designed to describe special data sets such as

documents;
• Constructs to support concurrent and distributed programming.

1.3.3 The future of programming languages

What is the future of programming language design? Predicting the future is
notoriously difficult, and extrapolating recent trends is not easy, either. In the
last 20 years, two second-generation Lisp programmers published two remarkable
and influential studies on the evolution of programming languages, which came
to different conclusions. In his essay ”The End of History and the Last Pro-
gramming Language” [GG96], Richard Gabriel was puzzled by the fact that very
high-level, mathematically elegant languages such as Lisp have not caught on
in the industry, whereas less elegant, and even semantically uncertain languages
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such as C and C++ have become the standard. He concluded that the evolution
of programming languages is driven by human and social factors (such as ease of
learning and understanding) rather than by technical or conceptual principles.
A decade later, Paul Graham described a different trend in his book Hackers and
Painters [Gra04]. He believed that the most influential recent languages, such
as Java, Python, and Ruby, have added features that move them further away
from C, and closer to Lisp [Lou11].

Table 1.1 shows the popularity of programming languages based on the Tiobe
index, a widely used measure of popularity of programming languages, calculated
from the number of search engine results for queries containing the name of the
language.

Programming language Position (July 2012) Position (July 2007) Position (July 1997)
C 1 2 1

Java 2 1 5
Objective-C 3 46 -

C++ 4 3 2
C# 5 7 -

Visual Basic 6 4 4
PHP 7 5 -

Python 8 8 23
Perl 9 6 6

Ruby 10 10 -

Table 1.1: Ranking of the top 10 programming languages during the last 15 years
(source: www.tiobe.com/index.php/content/paperinfo/tpci/index.html)

Based on those statistics, it is hard to tell whether programming languages
are moving mainly towards highly structured languages such as Java and C#,
or towards more flexible ones such a C or C++. There are some clear trends,
though, e.g. the rise of Objective-C thanks to the development of iPhone and
iPad. As long as new computer technologies keep arising, there will be room
for new languages and new ideas, and the study of programming languages will
remain as fascinating and exciting as it is today [Lou11].

1.4 Programming language ategories

Overall, we can identify some clear trends in the history of programming lan-
guages. One has been a trend towards higher levels of abstraction. The mnemon-
ics and symbolic labels of assembly languages abstract away from operation codes
and machine addresses. Variables and assignment abstract away from inspection
and updating of storage locations. Data types abstract away from storage struc-
tures. Control structures abstract away from jumps. Procedures abstract away
from subroutines. Packages achieve encapsulation, and thus improve modularity.
Generic units abstract procedures and packages away from the types of data on
which they operate, and thus improve reusability.
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The many existing languages can be classified into families based on their
model of computation. There are six basic computational models that describe
most programming languages today:

• Imperative or procedural languages;
• Applicative or functional languages;
• Rule-based or logical languages;
• Object-oriented languages;
• Concurrent programming languages;
• Scripting languages.

The boundaries between the above families are blurred; a functional language
may, for instance, be object-oriented.

1.4.1 Imperative or proedural languages

Imperative or procedural languages are command driven or statement-oriented
languages. The first programming languages imitated and abstracted the op-
erations of a computer. The first such computer was the von Neumann model,
which had a single central processing unit that sequentially executed instructions
that operated on values stored in the memory. Therefore, the typical features
of a language based on the von Neumann model were the following: variables
representing memory locations, and assignments allowing the program to operate
on the memory locations.

A programming language that is characterized by the sequential execution
of instructions, the use of variables representing memory locations, and the use
of assignment to change the values of variables is called an imperative language.
The syntax of such languages generally has the following form.

Statement_1;

Statement_2;

...

Statement_n;

1.4.2 Appliative or funtional languages

The functional paradigm is based on functions over types such as lists and trees.
The pioneer of functional languages was LISP, which demonstrated remarkably
early that good programs can be written without resorting to variables and
assignments. ML and Haskell are modern functional languages. They treat func-
tions as ordinary values, which can be passed on as parameters and returned as
results from other functions. Moreover, they incorporate advanced system types,
allowing us to write polymorphic functions, i.e. functions that operate on data
of a variety of types. ML (like LISP) is an impure functional language, since it
does support variables and assignments. By contrast, Haskell is a pure functional
language.
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The fundamental characteristic of the languages in this paradigm is that they
treat computation as the evaluation of mathematical functions and avoid state
and mutable data. They emphasize the application of functions, whereas the
imperative programming style emphasizes changes in state. Once an environment
is fixed, an expression always denotes the same value.

1.4.3 Rule-based or logial languages

Logic programming is based on a subset of predicate logic. Logic programs infer
relationships from the values, as opposed to computing output values from input
values. Prolog was the pioneer of logic languages, and it is still the most popular
one. In its pure logical form, however, Prolog is rather weak and inefficient,
so it has been extended with extra-logical features to make it more useful and
user-friendly as a programming language.

A well-known slogan originally by R. Kowalski captures the concepts that
underpin the activity of exact programming: Algorithm = Logic + Control.
According to this ”equation”, the specification of an algorithm, and therefore
its formulation in programming languages, can be separated into two parts.
Firstly, the logic of the solution is specified. Here ”what” must be done is defined.
Secondly, the aspects related to control are specified, and therefore the ”how” of
finding the desired solution is clarified. The programmer who uses a traditional
imperative language must take account of both components. Logic programming,
by contrast, implies, by definition, the separation of these two aspects. The
programmer is required, at least in principle, to provide a logical specification
only. Everything related to control is relegated to the abstract machine. Using a
computational mechanism based on a particular deduction rule (resolution), the
interpreter inspects the space of possible solutions, looking for the one specified
by the ”logic”, defining in this way the sequence of operations necessary to reach
the final result.

The basis for this view of computation as logical deduction can be traced
back to the work of K. Gödel and J. Herbrand in the 1930s. It was not until
the 1960s that a formal definition of this process was provided by A. Robinson
and it took ten years to realize that formal automatic deduction of a particular
kind could be interpreted as a computational mechanism. As a result, the first
programming languages in the logic programming paradigm were created, Prolog
being one of them.

Today there are many implemented versions of Prolog, and there exist various
other languages in this paradigm (as far as applications are concerned, those
including constraints are of particular interest). All of these languages allow the
use of constructs permitting the specification of control for reasons of efficiency.
Since these constructs do not have a direct logical interpretation, they make the
semantics of the language more complicated, and partly sacrifice the purely
declarative nature of the logic paradigm. This notwithstanding, we still use
logic programming languages, even the ”impure” aspects, which require the
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programmer to do little more than formulate (or declare) the specification of
the problem to be solved. In some cases, the resulting programs are unusual in
their brevity, simplicity and clarity [GM10].

1.4.4 Objet-oriented languages

The object-oriented paradigm has acquired enormous importance over the last
20 years. Object-oriented languages allow programmers to write reusable code
that operates in a way that mimics the behavior of objects in the real world;
as a result, programmers can use their natural intuition about the world to
understand the behavior of the program and to construct appropriate code. In a
sense, the object-oriented paradigm is an extension of the imperative paradigm.
The difference is that the resulting program consists of a large number of very
small pieces whose interactions are carefully controlled and yet easily changed.
Moreover, at a higher level of abstraction, the interaction among objects via
message passing can map nicely to the collaboration of parallel processors, each
with its own allocated memory. The object-oriented paradigm has essentially
become a new standard, much as the imperative paradigm was in the past.

The concepts of object and class had their origins in Simula, yet another
ALGOL-like language. Smalltalk was the earliest pure object-oriented language,
in which entire programs were constructed from classes.

C++ was designed by adding object-oriented concepts to C. C++ brought
together the C and object-oriented programming communities, and thus became
very popular. Nevertheless, its design is clumsy; it inherited all of C’s shortcom-
ings, and it added some more of its own.

Java was designed by drastically simplifying C++, removing nearly all its
shortcomings. Although primarily a simple object-oriented language, Java can
also be used for distributed and concurrent programming. Java is well suited for
writing applets (small portable application programs embedded in Web pages),
as a consequence of a highly portable implementation (the Java Virtual Machine)
that has been incorporated into all major Web browsers. Thus Java has enjoyed
a symbiotic relationship with the Web, and both have experienced enormous
growth in popularity. C# is very similar to Java, apart from some relatively
minor design improvements, but its more efficient implementation makes it more
suitable for ordinary application programming.

1.4.5 Conurrent programming languages

A number of languages have been designed to support concurrency,1 beginning
with PL/I in the mid-1960s and including the contemporary languages Java and
C#. The most important design issues for language support for concurrency

1 Concurrency is a property of systems in which several computations are simultaneously
executed, and potentially interacting with each other.



24

•
Language Design

are the competition, cooperation synchronization, message passing, shared re-
sources (including shared memory). Such languages are sometimes described as
Concurrency-Oriented Languages or Concurrency-Oriented Programming Lan-
guages (COPL).

Today, the most commonly used programming languages that have specific
constructs for concurrency are Java and C#. Both of these languages funda-
mentally use a shared-memory concurrency model. Of the languages that use a
message-passing concurrency model, Erlang is probably the most widely used in
industry at present [BA06].

Many concurrent programming languages have been developed more as re-
search languages (e.g. Pict) rather than as languages for production use. How-
ever, languages such as Erlang, Limbo, and Occam have seen industrial use at
various times in the last 20 years.

1.4.6 Sripting languages

Scripting is a paradigm characterized by the following features:

• use of scripts to glue subsystems together;
• rapid development and evolution of scripts;
• modest efficiency requirements;
• very high-level functionality in application-specific areas.

Scripting is used in a variety of applications, and scripting languages are
correspondingly diverse. Several scripting languages were originally developed
for specific purposes: csh and bash, for example, are the input languages of
job control (shell) programs; awk was intended for report generation; PHP
and JavaScript are primarily intended for the generation of web pages with
dynamic content (with execution on the server and the client, respectively).
Other languages, including Perl, Python, Ruby, and Tcl, are more deliberately
general purpose. Scripts, ”programs” written in scripting languages, typically are
short and high-level, are developed very quickly, and are used to glue together
subsystems written in other languages. So scripting languages, while having
much in common with imperative programming languages, have different design
constraints.

Later in this book, an entire chapter is devoted to each of these programming
language paradigms.

1.5 Influenes on language design

There are several factors that influence the basic design of programming lan-
guages. The most important of these are computer architecture and program-
ming design methodologies. The basic architecture of computers has had a
major effect on language design. Most of the popular languages of the past
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50 years have been designed around the prevalent computer architecture, called
the von Neumann architecture, after one of its originators, John von Neumann
[Seb13]. In a von Neumann computer, both data and programs are stored in
the same memory. The central processing unit (CPU), which actually executes
instructions, is separate from the memory. Therefore, instructions and data must
be piped, or transmitted, from memory to the CPU. Iteration is fast on von
Neumann computers because instructions are stored in adjacent cells of memory
[Seb13].

Years Influences New Technology
1951–1955 Hardware: Vacuum-tube (valve) computers simulated finite-capacity Turing

machines; mercury delayline memories
Method: Assembly languages, basic concepts: subprograms, data structures
Languages: Experimental use of expression compilers

1956–1960 Hardware: Magnetic tape storage, core memories, transistor circuits
Method: Early compiler technology, BNF grammars, code optimization,

interpreters, dynamic storage methods and list processing
Languages: FORTRAN, ALGOL, LISP

1961–1965 Hardware: Families of compatible architectures, magnetic disk storage
Method: Multiprogramming operating systems, syntax-directed compilers
Languages: COBOL, ALGOL 60, SNOBOL, JOVIAL

1966–1970 Hardware: Increasing size and speed and decreasing cost, microprogramming,
integrated circuits

Method: Time-sharing systems, optimizing compilers, translator writing
systems

Languages: APL, FORTRAN 66, COBOL 65, ALGOL 68, BASIC, SIMULA 67,
SNOBOL4, ALGOL W

1971–1975 Hardware: Microcomputers, mass storage systems, distributed computing
Method: Data abstraction, formal semantics, concurrent,embedded, and real-

time programming techniques
Languages: Pascal, COBOL 74, PL/I (standard), C, Scheme, Prolog

1976–1980 Hardware: Microcomputers,mass storage systems, distributed computing
Method: Data abstraction, formal semantics, concurrent, embedded and real-

time programming techniques
Languages: Smalltalk, Ada, FORTRAN 77, ML

1981–1985 Hardware: Personal computers, workstations, video games, local-area net-
works, APRANET

Method: Object-oriented programming, interactive environments, syntaxdi-
rected editors

Languages: Turbo Pascal, Smalltalk-80, Prolog, Ada 83, PostScript
1986–1990 Hardware: Age of microcomputer,engineering workstation, RISC architectures,

Internet
Method: Client/server computing
Languages: FORTRAN 90, C++, SML

1991–1995 Hardware: Very fast, inexpensive workstation and microcomputers, massively
parallel architectures

Method: Open systems, environment frameworks
Languages: Ada 95, Tcl, Perl, HTML

1996–2000 Hardware: Computers as inexpensive appliances, Personal digital assistants,
WWW, Cabel-based home networking, Gigabyte disk storage

Method: E-commerce
Languages: Java, JavaScript, XML

2001-2005 Hardware: Mobile devices, smartphones spread fast, wireless networks
Method: Mobile operating systems iOS, Android
Languages: Objective-C, Java 5, .NET, C# 2.0

2006-2010 Hardware: High capacity networks, low cost computers and storage devices,
mobile phone based networks

Method: Web/cloud applications
Languages: Django, Java 6, C# 3.0

Table 1.2: Some influences on programming language development. [PZ01]
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The late 1960s and early 1970s brought an intense analysis of both the
software development process and programming language design. An important
reason for this research was the shift in the major cost of computing from hard-
ware to software, as hardware costs decreased and programmer costs increased
[Seb13]. The new software development methodologies that emerged as a result
of the research of the 1970s were called top-down design and stepwise refinement.
In the late 1970s, a shift from process-oriented to data-oriented program design
methodologies began. The next step in the evolution is object-oriented design.
Object-oriented methodology begins with data abstraction, which encapsulates
processing with data objects and hides access to data, and adds inheritance
and dynamic method binding. Inheritance is a powerful concept that greatly
enhances the potential reuse of existing software [Seb13].

Process-oriented programming is, in a sense, the opposite of data-oriented
programming. Although data-oriented methods now dominate software develop-
ment, process-oriented methods have not been abandoned. On the contrary, a
good deal of research has occurred in process-oriented programming in recent
years, especially in the area of concurrency. These research efforts brought with
them the need for language facilities for creating and controlling concurrent
program units [Seb13]. We summarize the important changes and trends in
programming language design in Table 1.2.

1.6 Priniples of programming language design

1.6.1 Features of a good programming language

Even experts in the field disagree on what makes a great language, which is why
so many novel ideas abound in the area of programming language design. A list
of requirements and goals of programming language design are provided below
[Sco09]. Importantly, different people involved in software design and use have
very different preferences which all need to be taken into account. The following
criteria will be grouped based on the different aspects and preferences of the
different users of programming languages. These criteria are slightly modified
from books by Alan Tucker and Ellis Horowitz. The criteria are grouped into
three main categories:

• criteria relating to ease of using a language;
• criteria relating to software engineering;
• criteria relating to performance.

Criteria relating to ease of using a language

Programming languages are used by programmers who write programs. Thus, a
good language should make it easy for a programmer to express what needs to
be done. Several criteria contribute to making a language easy to use.
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Well-definedness

The first criterion is well-definedness. Both the syntax and the semantics of the
language should be clearly defined.

Syntax answers the question ”What forms does the language allow?”

This is important, so that a programmer knows how to construct statements
that will be accepted by the interpreter. If the syntax definition is ambiguous,
then the programmer may have to resort to trial and error. Even worse, differ-
ent interpreters for the same language may differ in their interpretation of an
ambiguity, leading to portability problems.

Semantics answers the question ”What does this form mean?”

The importance of this for the programmer is obvious. Ambiguity here may
again force the programmer to resort to trial and error. A classic example of
ambiguous semantics is the ”dangling else” problem:

if (B1)

if (B2) S1

else S2

where B1 and B2 are boolean expressions and S1 and S2 are statements It can
be interpreted as:

if (B1)

if (B2)

S1

else -- else goes with second if

S2

or as

if (B1)

if (B2)

S1

else -- else goes with first if

S2

ALGOL handled this by forbidding the then part of an if from being
another if. Some newer languages (e.g. FORTRAN77, Modula-2, Ada) require
an explicit end if to terminate an if .. then .. else, also avoiding the
problem. Most languages resolve the ambiguity as Java does, by matching the
else with the nearest if that has no else [Sco09].

Consisteny with ommonly used notation (expressivity)

Expressivity in a language can refer to several different characteristics. It more
commonly means that a language has relatively convenient, rather than cum-
bersome, ways of specifying computations. For example, in C, the notation
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count++ is more convenient and shorter than count=count+1. This point can
be illustrated best by looking at some violations of this criterion.

In writing mathematical expressions, certain conventions are normally un-
derstood with regard to operator precedence. For example,

3*x+2

is normally understood to mean

(3*x)+2

Most programming languages adhere to conventional rules of operator prece-
dence, but some do not. For example, in APL the unparenthesized expression
would be interpreted (by starting the calculation from the right) as

3*(x+2)

Another important criterion is that typo should not radically change the
code’s meaning. This possibility was notoriously illustrated by the software
controlling an early space exploratory Venus probe, in which the intended FOR-
TRAN code DO 1 I =1,25 (which introduces a loop with control variable I
ranging from 1 through 25) was mistyped as DO 1 I =1.25 (which assigns 1.25
to an undeclared variable named DO1I).

PL/I was heavily and justifiably criticized for failing to control its complexity.
A notorious example is the innocent-looking expression ”25+1/3”, which weirdly
yields 5.33. PL/I used complicated (and counterintuitive) fixed-point arithmetic
rules for evaluating such expressions, sometimes truncating the most significant
digits.

Many people have criticized C, for example, for the common confusion be-
tween the assignment operator (=) and the equality test operator (==).

Good failities for input/output

Older languages such as COBOL, FORTRAN and PL/I have complicated built-
in input/output facilities. Being built-in and inextensible, they make a vain
attempt to be comprehensive, but often fail to provide exactly the facilities
needed in a particular situation. By contrast, modern languages such as C++,
Java, and Ada have no built-in input/output at all. Instead their libraries provide
input/output units (classes or packages) that cater for most needs. Programmers
who do not need these units can ignore them, and programmers who need
different facilities can design their own input/output units. These programmers
are not penalized (in terms of language or compiler complexity) by the existence
of facilities they do not use.
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Uniformity

That is, similar constructs should have similar meanings. In the C family of
languages (including Java), parameters to functions are normally passed by
value. Thus, given the C function definition

int f(x)

int x;

{

x = 2 * x;

return x;

};

and a call to the function

int a = 2;

b = f(a); // a still has the value 2 here

The assignment to the formal parameter x in f has no effect on the actual
parameter a. But if the parameter is an array, then it is passed by reference
instead. Thus, given the very similar function definition:

int f(x)

int x[];

{

x[0] = 2 * x[0];

return x[0];

};

and a call to the function

int a[2];

a[0] = 2;

b = f(a); //The value of a[0] is now 4!

The assignment to the formal parameter x in f will alter the first element of
the actual parameter a.

Orthogonality

The term orthogonality refers to attributes of being able to combine various
features of a language in all possible combinations, with each combination be-
ing meaningful. Suppose a language has the four primitive data types, namely
integer, float, double and character, and two type operators, namely array and
pointer. If the two type operators can be applied to themselves and to the four
primitive data types, a large number of data structures can be defined.

Orthogonality is closely related to simplicity. The more orthogonal the design
of a language, the fewer exception the language rules require. Fewer exceptions
mean a higher degree of regularity in the design, which makes the language easier
to learn, read, and understand.
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Generality

A debatable criterion is whether a language should be general, i.e. capable of
tackling any type of problem. Carrying this too far can lead to failure. For
example, in the late 1960s, IBM promoted a language called PL/I that was
intended to replace FORTRAN, COBOL and ALGOL - among others - by
incorporating facilities that would allow one to do everything one could do with
FORTRAN and COBOL, with the elegance of ALGOL. This attempt, however,
failed miserably and PL/I was unable to gain a significant programmer base.

Easy to learn

Being easy to learn is an important feature of a programming language designed
for widespread use. Several of the features we have already considered contribute
to this, e.g. consistency with commonly used notation, uniformity and orthogo-
nality. Others, on the other hand, may make the language more difficult to learn.
Especially, an abundance of a large number of features tends to make a language
hard to use. Therefore, in case of some larger languages, the developers design
subset languages, i.e. smaller versions of the language that include the necessary
features while excluding less widely used ones.

Criteria relating to software engineering

Beyond ease of use, it is important that a programming language supports the
development of correct software, even when writing large systems. The next
group of criteria we consider pertains to support for engineering high-quality
software.

Reliability

A program is said to be reliable if it performs according to its specifications
under all conditions. Several language features have a significant effect on the
reliability of programs.

• Type checking. Type checking is simple testing for type errors in a given
program, either by the compiler or during program execution. Type check-
ing is an important factor in language reliability. The earlier the errors
are detected, the less expensive it is to make the required repairs. Java
requires type checking of nearly all variables and expressions at the time
of compilation. Types and type checking are discussed in depth in Chapter
5.

• Exception handling. The ability of a program to intercept run-time errors,
take corrective measures and then continue running is a great aid to reli-
ability. Ada, C++, and Java include extensive capabilities for exception
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handling. Exception handling is much more difficult (though not impos-
sible) in many other widely used languages, such as C and FORTRAN.
Exception handling is discussed in Chapter 8.

• Aliasing. Loosely defined, aliasing means having two or more distinct
referencing methods, or names, for the same memory cell. It is now widely
accepted [Sco09] that aliasing is a dangerous feature in a language. Some
kinds of aliasing can be prohibited by the design of a language.

Modularity

A large software project is typically constructed of modules, each of which in-
teracts with the rest of the system in certain well-defined ways. Some languages,
such as Modula-2 and Ada, provide more sophisticated features to support
modular software, as we shall see later in the case of Ada.

One of the great strengths of object-orientation is the modularity inherent
in the definition of a class.

Support for separate ompilations

For small programs, it is common for the entire program to reside in a single
file that is compiled as a single unit. However, for larger programs, it is almost
essential to allow the program to be spread over multiple (sometimes several
thousand) files compiled separately. In this way, when a change is made, only
the affected file(s) need to be recompiled.

Many languages support this by adding a separate step to the program
building process called linking.

Support for abstration

Abstraction means the ability to define and then use complicated structures or
operations in ways that allow many of the details to be ignored. Abstraction is
a key concept in contemporary programming language design. Abstraction is a
key factor in the writability of a language. Programming languages can support
two distinct categories, namely, process abstraction and data abstraction.

• Process (or control) abstractions simplify properties of the transfer of
control, that is, the modification of the execution path of a program
based on the situation at hand. Examples of control abstractions are
loops, conditional statements, and procedure calls.

• Data abstractions simplify for human users the behavior and attributes
of data, such as numbers, character strings, and search trees.

Abstractions are also categorized in terms of levels, which can be viewed
as measures of the amount of information contained (and hidden) in the ab-
straction. Basic abstractions collect the most localized machine information.
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Structured abstractions collect intermediate information about the structure of
a program. Unit abstractions collect large-scale information in a program.

Different programming languages provide different types of abstractions,
depending on the intended applications for the language. In object-oriented
programming languages such as C++, Object Pascal, or Java, the concept of
abstraction has itself become a declarative statement - using the keywords virtual
(in C++) or abstract (in Java). After such a declaration, it is the responsibility of
the programmer to implement a class to instantiate the object of the declaration.
Functional programming languages commonly exhibit abstractions related to
functions.

Ideally, the type structure can be extensible, allowing the programmer to
easily create and use new data types to fit the problem at hand. FORTRAN is
an example of a language that is particularly weak on this, having only arrays
as structured types - no records or pointer variables. Thus, what would be done
with structs/classes in C-like languages will have to be done with individual
variables in FORTRAN, and linked structures can only be implemented by using
arrays of nodes - dynamic storage allocation is not possible. There is no facility
for declaring new data types, either. A number of other languages share these
shortcomings, including APL and BASIC.

Some languages (e.g. Ada, C++) even allow the standard operators to be
redefined for user-defined data types.

Provability

The language lends itself to using formal methods to prove the correctness of a
program. It is possible to construct a program proof by embedding precondition
and postcondition assertions into the program. Unfortunately, two characteris-
tics found in many programming languages tend to make constructing proofs
difficult.

• The goto statement complicates proofs, because one cannot be sure what
preconditions apply to a statement if it can be reached in more than one
way.

• The possibility of two variables being aliases for one another complicates
proofs.

To facilitate proofs, some languages do not have a goto statement and others have
sufficient control structure flexibility to make its use practically unnecessary.

Criteria relating to performane

In the early days of computing, when computers were extremely slow and short
of storage, languages like FORTRAN and COBOL were designed with numerous
restrictions to enable them to be implemented very efficiently. Much has changed
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since then: computers are extremely fast and have vast storage capacities; and
compilers are much better at generating efficient object code.

A language’s efficiency is strongly influenced by its conceptual basis. Some
concepts such as dynamic typing, parametric polymorphism, object orientation,
and automatic deallocation (garbage collection) inherently require significant
resources. Logic programming is inherently less efficient than functional pro-
gramming [Sco09], which in turn is inherently less efficient than imperative
programming. The language designer must decide whether the benefits of each
concept outweigh its cost.

Sometimes an interaction of concepts has paradoxical effects on efficiency. For
example, in an imperative language, selective updating of an array is ”cheap”,
while in a functional language an array-transforming operation would be ”costly”
(having to copy all the unaffected components). Conversely, in an imperative
language, sharing of list components is inhibited (by the possibility of selective
updating), while in a functional language sharing is always possible. Therefore,
imperative languages prefer arrays while functional languages prefer lists.

Friedrich Bauer has suggested a useful principle: a language should not
include a concept if it imposes significant costs on programs that do not use
it. This principle is respected by Ada and Java exceptions: we can implement
exceptions in such a way that a program that throws no exceptions runs as fast as
it would do if exceptions did not exist. This principle is also respected by Ada’s
concurrency control abstractions. It is not respected by Java’s synchronization
features, which are designed to support concurrency, but which impose a cost
on every object, even in a sequential program [Wat06].

Fast interpretation/ompilation

In general, the more complex the syntax of the language, the longer a program
of a given length will take to compile. When developing large programs, it is
nice to have a separate compilation facility that allows the program to be spread
over several files.

Effiient objet ode

This goal conflicts with the goal of fast interpretation. An optimizing compiler
spends extra time during compilation to produce better object code. This is nice
for production software, but is not as pleasant during program development.
Some languages (for example gnu C) are supported by two compiler versions - a
fast ”checkout” compiler that produces less than optimal code, but which can be
used during debugging; and an optimizing compiler that is slower but produces
production-quality code.
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Portability

One of the original reasons for adopting higher level languages was the desire
to be able to move a program from one type of computer to another without
rewriting it. To some extent, all higher-level languages achieve this goal; but
some do much better than others.

Most important for portability is the existence of a well-defined and accepted
language standard. Many languages have been standardized by formal bodies
such as ANSI or ISO. For others, the original report by the language author
may serve as a standard, and some languages have no clear-cut standards at all.

Standardization by itself is not enough, though, even when the standard is
adhered to. Certain characteristics of the underlying machine have a way of
showing up unavoidably in the implementation. For example, every machine has
a basic word length which determines the range of integers that can be processed
by regular machine instructions. Historically, microprocessor systems often used
16-bit integers; today many systems use 32 bits, and the 64-bit systems have also
become widely used recently. A program which relies on the range of integers
available on one machine may not run correctly on another machine whose range
of values is smaller.

Possible solutions

The programming language evaluation criteria provide a framework for language
design. However, that framework is self-contradictionary. Hoare (1973) states in
his paper that ”there are so many important but conflicting criteria that their
reconciliation and satisfaction is a major engineering task”.

Effiient ode versus reliability

Ada language definition demands that all references to array elements be checked
to ensure that the indexes are in their legal ranges. This adds a great deal to the
cost of execution of Ada programs that contains large numbers of references to
array elements. C does not require index range checking, so C programs execute
faster than the semantically equivalent Ada, although the Ada program is more
reliable [TN06].

Readability versus writability

APL includes a powerful set of operators for array operands. Because of the large
number of operators, a significant number of new symbols had to be included in
APL to represent the operators. Many APL operators can be used in a single
long, complex expression. One result of the high degree of expressivity is that,
for applications involving many array operators, APL is truly writable. Indeed, a
huge amount of computation can be specified in a very compact program [TN06].
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Flexibility versus safety

Pascal variant records allow a memory cell to contain different types at different
times. For example, the cell may contain either a pointer or an integer. So a
pointer value put in such a cell can be operated on as if it were an integer, using
any operation defined for integer values. This provides a loophole in Pascal’s
type checking that allows a program to do arithmetic on pointers, which is
sometimes convenient. However, this unchecked use of memory cells is, in general,
a dangerous practice [TN06].

1.6.2 Language design

In the design of a new language, certain matters require careful assessment
well before any consideration is given to the details of the design. The first
and most important question that must be asked is whether it is necessary to
design a new language. Is there an existing language that can be used to satisfy
the requirement? Even if it requires a new implementation, implementing an
existing language is easier and faster than designing and then implementing a
new language.

The language designer’s first problem, therefore, is a judicious selection of
concepts. What to omit is just as important a decision as what to include as
defining the success or failure of a programming language is very complex. A
language is successful if it satisfies any of the following criteria:

• Achieves the goals of its designers.
• Attains widespread use in an application area.
• Serves as a model for other languages that are themselves successful.

When creating a new language, it is essential to decide on an overall goal for
the language, and then keep that goal in mind through the entire design process.

Nevertheless, it is extremely difficult to describe good programming language
design. Even recognized computer scientists and successful language designers
offer conflicting advice. Niklaus Wirth, the designer of Pascal, advices that
simplicity is paramount [Wir74]. C. A. R. Hoare, a prominent computer scientist
and ALGOL designer, emphasizes the design of individual language constructs
[Hoa73]. The designer of C++, Bjarne Stroustrup notes that a language cannot
be merely a collection of neat features [Str94].

Horowitz suggested the following ten-step protocol to design a new program-
ming language [Hor94]:

1. Choose an application area;
2. Make the design committee as small as possible;
3. Choose some precise design goals;
4. Release version one to small set of people;
5. Revise language definition again;
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6. Build a prototype compiler;
7. Revise language definition again;
8. Write the manual;
9. Write a good compiler and distribute it;

10. Write primers.

1.7 The standardization proess

We already emphasized the importance of the existence of a well-defined and
widely accepted language standard. Documentation for the early programming
languages was written in a informal way, in ordinary English. However, pro-
grammers soon became aware of the need for the more precise description of a
language, and argued for the type of formal definitions used in mathematics. A
further reason for a formal definition was the need for machine or implementa-
tion independence. The best way to achieve this was through standardization,
which requires an independent and precise language definition that is universally
accepted. Standards organizations such as ANSI (American National Standards
Institute) and ISO (International Standards Organization) have published defi-
nitions for a number of languages including C, C++, Ada, Common Lisp, and
Prolog.

Once a language is in widespread use, it becomes very important to have a
complete and precise definition of the language so that compatible implemen-
tations may be produced for a variety of hardware and system environments.
The standardization process was developed in response to this need. A language
standard is a formal definition of the syntax and semantics of a language. It
must be a complete, unambiguous statement of both. Language aspects must be
defined clearly, while those aspects that go beyond the limits of the standard
must be designated clearly as ”undefined”.

A language translator that implements the standard must produce code that
conforms to all the defined aspects of the standard, but for an undefined aspect,
it is permitted to produce any convenient translation. The right to define an
unstandardized language, or to change a language definition, may belong to the
individual language designer, to the agency that has sponsored the language
design, or to a committee of the American National Standards Institute (ANSI)
or the International Standards Organization (ISO). The FORTRAN standard
was originated by ANSI, the Pascal standard by ISO. The definition of Ada is
controlled by the U.S. Department of Defense, which funded the design of Ada.
New or experimental languages are usually controlled by their designers.

When a standards organization decides to sponsor a new standard for a
language, it convenes a committee of people from industry and academia who
have a strong interest in and extensive experience with that language. The
standardization process is not easy or smooth. The committee must decide which
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dialect, or combination of ideas from different dialects, will become the standard.
The committee members approach the task with different notions of what is
good or bad, and have different preferences. Agreement at the start is rare, and
the harmonization process may take several years. This was the case with the
original ISO Pascal standard, the ANSI C standard, and the new FORTRAN-90
standard.

After a standard is adopted by one standards organization (ISO or ANSI),
the definition is re-evaluated by the other. In an ideal situation, the new standard
is accepted by the other one, as well. For example, ANSI adopted the ISO
standard for Pascal nearly unchanged. However, smooth sailing is not always the
rule. The new ANSI C standard was rejected by some ISO committee members,
and a number of amendments had to be performed during the standardization
process. The first standard for a language often clears up ambiguities, fixes
obvious defects, and defines a better and more portable language. For instance,
ANSI C and ANSI LISP standards do all of these. Programmers writing new
translators for these languages must then conform to the common standard.
Implementations may also include words and structures, called extensions, that
go beyond anything specified in the standard.

1.8 Summary

In this Chapter, we have first introduced general concepts about programming
language design and implementation options, all of which strongly determine the
overall efficiency of a programming language. We then went through the history
of programming languages. We have seen how new languages inherited successful
concepts from their ancestors, and how they sometimes introduced new concepts
of their own. We have discussed how major programming paradigms evolved. We
have identified a number of technical and economic criteria that must be taken
into account when selecting a language for a particular software development
project. All this information will be of key importance in the following chapters
in this textbook.

1.9 Exerises

Exercise 1.1. Write an evaluation of a programming language you are familiar
with, using the criteria described in this chapter.

Exercise 1.2. C requires a semicolon to be placed between the then and else
branches of a conditional if-then-else statement, whereas this is prohibited in
Pascal. What are the pros and cons of the two regulations?

Exercise 1.3. Certain programming languages distinguish between uppercase and
lowercase characters in identifiers. What are the pros and cons of this design
decision?
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Exercise 1.4. FORTRAN does not require all variables to be declared before
being used. What problems may result from this during syntax processing?

Exercise 1.5. Explain the different factors that determine the overall cost of a
programming language.

Exercise 1.6. Describe, in your own words, the concept of orthogonality in pro-
gramming language design.

1.10 Useful tips

Tip 1.1. Consider the following:
overloading, memory allocation, support of data abstraction, different ways of
using complex conditionals for loops, etc.

Tip 1.2. Consider what semicolons are usually used for and whether this use
is justified within an if-then-else statement. Also think about a case when you
later add an else clause to an existing if-then statement. What happens to the
semicolon?

Tip 1.3. Consider whether additional information about the case of letters is
necessary or useful. Does this extra information positively or negatively affect
the readability of the program code?

Tip 1.4. Ask yourself what would happen to typographical errors in FORTRAN.

Tip 1.5. The different aspects of the cost of a programming language are a) the
cost of deployment, b) the cost of maintenance, and c) the cost of support.

Tip 1.6. Orthogonality is the property that means ”Changing A does not change
B”. An example of an orthogonal system would be a radio, where changing the
station does not change the volume and vice-versa. A non-orthogonal system
would be like a helicopter where changing the speed may change the direction.

1.11 Solutions

Solution 1.1. We will consider the Java language.
Readability

In terms of readability, Java has some issues with simplicity with respect to
readability. There is feature multiplicity in Java as shown in the textbook with
the example of

count=count+1, count++, count+=1, ++count
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being four different ways to increment an integer by one. Another problem is
operator overloading since Java allows some operators such as the + sign to add
integers, floats, and other number types.

Control statements in Java have higher readability than Basic and Fortran
programs because they can use more complex conditionals like for loops. There
is no need for goto statements that have the reader leaping to other lines of code
that could be far away or out of order. However, the use of braces to designate
the starting and stopping points of all compound statements can lead to some
confusion.

Writability
Java has a fair bit of orthogonality in that its primitive constructs can be used
in various different ways. Because Java is an imperative language that supports
objects object oriented programming, it can be fairly complex. Java supports
data abstraction so it would be easier to create a binary tree in Java with its
dynamic storage and pointers than in a language like Fortran 77. Java also has
a for statement which is easier than using a typical while statement. Java is a
high level programming language so specifying details like memory allocation
are unnecessary due to Java’s dynamic array system.

Solution 1.2. Semicolons are mostly used between two statements, either to
separate them (Pascal) or to terminate the preceding statement (C). Since a
conditional if-then-else statement is a single statement, there is no justifyable
reason to place a semicolon between the then and else branches. In this theoret-
ical sense, the Pascal version is more appropriate.

On the other hand, when you want to add a new else branch to an existing
if-then statement in Pascal, you need to go back to delete the semicolon in the
preceding line; if you forget this, a syntax error is generated. This problem does
not occur in C since the semicolon can remain at the end of the then branch.
Therefore, the C version is more practical.

Solution 1.3. Considering the distinction between uppercase and lowercase char-
acters in identifiers.

Pros:
The same words can be used in different meanings depending on the use

of uppercase or lowercase letters. E.g. in Java Byte is a class whereas byte is
a primitive type. We can also differentiate between constants and variables or
dynamic and static names.

Cons:
Case sensitivity may lead to small hard to detect differences between identi-

fiers.
Note that a different situation is when both uppercase and lowercase charac-

ters are allowed but no distinction between them is made at the syntactic level.
A typical such example is Visual Basic.
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Solution 1.4. In case of typographical errors, the compiler will not know if this
is an error or a new variable, therefore it may generate a new variable instead
of reporting the syntax error.

Solution 1.5. The different aspects of the cost of a programming language are:

• The cost of deployment;
• The cost of maintenance;
• The cost of support.

Solution 1.6. Orthogonality is the property that means ”Changing A does not
change B”. An example of an orthogonal system would be a radio, where changing
the station does not change the volume and vice-versa. A non-orthogonal system
would be like a helicopter where changing the speed can change the direction.

In programming languages this means that when you execute an instruction,
nothing but that instruction happens (very important for debugging). There is
also a specific meaning when referring to instruction sets.
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The common characteristic of source codes from
different programming languages is that they are
made of as sequences of symbols from a given set.
The structure of these sequences is described by the
lexical and syntactic rules of the given programming
language. The basic language units called lexical
elements are the building blocks of program units. In
this chapter we examine from what kind of symbol
sets lexical units can be built, to which level this
process is standardized for each of the programming
languages, how the identifiers of these languages are
constructed, and which numerical-, character- and
text literals are allowed. We discuss applicable
comment forms in source code, since this can also
affect the reliability of our programs.



S

ource code is made of one or more compilation units.1 Compilation units
are built from sequences of lexical elements.
Lexical elements are defined by given rules as character sequences sepa-

rated by delimiters. So lexical elements include delimiters, identifiers, numerical-,
character- and text literals, and comments.

2.1 Symbol sets

Symbol sets usable in source codes define not only the program text, but also
control data input. For this reason, standardization of these symbol sets is a key
factor for portability.

Computers manage and communicate data in binary form based on bits in
groups of 8, called octets. Therefore, the value range of an octet is an integer
number between 0 and 255, which is normally given in decimal, octal or hex-
adecimal form for better readability. Octets are often called bytes, but mind the
difference: although an octet is represented with 8 bits (that is with a byte),
interpreting it as a byte means the above mentioned positive value range, but
on 8 bits negative values could also be encoded by assigning a sign bit, or using
different coding methods (like BCD2 or two’s complement).

There are many conventions on how an octet or a sequence of octets represent
data. Naming conventions are used exchangeably for the number of octets and of
their representing bits. For example, 4 consecutive octets (32 bits) often represent
a real number using some standardized encoding, or in ASCII one, in UTF two
octets (16 bits, 2 bytes) implement characters.

It is important to distinguish between character set, character code and
character encoding. We define these according to Jukka Korpela’s study about
characters [Kor02].

1 About compilation units see Chapter 4.
2 Binary Coded Decimal: low and high 4 bits of a byte represent a decimal digit each.
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The character set is simply the set of all allowed characters. Nothing is pre-
sumed about the internal representation of the characters within the computer.
The set does not even require an ordering of the characters, this must be defined
separately. Character sets are normally defined by enumerating the name and the
visual appearance pairs of their elements. Keep in mind, that a set could contain
different characters with the same visual appearance, like the Latin capital A,
the Cyrillic capital A and the Greek capital Alfa (A).

Examples:

EXCLAMATION ! QUESTION_MARK ? SEMICOLON ;

character set element names (or shorter: character names) are rather iden-
tifiers than definitions for them. These names can usually contain letters from
′A′..′Z′, spaces and underscores. The same characters can have different names
in different character set definitions. Character names presumably suggest some
general meaning and hint usage scope; but are advised that usage possibility
could be much broader.

Character code is a mapping usually given in tables, which define a mutually
unambiguous correspondence between the elements of the character set and
integer numbers. This means, that a unique numeric code, so called code position
is given for all the set members. The code mapping is seen as one contiguous
table (irrespectively of the actual numbers of defining tables given), which is
indexed by the code positions. Synonyms for code position are code value, code
point, code-set value, or simply just code.3

Character encoding is an algorithm to define a digital format for handling
characters. It maps sequences of character codes on sequences of octets. In the
simplest case every character is mapped to an integer in the range 0–255, using
their character code as octets. This allows, of course, only for a maximum of 256
characters this way.

A character code table directly defines a character set, and the character
encoding is often given by character codes (and the defining character set).
Logically the character set is primary for providing the set of characters. It also
gives the character codes, the numeric values assigned to the characters –, for
example, in the ISO 10646 character coding the codes of the characters ’a’, ’ä’
and %� (the thousandths sign) are 97, 228 and 8240. The character encoding
defines how character codes are encoded as octet sequences. For example, one
possible coding of ISO 10646 uses two octets for every character encoding ′a′, ′ä′

and the %� sign with the octet pairs of (0, 97), (0, 228) and (32, 48). Using some
notions ambiguously can lead to problems, such as character set can mean the
character set, but also the character codes, or sometimes the character encoding.4

3 It is not required that mapped character codes should cover a contiguous integer range.
Actually most of the character codes have “holes”, empty code positions, which are mapped
for control sequences or are reserved for future use.

4 Using the notion character set for the meaning of “coding” is troublesome.
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The most widely used internationally accepted and standardized character
codings are ASCII, EBCDIC, ISO 8859-1, ISO 8859-2 and Unicode with multiple
possible encodings. The growing demand for specific national characters played
an important role to establish these new standards.

2.1.1 The ASCII ode

To understand why the introduction of the ASCII in 1963 had such a big impact,
it is worth mentioning that before this period of time different computers were
unable to communicate with each other. Every manufacturer had their own
method to represent the letters of the alphabet, numbers and control codes.
“Characters were represented in computers in more than 60 different ways.
This was a real tower of Babel.” – explained Bob Bemer[Bra99], who actively
participated in the development of ASCII, and is also known as the “father of
ASCII”.

ASCII stands for American Standard Code for Information Interchange, acts
as a “common denominator” for every computer nowadays, which could have
nothing else in common. It took more than two years, till this codeset suggested
by the ANSI (American National Standard Institute) had been established.
Today this is the most common encoding. It is so prevalent, that an “ASCII
file” now simply denotes a text (that is not binary) file, even if its encoding
is something different. Most encodings contain ASCII as a subset. The first 32
codepoints and the codepoint 127 define control characters, like line feed (LF) or
escape (ESC). The actual printable part of the character set is shown in Table
2.1. (The whole codetable is in the Appendix 18.1.)

␣ ! " # $ % & ’ ( ) * + , - . /

0 1 2 3 4 5 6 7 8 9 : ; < = > ?

@ A B C D E F G H I J K L M N O

P Q R S T U V W X Y Z [ \ ] ^ _

‘ a b c d e f g h i j k l m n o

p q r s t u v w x y z { | } ~

Table 2.1: Graphical characters of ASCII. The first character is the space

In the original standard the value range 128–255 was not used, but later as
the code points were running out of various extensions were introduced. Such a
widely used extension is shown in the Appendix 18.3. The ISO 8859-1 or Latin-1
and the ISO 8859-2 or Latin-2 character sets are actually extensions of ASCII.
So, the original ASCII is often referenced as US-ASCII.

2.1.2 The EBCDIC ode

Beside ASCII, there is another widely used encoding system, the EBCDIC
(Extended Binary Coded Decimal Interchange Code), which was introduced by
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IBM in the sixties. Curiously, it includes some non-used codepoints in the value
range 0–255, and the codes for the characters ′a′..′z′ and ′A′..′Z′ are following the
usual ordering, but not continuously. Moreover, there are character codes also
wedged in here. For example, the code of the character ′r′ is 153, after that 7
empty codepoints follow, then after the code 161 for ’~’the alphabet continues
with the character ′s′ from code 162. This encoding has at least 6 slightly
different forms. The most commonly used complete codetable is presented in
Appendix 18.4.

2.1.3 The ISO 8859 family

The need for special characters in various languages resulted in the creation of
ISO 8859-1, ISO 8859-2 and more encodings, which assigned the codes between
128 – 255 which were not used by ASCII to some special – mostly graphical –
characters. The ISO 8859-1 or Latin-1 is probably the most popular 8 bit encod-
ing standard in the EU countries. It contains most of the accented letters from
western Europe, such as ’ö’, ’ô’, ’o̊’, and also some other special characters:
’ c©’, ’¿’, ’<’, ’¡’, ’£’ etc. It does not contain – among others – ’ő’ and
’ű’ which are important characters in Hungarian. The complete Latin-1 table
is shown in Appendix 18.1.

The special Hungarian characters (’ő’, ’ű’) are introduced in the ISO 8859-
2 or Latin-2 standard. Most of the middle- and east European accented letters
such as ’ľ’ or ’š’are included in this system. However, some special characters
from Latin-1 such as ’ c©’, ’¿”, ’<’, ’¡’, ’£’ etc. had no place in it. Hungarians
were lucky though because a Latin-2 encoded Hungarian text read in Latin-1
coding is – although not perfect – still understandable, only the letters ’ő’ and
’ű’ will be shown as ’õ’ and ’û’. (The Czechs or Poles were not that fortunate.)
The complete Latin-2 table is in Appendix 18.2.

ISO 8859-3 or Latin-3 serves the needs of the south-European languages
(such as Maltese, and also Esperanto), ISO 8859-4 or Latin-4 defines special
characters for the north-European languages (Estonian, Lithuanian, Latvian,
Greenland, and Lapp). A separate codetable, the ISO 8859-5 helps the users of
Cyrillic letters such as Bulgarian, Byelorussian, Russian, Serbian, etc., another
the basic Arabic character set users (ISO 8859-6), still different ones are used
for Greek (ISO-8859-7), and for Hebrew (ISO-8859-8).

For more about the ISO 8859 encoding, see the study The ISO 8859 Alphabet
Soup from Roman Czyborra [Czy98a].

2.1.4 The Uniode standard

To get around the problems in multilingual environments caused by the former
standards, ISO 10646 standard was introduced in 1993.5 It defines UCS, the

5 The number of this standard relates to 646, which is the ISO equivalent of ASCII.
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Universal Character Set, which is a huge, ever growing character set. Tens of
thousands of characters were defined, according to common principles, giving
each of these characters standard unique names. It also contains, as subsets
most of the character sets described above, like ASCII and Latin-1, the accented
characters of middle- and eastern-European languages, the IPA (International
Phonetic Alphabet), Greek, Cyrillic, Georgian, Armenian, Hebrew, Arabic let-
ters, the character sets of languages from the Indian continent, the symbols
used by the Chinese/Japanese/Korean writings, mathematical operators, various
graphical characters, and also special OCR symbols used to process checks. For
details about all of the character groups see the compilation made by Jukka Ko-
rpela [UCS02]. About the coding problems of the eastern-Asian writings the
study by Steven J. Searle titled A Brief History of Character Codes in North
America, Europe, and East Asia is worth reading [Sea02].

It follows from the size of the set, that most of the characters occupy other
code positions than in the previous standards.

Unicode is a standard by the Unicode Consortium, which is fully compatible
with the character set and coding defined by ISO 10646.6 It also determines
some encodings: first, it was suggested that the 8 bit implementation with the
value set of 0–255 should be extended to 16 bits on the range 0–65535. This
is, for example, what Windows NT uses. After the introduction of the original
idea it was concluded, that this is too much, and at the same time too little,
because for the first 256 characters – and this is often the case – 8 bits would be
sufficient, on the other hand not even a 16 bit implementation would cover all
the emerging coding needs of the world. That is why different Unicode standard
encoding formats were introduced, like UTF-8, UTF-16 etc., to encode character
sequences in a system independent way. (These are often called “character sets”,
but they describe coding algorithms, and not really character sets!) For emailing
for instance the Internet Mail Consortium recommends the UTF-8 standard.

In practice, the name Unicode is more prevalent than the exact name ISO
10646 and is used in different descriptions as equivalent to that of the ISO stan-
dard. For more about the Unicode encoding see the study of Roman Czyborra
titled Unicode Transformation Formats: UTF-8 and Co.[Czy98b].

2.2 Symbol sets of programming languages

Most of the early programming languages allowed only the letters of the English
alphabet, digits and some special characters, like brackets, semicolon, etc. in
lexical elements.

Nowadays the need is emerging that programs should be able to handle all
the special characters used by different nations, and there should be a way to

6 Originally only with the first 216 characters of ISO 10646 defined by the Basic Multilingual
Plane (BMP).



48

•
Lexial elements

define the ordering of those according to the actual alphabetical order in these
languages.

By evaluating the symbol sets of programming languages, one should study,
how and at which level they answer the following questions:

• How precise is the definition of the allowed symbol set?
• What kind of symbols are allowed within the source code?

Pasal

The standard of Pascal from 1990 (ISO 7185:1990) only defined minimal require-
ments: “the character range ′0′..′9′ must be ordered and continuous”, “the range
′A′..′Z′ (if exists) must be ordered, but need not be continuous”, and the same
for the range ′a′..′z′. The possible set of characters is not specified, and different
implementations are allowed to use different character sets [Cat01].

ISO 646 is suggested, but not mandatory.
This incomplete regulation seriously influences the portability of programs

written in the Pascal language. Consider the following examples: if a loop iterates
over the character range from ′a′ to ′z′, or the code of the characters ′A′ and ′1′

are compared according to character set ordering, the achieved results will differ
in EBCDIC and ASCII systems.

Ada

It is worth noting what major changes the standard of Ada went through.
The allowed encoding was already rigorously fixed in 1983, but only for the

ASCII character set (ISO 646).
In 1995 the actual version of the standard specified generally all 65536

characters from the ISO-10646-1 character set for every Ada 95 source code,
but – as we will discuss later – only the 193 defined graphical characters were
allowed in identifiers.

In 2012 the new standard already allows “the entire coding space described by
the ISO/IEC 10646:20112003 Universal Multiple-Octet Coded Character Set.”
[Ada12]

C++

The C++ standard from 1998 (ISO/IEC 14882:1998) allowed only a relatively
limited character set for source codes (91 graphical characters plus the vertical
and horizontal tabulator, linefeed, newline and space). The character encoding
was precisely specified: the code values must come from a subset of ISO 10646,
and must include the whole ASCII. This was a major step compared to the
standard from 1990, which did not specify any encoding at all. A new feature,
the universal character names were also introduced.
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Java and C#

The specification of Java and C# allows the use of any Unicode characters within
the source code. A new feature, the Unicode sequence is introduced to specify
Unicode characters in the form: ′\uXXXX′, where each X denotes a hexadecimal
digit. The designers of C# also advise the usage of UTF-8 for encoding.

Delimiters

In most of the programming languages – such as Pascal, C++, Ada, Java –
delimiters include the space, tab and new line characters. In the early pro-
gramming languages – such as FORTRAN or ALGOL 68 – space was not
always considered as a delimiter. Let’s check out with a small example, how this
seemingly insignificant decision combined with automatic variable declaration
could severely affect program reliability:

Imagine the following FORTRAN code: DO 10 I = 1.5 which was intended
to implement a loop, but the comma separator was mistyped as a point. The
compiler will not complain, as this is syntactically valid, and will be interpreted
as an assignment of the value 1.5 to the variable named DO10I.

Delimiters could be only one character long, or could consist of a sequence
of characters, for some possibilities see Table 2.2.

2.3 Identifiers

Identifiers are used to name variables, types, subprograms, etc. in a source
code. Let’s review how different programming languages handle the following
questions:

• Which characters are allowed to be used in identifiers?
• What is the allowed syntax of the identifiers?
• Are letters handled case sensitively?
• Is there a limit on the length of identifiers?
• Are there reserved (key-) words, which cannot be redefined by the pro-

grammer?

Most of the programming languages allow only the letters of the English
alphabet (′A′..′Z′, ′a′..′z′) and digits (′0′..′9′) in identifiers. That is exactly what
the ISO 7185 Pascal standard from 1990 specifies. For better readability, numer-
ous languages extended this set first with the underscore (′_′): Extended Pascal
(ISO 10206), CLU, Eiffel, C++ (ISO/IEC 14882:1998). There is a difference in
the allowed syntax if the underscore symbol is treated as a normal letter, or as
an extra special character.

In certain languages some special characters can be used to specify additional
information about the variable identified on its beginning or ending. For example,
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Pascal C++ Java Ada 95 CLU Eiffel

space, tab,
linefeed

Yes Yes Yes Yes Yes Yes

Single
character

& ’ ( )

+ - * /

: . ; <

= >

& % ^ ’

( ) + -

{ } | ~

[ ] /"

* / : .

; , < =

> ! ?

( ) { }

[ ] ; ,

. + - *

/ : < =

> ! ~ ?

: & | ^

%

& ’ ( )

* + , -

. / : ;

< = > |

( ) { }

[ ] : ’

. $ " ,

/+ - *

/ < = >

~ & |

; , : .

! = ( )

[ ] { }

" + - $

% /

Character
sequence

:= >=

<= <>

<< **

..

-> ++ –

.* ->*

== <=

>= &&

|| <<

>> <<=

>>= !=

.. +=

-= &=

^= |=

:: *=

/=

== <=

>= <<

!= &&

|| ++ –

>> >>>

+= -=

*= /=

&= |=
^= %=

<<= >>=

>>>=

=> ..

** :=

/= >=

<= <<

>> <> –

:= <=

>= ~<

~<= ~=

~>= ~>

|| **

//

– !! /=

-> ..

<< >>

:= ?=

Table 2.2: Table of delimiters

in Perl the prefix symbols $, @, or % denote a scalar, indexed or associative
variable. In BASIC, the last character of the identifier also specifies the type of
the variable.

The first step to support the definition of identifiers on native languages was
made by the designers of Ada 95: allowed letters of identifiers are those from
BMP Row 00 (that is the first 256 code points) which have the prefix “Latin
Capital Letter” or “Latin Small Letter” in their name, so for example Távolság

or Sebesség are valid. On the other hand, the accented letters ’ő’ and ’ű’ were
not allowed, because their codes are outside of this valid range.

The new standard of Ada in 2012 - following the already existing rules
in Java - supports “any character whose General Category is defined to be
Letter”[Ada12], thus allowing to write identifiers in every possible languages.

Java was the first language, where in identifier names all letters and digits
are allowed of every possible languages, such as Cyrillic, Greek, Hebrew, Arabic,
Chinese, Thai, Indian, Japanese, Georgian, Armenian or Hungarian.7 So in Java
e.g., “αβγ” or Felső are valid identifiers. The same principle is followed by the
identifiers in C#.
7 For the complete specification see [sun03a].
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2.3.1 Allowed syntax

In most of the programming languages identifier names start with letters, fol-
lowed by letters or digits. The usual BNF syntax description of this rule is the
following:

〈letter 〉 {〈letter 〉|〈digit 〉}

This is how valid identifier names are formed, for example, in ALGOL 60,
FORTRAN, Pascal, Modula, C and C++. From these languages in Pascal, C
and C++ the set of letters was extended with the underscore. Java, as already
stated, has a much bigger set of letters, which also includes the ′_′ symbol. For
example, in Java El_Niňois a valid identifier.

In other languages, such as Ada, the set of letters is also bigger, but the ′_′

symbol is not a letter, nevertheless it can be used within identifiers names to
arrange long names, with the following syntax:

〈letter 〉 { [’_’] 〈letter 〉 | [’_’] 〈digit 〉 }

2.3.2 Distintion between lower and upper ase letters

The question of the distinction lower from upper case letters arose already in the
first programming languages. Some of the early languages (such as FORTRAN,
COBOL) solely accepted upper case – only this could be punched on cards.
Compilers later allowed the equivalent usage of lower case, and then simply
converted to upper case during compilation.

Designers for one of the trends of programming languages argued, that ac-
cording to the design principle stating that the same appearance must have the
same meaning, this requires not to distinguish lower from upper case letters. For
this reason, the names dog, DOG, or Dog must identify the same object. This
viewpoint was declared by the designers of Pascal, Ada, or even Visual BASIC.
It is interesting to know, that these languages apply the same principle even to
accented letters, owing to that, the identifiers KÖRTE and körte are same.

Other designers – started from ALGOL 60 and ALGOL 68, continued by C,
C++ and Java – declared that it is practical to consider every letter as distinct.
Mixed case identifiers can be avoided in C by using only lower case identifiers.
But in Java the standard library itself uses mixed case identifiers, like parseInt
for the method to convert a string to an integer number, which cannot be called
neither ParseInt nor parseint.

An unusual approach was chosen by Bertrand Meyer, the designer of Eiffel.
Here lower and uppercase letters are equivalent, but the same name can be used
for an object and its type, so apple: APPLE is a valid declaration [Mey91].
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2.3.3 Length restritions

The first programming languages used only single character names.
This came naturally, since in mathematical equations variables used to be

named like a, b, x or y, and the first programmers were mainly mathematicians
or engineers.

In FORTRAN 66 and even in FORTRAN 77 identifiers had a length limit of
6 characters, which was raised to 31 in FORTRAN 90.

The later programming languages – like the standard of C++ from 1998,
Ada, Java or C# – do not imply any length restrictions, identifiers can be of any
length. Compiler implementations can define a limit to keep symbol tables from
overgrowing, but this should cause no problems for “normal” programmers.

2.3.4 Reserved words

Programming languages reserve, in most cases, certain words for special mean-
ings. These words are used as statements and also to arrange source code.
Branches, for example, usually start with the word if, loops with while or
for, etc.

These words are called keywords, and in most of today’s programming lan-
guages are also reserved, that is they are not allowed to be used as identifier
names.8 The absence of reserved words may result in unclear and hardly main-
tainable programs, causing huge interpretative problems eventually at later mod-
ification attempts of such source codes. In FORTRAN, for example, if the REAL

keyword stands on the beginning of a statement line followed by an identifier,
it means the declaration of a REAL type variable. But if the same REAL word is
followed by the assignment symbol, the compiler would interpret it as a variable
name:

REAL APPLE

REAL = 2.5

After these declarations in the above example, the usage of the REAL word
is ambiguous and it could easily get mixed up if it is a keyword, or a variable
name.

Numerous languages introduce so called predefined names, which could be
seen as between keywords and reserved words in a sense. For example, in Ada
the Integer , Float, Boolean elementary built-in types or the True and False
values were defined not as language keywords, but as part of the Standard
library. So theoretically, they could be redefined. Such possibility of redefinition
is sometimes beneficial, as with this code

type Integer is range −999 999. .+999 999 ;

8 Part of the literature calls standard words, what we defined as keyword here, and uses
keyword for not allowed reserved words (see e.g. [Cso96]).
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our program becomes independent of the actual running environment. On the
other hand, it is better to be careful:

True: Integer ;

declarations like this could be misleading later for every reader of the source
code.

As an interesting feature of C#, every keyword prefixed with the @ symbol
can be used also as an identifier (for example: @bool). “Normal” identifiers must
not start with this special character. This feature was introduced to sustain pro-
gram portability and interoperability in the .NET environment. Symbol names
starting with the @ character are actually stored without this prefix. So even if
a source code from another language uses, for example, the keyword sealed as
an identifier, there is an easy way to reuse the same code in C# utilizing this
feature.

2.4 Literals

Literals are the used constants in the source code.

2.4.1 Numeri literals

Numeric literals practically consist of only digits ′0′..′9′ and letters ′A′..′F′, in
some languages the ′_′ (underscore) symbol is also allowed for arrangement but
has no effect on the numeric value.

The struture of numbers

For numeric literals basically integer and real numbers are distinguished.

Integers

Decimal integers are usually plain sequences of digits, with the following BNF
syntax:

[’+’|’-’] 〈digit 〉 {〈digit 〉}

Examples: −123 or 456789. In Ada or Perl the latter can also be specified in
the form 456_789. Eiffel rules formulate, that for any given ’_’ symbol it must
be followed by exactly 3 digits on its right side.

In the C, C++, Java or C# languages to indicate the difference between int
and long types the letter l or L could be appended to the end of the integer
number. That is why the type of 2 is int, but of 2L it is long. To distinguish
byte and short types, there is no similar indication. In expressions an explicit
typecast can be used for this. The u or U postfix can be used likewise to mark
unsigned values.
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Real numbers

Real numbers differ mostly from integers by containing a decimal point (.). The
general syntax of valid real numbers is the following:

[’+’|’-’] 〈digit 〉 {〈digit 〉} ’.’ 〈digit 〉 {〈digit 〉} [〈exponent 〉]

The exponent is started usually with the letter E, followed by a possible
premonitory sign, and the exponent value. The represented value would be:
sign×number×10sign_exponent×exponent. For example, the −123.456E+ 3 form
represents the -123456.0 real value.
To the above almost every language adds some specialty:

Pasal

In Pascal using an exponent always specifies a real number, so the 12E+3
form denotes the real value of 12000.0 , even if it does not contain a decimal
point [Cat01].

Ada

In Ada integers also have an exponential form, where the exponent must not
be negative. So 1E6 gives the integer value 1 000 000.In the exponential form for
real numbers negative exponents can be used [Ada95].

Eiffel

In Eiffel, for real numbers one digit and a decimal point are enough, digits are
not needed on both sides of the decimal point. (Example: −1.)

C++, Java

In C++ and Java real number literals have the type double by default (-12.3 ,
12.3e4 ) unless the letter f or F is appended to them at the end, which declares
the value to be of type float (3.141592f , 2.9e-3f ).

The double type can be emphasized by appending the letter d or D ([CPP98]
and [Nyek08]). The NaN (Not a Number) value was also introduced. This is also
the result of 0.0/0.0 .

Java

In Java the zero value has a premonitory sign: 0.0 , and -0.0 . These values
are equal, but in some cases they give different results, e.g.: 1.0/0.0 results
positive infinity (POSITIVE INFINITY ), but 1.0/-0.0 gives negative infinity
(NEGATIVE INFINITY ). In computations POSITIVE INFINITY and NEGATIVE INFINITY
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are used according to mathematics rules: adding or subtracting a finite number
does not change their value, multiplying them together gives NEGATIVE INFINITY .
Their sum is not defined [Nyek08].

Allowed bases

In most of the programming languages real numbers are given in decimal, integers
in decimal, in hexadecimal, sometimes in octal and binary form. There are
languages, where this is extended by the possibility to specify real numbers
on different bases, or use other bases for any numbers. Allowed digits depend
of course on the base used, so, for example, in the octal base only the digits
′0′..′7′, in hexadecimal the digits ′0′..′9′ and the letters ′A′..′F′ as “extended”
digits can be used. Octal and hexadecimal formats are recommended for bit
pattern manipulation.

Pasal

In Pascal, integers are normally in decimal format, but can be in hexadecimal
format by prefixing the $ symbol before the digits. A hexadecimal integer can
have at most 8 digits. Examples: +124 and −5 are decimal, $1 $A00 and
−$FFFF are hexadecimal integers. Real numbers can be given only in decimal
base [Cat01].

Ada

In Ada, the base of the number system can be any number between 2 and 16,
and real numbers could be specified also on other bases. For other basis than
decimal, the following syntax must be used:

〈base 〉’#’〈number 〉’#’[〈exponent 〉]

The base number comes before the digits of the number, which sequence is
opened and closed by a # symbol. The base and the exponent is always specified
in decimal format [Nyek98].
Example:

2#1011# −− Binary integer.
16#F.FF#E2 −− Hexadecimal real in exponential format.
2#1.1111 1111 111#E11 −− Number and exponent have the same base,

−− so the last two values are both 4095.0 .

C, C++

In C or C++ floating numbers can only be given in decimal format. The base
of the integers is determined by the prefix of the number:
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• 0 starts octal numbers, like: 0377 ,
• 0x starts the hexadecimals, like: 0xFF , 0xC0B0L,
• any other form is interpreted as decimal.

If the running environment implements int in two’s complement format on
16 bits, the value given as 0xffff would be −1. However, if more bits are used to
store integers, the same 0xffff literal evaluates to 65 535 [CPP98].

Java

In Java, numbers are specified like in C. It is strictly regulated, how octal and
hexadecimal digits should be mapped onto 3 and 4 bits, the numeric value must
be padded with 0-s from the left to 32 or 64 bits, and two’s complement format
must be applied [Mic03]. For example, 0xFFFFFFFF = −110, but in Ada:
16#FFFFFFFF# = (232 − 1)10 = 4 294 967 295 10

Mathematia

It is interesting to mention, that in Mathematica any base between 2 and 36
is allowed, and beside ′0′..′9′ all 26 letters of the English alphabet can be used
as extended digits. To convert the decimal integer n to the base a (a ≤ 36)
BaseForm[n, a] can be used, and the expression a ∧ ∧n for the other way
around.
Example: 30 ∧ ∧Mathematica = 13 207 019 439 499 570. [ST96]

2.4.2 Charaters and strings

For character constants usually ′ (single quote) symbols are used – like ′A′ –,
some languages also allow to specify character codes directly. Certain languages
like C, C++, Java, etc. define some standard named characters and introduce
the ′\′ “escape” notion to specify them. For further details see Table 2.3.

Strings (or character sequences) are text literals constructed from the allowed
character set, usually surrounded by double or sometimes by single quotes. The
allowed character sets are discussed at the beginning of this chapter, for the
supported character and string types of different programming languages see
Chapter 5 and 6.

2.5 Comments

Program maintainability and transparency are greatly improved by commenting
the source code. In these commentaries the author describes the role of each part,
and the main implementation steps of complex algorithms. The compiler simply
ignores normal comments, so the syntactical validity and the interpretation of
the program will not be altered. Following comment methods are supported:
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Code Description

/n newline
/t tabulator
/b backspace
/r return
/f form feed
// backslash
/’ single quote
/" double quote
/ooo octal character code (0–377)
/uhhhh hexadecimal Unicode character (0–0xffff)

Table 2.3: Escape sequences in Java

From a mark in a speial olumn till the end of the line

In FORTRAN, if the first character in the line is a ′C′, the whole line is com-
mented out. This principle is sometimes offered also in assembly languages. In
high level languages, thanks to more unbound formats, this became deprecated.
It is a problem that this way it is not possible to place a comment right next to
the code, on its right side.

Speial marks at the beginning and end of the omment

This is fairly common, offered by numerous programming languages, so even
longer code parts could be commented out. In ALGOL 60, for example, com-
ments begin with the comment keyword and go on till the ‘;’ (semicolon) symbol.
In Pascal, comments are enclosed between the symbol pairs (* and *) or { and
}. This method allows inserting a comment even in the middle of a statement,
like:

if List ptr = nil (* the list is empty *) then . . .

The same is true for C and C++: the comment delimiter pair is the /*

beginning and */ end sequence.
As you can see, the syntax used for comments can even affect program

reliability: a missing ”end-comment” tag could make the compiler to ignore the
whole section till the end of the next comment.

Speial mark at the beginning of the omment � omment ends at the end

of the line

In this case the program code is more robust, protected against possible influ-
ences of a mistake mentioned above. That is why C++ also introduced this form
of comments: the special tag // marks the beginning of the comment, which ends
at the end of the same program line.
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In Ada or in Eiffel, program reliability is of primary importance, that is why
here only comments from the special tag −− till the end of the same program
line are allowed.

In many modern programming languages, there are tools to support internal
documentation. These can produce an extract of the source code, which contain
the method and function specifications and the contents of some – with specific
symbols tagged – remarks.

In Java, comments are the same as in C++, but there is also the possibility
of documentation comments:

/** documentation comment */

this form of documentation comments can be extracted by the javadoc utility.
In Eiffel, the development environment supports internal documentation,

so as the documentation of a class we can query all the comments after the
specification line of the attributes, the pre- and postconditions, and also the
class invariant.9

In C#, for comments the possibilities of C++ (//, / ∗ ... ∗ /) can be used, and
also the tag /// for one liner documentation comments. These documentation
comments must/ought to comply with the XML standard, so documentation
generator utilities can properly manage them.

2.6 Summary

In this chapter we examined the symbol sets from which lexical units can be
built; how this process is standardized for each of the programming languages;
how the identifiers of these languages are constructed, and which numerical-,
character- and text literals are allowed.

2.7 Exerises

Exercise 2.1. Which of the following identifiers is the most readable, which would
you prefer to use in your programs? Explain!

MaxNumberOfEmployees max_number_of_employees

MAXNUMBEROFEMPLOYEES MAX_NUMBER_OF_EMPLOYEES

mnoe m_n_o_e

u32MaxEmployees maxEmployees

Exercise 2.2. Mention a programming language, in which nested comments are
allowed! What could be the reason for the low number of such languages?

Exercise 2.3. In which case is it justified to use another than the decimal base
for integer and real numbers?

9 This is called the short form of a class, for more information see [Mey91].
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2.8 Useful tips

Tip 2.1. The usable syntax of the identifiers is determined by the given pro-
gramming language. For example the case, even the length and the allowed
character set of the identifiers were strongly regulated by the early languages,
modern languages allow more possibilities nowadays. However, naming styles
and conventions for identifiers should be followed for every language. Compliant
names should always be as informative as possible.

Tip 2.2. The lexical parser normally just discards everything after a comment
start until a comment end sequence. If nested comments are allowed, the content
of that comment can not be simple discarded, it must be examined even on a
higher semantic level just to be able to distinguish between proper nesting levels.

Consider a C++ style comment notation, and inspect following nested com-
ment situations:

/* commented out

string Str = "aslfkalfksnflkn*/*aslkfasnflkn";

Thus, the above string constant should be ignored, and

should not cause any problems related to comment deliminators!

*/

/* another comment starts here

// this nesting works, it is a different kind of comment

/*/

// so is this comment still nested or not?

Of course different comment constructs can usually be nested since the dif-
ferent comment ends will not be intermixed during lexical parsing.

Tip 2.3. Think of specifying bitmask data, like Unix style file permissions!

2.9 Solutions

Solution 2.1. The naming styles and conventions for identifiers should be fol-
lowed for every language. Compliant names should always be as informative as
possible. To denote multi-word identifiers, usually CamelCase is used as a prac-
tice of writing compound words such that each part begins with a capital letter.
For better grouping and separation of the different parts, underscore or hyphen
may be used. A good example for a more informative naming convention of
identifiers is the so called ”Hungarian notation”, in which the identifier indicates
its type or intended use by additional prefixes. There are actually two types of
this notation (see the last two examples in the exercise), differing in the prefix
encoding the actual physical data type (such as u32 for unsigned 32 bit integer)
or the logical data type or purpose (such as max for an upper limit).
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Solution 2.2. The lexical parser normally just discards everything after a com-
ment start until a comment end sequence. If nested comments are allowed, the
content of that comment can not be simple discarded, it must be examined even
on a higher semantic level just to be able to distinguish between proper nesting
levels.

This needs an additional and very tolerant semantic analyzer, since the
contents of the comments can be even syntactically incorrect, still the nesting
levels of comments must be balanced not to cause unwanted effects such as
commenting out bigger portions of the working code. This is usually too much
effort for established languages, since introducing nested comment support could
break backward compatibility. On the other hand, if exactly this is desired to
comment out large portions of code with its own comments, other language
features should be utilized (such as #if 0 and #endif of the C preprocessor).

This is the reason why nested comments are usually supported by specific
or fresh languages without the need to be backward compatible, such as Rexx,
Modula-2, Modula-3, Oberon, Haskell, Frege, Newspeak, D or Ocaml.

Solution 2.3. Since machine code is using a binary representation, for accessing
bitwise data, numerical basis other than decimal are much more applicable.
Especially the multiple of 2 as base is usually used for this kind of representation,
such as the binary format to specify specific bitmasks, 8 for octets for grouping
bits by 3 like the Unix style file permissions, or by 4 to address half bytes with
hexadecimal numbers.
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In imperative programming languages, statements
describe the basic steps of the programs. The
programmer issues them to implement the state
space change of the program. Execution of the
program is a sequence of these statements.
Programming languages provide a variety of
features to change this execution order. In this
chapter, flow control structures of the imperative
languages will be reviewed through their
development progress, outlining the historical
background and the calculation model behind them.
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n this chapter we discuss flow control structures and basic statements in
imperative programming languages. Statements describe the fundamental
steps of programs, while control structures, often realized as statements,

allow controlling the execution order of statements. To understand flow con-
trol, we must know how microprocessors in von Neumann computers work by
executing machine code stored in memory in their order of occurrence. This is
called sequential control, or sequential execution order. This sequential execution
order can be modified with four fundamental control transfer statements. These
modifiers are the following:

• Unconditional transfer of control;
• Conditional transfer of control;
• Subroutine call: procedure and function call (in object-oriented languages:

method call). In some programming languages recursion1 is becoming ever
more popular;

• Return from the subroutine.

In addition to these there are other control structures, which are usually language
dependent, but can be expressed with the four basic modifiers listed above. An
example of that is multiway branching: expressed by the case statement in some
languages and by the switch statement in others.

3.1 The job of a programmer

Programmers are often asked what they do at work. A detailed, technical answer
is more or less meaningful depending on who has raised the question. Someone
without any background in IT will perhaps just nod, and ask themselves, why
society needs this. If we think about it carefully, an IT expert solves real-life

1 For program codes the synonym self-invoking is also used for recursion. Recursion is a broader
concept, as simple self-invoking, so we will use this throughout our book.
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problems. This answer will make sense to everyone and will explain why society
desperately needs their service. The job of a programmer is problem solving: to
reach a desired target state – the solution – by changing the initial state. Finding
the solution is controlled by some fixed rules. Rules describe how to get from
one state to the other. The method of solving a given problem or more precisely,
a problem class is called an algorithm.

An algorithm must fulfill some basic requirements:

• It must be described with clearly defined steps;
• It must be executable step by step;
• It must be finite (both its description and execution);
• Every description must be precise: the computer is only capable of exe-

cuting precisely described steps;
• The algorithm always starts from a well defined state described by input

data, and reaches a well defined endstate.

Various tools can be used to describe an algorithm, depending on the needs
and resources available. These include sentence-like descriptions, flow-diagrams,
D-diagrams, block diagrams and structograms (also called Nassi-Schneider dia-
grams), and perhaps the most important method from the point of view of this
book: textual description using programming languages.

Next we provide an overview of the basic application of these tools. With
the help of the Euclidean algorithm, the greatest common divisor of two natural
numbers will be determined. The basic idea behind this algorithm is this: the
greatest common divisor of two numbers is at the same time the divisor of their
difference.

3.1.1 Sentene-like desription

Sentence-like description describes the steps of an algorithm using common
phrases and sentences. This method considers the least whether the words of
a sentence are meaningful for a computer, although precision is an important
requirement here too. The sentence-like description of the Euclidean algorithm
may be formulated as follows (two numbers are given, their greatest common
divisor must be determined):

1. Compare the two numbers.
2. If they are equal, the result is at hand: both numbers give the greatest

common divisor of the original two numbers.
3. It they differ, the smaller must be subtracted from the greater.
4. Continue from step 1.

The description above defines with sufficient precision the method needed to
compute the greatest common divisor, but it would be hard to have a computer
execute the steps given in a natural language. The above algorithm may be
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modified as to use the features of the module operation (to prove the equivalence
of these two algorithm-variants is left for the Reader as an exercise):

1. Divide the two numbers, p with q being p the greater number. The
remainder r will be between 0 and q − 1.

2. If r (the remainder) is 0, q is the greatest common divisor. Otherwise
move the former q into p, and r into q.

3. Continue from step 1.

3.1.2 Flow diagrams

As describing the algorithm on paper, we may use a two-dimensional represen-
tation. This ensures a clear description method, but this representation is still
far from the concepts of programming languages.

In flow diagrams, the execution steps are written in rectangular boxes, and
execution order is determined by arrows between the boxes. Conditional branches
are represented by rhombus shaped boxes: the condition is written into the box,
from which two arrows can point outwards: one arrow takes the execution if the
condition in the box holds, the other if the condition does not hold. These arrows
can be labeled by the branch they denote.

Figure 3.1: The Euclidean algorithm in a flow diagram
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Since they are tangled, flow diagrams are hard to understand and are hard to
implement in concrete programming languages. These programs are also difficult
to modify.

The Euclidean algorithm can be described with flow diagrams as shown in
Figure 3.1.

3.1.3 D-diagrams

Unsatisfied with the tangled flow diagrams, Edgser W. Dijkstra introduced a
reduced description set with elemental structures which have only one possible
outward (following) execution path in every case (of course, the end of the
program is an exception as here the execution stops). After Dijkstra, these flow
diagram elements are known as D-diagrams.

1. A simple operation is a D-diagram.

2. If A and B are D-diagrams, then their sequential execution (first A,
afterwards B) is also a D-diagram, if c is a condition, then ”if c condition
is true, then A, otherwise B”, ”if c conditions is true, then A”, ”as long
as the c condition is true, execute A in loop”, and ”execute A, then unless
the c condition becomes true, execute A in loop” are also D-diagrams.

3. There are no other D-diagrams (requirement: at most 1 outward execution
path from all constructions).

Figure 3.2: D-diagrams
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D-diagrams are shown in Figure 3.2. For loops there are two types, the entry
and exit controlled (pre- and post-test) variants.

The limitations of the D-diagrams have caused program complexity and
difficulty to grow truly proportional to their length. The wide knowledge of
these patterns makes this kind of description also significantly easier to read than
traditional flow diagrams. The implementation of control structures in programs
in accordance to these principles, the breakdown of the program to sub-programs,
the declaration of expressions, variable types and their operations, are together
all known as structured programming.

Böhm and Jacopini [BJ66] proved that every algorithm – described with
flow diagrams – may be described by using D-diagrams alone. This kind of
programming style is called programming without goto (the goto statement is
used by many programming languages for transferring execution control).

3.1.4 Blok diagrams

A simple operation written in a (rectangular) box is a block diagram. Boxes
drawn sequentially will be executed in a sequence. Branches specify two boxes
and a condition. The condition controls which box will be executed. For the false
case of the condition, the box is not required to be given. The whole branch is
boxed in, so it can be used anywhere where a box is allowed. In the case of
loops an inner box holds the operations to be repeated (the loop body). This is
surrounded by an outer box, which contains the loop condition.

Figure 3.3: Block diagram building blocks

The building blocks of block diagrams are shown in Figure 3.3.
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3.1.5 Strutograms

Structograms are another tools used for describing algorithms. This involves
writing operations into boxes, and arranging program structures from these
boxes. Boxes holding the operations can be easily nested; nesting can demon-
strate the structure of the program (similarly to the block diagrams). Their
advantage to block diagrams is their restricted form, which is generated more
easily by programs or word processors.

Figure 3.4: Structogram building blocks

The building blocks of the structograms are shown in Figure 3.4.

3.2 Implementation in assembly

Programming languages are often categorized as low or high level languages.
Low level languages are usually created for a specific computer or architecture:
statements here correspond to the instruction set of the microprocessor on the
target architecture. These languages are called assembly. Assembly statements
relate directly to machine code instructions. Compilation from the assembly
programming language to machine code is done by an assembler. The instruction
set of a high level – algorithmic – language is independent of that on any given
computer architecture: before execution, a compiler must create assembly and
machine code from the source code.

Next we present the implementations of the Euclidean algorithm in Pascal
and LMC languages.
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3.2.1 The solution in Pasal

Following is a Pascal implementation of the Euclidean algorithm (a basic knowl-
edge of the Pascal programming language is a prerequisite for understanding the
implementation to follow):

procedure gcd(p, q: integer ; var result: integer);
begin

while q > 0 do
begin

if p > q then p := p − q
else q := q − p;

end; (* while *)
result := p

end; (* gcd *)

3.2.2 LMC

The Little Man Computer (LMC) is an instructional model of a von Neumann
architecture computer, created by Dr. Stuart Madnick at MIT. Components of
this simplified model are:

• The number system used for data consists of three decimal digits, repre-
senting integers in the range −500 to 499. Negative values are encoded
in ten’s complement, which is computed for negative numbers by adding
1000 to it and which leaves non-negative values unchanged.

• Mailboxes: this is the working memory of the model. The address range
is limited to two digit decimals (00 – 99), each Mailbox can hold one unit
of data or instruction code.

• Instruction Location Counter: a two digit display with the address of the
next Mailbox to evaluate. Programs start at the address 0, with the push
of the Reset button. Leaving the end of the address range (99 + 1) causes
abnormal program termination.

• In and Out Baskets: the input and output communication ports of the
model. Data can only be read in from In, and can only be output to the
Out Basket, one at a time. The handling of multiple subsequent data is
implemented in a First In First Out (FIFO queue) fashion. Signed data is
converted automatically to the internal ten’s complement representation
at Input and vice versa at Output.

• Calculator: temporary data storage for arithmetic operations. Its value
range is the same as of Mailboxes (−500 – 499); the supported opera-
tions are addition and subtraction. Numerical under and overflow lead to
abnormal program termination.

• Little Man: works inside the above defined architecture and performs the
following operations rigorously:
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1. Reads the current value of the Instruction Location Counter.

2. Goes to the mailbox with that number and reads its content.

3. Pushes the Counter incrementer button to advance (by one) the
value of the Instruction Location Counter.

4. Interprets the last read mailbox content and executes its value as an
operation code.

5. If not stopped by the operation before, continues with step 1.

Note that incrementing the Instruction Location Counter occurs before
executing the current operation, so that branching can land at the desired
location.

The above components are illustrated in Figure 3.5.

Figure 3.5: System architecture of LMC

The above architecture resembles the functional organization defined by von
Neumann, as there is a control unit (the Little Man and the Instruction Location
Counter) to execute instructions, an arithmetic unit (the Calculator) to perform
calculations, and a memory (the Mailboxes) to hold both programs and data
(this is known as the stored program concept) in a linearly addressed (with a
two digit sequential number) location space.

Execution of an LMC program needs the following preparations:
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1. Instructions (machine code) must be loaded into the mailboxes, starting
from address 00.

2. Input data must be placed into the In Basket in proper order.

3. By pressing the Reset button, the execution starts, the Little Man wakes
up and performs his duty.

4. The result will appear in the Out Basket.

The instruction codes of the LMC tell the Little Man what to do. These
codes are the machine code of this architecture and are stored as ordinary data
within the Mailboxes. Therefore each instruction is made of 3 decimal digits, the
first representing the command to perform, and the next two digits addressing
the mailbox for the operand of the command (this is called indirect addressing).

Machine Mnemonic Instruction
code code description
000 HLT Halt: stops the execution and gives the little man rest.
1xx ADD xx Adds the value of mailbox xx to the current value in

the calculator (result stays in the calculator).
2xx SUB xx Subtracts the value of mailbox xx from the current

value of the calculator (result stays in the calculator).
3xx STO xx Stores the actual value of the calculator into mailbox

xx.
4xx STA xx Stores the address portion (last 2 digits) of the actual

value of the calculator into those of mailbox xx.
5xx LDA xx Loads the actual value of mailbox xx into the calculator.
6xx BRA xx Branch (unconditional): sets the instruction counter to

the given address (xx). That is, mailbox xx will be the
next place for the execution to continue.

7xx BRZ xx Branch if zero (conditional): if the actual value in the
calculator is zero, then sets the instruction counter to
the given address (xx), otherwise does nothing.

8xx BRP xx Branch if positive (conditional): if the actual value
in the calculator is zero or positive, then sets the
instruction counter to the given address (xx), otherwise
does nothing.

901 INP Takes the input value from the In Basket, and puts it
into the calculator.

902 OUT Copies the actual value of the calculator to the Out
Basket.

DAT xxx Assembler instruction to load the value xxx into the
next available mailbox.

Table 3.1: LMC instruction set
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Encountering a non-defined instruction code leads to abnormal program
termination. Due to this and the von Neumann stored program concept, special
care must be taken to prevent program execution to reach pure data within the
memory.

As seen by the DAT instruction, LMC also supports assembly level program-
ming. In such cases, the LMC assembly program is written in plain text source
format, using only mnemonics for the instructions. Each line can have a label at
the beginning, which can be used as target for other instructions. Comments are
also allowed after the instruction operand at the end of each line. Compilation
from LMC assembly to machine code is the task of an LMC assembler.

The LMC assembly implementation of the Euclidean algorithm takes the
following form:

INP ; 00 901 input p
STO p ; 01 308 store p
INP ; 02 901 input q
BRZ end ; 03 705 while q > 0
BRP loop ; 04 810

end LDA p ; 05 508 result is p
OUT ; 06 902
HLT ; 07 000

p DAT ; 08
q DAT ; 09
loop SUB p ; 10 208 compute q - p in calculator

BRZ end ; 11 705
BRP loop ; 12 810 if q > p, q := q - p
ADD p ; 13 108 else
STO q ; 14 309
LDA p ; 15 508
SUB q ; 16 209
STO p ; 17 308 p := p - q
LDA q ; 18 509
BRA loop ; 19 610

The above code is an instructional example to demonstrate the features and
capabilities of low level programming languages.

3.2.3 Comparison of the solutions in LMC and Pasal

There are several basic differences between Pascal and LMC programs:

• Pascal (and other high level language) programs are portable. They can be
adapted without much modification, but programs in low level languages
are bound to specific hardware: conversion to a new microprocessor archi-
tecture requires the whole program to be rewritten for the new processor.
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In some cases, simulation of the other processor is supported on hardware
level, but this decreases the efficiency of the program.

• Low level programs describe machine instructions, like moving values from
and to registers and memory locations. In high level languages, higher
level abstraction is used, e.g. variables for memory/register abstraction.
In high level language programs there is no need to deal with the register
or memory management of the executing computer. These tasks can be
left for the compiler.

• Low level programs are harder to read. The LMC code example above was
short and well commented, the implemented algorithm is widely known,
but modification of a some 10 000 line assembly program without proper
commenting may cause considerable difficulty.

Finally, low level programs have readable source code for programmers which
for execution is turned into machine code by the compiler, that is, it becomes
a sequence of bits. Programming directly in machine code (hard ”coding”) is
extremely difficult, but before of low and high level languages were developed,
this was surely the only option.

3.3 An elementary approah

By examining algorithm descriptions, mathematicians have designed various
calculation models which require a minimal abstraction from the hardware and
software side, yet allow an easy algorithmic formulation and description of the
problems. Next we present one such method, characterized by two main features:

• Potentially infinite memory to store variables;2

• Potentially infinitely large memory for the storage of the program itself.

Only natural numbers (arbitrary large, including zero) are regarded as data.
This is not a limitation, as most of the data types can be converted into this
set. Input and output are not a concern: input and output of the algorithms are
assumed to be stored in memory. This calculation model forms the basis of the
so-called while-programs model, in which the following higher level operations
are implemented.

3.3.1 Elements of the while-programs

While-programs consist of four basic statements:

1. Resetting the value of a memory compartment:

x := 0

2 ”Potentially infinite” means for variables or for their representing memory that by
enumerating memory compartments as r1, r2, r3, . . . rn, n – the number of available memory
compartments – can have an arbitrary large value according to the program’s need.
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2. Incrementing the value of a memory compartment:

x := x + 1

3. Decrementing the value of a memory compartment (by definition decre-
menting x = 0 gives x − 1 = 0):

x := x − 1

4. Looping until the value of the memory compartment x equals that of the
memory compartment y:

while x 6= y do
. . . (Loop body to execute.)

wend

These statements are very simple, still many things can be expressed with them.

3.3.2 Higher level operations

Now we move on to examine how useful and well known elements may be
implemented as while-programs. By this we mean to demonstrate the great
expressive power of the while-program language.

1. Loading an arbitrary positive (n ≥ 0) constant into a register (x := n):

x := 0;
x := x + 1;
. . .

The incrementing statement x := x + 1 must be executed n times in all.
2. Copying the value of variable x into variable y (x := y):

y := 0;
while y 6= x do

y := y + 1;
wend

3. Adding the value of variable y to that of variable x (x := x + y):

s := 0;
while s 6= y do

x := x + 1; s := s + 1;
wend

4. Addition (z := x + y):

z := x;
z := z + y;

See the examples for loading a constant into a variable, and adding a
value to that variable.
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5. Subtraction (z := x − y, where the result will be 0, if x < y): Implemen-
tation is like that of the addition (see above), but instead of incrementing
x := x + 1, decrementing x := x − 1 is applied.

6. Now that addition and subtraction have been defined, based on them,
multiplication and modulo division can be easily implemented (with mul-
tiple addition and subtraction).

7. Values of logical data types can also be implemented. Let 0 and 1 be their
possible values. 0 denotes the logical false, 1 the true value.

8. Conditional statement with while-programs can be implemented like this:
The statement to be expressed is the following:

if 〈condition 〉 then S end

where 〈condition 〉 is the value of a logical expression (0 or 1), and S
is the statement to execute depending on the condition. The equivalent
while-program would be this (s is an auxiliary variable):

s :=〈condition 〉;
while s 6= 0 do

S;
s := 0;

wend;

9. The extended conditional statement can also be expressed with while-
programs: The statement to be expressed is the following:

if 〈condition 〉 then S1 else S2 end

where 〈condition 〉 is the value of a logical expression (0 or 1). The equiv-
alent while-program would be this:

s1:=〈condition 〉;
s2 := s1;
while s1 6= 0 do

S1;
s1 := 0;

wend;
while s2 6= 1 do

S2;
s2 := 1;

wend;

10. Calling non-recursive subprograms can be implemented by copying its
statements. Recursive subprograms must first be converted – with the
help of a stack – to non-recursive, than the previous case – regarding
non-recursive subprograms – must be followed.
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3.3.3 Considerations

This elementary approach of a computation model is highly theoretical and
serves mainly educational purposes. However, most implementation methods
introduced here can be found elsewhere in real life applications, such as in the
micro-codes of RISC processors.

The simplicity of the instruction set of this model allows highly efficient
implementations. This explains why the seemingly complex use of a relatively
few basic statements can outperform simple solutions based on more common
and widely applicable statements.

3.4 Control approahes

Program execution can be carried out in different ways according to the de-
scription of the used programming language. In the following we describe some
control approaches used most widely in programming languages. Some of these
approaches are mutually exclusive, others may be applied simultaneously. The
merging of these approaches is a challenging task and a widely researched field.

Our focus here is on those approaches only which are used in execution
control. More specifically, in this chapter we will deal with control structures
of imperative languages, declarative (logical) and functional programming lan-
guages will be handled in other chapters.

3.4.1 Imperative programming languages

The imperative programming approach is an abstraction of real computers, based
on the model of von Neumann computers and Turing machines with the con-
cept of registers and memory. Variables and the assignment is a programming
abstraction of memory content change. In the imperative approach a variable
denotes a memory compartment. These variables are named, can be assigned a
value, which may then be changed.

The names and values of the variables in the program, the actual execution
point (the actual operation being executed) together form the program state. A
program being executed may be characterized by sequence of state-transitions
(Turing-machine model). Transitions between the states can be described as a
sequence of assignments and control statements (see relevant sections in [Wir73]).

Based on this, imperative programs can be described as consisting of states
and state-transition statements. Methods can be defined as the abstraction of
a sequence of state-transitions. Imperative programming applied together with
methods is called procedural programming.
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3.4.2 Delarative and funtional languages

In the imperative approach, programs consist of sequences of implementing state-
ments targeting a certain goal; by contrast, declarative and functional languages
follow a significantly different approach.

In declarative (and logical) languages, in contrast to the imperative languages,
no method is given as how to solve a task; only the problem to be solved is
specified. As the emphasis is on exact description, specification needs the most
attention. Finding the solution is the job of the runtime environment. Such
languages are, for example, Prolog and SQL, which will be discussed in other
chapters.

The functional model also requires exact specification, but the goal of the
program is to compute a – mathematical – function. The result of the program
is the result of this function. In this model, some elements common in the
imperative model (e.g. outputting partial results) are considered side effects
during the computation of the function. For more in details, see [McC85] and
[Bow02].

3.4.3 Parallel exeution

Program execution can be performed by one execution thread, but some pro-
gramming languages support parallel execution: in this case, execution is per-
formed by multiple threads. In declarative languages this problem will not occur,
since it is the job of the runtime environment to handle and implement the given
task; parallel execution can be at most suggested, for example, in the form of a
synchronization specification. In imperative languages, parallel execution can be
easily modeled: by specifying multiple execution threads with various program
execution points.

Execution control is handled and supervised usually by the help of the
runtime environment (the operating system). The operating system ensures the
scheduling of each execution thread (execution state). Parallel programming
theory is discussed in more detail by Manna [MP91]. Practical tools, such as
the PVM library, are described in [PVM02].

3.4.4 Event driven programming

There was a paradigm shift in the 1990s regarding the interactions between
the runtime environment and the control structure of a program. This is not
generally applicable for all the programming languages – programming envi-
ronments –, but must be mentioned as far as regarding execution control is
concerned.

In the 1990s the algorithmic execution approach was common. The basic idea
behind it was that after starting the program, it executes specific tasks (this can
be anything from compiling another program, to managing janitor records), and
if needed, input will be acquired from the user.
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The general structure of the program code following the algorithmic model
is the following:

Main program:

Variable declarations

Initialization

Prepare data to be processed

Input data from user

Process data

Output result

Continue processing

End of program.

From the 1990s onwards, mainly due to the spreading of graphical windowing
systems in interactive programs, the algorithmic execution approach was gradu-
ally replaced by the event driven programming approach. After an initialization
part (which includes, for example, the display of a graphical user interface) the
program gets notified by the operating system in the form of so called events
about what is happening in the environment (the user pressed a key or moved the
mouse; or another program signaled the deletion of a file). The general structure
of the program code following the event driven model is the following:

Main program:

Variable declarations

Initialization

Loop until last event read

Input next event from the operating system

Process event according to its type

End of program.

The main difference between the two models is how the services of the
environment – such as the windowing system, or the operating system – are
used. In the algorithmic model, the problem-solving algorithm is emphasized,
the environment is used only to access specific services (such as input user data
from the keyboard). In the event driven model, the environment (such as the
windowing system) plays s passive service provider role, as well as an active
control-relevant role: it monitors user actions and notifies the programs in the
form of events, managing their global control.

The structure in the event driven program model above is characteristic
of most of the event driven techniques applied nowadays in programming lan-
guages. In some languages other different solutions are introduced for supporting
event driven programming, these use the language features that were developed
earlier to support the algorithmic model. The COBOL programming language,
standardized in the 1970s supports event driven control with its DECLARATIVES

exception handling mechanism (see Section 8.2.2.) by assigning DECLARATIVES

paragraphs to each event.
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3.5 Programming languages examined

In the following section we provide a brief description for the programming
languages examined this far, which – in our opinion – best demonstrate the
development in the field.

3.5.1 Sentene-like algorithm desription: COBOL

The COBOL programming language had been standardized (in 1966 and 1974)
before the appearance of the block structures: most part of the COBOL programs
today are developed according to the COBOL-74 standard from 1974 (a smaller
part is represented by the programs according to the COBOL-85 standard from
1985). The approach of the COBOL language should be seriously considered
because of its simplicity and widespread use (until 2002 more than half of all the
program lines used worldwide in programs were written in COBOL, this ratio
will probably not change significantly even in our decade; perhaps only a slight
decrease of its share over 60 percent can be predicted). Here the relevant parts
of the COBOL-74 standard will be discussed.

A COBOL program consists of a sequence of English sentences according to
the rules specified by the standard: these are the statements of the language.
On the next higher level the COBOL program consists of paragraphs. The
paragraph is a sequence of statements (or sentences according to the COBOL
terminology). The end of a paragraph is indicated by the beginning of the next
paragraph (or by the end of a so called section – see later). Paragraphs in
COBOL are like procedures without parameters in other known programming
languages. Execution starts at the first sentence of the paragraph and runs until
its end (unless something other is specified at calling – see later). COBOL does
not support recursion or parameterized paragraphs. Paragraphs of the COBOL
program form so called sections. A section can be called as a subprogram.
Executing a section means executing its paragraphs, starting from the first
paragraph, running through even multiple paragraphs until the EXIT statement,
which stops the execution of the section and returns control back after the calling
point. COBOL programs are made of a sequence of sections.

In the next example two sections are defined. If the section OTHER gets the
control, its statements are executed in their order of appearance. The execution
continues after reaching the paragraph PARA21 with its statements, then with the
paragraph PARA22. At the end of this paragraph, reaching the EXIT statement
causes the return from the execution of this section after its calling point.
Paragraphs after the EXIT statement (such as PARA2n in the example) will not be
executed automatically. However, such paragraphs can be called from the other
paragraphs of the section. It is possible to call paragraphs from another section,
but care must be taken, because the so called overlay sections are only stored in
memory during their execution, and calling a paragraph in such a section from
another section would cause a runtime error. This is used to aid virtual memory
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management, which was useful, if it was not supported by the operating system
and there was only a limited amount of system memory available for programs.
Nowadays rapidly decreasing memory prices make this solution obsolete.

The following code snippet demonstrates the structure of a COBOL program:

ONE SECTION.

* This is a section in the program
Statements.

. . .

PARA11.

* This is the first paragraph of the section.
Statements.

. . .

PARA12.

* This is the next paragraph of the section.
Statements.

. . .

EXIT

PARA1n.

* This is the next paragraph of the section.
Statements.

. . .

OTHER SECTION.

* This is a section in the program
Statements.

. . .

PARA21.

* This is the first paragraph of the section.
Statements.

. . .

PARA22.

* This is the next paragraph of the section.
Statements.

. . .

EXIT

PARA2n.

* This is the next paragraph of the section.
Statements.

. . .

3.5.2 Strutured programming: the Pasal language

The Pascal programming language was designed by Niklaus Wirth with the
support of the features of structured programming in mind. Language design
started in 1968. In education it was first introduced in 1972 in ETH Zürich. The
definition of the standard Pascal language was published in 1973 [JW74].
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The language defined enough features to implement programs designed with
the methods of structured programming, but some extensions (like the Turbo
Pascal environment from Borland, or the ST Pascal/68000 on ATARI ST com-
puters) provided a richer set of control structures than the language standard
required. The usage of these extensions greatly reduces the portability of the
programs, but all of these can be substituted by other standard elements.

There is another Pascal language implementation also worth mentioning: the
UCSD P-System, which was developed at the San Diego University in California
in the late seventies. The main point of this system was system independence: the
Pascal compiler produced the so called P-code,3 which will be executed on a given
hardware architecture by a P-code interpreter virtual machine. This system was
developed in Pascal, and offered a complete event driven graphical user interface
and numerous useful libraries for creating user friendly programs. Back then this
system could not spread industry wide because of its pure performance. But the
universities saw the potential in the educational use of the possibilities of this
system – and at that time, at universities the very popular Apple-II computer
family was suitable for running it. The basic idea was reused by the developers
of the Java language in the mid 1990s, but for a much more efficient hardware
– and the efficiency and success of this solution is now pretty obvious (like the
virtual machine for P-code, the Java virtual machine is also based on stack-based
technology).

The Pascal language supports block structures and the constructs of struc-
tured programming. It serves as an ancestor of numerous programming lan-
guages, such as Modula-3 [BW96] and Ada [Nyek98]. This chapter discusses the
control structures of Pascal, and the extensions introduced by Modula-3 and
Ada.

3.5.3 Portable assembly: the C language

After some well-known representatives of the Pascal-derived languages, the lan-
guage elements of the C language and its descendants will be introduced, il-
lustrating the crystallization of certain language concepts from the beginning
of the 1970ss (the birth of the C language) until today (up to C#4 [Sch02]).
By examining the C-derived languages, control structures of three programming
languages will be introduced – those of C, Java and C#.5

3 The description of the P-code and a complete Pascal compiler can be found in [PD82]. The
Pascal compiler is introduced, line by line, in this book, while details about the runtime
environment can be found on the Internet on sites focusing on compilers, or in books on the
web. This book was a classic in university and college lectures for about a decade, mainly
due to its practical implications.

4 To be pronounced as C sharp.
5 The J# language, which is the newest Java implementation of Microsoft could be considered

here too. However, as this language has the same control structures as the Java 1.1.4 version,
it will not be discussed separately. In general, everything mentioned here about the Java
language also holds for this language.



82

•
Control strutures, statements

Choosing C as the common ancestor seems to be a natural choice. The
incidence of the Java language and its applied security system is a serious reason
for this language to be chosen. Choosing the C# language can be surprising at
first considering the incidence of the C++ language [Str00]. But we chose the C#
language instead of C++, as C# supports not only an equivalent, but a richer
set of control structures than C++. Other serious argument in favor of C#
is that in industrial applications it is simpler than C++. The same reasoning
can be made, like mentioned before in the case of the Ada language, but the
situation is not that taut. The Ada language – or more precisely, its predecessor
– was originally developed in parallel by competitors under a multistage R and
D competition organized by the USA government. The aim was to choose the
most suitable language for their purposes. Once the Ada compiler and method-
based approach were developed, upcoming projects were decisive factors for
government-funded software projects and purchases [Nyek98] for many years.
Nevertheless, as Ada gave very complex definitions for types and hid many
details – like implementing the access types instead of pointers –, it created a
psychological barrier for programmers. Noticing this in the middle of the 1990s
the US government re-evaluated the usefulness of Ada, and added C++ to the
list of ”allowed” programming environments.

For many programmers, C++ is not less complex than Ada: Microsoft was
aware of the problem and after its defeat in a trial about the Java language,6 it
began to develop and implement the C# language (making it an international
standard, helping its spread this way).

In this chapter we focus on C# with regard to control structures, as C#
provides a broader set of control structures than C++.

3.5.4 Everything is an objet: the Smalltalk language

The Smalltalk language was developed by the researchers of Xerox PARC. It
is an object-oriented language (in its terminology sending messages to objects
is used instead of method calling): in Smalltalk everything is an object. As the
development of a unified system was the goal, the operating system and the
runtime environment were included in the form as special predefined objects
and as some features, from which the most important are the following:

• Memory management (with automatic garbage collection);
• File management with special purpose objects;
• GUI management – providing a windowed, graphical user interface with

mouse support;
6 Microsoft supported the Java language with some extensions, like the delegate possibility

introduced for procedural parameters. Sun, on the other hand saw in these extensions made
by Microsoft and favored by their programmers the loss of the portability of Java, or the
possibility of this, so Sun sued Microsoft. The lawsuit was won by Sun. Following this,
in 2001 Microsoft introduced the C# language and the .NET environment, which was an
outstanding basis for it.
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• Keyboard management for standardizing user input;
• A real object-oriented debugging system, which helps Smalltalk programs

to access themselves as objects.

3.5.5 Other examined programming languages

In this chapter many examples are taken from various other languages. These
languages are the following:

Modula-3

the latest extension of Pascal and Modula-2 [BW96].

Ada

a safe language developed by the U.S. Department of Defense [Nyek98].

Eiffel

an object-oriented programming language developed by Bertrand Meyer, which
is less used by the industry, but still widespread enough to be worth mentioning.

CLU

developed in MIT lead by Barbara Liskov, mainly for educational purposes.
Significantly contributed with its approach to the development of the X Window
System. For more details about this language, see [Lis81].

FORTRAN

a language designed for numerical calculations (about the same age as COBOL):
although there are many active FORTRAN programs, and a large number of
arithmetic, algebraic and other mathematical libraries were developed in FOR-
TRAN, it has lost its importance by now [Fort03].

3.6 Assignment, arithmeti statements

In this section, the development of the control structures are shown while fo-
cusing on the possibilities and main characteristics of some carefully chosen
languages.
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3.6.1 Features of COBOL

In COBOL originally – for the sake of simplicity of the compiler – there was
no assignment statement, which could assign a composite – such as bracketed –
arithmetic expression value. The solution of the problem must be decomposed.

Loading constant values into variables can be achieved with the MOVE state-
ment. The same statement loads the values of one variable into another. Consider
the following example:

MOVE 23 TO A.

MOVE B TO C.

The first statement moves the constant numeric value 23 into the variable
A. The second statement copies the value of the variable B into the variable C.
COBOL sentences must be closed by a period.

Four basic statements can be used as arithmetic operations:

* Add A to B, store the result in C.
ADD A TO B GIVING C.

* Subtract A from B, store the result in C.
SUBTRACT A FROM B GIVING C.

* Multiply A by B, store the result in C.
MULTIPLY A BY B GIVING C.

* Divide A by B, store the quotient in C.
DIVIDE A BY B GIVING C.

The GIVING clause specifies where the result should be stored (in our exam-
ples always variable C was specified as the target). The GIVING part with the
variable name can be omitted: in this case the standard specifies, which variable
will hold the result (for example the statement

ADD A TO B.

will store the sum of variables A and B in B).

Newer versions of COBOL support the COMPUTE statement to evaluate more
complex expressions. For example:

COMPUTE A = ( A + B - C / ( A * B ) - A * B ).

The value of the right side expression above will be stored in the variable
A (which was specified on the left hand-side). Please note that only the four
basic operations are allowed here: arithmetic functions (like sinus or cosinus or
extracting a root) are not allowed – these must be implemented from elementary
steps by the programmer, for example, by a decomposition of these functions.
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3.6.2 Simple assignment: the Pasal language

The syntax of the assignment in Pascal is very simple. The statement is in-
troduced by the := (the colon-equals) sign. On its left hand-side the name of
the variable must be specified, to which a new value should be assigned, given
on the right hand-side. All the Pascal-derived languages use the same token for
assignment. In these languages the = (equal sign) is used to check the equality of
two values as a comparison operator. Pascal does not allow multiple assignment,7

other languages – like CLU – do allow it.
The general form of the assignment is as follows:

〈variable reference〉 := 〈expression 〉;

By executing this statement, first the right hand-side expression gets evalu-
ated, then its value is stored into the variable referenced on the left hand-side.
An important characteristic of the assignment is the type compatibility of the
right hand-side value with the type of the left hand-side variable. For the data
types, see Chapter 5.

3.6.3 Assignment in C

Assignment together with function call belong to the expression-statement topic
in C and the C-derived languages. Assignment is an operation which copies the
value of the expression on its right hand-side (the right value) into the variable
referenced on the left hand-side (a left value).

Please note that in languages derived from the C language the assignment
usually functions as an operator (can appear in any expression-statement), so
multiple assignment in these languages is a natural language feature. Also C-
derived languages have a specialty: for assignment they use a simple equal sign
instead of the := (colon-equals) sign. In these languages, the comparison for
equality is denoted by two equal signs.

As the assignment is an operator, it has a return value: this will be the value
from its right side. Considering

A = B = 23;

the statement assigns the value 23 to the variables A and also to B (performing
a multiple assignment). Regarding its binding, this statement is equivalent to
the following:

A = (B = 23);

In practice this means that 23 is assigned to B, and this will be also the
result of the expression containing the assignment. The bracketed (and so first
evaluated) expression has the value 23 , which will be stored into variable A.

7 Multiple assignment is the statement when a value is stored into multiple variables at once.
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In these languages, regarding expressions the assignment can be used together
with other operators. For example the statement A = A + 4; can be written in
the shorter A += 4; form.

3.6.4 Solution in Smalltalk

In Smalltalk the assignment is the only operation which is not performed by
sending messages (method call) [GR83]. The syntax is like that in Pascal. The

A := 34.

statement, for example, ties the variable A to the object 34 (always by modifying
the references).

But the expression-statement has to be interpreted differently. Objects and
messages to be sent to them must be specified. The

1 + 2.

statement sends the message named + (calling this method) to the object 1
integer number, the parameter of this message is the 2. The period at the end
of the line is the closing character for Smalltalk statements.

3.6.5 Multiple assignment and the CLU language

CLU, as a language designed for research and programming-educational purposes
must be mentioned because of multiple assignment, as this language allows the
assignment to have on the left and right sides multiple (but the same count on
both sides) variables and sources (for more details about this language, please
see [Lis81]).

In CLU exchanging the values of the variables X and Y is a simple statement
like this:

X,Y := Y,X

This code will work properly. In other programming languages (such as
Occam), the auxiliary variables needed here are no concern for the programmers.

3.6.6 The role of assignment in programs

An assignment looks like a very simple statement, but it is the most important
operation in today’s programming languages: by examining source codes of some
programming projects, the – not surprising – result was that more than half of
the statements in these source codes were assignments. (For this examination
a more than quarter of a million lines long COBOL source of an application
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program system,8 a derivative of the Linux 2.4 operating system, a multimedia
server and a coding-decoding program were taken into account). This result
is not so surprising, considering that only assignments take real steps toward
the solution of the task, loops, for example, only specify the execution of some
assignments or subprograms on a given state-space and range for multiple times.

3.6.7 The empty statement

The empty statement (which does nothing, but could have special roles, like
NOP in Motorola 68000 assembly) can be seen as an assignment with the same
variable on its left and right hand-sides. Most of the programming languages
define an empty statement separately: in Ada the null statement, in Pascal and
the C-derived languages a simple semicolon (although in the latter – namely C,
C++, Java, C# – it has no major role). In Eiffel the semicolon can be used,
but has no real role. In COBOL the empty statement is denoted by the line
NEXT SENTENCE.

At first sight, the empty statement may seem useless (the NOP statement of
the MC 68000 processor also cleared its pipeline, but in higher level program-
ming languages programmers do not have to consider this). Nevertheless, as a
statement it can be tagged with a label.

The designers of the CLU language developed their positions based on the
above – namely that the empty statement is useless, so there is no such in CLU.

3.7 Sequene and the blok statement

Sequence is a basic control structure implemented as the sequential execution of
statements. In practice the order of execution for the statements is the same as
their order of appearance.

The sequence as a control structure is supported from the beginning in
all the imperative programming languages. As assignments describe a state
change in the state-space of the program, more complex progress (changing more
components of the program state) can be achieved by sequences.

In COBOL sequence can be implemented by writing statements into lines
one after the other. Each statement of the sequence is closed by a period.
COBOL follows the ”one line one statement” concept with the attenuation that
long statements can be broken into multiple lines to support better program
readability.

Most of the programming languages use the semicolon for a sequence of
statements (seemingly to denote the end of the statement, but in practice the
situation is more complex).

8 In these COBOL programs, not only the MOVE statement, but also the value changing
arithmetic statements were considered as assignments, since in other languages there are
no such restrictions regarding assignments, as in COBOL.



88

•
Control strutures, statements

The block statement is a special statement for grouping a section of code
together to be handled as only a single statement. Blocks consist of possible
declarations (if supported) and a sequence of statements.

To examine the historical development of the sequence as a control structure
in programming languages, the following aspects should be considered:

• Can the sequence or block be empty?
• Is the semicolon for closing or for separating statements?
• Is there a way to declare block statements?
• Can a block statement have declarations, and if it can, whereabouts in

the block (anywhere or only in the declaration part of the block)?

These are general aspects. By examining the relevant (see later) features of the
programming languages listed as examples, the features of the given language
will be presented. The specific elements of the given language will be examined,
but missing or irrelevant/unsupported features will be left out. This way our
book becomes more readable, and we can focus only on the essentials. It is
clear that if a language does not support block statements, it would be useless
to examine whether block statements could have declarations in it or not. The
same is true for loops and branches discussed later. The Reader will be able to
answer all the above questions after the detailed introduction of the elements in
the specific languages (if something is not mentioned under the discussion at a
given language, it is not supported by that language, unless noted otherwise).

In the following section, the possibilities of the language family founder
programming languages, that is COBOL, Pascal and C – will be discussed in
detail. In the case of these languages we intend to be comprehensive. In the
more recent languages, we will highlight the new, innovative solutions/elements.
Only those new elements – regarding control structures – will be discussed, which
differ from that of the original language. If there has been no major change since
the original language, this will be not noted separately. If the Reader wishes
to gather more detailed information about a particular language, its official
manual should be consulted. This will be indicated as literature reference in
the appropriate places.

3.7.1 Blok statement in Pasal

Control structures in Pascal have been defined – except for repeat loops – as
having only one statement as their loop body. If multiple statements should
go where only one statement is allowed by syntax rules, the block statement
must be used. This denotes a sequence of statements framed by the begin. . . end
keywords. The begin keyword starts the block, the end closes it. This causes the
block to act as a single statement for the compiler, and executes as the sequence
of its enclosed statements.

Reading Pascal programs and sources in derived languages, one might note
the many semicolons, which are used to separate statements, as opposed to
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the C-derived languages, where semicolons close the statements. In Pascal the
statements of a sequence enclosed into a block statement must be separated by
semicolons, but between the last statement and the closing end the semicolon
is not needed, as there is nothing more within the block to separate. If there
was an extra semicolon, it would not be an error, but would mean that the
compiler assumes an empty statement between the closing semicolon and the
end statement of the block. However, but this is without any consequences.

The general form of the block statement is the following:

begin
〈statement1 〉 ; 〈statement2 〉 ; . . . ; 〈statementn 〉

end

These statements can be any statement, even inner blocks. Blocks in Pascal
can be optionally nested.

The statements of the block get executed sequentially, in the order of their
appearance. In Pascal declaring local variables within normal blocks is not al-
lowed. This is only supported in procedures, functions, and in the main program.

3.7.2 Break with the tradition of Pasal: the Ada language

One salient feature which shows the break from the traditions of Pascal is the
change of the role of the semicolon: in Ada, semicolons do not separate, but
close the statements [Nyek98]. Therefore there must be a semicolon after every
statement, even before (and after) the closing structured statements end loop
and end if .

In Ada, the form of the block statement is also clearer than in Pascal or
Modula-3. Consider the following example:

Swap:
declare

AuxVariable: Integer ;
begin

AuxVariable := I ; I := J ; J := AuxVariable;
end Swap;

As can be seen, between the declare and the begin keywords new variables or
if needed, new procedures or functions may be declared. Elements declared here
can be seen only within the given block. Blocks can be named by labels before
them – this name can be specified after the closing end keyword. This improves
program readability a lot. Ada has introduced a special closing keyword for every
structured statement: for example, for the if statement it is end if , for loop it
is the end loop, for the multiway branching case it is the end case keywords
(to close them). This leads to clearer, more readable source code for both the
compiler and the programmer.
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In Ada, to allocate memory for temporary big data structures (from the
beginning of the block until its end) the block statement has been a very useful
feature.9 Nowadays this role tends to be neglected due to the effective compi-
lation methods (thanks to data-flow analysis, the compiler knows all the infor-
mation and features to minimize the allocation time for variables, and thus it
can manage the allocation more efficiently than the programmer, since it has the
most detailed information and special knowledge about the target architecture).

3.7.3 Charateristis of the C language family

The C and its derived languages have block structures: in place of the begin–
end keywords in Pascal, opening and closing curly braces can be used. In C
this only serves to structure statement groups, whereas in C++, C# or Java its
role is the same as in Ada. Within a block defined in this way, new declarations
can be placed, like in the declare block of Ada. Besides better readability, as in
Ada, in all languages but C (C++, C# and Java), local declarations are allowed
in any blocks, in any places. Unlike Ada, inner blocks are not divided into a
declaration part and (following) statement body in these languages (except for
C where no declarations at all are allowed in nested blocks): declarations can be
placed anywhere between statements. This has the result that variables declared
in blocks only take up memory until the end of their scope, that is, the end
of their containing block most of the time. Previously to allocate memory for
temporary big data structures, declaration at any place within the block was a
good method. Nowadays this role is neglected because of effective compilation
methods, as has been described above.

Semicolons in C, as in Java, C++ and C#, have a statement closing role:
they close the statements, and do not separate them. An exception is the block
statement, which, unlike the Pascal begin–end keyword pairs, is denoted by {
and } braces in these languages. Block statements do not need to be closed by
a semicolon.

3.7.4 Blok statement in Smalltalk

The block is a very efficient construct in Smalltalk: it represents executable code
as an object. Within the conceptual system outside Smalltalk, a block is an
unnamed function (method), which can be passed to other objects as a message
parameter, or it may receive a message too. Of course in Smalltalk a block usually
has a name. The block can later be also referenced by name, which leads to the
execution of the specific code:

9 This answers the question if in Ada there is a block statement, and if it may have local
declarations.



3.8 Unonditional transfer of ontrol

•
91

Consider the following example, a Smalltalk block to write to the screen:

|output|

. . .

output := [ :x | Transcript showCR:x ].

Block declarations are framed by square brackets, after the block name and
the following := signs. The declaration of the block includes a list of param-
eters the block can receive, and after a horizontal line the body of the block
follows. The block above sends the showCR message (to perform output) to the
Transcript (predefined) object representing the screen, passing the received
parameter to be output.

This block can be used in the following way:

output value:’hello’

In Smalltalk the use of blocks is very versatile. For example a push button on
a GUI can be defined so that it can receive a block as a parameter, which will
receive a message with a given name and parameter type at the push of the
button.

3.8 Unonditional transfer of ontrol

The unconditional control transfer is the earliest, and also the most controversial
control transfer structure already introduced in FORTRAN0. In FORTRAN0 the
statements may be marked with numerical labels,10 and with the GOTO statement
control could be passed from any point within the program to another arbitrary
statement (marked with a numeric label).

What argument can be raised against the GOTO statement? As a matter of
fact, all the following issues:

• Using it uncontrolled in modern languages makes the job of the compiler
hard, even impossible, as it makes no sense to jump between independent
blocks. Just think of it, what would happen to the execution stack in
such a case? What would be the values of local variables? In a recursive
function what nested level should be jumped into? A jumbled program
(the so called ”spaghetti code”) makes it hard to understand its goal.

• The GOTO undermines the application of most of the correctness proving
tools. Correctness proving methods work usually by dividing the program
at the control structures, formulating invariants and with the help of
these – applying logical methods – the correct operation of the program is
proved. By GOTO statements and labels (if these can be applied anywhere)
it is very hard to formulate invariants, so its usage is not recommended.

10 This is where the original concept of the BASIC language comes in, to have all the statements
numbered.
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• The precise description of the meaning of programming languages con-
taining the GOTO statement is much harder (but not impossible).

• This is not how the human mind works.

In some languages GOTO was forced to be used (as when exiting a loop), but
most of the languages offer special solutions instead (see the break statement in
C later).

Please note that these are general aspects. By examining the relevant features
(to be discussed later) of the programming languages listed as examples, those
features will be presented which differ from those already discussed at their
ancestors (e.g. Modula-3 as an improvement on Pascal). Elements typical for
the given language will be introduced, but aspects will not be discussed, which
are not applicable, or which have already been described in detail at the ancestor
of that language.

3.8.1 The features of COBOL

COBOL supports unconditional transfer of control by its GOTO statement. The
general form of the GOTO statement is the following:

GOTO 〈paragraph name 〉.

This causes execution to be transferred to the given paragraph. COBOL
programs may be coded without the use of GOTO , as the language supports a
wide variety of features to implement on any kind of program structures. COBOL
also supports the usage of computed GOTO statements in the following form:

GOTO 〈list of paragraph names 〉 DEPENDING ON 〈variable 〉.

Executing this statement, the value of the variable after the DEPENDING ON

acts as an integer index to select the target paragraph from the given list to
jump to. A peculiarity of the COBOL language is the ALTER statement, which
supports the making of self-modifying programs. ALTER behaves differently at
its first execution than later. This statement will not be described here in detail
as most of today’s COBOL systems does not support it, or only to the detriment
of efficiency. The main reason for this is that to implement self-modifying code,
the so called code segment storing the executable form of the program must be
modified. Its memory location is managed by most operating systems as read
only, partly because of security reasons,11 and partly because of code segment
sharing: if multiple instances of a program are active, at runtime they can use
the code segment shared together, as only data segments storing their data must
be allocated separately and managed for every program.

11 Security reasons here imply the protection of the code segment, which is not to be
overwritten, not even accidentally, because this is often caused by memory management
errors. With this solution, modern operating systems support debugging.
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3.8.2 Unonditional transfer of ontrol in Pasal

The Pascal language supports the unconditional transfer of control by its goto
statement. For this, labels must be declared in the program, and only these can
be targeted by jumping.

Pascal defines further restrictions on language and on compiler levels with
regard to the goto use, which could be explained as a result of the block structure.

As a result of this, unconditional control transfer is only allowed within
blocks. Some compilers allow jumping from a block into a containing outer block
with goto, but jumping into a more nested inside block is usually not allowed.
This is not surprising as the content of the execution stack coherent to the block
structure will be the same by jumping within the same block; it may be reduced
by jumping into an outer block, but by jumping into an inner block the values
of the variables in that block must be appended, which cannot be performed in
a meaningful way.

3.8.3 Modula-3: end of GOTO

In Modula-3 there is no unconditional transfer of control: there is no GOTO
statement. The designers closed the discussion about whether the GOTO is
needed or not. Their opinion is that the GOTO statement is unnecessary.

In Modula-3 a statement to transfer control back from procedures and func-
tions is the RETURN statement. This statement ends the execution of the
called subprogram (procedure or function), and transfers control back after the
calling point. Behind RETURN, a value can be specified, which will be used
by functions: this is how the return value of that function is specified. Please
note that in Pascal there is no such a statement: a subprogram (procedure or
function) ended after the execution of its last statement; the return value of
the function had to be specified by an assignment to the name of the function
(which had not triggered the return from the function, only after executing its
last statement).

Another major instrument of control in Modula-3 is exception handling,
which will be discussed in a later section of the book (see Section 8.3.5.). Instead
of the GOTO statement in many places in this and in other languages, exception
handling can be used to solve the task.

3.8.4 Speial ontrol statements in C

The C language supports the unconditional control transfer with the goto state-
ment on language level. For this a label must be declared within a function by
stating the name of the label followed by a colon. With the goto statement this
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label can be a jump target. As the scope of such labels is only valid for their
containing functions, only transfer of control within functions is supported.

label:
. . . . statements . . .

goto label;

For more complex control transfer solutions, the setjmp and longjmp func-
tions from the C libraries can be used. These are not part of the language, but
are usually implemented within the C libraries.

The setjmp call saves the actual size of the execution stack (but not its
content) and stores the current execution point into its parameter. The longjmp
function implements the unconditional control transfer. As its parameter, a
state descriptor saved by setjmp must be specified. Executing longjmp resizes
the execution stack to the saved size by setjmp (reducing the stack if needed),
and passes execution after the referenced setjmp statement. This is not a direct
part of the C programming language, but because of its popularity, knowledge
and reference, as an example, is certainly useful. In this way jumping between
functions is possible but uncontrolled.

The continue statement can be used in loops: it interrupts the execution of
the loop body, and forces the next iteration of the loop to begin (unless the exit
criteria gets fulfilled).

The break statement exits the innermost loop immediately. Execution contin-
ues after the loop. This break statement was used to leave branches at multiway
branchings started with the switch keyword. Execution continued also on the
next statement after the switch block.

The return statement exits a function and returns after the calling point.
After the return statement the return value of the function can be specified.
Functions without return values (declared with void return types) are known
as procedures by other languages. When returning from such a procedure, no
return value is allowed after the return statement.

3.8.5 New features in Java

Java programmers can use the same control structures as mentioned in the C
programming language (except for the goto statement). A significant difference
is that Java supports the logical (boolean) data type, so conditions must be all
of logical type.

Java also supports labeled statements, but these can be targeted only by
break and continue statements to specify which loop they refer to (that is, not
only the innermost loop is affected). In this case after the break and continue
statements the label (for example of a for loop) must be specified, which deter-
mines the loop these statement are referring to.

Another special feature of Java as opposed to C, is the checking of the
accessibility of statements. For example, statements after an infinite loop are
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useless, because they will never get executed. Thanks to modern compilation
techniques, the Java compiler recognizes statements which can never be reached.
Such statements cause the Java compiler to give error messages, warning the pro-
grammer about possible logical or algorithmic errors. For example, the following
code

while (false) { x = 5; }

causes a compilation error as the loop body never gets executed.
In contrast, this statement

if (false) { x = 5; }

does not cause such an error message: the compiler simply leaves it out from the
generated code. This is how conditional compilation works. Quite often some
code must only be executed in debug mode (e.g., if a logical constant named
DEBUG has the value true). Such a solution is shown in the following example:

static final boolean DEBUG=true;

. . .

if (DEBUG) { System.out.println("debugging here"); }

This method ensures that by setting the DEBUG constant to false, the
debugging message will be left out of the production (not for debugging) version
of the program.

3.9 Branh strutures

In the first widespread programming language – FORTRAN0 – statements could
be labeled by numbers, logical and arithmetic branching, and an unconditional
control transfer (GOTO) statement was offered for the programmers.

The syntax of the logical branching is the following:

IF (〈logical expression 〉) L1, L2

Its meaning: if the value of the logical expression is true, execution continues
on the line numbered L1, otherwise on L2.

The syntax of the arithmetic branching is the following:

IF (〈arithmetic expression 〉) L1, L2, L3

Its meaning: if the value of the arithmetic expression is negative, execution
continues on the line numbered L1, if zero on L2, if positive on L3.

These structures resulted in unreadable code, so programmers searched for
newer, more usable solutions. As a result of this, the if-then-else branching
structure was introduced in ALGOL-60, which can be found in nearly all the
later languages.
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Regarding branching in programming languages the following aspects will be
examined:

• Is there two-way branching within the language?

– If yes, does the language clearly define where the ELSE branch
belongs (avoiding the dangling else problem)?

• Is there multiway branching in the language (case or switch structure)?

– If yes, what type can be the selector expression (on which the branch-
ing occurs)?

– Must all the values of the selector expression appear in branches?

– Can a default branch be specified which will be executed if the value
of the selector expression does not match any branches?

– Can the same value be specified in multiple branches, and if yes,
what is the meaning of this (would this make the program non-
deterministic)?

– Is the order of the branches fixed, or can these be in any order?

– Does the execution continue at the end of one branch in the following
branch? This is also a language design philosophy question: are
branches independent program parts, from which only one or none
gets executed (this is the case with Pascal and also C#), or are they
entry points, from which the following branches get executed in the
order of their appearance. This is how the switch statement in C,
C++ and Java works, but not in C#.

– What can be used as target values for branches; how can these values
be specified?

∗ Only one value can be specified at once.
∗ Multiple values can be enumerated.
∗ Can a value-range be specified for shorter description?

These are also very general aspects. By examining the relevant features of the
programming languages listed as examples, those features of the given language
will be presented which differ from that of its already discussed ancestors.
Elements typical for the given language will be introduced, but aspects, which
are not applicable, or which have already been described in detail at the ancestor
of that language, will not be discussed.

3.9.1 Branhing in COBOL

Branches in COBOL can be coded with the IF–THEN–ELSE statement. For this
structure consider the following example.



3.9 Branh strutures

•
97

IF 〈condition 〉 THEN

〈statement1 〉
〈further statements〉

ELSE

〈statement2 〉
〈further statements〉
〈last statement 〉.

The meaning of the statement is the usual: if the condition after the IF gets
fulfilled, the statements behind the THEN get executed until the ELSE ; if the
condition is false, the statements behind the ELSE get executed (if this ELSE

branch exists, it may be omitted).
The end of sentence period is there only after the last closing statement of

the whole IF statement. Other statements within it must not be closed by a
period (otherwise the COBOL compiler will interpret this as the end of the
IF statement at the wrong statement). The ELSE part can be omitted, but if
specified, it cannot be completely empty. To have it explicitly do nothing, the
NEXT SENTENCE can be used as an empty statement.

3.9.2 Conditional statement in Pasal

Pascal offers two types of conditional statements: one is the traditional if–then–
else statement, the other is the multiway branching depending on the value of a
discrete type (the case statement).

The general form of the if–then–else structure is the following:

if 〈logical expression 〉
then 〈statement1 〉 else 〈statement2 〉;

The meaning of the statement is clear: if the value of the logical expression
after the if is true, the statement following the then gets executed, otherwise the
statement following the else gets executed. Only one statement can be specified
after the then and the else. If multiple statements should go there, they must
be enclosed with a begin–end block statement. The whole else branch with the
〈statement2 〉 part can be omitted. To understand the statement separator role
of the semicolon consider following two statements:

if 〈condition 〉 then 〈statement 〉;
if 〈condition 〉 then ; 〈statement 〉

The meaning of the first is obvious: if the condition after the if holds (it is
true), the statement after the then gets executed. The semicolon at the end of the
line separates the if structure from the next (in this case empty) statement. In the
second example there is an empty statement after the then, which is separated by
the semicolon from the next statement, which will always be executed regardless
of the value of the condition after the if .
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Now let us move on to the dangling else problem, which implies an inaccuracy
in the definition of Pascal (but also in C and C++). It concerns the nested if
statements, where it is not always clear to which statement the else branch
actually belongs. Consider the following example:

if (a <= b) then
if (a < b) then Write("a < b")
else Write("a = b");

In this example, the question is: to which if statement does the given else
branch belong. Indentation suggests that it belongs to the inner one, but the
language does not define this. As a result, there is only one sure solution: every
statement, even the empty one, should be packaged into a begin–end block, so
that the else branch of the inner and of the outer if statements may get obvious.
In the above example and everywhere in Pascal, the rule applies, that the else
part always belong to the most inner if statement (the same is true for C and
C++).

3.9.3 Multiway branhing in Pasal

Multiway branching in Pascal is implemented by the case statement. The general
form of the statement:

case 〈discrete expression 〉 of
〈selector1 〉: 〈statement1 〉;

. . .
〈selectorn 〉: 〈statementn 〉;
else 〈statement 〉

end

The working of the statement is clear: first the expression after the case
gets evaluated, then execution continues at the selector with the same value as
evaluated. If the value of the expression after the case does not match any of
the selector values listed, control is transferred to the statement after the else
(if this branch is omitted, control is transferred to the next statement skipping
all the branches). The discrete (integer or enumeration) type of the expression
after the case can be integer , char , boolean or any enumeration or range type.
As selector values for the alternative branches enumeration and also subdomains
may get specified. For example 23..44 is a valid selector for a case branch.

As for reasons of efficiency many compilers allocate a jumping table for the
whole possible value range in the executable code, and compress the size of the
table by using relative relocation addresses for jumping stored as short words,
this also severely limits the size of the case structure. The aforementioned Pascal-
P4 for example did not support case branching based on integer values because
of this limiting relative jumping on 16 bits. A more concrete and narrower value
range had to be specified there.
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3.9.4 Safe branhing: innovations of Modula-3

In the Pascal language, many errors derived from the carelessness of the pro-
grammers as they forget to introduce begin–end blocks when expanding if
statements or while/for loops with new statements. To eliminate errors of such
origins, Modula-3 changed these structures: on the one hand, it introduced the
mandatory closing END statement for these structures, on the other hand, it
permitted the use of multiple statements (separated with semicolon) in these
control structures without framing them with BEGIN–END statements. As a
consequence, conditional branching has now the following form:

IF 〈logical expression 〉
THEN 〈statement1 〉; 〈statement2 〉; 〈statement3 〉; . . .
ELSE 〈statementE1 〉; 〈statementE2 〉; 〈statementE3 〉; . . .

END;

The BEGIN–END block statements can fully be omitted here. For the sake of
simplicity in nested branching, Modula-3 has also introduced the ELSIF key-
word. For example, the following statement structure would become unreadable
if nested. This could easily happen for multiple branching conditions:

IF 〈logical expression1 〉
THEN 〈statements1 〉
ELSE IF 〈logical expression2 〉

THEN 〈statements2 〉
ELSE 〈statements3 〉

END
END

In Modula-3 this can be done in a simpler way with the ELSIF keyword
instead of the ELSE IF:

IF 〈logical expression1 〉 THEN 〈statements1 〉
ELSIF 〈logical expression2 〉 THEN 〈statements2 〉
ELSE 〈statements3 〉
END

The general form is the following:

IF 〈logical expression1 〉 THEN 〈statement1 〉; 〈statement2 〉; . . .
ELSIF 〈logical expressionA1 〉 THEN 〈statementA1 〉; 〈statementA2 〉; . . .
ELSIF 〈logical expressionB1 〉 THEN 〈statementB1 〉; 〈statementB2 〉; . . .
. .
ELSE 〈statementE1 〉; 〈statementE2 〉; 〈statementE3 〉; . . .
END;

There can be any number of ELSIF branches. As a general rule, if multiple
branches are true in this structure at the same time, the first appearing true
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branch will be executed. Please note that many researchers try to weaken this
requirement by allowing the execution of any randomly chosen true branch
instead of the first one. With this the program could have some degree of non-
determinism, or by parallel execution all the true branches could start to execute
in parallel. However, the Modula-3 language does not support these. We have
mentioned them only to point at a research topic worth pursuing. With this step
– introducing a closing element (in this case the END keyword) for each of the
structured statements, including the IF as well – the designers of the language
have also solved the problem of dangling ELSE.

3.9.5 Safe CASE in Modula-3

The CASE statement also allows the dropping of the BEGIN–END framing
statements. The general form of the CASE gets modified as shown in the follow-
ing example:

CASE 〈discrete expression 〉 OF
〈selector1 〉 => 〈statements1 〉;

. . .
| 〈selectorn 〉 => 〈statementsn 〉;
| ELSE statements;

END

The selector parts (〈selector1 〉. . . 〈selectorn 〉) can have one or multiple con-
stant values, or a value range. The vertical line can appear also on the beginning
of the first branch, like at others, but causes no change in execution.

The selector values need not cover all the possible values of the discrete
expression. If there is no matching selector to the actual value of the discrete
expression, and also the ELSE branch is omitted, a runtime error will occur.

3.9.6 Branh strutures in C

In C branching can be implemented with the if–then–else structure. The general
form of this is the following:

if (〈expression 〉) 〈statement 〉;
/* or */
if (〈expression 〉) 〈statement1 〉; else 〈statement2 〉;

If the value of the expression in parentheses after the if is true (that is not zero),
then 〈statement1 〉 gets executed. If there is an else branch, and the value of the
expression is false (that is zero) 〈statement2 〉 gets executed. There can only be
one statement for each of the branches. To specify multiple statements at once,
those must be enclosed in curly brackets defining a block statement.
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3.9.7 Multiway branhing in C

Multiway branching in C is implemented by the switch statement:

switch (〈discrete type expression 〉) {

case 〈value1 〉: 〈statements1 〉; /* break; */
. . .

case 〈valuen 〉: 〈statementsn 〉; /* break; */
default: 〈statements〉;

}

The expression in parentheses after the switch gets evaluated, and the system
looks for the label following the case with the same computed value to transfer
control to (if there is no such label, execution continues on the default branch).
Please note that execution falls through from every case branch to the following,
unless it encounters somewhere a break statement, which causes it to leave the
switch block and continue at the statement after that. This can cause many
program errors. This is why there is a break statement in every branch –
commented out – in the above template. That is how a statement sequence
could belong to multiple case branches, as shown in the example below.

switch (〈discrete type expression 〉) {

case 〈value1 〉:
case 〈value2 〉: 〈statements2 〉; break;

case 〈value3 〉: 〈statements3 〉; break;

}

In this example if the value of the discrete type expression is 〈value1 〉, or
〈value2 〉, then the 〈statements2 〉 part gets executed, and reaching the break
statement causes the execution to leave the switch block and continue after it. If
the value of the discrete type expression is 〈value3 〉, execution is transferred to
〈statements3 〉. The last break statement is unnecessary but allowed, as there are
no more branches, so execution cannot ”fall through” (nevertheless, specifying
a break there is a safer programming style, as by adding a new branch after the
last one, the separating break would not be forgotten since it is already there).

3.9.8 Multiway branhing in C#

In C# the switch (multiway branching) statement was modified in a way to
support the more frequent case: the C# compiler gives an error if a case branch
is not closed by a break statement. The reason for this is that in most cases
execution should not ”fall through” to the next branch, and this is characteristic.
That is why the compiler requires all branches to be closed by a break statement.
If there is the intention to continue execution with the next case branch, the goto
statement can be used (which was directly introduced for this purpose, whilst
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from Java, the closest language, this was left out). The goto statement can be
used like in C, but there are several major restrictions:

1. No jumping inside a block is allowed (like into the body of a loop from
outside of the loop);

2. No jumps between classes.

The designers of C# find the only place for goto as legitimate: to ensure this ”fall
through” behavior (this requires no new labels, as those of the case branches can
be used as goto targets). The use of goto is allowed also in other structures, but
structured programming offers every feature needed not to use it anywhere else,
except for the above mentioned case for the switch statement.

3.9.9 Conditional statement in Smalltalk

In Smalltalk the conditional statement is a message sent to the logically true

and false values (as objects) resulting from logical expressions. These object
can handle the ifTrue: and ifFalse: messages.

(a > 5) ifTrue: [output value:’value of a is greater than 5’].

The above statement evaluates the (a > 5) logical expression, which can result in
a logical true or false value. The result object receives the ifTrue: message with
a block as parameter, and will execute this block if its value is true, calling the
procedure declared before and showing the message value of a is greater than 5

on the screen. The opposite of ifTrue: is ifFalse:. These can be used in
Smalltalk to implement the traditional if-then-else structure. Consider the
following example:

(a > 5) ifTrue: [output value:’value of a is greater than 5’]

ifFalse: [output value:’value of a is NOT greater than 5’].

3.10 Loops

Regarding loops in programming languages, the following aspects will be exam-
ined:

• Is there a way to implement loops with unknown iteration count?

– If yes, is there a pre- and post-test loop?

– Does the exit condition have to be of logical type, or can it also be
of any other type?

• Does the loop body have to be in a separate block, or in a separate
procedure? (See the paragraphs in COBOL).

• Is there a way to implement loops with known iteration count?
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– If yes, what type can be the loop variable?

– What expressions can be used to specify the initial value, the limit
and the increment for the loop variable?

– When will the iteration count be determined?

– Can the value of the loop variable be modified within the loop, and
if yes, what are the consequences for the loop?

– What is the scope of the loop variable, is its value defined after
exiting the loop?

– How often are the value of the limit and the increment evaluated?

• Is there a general loop in the language (like in Ada the loop–end loop
structure)?

• Are there statements to leave the loop, which can be used anywhere within
the body of the loop? (Like break or exit.)

• Is there a way to force the next loop iteration? (Like, for example, in C
continue.)

• Are traversing (or iterator) loops supported? (Like, for example, in C#
the foreach structure.)

These are also very general aspects. By examining the relevant features of the
programming languages listed as examples, those features of the given language
will be presented which differ from that of its already discussed ancestors.
Elements typical for the given language will be introduced, but those will be
not discussed which are not applicable, or which have already been described in
detail at the ancestor of that language.

3.10.1 Loops in COBOL

To call subprograms, the PERFORM statement can be used. It has numerous forms,
and loops can also be implemented with these statements. To call paragraphs
the GOTO statement can also be used (this is unconditional transfer of control, as
described earlier: the COBOL language supports this usage). The simplest form
of PERFORM is the following:

PERFORM paragraphname.

This executes the statements in the given paragraph, and after its last state-
ment, control is transferred back to the next statement after the PERFORM .

To execute a sequence of paragraphs, the following form can be used:

PERFORM paragraphname1 THRU paragraphname2.

This transfers control to the paragraph named paragraphname1, and runs all the
paragraphs up to and including paragraphname2. Obviously the paragraphname2
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paragraph must be after the paragraphname1 (any number of other paragraphs
can reside between them).

The PERFORM statement can be used for looping. The simplest form of a
PERFORM loop with fixed number of iterations is the following:

PERFORM paragraphname n TIMES.

Above n is a numerical value. The loop executes the given paragraph n times.
To implement loops with exit conditions the PERFORM statement can also be

used. The form for this is the following:

PERFORM paragraphname UNTIL condition.

Its meaning: execute the paragraph with the given name until the condition
behind the UNTIL gets true.

For example, the next code snippet reads in data in the READ1 paragraph
until (signaling valid data) the R-FLAG is set to zero:

MOVE 1 TO R-FLAG.

PERFORM READ1 UNTIL R-FLAG = ZERO.

The form of a counting loop in COBOL is the following:

PERFORM paragraphname VARYING loop variable

FROM value BY increment UNTIL condition.

Its meaning: start the loop variable with the value specified after the FROM ,
execute the paragraph with the given name until the condition behind the UNTIL

gets true. After every iteration the value of the loop variable gets updated with
the given increment.

As shown above, the COBOL language requires the loop body to be within a
paragraph; its name will be specified after PERFORM .

3.10.2 Loops in Pasal

The standard Pascal language offers numerous forms of loops for programmers.
The while is the pretest loop statement. The general form of the while is the
following:

while 〈logical expression 〉 do 〈statement 〉

This has the meaning: as long as the logical expression in the while is true,
execute the statement after the do. After the do only one statement can be
specified; to use multiple statements, they must be enclosed in a begin–end
block. The following will cause an infinite (never ending) loop:

while true do 〈statement 〉

true in Pascal is the logical true constant value: an always true expression.
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The posttest loop variations in Pascal are the repeat–until pair. The general
form of this is the following:

repeat
〈statement1 〉 ; 〈statement2 〉 ; . . . ; 〈statementn 〉

until 〈logical expression 〉;

The loop body12 is between the repeat–until, which is a sequence of state-
ments to be executed repeatedly. This statement first executes the loop body,
and then, if the value of the logical expression after until is false, the loop body
executes again and the exit condition gets evaluated again. This repeats until
the logical expression after the until returns a logical true value. With this loop
statement an infinite loop can be implemented like this:

repeat
〈statement1 〉 ; 〈statement2 〉 ; . . . ; 〈statementn 〉

until false;

The original form of Pascal designed by Wirth had only the above mentioned
two forms for loops with unknown iteration count. Numerous compilers support
the so called do–loop loop, which can have multiple statements between the
do and the loop statements. To leave the loop the exit statement can be used.
Note that without the original standardization, this statement can have different
formats for different compilers.

With regards to the so called counting loops with known iteration count (in
advance), in Pascal the general form of the counting loop is the following:

for 〈loop variable 〉 := 〈value1 〉 to 〈value2 〉 do 〈statement 〉;

or

for 〈loop variable 〉 := 〈value2 〉 downto 〈value1 〉 do 〈statement 〉;

where 〈value1 〉≤〈value2 〉 must hold. In the first case, by entering the loop, the
loop variable starts with 〈value1 〉, the one statement loop body after the do (if
necessary, this can be a block statement) gets executed, the value of the loop
variable gets incremented by one, and all this repeats until this value exceeds
the 〈value2 〉 specified after the to. The second form essentially works the same
way: here the loop variable starts from 〈value2 〉 and counts down (with a step of
−1) repeating until reaching 〈value1 〉 (more precisely: until stepping bellow it).

Counting loops in Pascal have a number of shortcomings, which got improved
(or differently solved) in the subsequent languages:

• The loop variable can be changed only by +1 (using to) or by −1 (using
downto).

• The value of the loop variable after the loop is undefined (the actual
value depends on the compiler, and the code it has produced). This is

12 The code to be executed in a loop.
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a consequence of the scope of the loop variable extending to the whole
block declaring it, and it is not restricted to the loop only.

• Changing the loop variable is not allowed, but this is not checked by the
compiler.

• The limit for the loop variable gets evaluated only once, before entering
the loop, not before each iteration. This helps to produce efficient code,
since the number of iterations is known in advance (and will not be
changed by modifying the value of the loop variable). However, this can
be a disadvantage for programmers routinely working in other languages,
as if they continue to modify the value of the loop variable from within
the loop, it will definitely be a problem.

3.10.3 Modula-3: safe loops

The WHILE loop structure known from Pascal has also changed as it is shown
at the branches: there is no need to frame multiple statements for the loop
body with the BEGIN–END pair. It is enough to write the loop body into
the structured loop construct and close it with an END tag at the end. The
REPEAT–UNTIL loop can be used the same way as in Pascal.

The form of the counting FOR loop has been simplified by leaving out the
framing BEGIN–END pair, and has obtained greater expressive power as the
increment may be any number (thus, there is no need for negative and positive
increments to have different statements, like to, or downto in Pascal).

The form of the FOR loop in Modula-3 is the following:

FOR 〈loop variable 〉 := 〈value1 〉 TO 〈value2 〉 BY 〈step〉
DO

〈statement1 〉; 〈statement2 〉; . . . 〈statementn 〉
END

The significant change is the appearance of the BY part, where the increment
can be specified (a value of zero results in an endless loop). This together with
the increment can be omitted, and the default value of +1 will be used. The
designers of the Modula-3 also made an effort to resolve the problem of the loop
variable present in the Pascal language:

• The loop variable within the FOR statement is visible only in the loop
body, and local to it.

• The declaration of the loop variable happens with its occurrence (naming)
in the FOR statement.

• After the end of the loop the loop variable ceases to exist, so its value
cannot be referenced outside the loop.

• The loop variable is not object to change within the loop. Assignment to
it causes compilation error.
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3.10.4 Loop�end�exit loops

Modula-3 standardized the DO–LOOP–EXIT loop briefly mentioned with refer-
ence to Pascal.

The general form of the loop is shown in the following example.

LOOP
〈statements 〉
. . . EXIT . . .
〈statements 〉

END

Statements between the LOOP and the END are running in an endless
loop. The loop can be left with the EXIT statement. The EXIT causes the
loop to immediately terminate, and execution continues after the END. With
EXIT every loop can be left (even WHILE loops), but to comply with the
principles of structured programming, it is recommended to limit the use of
the EXIT statement only for the LOOP–END loops. The EXIT statements
usually occur in IF statements within LOOP–END loops: this controls the exit
by satisfying certain conditions. It is possible to use LOOP–END loops without
EXIT statements; this will cause an infinite loop. Infinite loops usually do not
make much sense, but in some cases (such as in a communication program where
the task is to receive and forward communication packages without stopping)
this could have its own meaning. These loops will run until the program has been
forced to terminate from the outside e.g. due to the shutdown of the computer.

3.10.5 Features of the Ada language

Similar control structures, but with different syntax were introduced into Ada
too, thus extending the loops of Pascal. Since, however, these are primarily
syntactical innovations, they will not be discussed in detail here.

Here our focus will be on novelties reflecting better design solutions, and
having more expressive power.

The counting for loop plays a similar role in Ada, as in the earlier described
programming languages. Ada defines the characteristics of the counting loop
very thoroughly:

• The loop variable is a local constant of the loop;
• This variable is declared in the loop statement, with the most appropriate

and narrowest type according to the value range of the loop;
• The loop variable (and a value range covered) must be of discrete type;
• The value range to cover by the loop will be computed only once, before

entering the loop;
• Aa an obvious consequence of the above, there is no sense in talking about

the defined value of the loop variable after leaving the loop, since it is
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not visible there. If there is a variable with the same name declared in
the containing block of the loop, the loop variable hides it (to access the
outer variable, its qualified name with the name of the declaring block
must be used, but bear in mind that it has nothing to do with the loop).

The general form of the counting loop is the following:

for 〈loop variable 〉 in 〈value range 〉 loop
〈loop body statements〉

end loop;

As shown, the loop variable has to cover a value range. This can be the range
of the whole value set (referenced in Ada as 〈type name 〉’range) of existing data
types (such as integers, or an enumeration type), or just a subset of a value
range: for the range 1–N (where N is a positive integer) specifying the 1 . .N
value range to cover it. With the reverse keyword the iteration direction on the
given value range can be reversed. This has the following form:

for 〈loop variable 〉 in reverse 〈value range 〉 loop
〈loop body statements〉

end loop;

The stepping value of the counting loop is +1, for reverse loops it is −1.

3.10.6 Repeating strutures in C and Java

In C, as much as in Pascal there exists a pretest loop. Its form is the following:

while (〈arithmetical-logical expression 〉) 〈statement 〉;

The statement part given in the loop will be executed, as long as the expres-
sion in parentheses after the while is true (has a not zero value).

The posttest loop in C looks like the following:

do {

〈statements 〉
} while (〈condition 〉);

The statements in the loop will be executed: at least once, then the loop
body will be executed as long as the expression in parentheses after the while is
true (has a nonzero value). The C language also supports the counting loop:

for (〈initializaton 〉; 〈condition 〉; 〈loop variable update 〉)
〈statement 〉;
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This is equivalent to the following while loop:13

〈initialization 〉;
while (〈condition 〉) {

〈statement 〉;
〈loop variable update 〉;

}

In the for statement the 3 elements separated by semicolons can each be an
expression. <Initialization> is usually an assignment, <condition> must hold
for staying in the loops, <loop variable update> can be an arbitrary expression:
usually here there is an expression to increase or decrease the loop variable, but
any kind of expression is allowed.

Regarding the for type loop, Java allows the loop variable to be declared in
the initialization part, having its scope and lifetime limited to the loop. So the
scope of the loop variable is well specified, its value after leaving the loop is not
defined (since that variable is no longer visible). Consider the following example:

for (int i = 0; i < 100; i++) System.out.println(i);

Conversely, if the loop variable was defined outside the loop, its value can be
accessed after exiting the loop. This is illustrated in the following example:

int i;
for (i = 0; i < 100; i++) System.out.println(i);

/* value of i after the loop is 100 */

3.10.7 Novelties of the C# language

Control structures of the C# language are comparable in many ways with those
of Java; C# has also taken over many features form the C language.

The C# language also supports another loop type besides the loops described
earlier, the so called iterator loop (also called traversing loop). This allows
organizing a counting loop with a loop variable, where it iterates over the values
of a set which implements the IEnumerable interface (for more on interfaces, see
Section 10.7.6., for more on the IEnumerable interface, see the official description
of the C# language and its standard library). The foreach loop statement serves
this purpose. An example for its usage is the following:

int[ ] Integers = { 1, 2, 3, 5 };

foreach (int x in Integers) {

Console.WriteLine(x);

}

13 The only exception is when the program executes a continue statement in the statement part
before evaluating the expression. If so, the while loop simply jumps to the condition, the for
loop updates the loop variable first, and then checks the condition.
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In the above statement the value of the x variable iterates over all the
elements of the array named Integers and outputs their value (thus, the program
writes the 1, 2, 3, 5 numbers in separate lines). The value of the x variable is
declared in the beginning of the loop, and cannot be modified within the loop. If
the elements of the array should be modified, the regular for loop must be used.
This type of loop is called iterator loop or traversing loop.

Arrays implement the IEnumerable interface, they have a GetEnumerator
method returning an instance implementing the IEnumerator interface. Through
this interface the elements of the set to be traversed can be accessed. The
interface specifies the implementation of three methods – namely the MoveNext,
Current, Reset methods. These methods enumerate the elements in the set. Ar-
rays automatically implement this interface, but similar classes can also be made
for implementation. The following example enumerates all the even numbers.

public class EvenGenerator : IEnumerable {

int max; // upper limit
public EvenGenerator(int max) { this.max = max; }

public IEnumerator GetEnumerator() {

return new EvenPointer(max);

}

public class EvenPointer : IEnumerator {

int max; int current = -2;

internal EvenPointer(int max) { this.max = max; }

public Object Current { get { return current; } }

public void Reset() { current = -2 };

public bool MoveNext() {

if (current > max) return false; // No more below max .
current = current + 2;

return true; // Next even number ready.
}

}

}

Even numbers in a given range (in our case, in the range from 0 to 100) can
be traversed by the following foreach statement:

foreach (int value in new EvenGenerator(100)) {

Console.WriteLine(value);

}

By generating an equivalent while form, the compiler automatically creates
the required method calls (first the generator gets initialized, then as long the
MoveNext method returns a logical true value, the variable named value gets its
current value from the return value of the Current method, which can be used
anywhere within the loop body).
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In this way a loop can be easily written which iterates, for example, over all
the prime numbers.

3.10.8 Iterators

The above EvenGenerator example in C# demonstrates the essence of iterator
loops. In this section we elaborate on the concept of iterators in more detail.

Iterators and the CLU

The notion of the iterator was introduced already in the CLU language. Its
essence was the same as what we have shown in our C# example: the computed
value set of a function had to be traversed in a program. But the implementation
slightly differs now from that of in CLU. The iterator is implemented as a
standalone function. This function, like the solution in C#, delivers the next
value – with the ksyield statement designed specifically for this purpose (its role
can be compared to return). A complete example will be omitted because of
the very unique notation system of the CLU.

The following example code snippet shows the structure of an iterator in
CLU.

all primes = iter () yields ( int ) % iterator function declaration
p : int % p is an integer variable
yield(2) % returning first prime
while true do

% computing next prime number
% (stored in p)
yield (p) % returning next prime

end

end all primes

Following this, in the next statement, the loop variable i will iterate over all the
prime numbers:

for i : int in all primes() do . . . .

The iterator as a ontrol struture abstration

As shown above, some programming languages support some form of the iterator
loop statement. These languages allow some kind of generation and processing
of data elements by the iterator loop. For this we need the generator of the first,
and for every next element. Using these, the iterator loop statement can traverse
and process the data elements of an arbitrary data structure.
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This is about general algorithm-classes: iterators build bridges between algo-
rithms and data structures containing data elements (so called containers14). The
iterator algorithm must fulfill a well defined task: it must support traversing the
elements of data structures in some order, without requiring detailed knowledge
about its structure. All it needs to know about the traversed data structure is
how to get the data elements from it. The developers of the data structures must
only know how – through which interface – the iterators will ask for the next
needed data element.

The notion algorithm-class may remind us of classes in object-oriented lan-
guages which are central tools for abstract data types and data abstraction.
The designers of the C++, C#, Java and other programming languages have
also studied this technique for algorithm abstraction, and have worked out an
easily applicable method for generalizing algorithms traversing the content of
abstract data structures, without introducing new language elements.15 These
are called traversing (or iterator) algorithms. To this end, the languages men-
tioned above offer the so called iterator classes specified as part of the language,
but implemented in a standard library.

The standard library of the C++ language, the STL has the richest and best
developed iterator program structures. C# and Java also contain such elements.
In Java first the java.util.Enumeration interface was introduced to support
iterators, then with the collection framework it was enriched with a variety of
possibilities, which were previously only accessible for C++ programmers. Based
on the collection framework of Java, the developers of the C# language worked
out a framework with similar expression power.

Using well the possibility of operator overloading in C++, the designers of
the standard library STL for C++ managed to give the programmers support for
processing complex abstract data types in the same natural way, as in the case
of basic data types. For example, the ++ operator with integer numbers means
incrementing by one: the value of an integer typed variable will be changed to
the next integer number. In the case of a list, the ++ operator could mean the
selection of the next list element within a list traversing algorithm. In languages
where there is no operator overloading, these steps can be done by calling the
appropriate methods. This results sometimes in a less readable code than the
solution with operator overloading.

Consider the following iterator, which computes the sum of the elements in a
data structure. The iterator is defined as a C++ template; the exact meaning of

14 The container terminology is mainly characteristic of the C++ language, as for Java
environments and in case of the C#, the notion collection is widespread to name the same
feature.

15 This approach is based only on the existing statements of the language.
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totaling and the implementation of the operations executed in each step depend
on the data type, which is specified as the parameter of the template.

template<class C> typename
C::value type total(const C& c) { // c is a collection of the elements.

typename C::value type sum=0; // Initialize sum with 0.
typename C::const iterator iter=c.begin(); // Start from beginning.
while (iter != c.end()) { // until the end is reached.

sum = sum + *iter; // Add actual element to the sum.
++iter;

}

return sum;

}

The * operator is used to dereference the iterator (by accessing its ac-
tual value), and the ++ operator increments the iterator: this will step to the
next element of the collection passed as the parameter to the total method.
The successive order is determined by the developer of the C collection. The
value type denotes the type of data to be summarized,16 which is usually a
template parameter. The const iterator type declares an iterator, which does
not allow the modification of the content of the traversed collection. It has the
methods begin and end shown in the example, which return the first and the
last element according to the order of the underlying traversal. For more details
about the specialties of the C++ language, templates and operators, please refer
to Chapter 11 and 5.

The STL distinguishes 5 main types of iterators (apart from the simple
iterator, which only refers to a single element, without any other next elements).
The simplest form of iterators are the input and output iterators: these are
forward moving and allow to traverse the collection in one pass. Through input
iterators the referenced element of the collection (its value) cannot be changed;
output iterators support modifications (changing the actual value or expanding
the collection), but referencing the actual value is not possible. In practice, this
distinction is based on which operators have to be defined for each iterator
type. For output iterators the operators *p= (assignment) and ++ must be
implemented, whereas for input operators =*p (referencing the actual value),
->, ++, == and != must be implemented.

A special form of the input and output iterators are the forward iterators.
These allow both read and write access and traverse forward the elements of
the collection. Bidirectional iterators support also backward moving within the
elements of the traversed collection by defining the – operator.

16 This notion comes from the STL.
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The most special form of the iterators is the random access iterator, which
allows relative addressing,17 and the measuring of distance between elements.

The implementation of such iterators will not be discussed here. The spec-
ification of a standard library usually does not deal with the implementation
details of the given library element. Specification only sets the interface to call
from the outside. It is the task of the programmer to choose the best feature to
implement an iterator. For example an iterator over all possible permutations
of the elements of a set can be implemented as a sequential subprogram, but in
environments offering features for parallel programming it would be a legitimate
option to implement this as a program thread running in parallel (see Chapter
13).

3.10.9 Loop statement in Smalltalk

In Smalltalk the loop statement can be similarly handled as has already been
shown with regard to branching (there is a pretest while type loop statement, and
an array iterator loop). The only salient difference is that the loop condition must
be evaluated by a block, which will be called after each iteration. For sending
this block – which returns a logical value – the whileTrue: message is used,
whereas for specifying the loop body block as a parameter, the traditional while
type structure is used.

Consider the following example:

|declaredVariable|

. . .

declaredVariable := 1.

[declaredVariable < 10] whileTrue: [

Transcript showCR: declaredVariable.

declaredVariable := declaredVariable + 1.

]

The condition is between square, not round brackets. This is because a block
must be specified there, not a logical value. The Smalltalk virtual machine eval-
uates the given block before every loop iteration, then it sends the whileTrue:

message to the resulting logical value with the embedded block as parameter
(which now outputs the value of the variable named declaredVariable, and
increases it by one).

This program writes the numbers from 1 to 9 to the screen.
The other array iterator is based on the idea that every array can receive a do:

message with a block as its parameter. That block must accept one parameter

17 The pair of this iterator type on elemental data types may be found in pointer arithmetic.
It is not a coincidence that for these iterators all the operations of pointer arithmetic must
be also implemented.
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(the actual array element will be passed there). With this message the block
passed to the do: will be executed for every element of the given array.

|anArray|

. . .

anArray := #(’one’ ’2’ 3 4 5 ’6’ 7.0).

anArray do: [ :elem |

Transcript ShowCR:elem

].

The above example iterates over the elements of the anArray array and writes
them to the screen. As shown above, the array elements can be of any type. In
one array string and numerical elements, or any other values may coexist. The
reason for this is that every possible value is an object, and the array stores
references to these objects, which are for every data type the same (but the
types of the referenced values can differ).

3.11 Self-invoking ode (reursion)

For the sake of completeness about control structures the self-invoking code, or
recursion must be mentioned as a feature of control management (as this falls
under the topic of procedure and function calling, for more details see Chapter 7).
The possibility and the functioning of the self-invoking code is based on the fact
that the name of the procedure (or function) is visible within its body, so it can
invoke itself. When a procedure of function invokes itself directly or indirectly
(through another procedure), it is called self-invoking code or recursion.

The Pascal language supports self-invoking code. In COBOL and in the so
called second generation languages like FORTRAN, self-invoking is not possible.

At designing self-invoking algorithms, it is important to rule out cases when
a procedure of function calls itself infinitely. This can be achieved by observing
two basic rules at designing self-invoking algorithms:

• Every self-invoking algorithm must contain a non-recursive alternative.
While it may be empty, usually it contains the solution for the base case
of the problem.

• In the case of recursive alternatives, care must be taken that the calling
chain eventually reaches the non-recursive alternative (the base case).

Consider the classic example, the recursive definition of the factorial function:

n! =
{

1, if n = 0
n · (n − 1)! if n > 0.

The simple case here is to compute the factorial of 0, which is 1 by definition.
The other alternative describes the factorial computing for positive numbers.
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The task (computing the factorial of the number n) is reduced to the factorial
computation for the one less number (n − 1), which must be multiplied by n.
Based on the above definition of the factorial it can be seen that the algorithm
will terminate for every positive n: as the task is always to compute the factorial
for lesser numbers, 0 will be reached definitely, for which the result is defined
non-recursively: value 1.

The two characteristic cases of applying self-invoking algorithms are the
following:

• The solution of the problem can be achieved by using the same algorithm
on partial problems and using these partial results to compute the result;

• A data structure containing a self reference must be processed. For ex-
ample, take the tree data structure. In the case of a tree data structure, a
simple case is to process the leaves, and the processing of the whole tree
can be divided into smaller task, e.g. to process the root and the subtrees.

The lack of self-invoking algorithms in the early languages caused no problems
as every recursive algorithm can be transformed to non-recursive (iterative) one
by using a loop and with the help of a stack data structure. The execution stack
of the recursive program is simulated with the auxiliary stack (pushing into the
parameters of the self invocations, storing the subtasks to be performed).

3.12 Summary

In this chapter we have discussed the basic formal and informal tools of algo-
rithm descriptions, from low level (assembly) languages – with an example of
the control structures – to high level programming languages. By focusing on
commonly used programming languages, we have examined some specific control
structures. That is, we have discussed COBOL, Pascal and the C language in
great detail, and the control structures of Modula-3, Ada, Java, and the C#
languages were also dealt with.

The progress has been evident – to manage control, the features are improving
fast.

The control structures have been mostly investigated usually on the basis of
some shared features, which have been described in detail.

Obviously, apart from the programming languages discussed here, there are
many more languages. These have been developed for specific purposes and are
used by a specific (usually small) target group only. Their control structures are
often the extensions of the ones presented here.

We have given two application areas as an example: database management
and realtime applications. Out of the database management languages, it is, for
example, the SuperNOVA which fits the transaction based aspects of databases
in terms of its control structures: execution of subprograms can be successful or
unsuccessful. In the case of a successful execution, it is likely that the transaction
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containing modifications made in the database are final (that is, the data have
been modified in the database). By contrast, in the case of an unsuccessful
execution, designers assumed that the transaction also gets rolled back. Thus,
if an error has occurred in the subprogram, the non STATIC global variables
get their initial values restored back, and with signaling the unsuccessful condi-
tion, the execution of the subprogram terminates immediately. This is the main
characteristic nature of other so called fourth generation languages (4GL).

The other area is that of realtime applications: in a realtime environment,
the execution of the program is not necessarily correct only because it delivers
correct results. There are also time limits, which must be considered by the
program. The execution of a realtime program is correct if it delivers correct
results before a set time limit. In these languages there are much simpler (a
narrower set) control structures than shown in this chapter, based on which the
compiler is able to produce correct code by proper scheduling of the statements;
else if the compiler detects that there is no such scheduling which could deliver
correct results in time, the compilation can fail.

3.13 Exerises

Exercise 3.1. Implement a program to compute the nth Fibonacci number using
the LMC assembly language introduced in this chapter.

Exercise 3.2. Examine the redundancy of the control structures discussed in
this chapter. Which control structures can be omitted without decreasing the
expressive power of the language?

Exercise 3.3. What is your opinion about the application of self-modifying code?

Exercise 3.4. Write a self-invoking function to define all possible permutations
of an integer array.

Exercise 3.5. Write an iterative (non-recursive) function to define all possible
permutations of an integer array.

Exercise 3.6. What is the output of the following C# code snippet?
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int i = 2;

switch (i) {

case 0 :
goto case 2;

case 1 :
goto case 2;

case 2 :
System.Console.WriteLine("i < 3");

break;

case 3 :
System.Console.WriteLine("i = 3");

break;

default:
System.Console.WriteLine("i > 3");

break;

}

Exercise 3.7. Imagine the C-based control program of an automated missile
defense and retaliatory strike system. Why would this code earn its naming,
”the last C bug of the world”?

#include <iostream>

using namespace std;

void launchMissiles() {

cout « "This is the end of the world!" « "\n";

}

int getRadarStatus() {

int i;
cout« "Reading the status of the radar: ";

cin » i;
return i;

}

int main() {

int status;

while (true) {

status = getRadarStatus ();

if (status = 1)// enemy attacks!
launchMissiles();

cout « "The status value is: " « status « "\n";

}

return 0;

}
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3.14 Useful tips

Tip 3.1. The sequence of Fibonacci numbers is defined by the recurrence relation
Fn = Fn−1 + Fn−2 where F0 = 0 and F1 = 1 by definition. This definition is
recursive, but can be used in an iterative way by practically enumerating all the
Fibonacci numbers until n, where only the two last result numbers are required
to compute the next one.

Tip 3.2. Think of the multiway branching, how it could be substituted by multi-
ple normal branchings. Normal branching may also be implemented with loops,
leaving the loop body after only one execution. But loops may also be considered
as branching and jumping back to the same code. Examine how even the three
loop types (pre- and posttest, counting) are interchangeable.

Tip 3.3. As we have mentioned, the ALTER statement in COBOL supports the
making of self-modifying programs. However, this feature is not widespread, nor
fully supported. The main reason for this is that to implement self-modifying
code, the so called code segment storing the executable form of the program
must be modified. Its memory location is managed by most operating systems
as read only, partly because of security reasons,18 and partly because of code
segment sharing: if multiple instances of a program are active, at runtime they
can use the code segment shared together, as only data segments storing their
data must be allocated separately and managed for every program.

Tip 3.4. The permutation of an array is an arrangement of the content of the
array into a particular order. The number of permutations of n array elements
is n!. The solution can be based on the well-known algorithm of R. Sedgewick
see [Sed77]: each array element will be exchanged to the end and the others will
be recursively permuted.

Tip 3.5. See e.g. the book of Donald E. Knuth: The Art of Computer Program-
ming, Volume 4, Fascicle 2: Generating All Tuples and Permutations [Knu05].

Tip 3.6. Consider the actual selector value of the switch statement to find the
case which is executed.

Tip 3.7. Examine the fatal call of launchMissiles()! Should not it be called only
if the radar returns an appropriate status?

18 Security reasons here imply the protection of the code segment, which is not to be
overwritten, not even accidentally, because this is often caused by memory management
errors. With this solution, modern operating systems support debugging.
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3.15 Solutions

Solution 3.1. INP ; 00 901 input n
BRZ end ; 01 703 while n > 0
BRP loop ; 02 811

end LDA act ; 03 509 result is act
OUT ; 04 902

HLT ; 05 000
one DAT 1 ; 06 001 decrement
n DAT ; 07 loop counter

prev DAT 0 ; 08 000 previous value
act DAT 1 ; 09 001 actual value

next DAT ; 10 next value
loop STO n ; 11 307 store loop counter

LDA prev ; 12 508 compute next value = prev + act
ADD act ; 13 109
STO next ; 14 310

LDA act ; 15 509 shift act to prev
STO prev ; 16 308

LDA next ; 17 510 shift next to act
STO act ; 18 309
LDA n ; 19 507 decrement loop counter

SUB one ; 20 206
BRZ end ; 21 703

BRA loop ; 22 611

Solution 3.2. The multiway branching structure can be substituted by multiple
branchings checking always for the next branch. The loop condition may be
used to implement branching, if the loop body is left after only one execution.
If the starting of a loop body can be marked and jumped to, then a conditional
jump back to the loop start, or jumping out of the loop body can replace the
loop statement. Counting loops are easily implemented with normal loops and
assignments using the loop variable, changing its value properly and checking the
desired boundaries. A pretest loop can be substituted by a conditional execution
of a posttest loop

while (condition) do something
is equivalent with

if (condition) do ( do something until !condition )
and vice versa by executing the loop body additionally before a pretest loop:

do something until condition

is equivalent with
do something; while (!condition) do something

Solution 3.3. Computers of von Neumann architecture store data and code in
the memory, allowing the access and handling of instruction codes as data. This
is the basis for self-modifying code in assembly level languages, as running code
can access and modify itself within the memory. This, of course, must be done
extremely carefully, since the slightest error may render the code not (determin-
istic) runnable. That is why most operating systems try to prevent any write
access and modifications to memory areas storing program code. Nevertheless
self-modifying code can be used for various purposes, such as optimization of the
code (like so called HotSpot optimizers), patching of subroutine (pointer) address
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calling, usually as performed at load/initialization time of dynamic libraries,
or else on each invocation, patching the subroutine’s internal references to its
parameters so as to use their actual addresses. It can also be used for hiding
(obfuscating) of code to prevent reverse engineering (by use of a disassembler
or debugger) or to evade detection by virus/spyware scanning software and the
like, and for compressing code to be decompressed and executed at runtime,
e.g., when memory or disk space is limited. These techniques are used mainly by
low/machine level languages, but in high level languages interpreted code may
be also supported ”on the fly” mimicking some degree of self modification. For
example debugging and profiling on the Java virtual machine platform is also
implemented by code injection, that is by modifying the compiled bytecode of
every high level statement to include additional instructions during execution.

Solution 3.4. The solution is based on the well-known algorithm of Robert Sedgewick.
It is written in Ada. It stores the result in a text file.

with Text_IO; use Text_IO;

procedure Perm_Probe_Recursive is
package Int_IO is new Integer_IO(Integer); use Int_IO;

N : constant Integer := 3; -- the size of the vector
type Vect is array (1 .. N) of Integer;

F : File_type;

procedure Swap(V:in out Vect; I,J:Integer) is
--swaps the V(I) and V(J) in V

Temp: Integer;
begin

Temp:=V(I);

V(I):=V(J);
V(J):= Temp;

end;

procedure Put_Vect(V:Vect) is

begin
for I IN 1..V’Length loop

Put (F, V(I)); --puts into the file
Put (V(I)); -- puts on the screen too

end loop;
New_Line;
New_Line (f);

end;

procedure Perm(V:in out Vect; N:Integer) is
-- gives all permutations of the values in V recursively

begin

IF N=1 THEN
Put_Vect(V); --we are ready

RETURN;
end IF;

for I IN 1..N-1 loop
Swap(V, I, N);
Perm(V, N-1);

Swap(V, I, N); --back, for the next trial
end loop;

Perm(V, N-1);
end Perm;

Myvect: Vect:=(4,5,6); --the actual vector
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begin
Create(F, Name=>"perms2.txt");

Perm(Myvect, Vect’Length);
Close (f);

end;

The permutations from the file perms2.txt:
5 6 4
6 5 4
6 4 5

4 6 5
5 4 6

4 5 6

Solution 3.5. A possible solution is written in Ada, it gives all permutations of
values in an integer array and prints the result to a text file. The parameters
of the procedure are: the input vector and the name of the result file. The file-
handler procedures are local in the permutation procedure. One can change the
size of the vector, and the elements in it, the actual values are only demonstra-
tions of the call.

with Text_IO; use Text_IO;

procedure Perm_Probe_Iterative is

package Int_IO is new Integer_IO(Integer); use Int_IO;

N : constant Integer := 3; -- the size of the vector

type Vect is array (1 .. N) of Integer;

procedure Permutations ( V : Vect; File_Name : String) is
-- all permutations of the elements in V vector will be

-- in the text file File_Name

procedure File_Get ( F : File_Type; Tmp : out Vect ) is
-- reads the values of the next line in the file F to Tmp vector.

I : Integer;
begin

I:=1;

while not End_Of_Line(F) loop
Get(F,Tmp(I));

I:=I+1;
end loop;

Skip_Line(F);
end File_Get;

procedure File_Put ( F : File_Type; Tmp : Vect; Size : Integer) is
--puts the values of the Tmp vector

--from the 1..Size interval to the file F
begin

for I IN 1..Size loop

Put(F,Tmp(I));
end loop;

New_Line(F);
end File_Put;

procedure File_Copy (F_In, F_Out:File_Type) is
--makes a copy of the file F_In to file F_out

I : Integer;
begin

while not End_Of_File(F_In) loop
while not End_Of_Line (F_In) loop

Get(F_In, I);
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put(f_out,I);
end loop;
Skip_Line(F_In);

new_line(f_out);
end loop;

end File_copy;

Temp1, Temp2 : Vect;

F1, F2 : File_Type;
Act_Size, Act_Pos : Integer;

Temp_Inp : Boolean;

begin
Act_Size:=1;
Act_Pos:=1;

Create (F1, Name=>File_Name);
Create(F2, Name=>"temporary.txt");

Put(F2,V(1));
--first element of the vector is written into temporary file

Temp_Inp:=True;

for I in 2..N loop -- iterates on the indexes of the vector

if Temp_Inp then
-- this is the case when F2 will be the input file

-- and F1 the output
Reset(F2, In_File);
Delete(F1);

Create (F1, Name=>File_Name);
while not End_Of_File(F2) loop

File_Get(F2, Temp1); --next line from the file
while Act_Pos <= (Act_Size+1) loop

if Act_Pos = 1 then
Temp2(1):=V(I);
Temp2(2..Act_Size+1):=Temp1(1..Act_Size);

Act_Pos:=Act_Pos+1;
File_Put(F1, Temp2, Act_Size+1);

else
Temp2(1..Act_Pos-1):=Temp1(1..Act_Pos-1);
Temp2(Act_Pos):=V(I);

Temp2(Act_Pos+1..Act_Size+1):=Temp1(Act_Pos..Act_Size);
Act_Pos:=Act_Pos+1;

File_Put(F1, Temp2, Act_Size+1);
end if;

end loop;
Act_Pos:=1;

end loop;

Act_Size:=Act_Size+1;
else

--this is the case when F2 will be the output file and
--F1 the input

Reset(F1, In_File);

Delete(F2);
Create(F2, Name=>"temporary.txt");

while not End_Of_File(F1) loop
File_Get(F1, Temp1);

while Act_Pos<= (Act_Size+1) loop
if Act_Pos=1 then

Temp2(1):=V(I);

Temp2(2..Act_Size+1):=Temp1(1..Act_Size);
Act_Pos:=Act_Pos+1;

File_Put(F2, Temp2, Act_Size+1);
else

Temp2(1..Act_Pos-1):=Temp1(1..Act_Pos-1);

Temp2(Act_Pos):=V(I);
Temp2(Act_Pos+1..Act_Size+1):=Temp1(Act_Pos..Act_Size);
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Act_Pos:=Act_Pos+1;
File_Put(F2, Temp2, Act_Size+1);

end if;

end loop;
Act_Pos:=1;

end loop;
Act_Size:=Act_Size+1;

end if;

Temp_Inp:= not Temp_Inp; --swaps the input and output files
end loop;

if Temp_Inp then --the result is in the temporary

Reset(F2, In_File); Reset(F1, Out_File);
File_Copy(F2,F1);

end if;

Close(F1);
Close(F2);

end Permutations;

V : Vect := ( 5, 6, 7); --actual trial

begin

Permutations(V, "perms.txt");
end;

The permutations from the file perms.txt:
7 6 5
6 7 5

6 5 7
7 5 6

5 7 6
5 6 7

Solution 3.6. The result is: i < 3

Solution 3.7. This is a typical C bug related to the assignment expression sup-
port of the language. As the conditional statement receives an assignment (=)
instead of an equality comparison (==), and the value of this assignment (=1 ) is
treated as a boolean true expression, the conditional statement will always be
executed regardless of the value of the status variable. A good programming style
is to use for comparisons with constant values a reverse order, always putting the
constant to the left side, so if the comparison operator turns into an assignment,
the compiler will give an error, since constants are no L-values and can not be
assigned to. Additionally, it is always a good idea to turn up the warning level
of compilers, because this common error can usually intercepted in this way.
So, having the comparison fixed, the following version of the main function will
probably guard the world better:
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int main() {

int status;

while (true) {

status = getRadarStatus ();

if (1 == status);// enemy attacks!
launchMissiles();

cout « "The status value is: " « status « "\n";

}

return 0;

}

Or NOT?!?



Sope and lifespan4

Whichever programming language and environment
we use, whichever paradigms they adhere to,
whichever possibilities and features they offer, the
scope and lifespan of the variables, the functions
and the types are important notions.
The scope of an identifier is the part of the source
code from where a language element (an object, a
function, a type, etc.) is accessible with the given
name.
The lifespan of an object is the part of the
program’s running time between the creation and
the disposal of the given object, that is, when the
object is live, is usable.
Scope and lifespan are related concepts, but their
meanings do not overlap.



T

he principle of information hiding (so that the parts optimally connect)
is essential in bigger projects, which involves the close cooperation of a
number of programmers. The writer of a part should know about the

part written by the other programmers only to the necessary extent: interface.
There should be no unnecessary or accidental dependence between the parts as it
encumbers human work, causes complications and possibly errors. When working
on a program in collaboration with others, it would be annoying to find out that
the name i (our favorite one for a loop index) cannot be used anymore, because
another programmer was faster and already used it inside another module for
some other purpose. Our own program can become unfamiliar after some while,
so we can become ”another programmer” in this sense.

The principle of information hiding is supported to different extent with
different degrees of sophistication by the different programming languages.

A program uses different elements, e.g. types to describe common data struc-
ture and behavior, functions to encapsulate and reuse execution, and ”objects”
– things stored in the memory. These elements may have zero or more names:
identifiers which can be used to refer to them. Usually such elements have
names which are directly used to access them, but it is also possible that an
object has no name at all and is accessible only indirectly (that is, with the
help of some language construction, like pointers), or it can be accessible in
both ways. Examples for only indirectly accessible objects are dynamically (that
is, in runtime) allocated objects and elements of arrays. Dynamically allocated
objects are usually accessed through pointers or references, an element of an
array is usually accessed with an expression combined from the array name and
the actual index.

Identifiers must follow specific syntactical rules, the exact details depend
on the language, environment, and on compilation flags. In most programming
languages, however, it is safe to use alphanumeric characters, usually started by
a letter and continued by letters or numbers. In many programming languages
identifiers are case sensitive, and the number of significant characters in an



128

•
Sope and lifespan

identifier may be limited. Thus, it is always always useful to check for the exact
rules of identifiers in the specific programming language.

Identifiers are important resources for the programmer. A well-chosen iden-
tifier helps to understand the role of the programming element, like an interface
function or a type name. A wrong identifier can be misleading and may deceive
the reader of the code. Therefore for those identifiers which are accessible in
many places of the program it is worth choosing longer, and telling names. Only
for identifiers used locally do we tend to choose short names. A typical loop
variable for example is called i – its usage context explains its role. A possible
rule of thumb can be the broader the scope, the longer the name.

Identifiers can be reused, i.e. the same identifier may refer to different ele-
ments of the program in different parts of the source code. The part of the source
where from an identifier can refer to a particular element of the program is called
the scope of the identifier. The scope – or visibility – rules of an identifier are
language specific; however, modern programming languages share many common
patterns when defining scope rules.

During program execution we use different memory locations to store our
objects. These memory locations are not necessarily needed for the whole execu-
tion time and modern programming languages can reuse unused memory parts.
The allocation of the memory should precede the use of the object and we we
must not refer to the memory after we have abandoned it. There is a specific
time interval of the program execution when we rightfully refer to that memory
area as the storage place of a certain object. This interval is called the life of
the object. Referring to a memory area out of the object’s life time may lead to
invalid results or even run-time errors.

4.1 The types of memory storage

Programming languages typically define some abstract model to describe the
proper behavior of the language. The description includes the memory storage
model, i.e. how objects are mapped to the physical implementation, and how
long they are accessible for use. The memory storage model is an important
aspect of the scope and life of the objects.

4.1.1 The stati memory

Static memory is sized and allocated at compile time, when also an initial value
(defined by the programmer or default) is assigned. This memory will be available
during the whole execution of the program.

The main advantage of the static memory is its simplicity. Static memory
usually requires no runtime maintenance (object construction and destruction
in object-oriented languages may be exceptions). However, this simplicity is also
a drawback. Static memory is allocated for the whole execution time, even if its
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contents are used only in a fraction of the execution – this is rather uneconomical.
Besides this, they have certain drawbacks in a multithreaded environment as well
– as they are shared between threads their access must be protected.

Static memory is primarily used for global variables – thus, sharing informa-
tion between modules or subprograms during most of the execution time.

The executable code of the program may also be considered a static value,
even if it is not manipulated in the same way as the data. The environment
(the hardware and the operating system) might support the separation of the
read-only and the read-write parts. It is of advantage to store the code of the
program in a read-only part, so that an already running copy of a program
may share it with a newly started instance, albeit at the price of preventing the
self-modification of the code.

4.1.2 The automati memory

We often use objects with a restricted lifetime: a loop variable is usually required
only during the execution of the loop; math computations apply variables to
store the temporary results before further use, etc. It would be a serious waste
of resources to use static memory for such purposes. Instead, block-oriented
languages use automatic memory to reserve storage when entering a block and
keep that storage valid until leaving the block. The name automatic – or auto
in short – comes from the fact that no programmer action is required to mark
the beginning and the end of the life of such objects.

Automatic storage is usually implemented by a stack, a LIFO (last-in, first-
out) data structure. When entering a block, the stack pointer identifying the top
of the stack is incremented by the size of the required automatic variables - thus
”allocating” memory. When leaving the block, the stack pointer is set back to the
initial value to ”free” the automatic storage. This position is also stored in the
stack. As usually no other action happens simultaneously automatic variables
are uninitialized – they may contain the ”garbage” of the earlier content of the
memory. In some object-oriented languages, however, constructor and destructor
calls may be associated with these actions.

In many cases the function call mechanism are also implemented by using this
stack. If recursion (that is, the ability of a function to directly or indirectly call
itself) is not supported by a language and an environment, maximum one copy
of a function may be active at any time. This may it is possible to store the data
necessary for the calling of the function in the static, (that is, at compile time)
preallocated memory. If, however, recursion is to be supported, as is generally
the case, the data necessary at runtime for the calling of the function (parameter
values, return address, register values) are stored in the stack. The stack area
corresponding to a function call is called an activation record. As functions call
each other their activation records build up on top of each other.

In multithreaded execution environments, each thread has its own stack,
meaning, automatic storage variables are thread locals.
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It is especially dangerous to refer to an object with automatic life after its
lifetime – i.e. after leaving the block. The memory address will be still valid
(therefore, no run-time error will occur), but it may happen that the value of
that memory area could be already modified – perhaps an other block is using
that activation record and our value has been modified by then.

4.1.3 Dynami memory

There are situations when neither the static nor the automatic storage suits our
purpose. This is the a case is when we need a storage with a shorter lifetime
which still has to leave the block of creation, or when we do not know the size
of the object in compilation time. In these situations we use dynamic memory.

In the case of dynamic memory the programmer is fully responsible for the
lifetime control of the object. Dynamic memory handling is either supported
directly by language features (e.g. the new operator of C++ and Java, and
delete in C++), or indirectly by (standard) library functions (e.g. C’s malloc
and free). The allocation of such memory is based on the explicit request of
the programmer: they typically use a new expression or initiate a specific func-
tion call. Allocation happens in a data structure called heap or free memory.
The allocation process looks up an unused continuous area, administers its use
and returns a pointer to it. The deallocation process takes the pointer to an
allocated area on the heap and marks it free with some additional actions (like
concatenating free neighboring areas).

In some implementations frequent allocations and deallocations may frag-
ment the heap. Moving allocated fragments would invalidate pointers or refer-
ences to the area, thus it is impossible in many languages. In the managed heap
of the .NET system, however, allocated fragments can be moved and references
are updated. A Java Virtual Machine can be implemented in many ways, and
memory handling and garbage collection are eminent subjects to steady research,
development and refinements. Oracle’s HotSpot VM includes several genera-
tional garbage collectors, which rank the objects into different generations and
store them in several heap areas and move them around. The gory details actually
do not have to do with the core language features and the themes discussed here.
Due to them being mainly implementation details, we, as programmers are not
affected by them and we are protected from their complexity. However, when
we want to fine-tune the JVM to improve performance and to eliminate possible
bottlenecks, and pondering about picking a garbage collector and customizing
its parameters, we still need to deal with them.

While heap allocation actions are controlled by the programmer, deallocation
may happen either upon the programmer’s request (by free in C, delete in C++),
or can be automatically controlled by the garbage collector (ADA, Java, C#).

Heap allocation and deallocation are expensive operations in execution time
and in possible lock conflicts. Therefore, heap allocations should be minimized
in performance critical programs.
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Although dynamic memory is quite flexible, the handling of dynamical data
may lead to some errors still:

• memory is allocated but never eventually freed (memory leakage);
• several attempts are performed to free the same memory area;
• a pointer or reference is held to an already freed and possibly (for other

purposes already) reused memory;
• everything is done correctly but the memory still gets exhausted.

Dynamic memory handling is not supported by every language and every
environment. For example COBOL was not designed with it in mind, and even
if some versions and implementations support it, it is a foreign feature to its
logic and its culture.

4.1.4 A simple example

Let us consider a simple and admittedly contrived example to compute the
third member of the Fibonacci series in a highly inefficient way, which however
illustrates recursion and variables in different storage areas. The Fibonacci series
was invented by Leonardo Fibonacci in 1202. For purposes of demonstration let
us assume the rabbits are immortal (at least in the interval being discussed), and
a pair of rabbits produces (the female gives birth to) a pair every month after the
age of one month. From these assumptions it follows that the number of rabbit
pairs in a given month is the sum of the number of the rabbits in the previous
month plus the number of the newly born pairs, with the latter being equal to
the ones living two months ago. If F (n) denotes the number of the rabbit pairs
after n months, then F (n) = F (n−1)+F (n−2). An interesting series (occurring
at several places in mathematics including the analysis of algorithms [Knu87])
is defined this way.

The series is defined in itself: a value can be computed from the previous
ones. A widely used representation of this idea is computing the fib function in a
recursive way. The following example is written in C++, but it is in a procedural,
– in fact – C style. We chose the language C++ rather than C, because of the
relatively easy programming of the output due to std::cout.

#include <iostream>

int ct;
int fib (int what) {

int ret = 1;

ct++;

std::cout«ct«" fib ++ "«what«" "«(void *)&ret«std::endl;
if (what > 1) ret = fib (what - 1) + fib (what - 2);

std::cout«ct«" fib – "«what«"="«ret«std::endl;
return ret;

}
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int main () {

int x = fib (3);

std::cout«"the result is "«x«" in "«ct«" step(s)."«std::endl;
return 0;

}

In a given environment the following output is generated:

1 fib ++ 3 0xbffff708

2 fib ++ 2 0xbffff6d8

3 fib ++ 1 0xbffff6a8

3 fib -- 1=1

4 fib ++ 0 0xbffff6a8

4 fib -- 0=1

4 fib -- 2=2

5 fib ++ 1 0xbffff6d8

5 fib -- 1=1

5 fib -- 3=3

the result is 3 in 5 step(s).

In order to compute fib(3), we need the values of fib(2) and fib(1), so there
are several active calls to fib with different parameters, and local ret variables.
The address of ret is output so as to demonstrate it. The calls of the function
fib are counted in the global variable ct.

4.2 Sope

The scope of an identifier is that part of the source code, where the denoted
element (variable, process, type etc.) can be accessed with the given name.

Scopes include the following areas:

• the entire program;

• a compilation unit (see below);

• a subprogram;

• a block of code;

• a type (a class) or a namespace.

Different scopes may of course, overlap: a given point of the program can
(and often does) belong to more scopes. Scopes usually contain each other: a
point in a function belongs to the scope of every containing block, to that of the
function, and to the global one; in object-oriented environments the scope of a
type (a class) can be part of those of others due to inheritance.
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extern int x; /* global x is defined somewhere else */
#ifdef cplusplus
namespace N {

int x;

void f ();

}

#endif
int foo(int y) {

if (y == 0) return x; /* global x . */
{

int x=2;

#ifdef cplusplus
if (y > 0) return ::x; /* C++: global x */
N::x++; /* C++: x from namespace N . */

#endif
if (y < 0) return x; /* 2 */
{

int x = 3;

return x; /* 3 */
}

}

}

#ifdef cplusplus
void N::f () {

x++; /* denotes N::x . */
}

#endif

The resolution of a name, that is, the search for the element denoted by
a name (identifier) is performed among the scopes beginning at the narrowest
proceeding towards the broadest one. So a declaration of a name in a closer scope
hides the names declared in a further, wider scope.

However, names can be overloaded, that is, it is possible for a name to denote
several different things at the same time. Obviously, this only applies when the
denoted language elements have features that set them apart, apart from the
name itself. In languages which support static (compile-time) type checking,
functions may be distinguished by the signature, that is, the number and types
of the arguments, so functions with the same name but with different signatures
can be handled:

void print(int i);

void print(char *s);

void print(char c);

ANSI C performs type checking, but does not support the name overloading
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in the above sense. During the resolution of an overloaded function name ADA
takes the return type into consideration, but C++, C#, and Java do not.

C++ supports the scope operator 〈<name space name>〉::〈<object>〉 or
〈<class name>〉::〈<object>〉. We have seen the example std::out denoting the
out object (handling the standard output) of the namespace std of the standard
library objects and functions. Special version of scope operator with empty left
operands ::x denotes the global x variable.

4.2.1 Global sope

Global variables are accessible from every point of the program and reside in
static storage. They enable easy communication among different parts (mod-
ules, functions) but can cause difficult dependencies among them. If a function
modifies global variables, these changes are called the function’s side effect. A
function can be considered as an encapsulation, a ”short hand” for an arbitrarily
long and complicated sequence of instructions. Side effects contradict this to
some extent.

In C and C++ the global variables are the ones defined outside of every
function, namespace or class, and are not marked with the static keyword. In
FORTRAN the directive COMMON can be used to define global memory areas
which can be broken into variables in different ways in the different modules.

4.2.2 Compilation unit as a sope

It is important to break programs of at least middle size into independently
compilable parts, so that after a change the whole program need not be com-
piled. Different languages support this with the introduction of different units:
partitions, modules, compilation units, library modules, submodules. In large
projects it is an explicitly stated design goal to brake programs down into such
smaller units[Lak96].

A compilation unit (if the programming language supports it) is the set of
the functions and variables put into the same source file and compiled together.
(Java does not support this notion: the source of a public class or interface can
be only in the source file named after it, and the byte codes of the classes are
written into their own .class files, even those of the anonymous inner classes.)
It is language-dependent how the functions and variables in a compilation unit
are accessible from outside.

The variables and functions in the compilation unit deemed only locally
accessible, that is, accessible only within the compilation unit, may be put into
its scope.

Some languages (Pascal, Ada, C and C++) distinguish syntactically between
declarative and implementing parts, others including Java do not. While in the
language family of Pascal (Pascal, Ada) and in Java the compiler takes the
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necessary information from the object or byte codes of the referred units, in the
languages C and C++ special source (header) files serve this purpose.

In C and in its successor C++, the keyword static denotes which variables
declared outside every function make up the scope of the compilation unit. The
storage class will be static, and the scope will be confined to the compilation
unit. This heritage from C is a way of modularization. It is a rather unfavorable
situation as it ties the question of accessibility (design level) to the question
what is put together into the same compilation unit (implementational level).

C++ introduces the notion of the unnamed namespace to define a scope local
to a compilation unit. Its usage is equivalent but still it is preferred to the static
variables.

The variables in the compilation unit serve as storages for the state of the
module (that is, the set of functions in the compilation unit), since the functions
share the variables preserving their values across the function calls. The names
of the static variables and functions cannot be seen from outside the compilation
unit, meaning they are reusable.

4.2.3 Funtions and ode bloks as sope

Static or automatic variables can have a function (method, subprogram) or in
the case of block structured languages a code block as their scope. (The body
of a function can be regarded as a code block anyway.) These variables are
called local to the function or to the code block. Variables declared in a block
are accessible from further blocks inside. From a block of course the locally
declared and the global variables are also accessible, and the ones declared in
the containing blocks and in the containing function, compilation unit too.

The static variables declared inside a function can be used as storage retaining
the value across function calls with the restricted scope of the code block or
function. A similar role is played in ALGOL 60 and SIMULA 67 by the local
variables marked with the keyword own.

If not declared as static, the variables declared in a function or a code block
become automatic, that is, they are put into the storage automatically allocated
at entering and destroyed and possibly reallocated at leaving. The parameters
of a function also belong to its scope.

4.2.4 A type as sope

Types and classes are scopes as well. Here the keyword static has a special
meaning: static members belong to the class and not to the instances. Static
data members are of static storage. Instance (non-static) functions access both
static and instance functions and data members simply by the name, whereas
static functions access only the static ones.

In C++ and in Java both functions and data members can have access
modifiers:
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• Private data members and functions can only be accessed from within
the same class;

• Protected data members and functions can be accessed from within de-
riving types;

• Public data members and functions can be accessed from everywhere.

Java also applies the default semi-public accessibility without a keyword,
meaning accessibility from the same package.

In C++ the private data members and functions of a type can however be
accessed from a type declared to be its friend. In Java there is no friendship:
private members are accessed only from the given class and its internal classes
(besides reflection magic).

Inheritance has consequences regarding the scope: the functions of a derived
type access both the data members and the functions of the base type as if they
had been declared in the derived type, with the exception of the private ones.

4.3 Lifespan

One of the most basic properties of a variable (a memory object) in any pro-
gramming language is its lifespan. The lifespan of an object is the part of the
program’s running time between the creation and the disposal of the given object,
that is, when the memory allocated to the object stores its value. Lifespan is an
important notion in traditional (procedural, structured) and in object-oriented
languages as well.

4.3.1 Creation and destrution of objets

When an object is created, as a first step, memory is allocated to the object.
Then this memory area must be initialized: it must be prepared for use, that
is, the object’s invariants must be set, the object must be given a consistent
internal state. In object-based languages there is a special function for this
latter purpose, i.e. the constructor belonging to the given type, whose name
is usually identical to that of the type. Due to overloading there can be several
constructors with different parameter lists. Initializing functions may, of course,
be used in procedural languages: the API may require that a structure be
initialized before the first use, but if there is no language-imposed guarantee,
the compiler cannot enforce this, so erroneous usage is possible. Object-based
languages, however, guarantee that an object is created only in a controlled
manner, that is, essentially with the assistance of an appropriate constructor.

Allocating memory is the duty of the runtime environment, searching for and
calling the appropriate constructor is up to the compiler, and the correct coding
of constructor (and the destructor) is the responsibility of the programmer.

The constructor is neutral with regard to the storage type: it is not aware
where the memory area to be initialized was allocated. A constructor is used
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to create an instance of a given (exactly known) type. In an object-oriented
environment (that is, supporting inheritance) it is possible that only a parent
type (implementing some given interface) is interesting, not the exact type of
the instance. So some object (of the ”factory” type) might be able to provide an
instance of the given interface, which might actually be of an inheriting, derived
type. The very method of the factory, however, cannot be storage-type neutral:
it must create the object in order to able to return a reference or a pointer to it.

A typical example for this situation is provided by the class DriverManager
in the package java.sql of the Java JDBC API. Its method

public static Connection getConnection(String url) throws SQLException

returns an object implementing the interface Connection, if it finds a registered
driver class which is willing and able to provide one. If a non-static factory
method is used, it can be polymorphic for more complicated design patterns.

Constructors are special ones among the methods due to their relation to
memory allocation. Therefore in C++, where there generally exist pointers to
the methods, there are none of the constructors.

When an object is destroyed, and if external resources (files, locks, descrip-
tors, handles, dynamic memory) have to be freed, first some house-keeping
activities might be necessary. This is followed by the freeing of the memory
allocated to the object. The latter is the chore of the runtime environment, but
the former is the duty of a special method pertinent to the type, the so called
destructor. In C++ its name is that of the type prefixed with a tilde (\ ) to
allude to its being complementary to the constructor.

The Java language was designed with garbage collection in mind, therefore
there is no destructor mechanism, but a finalize mechanism. The Java virtual
machine stores the objects – that is, those of class (non-primitive) types –
on a garbage collected heap, even if the reference variable is static. Memory
eligible to garbage collection (that is, not reachable through any active path
of reference chains) is detected, than finalized (that is, the finalize method
is run) and freed typically in a low priority thread. The finalize method can
be used to free resources before the object is lost and its memory is freed.
Java does not define, however, when the virtual machine will perform garbage
collection, and finalizing. This is in contrast to the C++ language, where the
destructor is immediately executed at the end of the object’s life span. As
a long waited enhancement, in its version 1.7, Java introduced the try-with-
resources statement, which guarantees that for every resource declared within
the statement, the appropriate close method will be executed upon leaving the
statement.

4.3.2 Stati

Static variables are usually created at program start and persist while the pro-
gram runs. The order of the creation of the variables inside a module (compilation
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unit) follows naturally from their declaration order.

In Java, variables of primitive types and object references can be static, but
the objects themselves are created only dynamically on the heap. In Java the
variable called staticObject of the following class is assigned a value in the static
block running at class load time:

public class ClassWithStaticObject {

static int staticObject[ ] = { 123, 456 };

}

In C++ static variables declared within a compilation unit are initialized
in the declaration order and destructed in the opposite order at the end of the
program. Many C++ programmers (mis-)translate this as ”constructors run at
the very beginning of the main function and destructors run at the end of main”.
This is a serious (and potentially) dangerous oversimplification.

Firstly, local static variables have static storage, but their constructor runs
only when the program execution reaches their declaration for the first time.
This can happen well after main started. It is even possible that the control
never reaches the declaration – meaning, the object will never be constructed.
Such a non-constructed object naturally will never execute its destructor, which
reveals that the C++ language should register the construction of local statics
under runtime.

Secondly, there are serious problems with the initialization order of global
static variables. Although the order of construction of static variables declared
within a compilation unit is well-defined, the C++ standard says nothing about
the order between compilation units. Unfortunately, many C++ programmers
ignore this problem, naïvely thinking that static objects are not accessible before
the main function. However, it may happen (and normally does happen) that
one of the static object’s constructor tries to access an uninitialized static object
from an other compilation unit. This can lead to nasty, hard to debug errors.

This static initialization problem can be avoided using the singleton pattern:
we encapsulate our statics into dynamically created objects.

4.3.3 Automati

Automatic variables are stored on the stack along with the data needed for the
runtime support of procedure calling in an automatically allocated area – hence
the name. At leaving the function, this area is automatically freed. In most cases
it is dangerous if a variable containing a pointer to some area has a broader scope
than that of the area it points to. In the following example, the function returns
a pointer to an area which is freed at the moment of the function’s returning
and just waits to be overwritten:
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/**** BAD CODE! ****/
char *gettime()

{

char wtime[24];

/* fill wtime */
return wtime;

}

C++ keeps track of the automatic variables and calls the destructors (in the
opposite order of creation) if control is about to leave a function or a block for
any reason like reaching a return statement, falling through the closing brace or
due to an exception being thrown.

4.3.4 Dynami

There are languages where the programmer can control the allocation of mem-
ory. The lifespans of these dynamical memory areas stretch either until the
programmer explicitly frees them (irrespective of the overall structure of the
program) or until all references go away and the areas became unreachable.
This latter requires support from the runtime environment: ”garbage collection”.
Some languages and environments were designed to include garbage collection
(SIMULA 67, Ada, Java, C#), others either do not have it at all or have
it as an optional feature, not as part of the specification. Garbage collection
not only requires runtime efforts, but it can pose a principal problem. If the
language supports pointers which can be manipulated, the value of a pointer
to dynamically allocated memory can be hidden in the program. The following
code snippet illustrates a situation when the address of a newly allocated piece
of memory (originally stored in the variable pt) is no longer available in our
program, and thus the garbage collection takes this memory as unreachable and
as eligible to garbage collection, nevertheless the pointer is clearly reproducible
from the values in pointer0 and pointer1 :

char *pt = new char();

char pointer0[sizeof(pt)];

char pointer1[sizeof(pt)];

*(char **)pointer0 = pt; // Bitwise copy of pt.
*(char **)pointer1 = pt; // Bitwise copy of pt.
pointer0[0] = 0xab;

pointer1[1] = 0xcd;

pt = 0;

Garbage collection frees the programmer from the burden of freeing the
memory by detecting unreachable objects. However, keeping references to an
object does prevent it from becoming unreachable, that it, eligible to garbage
collection. Unintentional references can be kept in callback handlers, queues etc.
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under the hood. This innocently looking code runs to memory exhaustion (to an
OutOfMemoryError) for example in SUN’s JVM v1.4 (but fortunately no longer
in v1.5):

public class a {

public static void main( String args[ ] ) {

while ( true ) { Thread t = new Thread(); }

}

}

In the infinite loop Thread objects are just created (but not started) and
the variable holding the reference is reused, and the Threads become seemingly
unreachable, so in theory they could be garbage collected and the memory
reclaimed. But the particular Thread implementation seems to keep track of
the unstarted threads obviously retaining references to them, hindering their
becoming unreachable and garbage collected. Similar unintentional retention of
references can occur in purely user-supplied code as well.

If a reachable reference exists to an object, this makes it reachable and not
eligible to garbage collection. The so called weak references (as opposed to the
common, strong ones) yield a weaker level of reachability not preventing the
object’s becoming unreachable in the common sense and garbage collected, in
which case, of course, the encapsulated strong reference cannot be used any
longer. For example, Java (since v1.2) defines three levels of weak reachability
listed in diminishing order of strength: soft, weak, and phantom.

4.4 Examples

Usage of a stati buffer

Let us assume an operating system storing the creation and last access dates of
the files in some machine- but not user-friendly form, the number of the elapsed
seconds since some given starting date. For this purpose let time t denote the
integral type.1 Obviously a function will be necessary to convert a given time t
value into some human-readable form. Let us call this function ctime. When
using this function, the question arising who will allocate the memory for the
human-readable form. The caller cannot know how much space will be required,
so the simple solution is the called function allocating it in a static area. The
C standard library ctime function does exactly this: it returns a pointer to its
static buffer. The function declaration as seen in the header file time.h:

1 An example of it is the UNIX operating system, where the starting time, the so called Epoch,
is 1. January 1970. The readers might remember the ”Y2K bug” from year 2000. A similar
critical situation will arrive on 29. January 2038, when the maximal signed 32 bit integer
values will reach their upper limits in UNIX systems. Hopefully, many of our readers will
experience the ”Epoch 0x7fffffff bug”.
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char * ctime(const time t *tp);

This is the simplest solution but it comes at a price. If we want to print the time
before and after a long-running portion of code, the following ”solution” will not
work. A hint: time(NULL) returns a time t value representing the current time.

char *before; char *after; time t bt, at;
bt = time(NULL);

before = ctime(&bt); /* 1 */
long running function();

at = time(NULL);

after = ctime(&at); /* 2 */
printf ("%s %s\n",before,after);

This ”solution” does not work, because the second call to ctime reuses the same
buffer, so the value stored during the first call is overwritten. Copying this value
before the second call would alleviate the problem.

The usage of static buffers is more problematic in multithreaded environments
as a function might be called by several threads at the same time. Therefore,
the usage of static buffers is better avoided. A possible solution is the caller’
supplying the necessary buffer and taking care of the allocation and freeing:

void ctime1(char *buffer, const time t *tp);

Or we may want to pass along the buffer size:

void ctime2(char *buffer, int bufflen, const time t *tp);

The most comfortable solution would be the object-oriented approach, pro-
vided it is supported by the given environment.

Resoure management through objets

Object-based management of resources is well supported by the constructor-
destructor mechanism of C++. This is the idiomatic (that is, best fitting the
language C++) way of creating and freeing of resources. Let us consider this
example:

void bar();

void foo() {

char *pt = new char[1024];

bar();

delete[ ] pt;
}

It seems to be correct: at the beginning of the process, a char array is
allocated, and before returning it is carefully freed. (The pair of brackets [ ] after
delete denotes our intention to free an array, not a single object.) What happens
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however if the called function throws an exception? The flow of control leaves the
function foo without the array’s being freed. Since pt is the only pointer to this
memory area, it cannot be freed any longer. The unexpected exception disturbs
our program’s behavior: it is not exception-safe. We can patch our program by
catching the exception:

void bar();

void foo() {

char *pt = new char[1024];

try {

bar();

delete[ ] pt;
} catch (. . .) {

delete[ ] pt;
throw;

}

}

A similar example in Java is more elegant due to the try-finally pair of blocks.
Code written in the finally block is always executed, regardless of whether the
exception has been thrown.

void foo() {

try {

get resource(); // allocation of the resource
bar(); // may throw exception

} finally {

release resource(); // releasing of the resource
}

}

An even better solution of the C++ example is to encapsulate the resource
into a single object, making use of the automatic insertion of the destructor calls
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for the automatic objects falling out of scope:

class mypuffer {

char *pt;
mypuffer(const mypuffer&); // forbid copying
mypuffer& operator=(const mypuffer&); // forbid assigning

public:
mypuffer(int size) { pt = new char[size]; }

˜mypuffer() { delete [ ] pt; }

};

void bar();

void foo() {

mypuffer a(1024);

bar();

}

This technique is called Resource Allocation Is Initialization or RAII.
Fortunately, we do not have to reinvent the wheel. In C++ a whole branch

of smart pointers of the standard library (e.g. the class templates unique ptr ,
shared ptr and others) serves the purpose of the exception-safe handling of
automatic pointers. A smart pointer wraps a raw pointer, and it can be used
similarly to pointers. When destroyed, it also destroys the object pointed to.

The auto ptr defined in the earlier C++ standard has a number of issues,
thus its usage is better avoided.

4.5 Summary

Scope and lifespan are two related but not overlapping major concepts in pro-
gramming languages. The scope of an identifier defines the section of the source
code from where a named language element (an object, a function, a type,
etc.) is accessible using that identifier. Scope categories exist from local scope
to class, namespace, compilation unit, and all program wide visibility with
many variations in different programming languages. As well-chosen names are
essential resources, programmers should select the adequate scope category to
manage the program’s identifiers and to help the compiler detecting possible
errors.

The lifespan (or simply: life) of an object is the part of the program’s running
time between the creation and the disposal of the given object. Lifespan cate-
gories are typically determined by the storage types used by the programming
language. Most programming languages use automatic, static, and dynamic
storage. Automatic objects are constructed when the program control enters the
block where they have been declared and are disposed of when the control leaves
the block. Static storage (with global, namespace or even local scope) is allocated
at the beginning of the program (although details vary in different languages)
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and remains available during the whole run of the program. In case of dynamic
storage, allocation and deallocation are under the control of the programmer,
although proper resource handling is sometimes supported by either a garbage
collection mechanism or by language elements, like smart pointers. Modern
object-oriented languages support the object’s creation and disposal with user
defined constructors and destructors.

4.6 Exerises

Exercise 4.1. The languages mentioned in this chapter are compiled ones. Con-
sider interpreted (script) languages, for example AWK, Perl, JavaScript, or Unix-
shell (sh, ksh, csh, bash, zsh and so on) and examine to what extent the contents
of the chapter apply to them. Check if, for example, there are non-global variables
in them at all.

Exercise 4.2. In the example on page 139find a way for regaining the value of
the pointer pt in the code example. Rewrite the example to avoid the use of
casting.

Exercise 4.3. Write the ctime1 and ctime2 functions alluded to in the ctime
example in Section 4.4. Give an object-based solution too.

Exercise 4.4. Rewrite the ”resource allocation and freeing” example from Section
4.4 to include not only one, but three resource-objects in C++, and in Java before
and after version 1.7, that is, without or with a try-with-resources statement.

Exercise 4.5. Locate the code block initializing the static variables in the exam-
ple ClassWithStaticObject in Section 4.3.2.

javac ClassWithStaticObject.java

javap -private -c ClassWithStaticObject

Exercise 4.6. Test the following C language example with various numbers of
command line parameters and discuss the output:
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#include <stdio.h>

int foo (int i)
{

if (i <= 0) {

/* deliberately with no initial value */
int j;
return j;

}

return foo(i - 1);

}

int main (int argc, char *argv[ ])

{

printf ("%3d %8x\n", argc, foo (argc));

return 0;

}

4.7 Useful Tips

Tip 4.1. We will give a solution by analyzing the JavaScript language.

Tip 4.2. There are three different solutions to this problem.

• Using cast as above;
• Copying raw bytes using the standard library memcopyfunction;
• Using union.

Tip 4.3. In the object-oriented version you can implement the buffer as the
member variable of the class.

Tip 4.4. Do not forget to forbid the copy of RAII object in the C++ solution.
In java use AutoCloseable interface.

Tip 4.5. Compile the class and then use the Java class file disassembler tool
javap with the -private option.

Tip 4.6. Recall the different memory models and initialization strategies.

4.8 Solutions

Solution 4.1. We will give an exemplary analysis of the JavaScript language. Let
us image we want to do some elementary ASCII art with Javascript functions in
an HTML page:
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<html>
<head>
<script>

function doit() {
document.frm.f.value = makeIt();

}
function makeIt() {

ret = "";

for(i=0;i<10;i++) {
ret += makeOne(i) + "\r\n";

}
return ret;

}

function makeOne(ind) {

w = "";
for(i=0;i<=ind;i++) w += i;

return w;
}

</script>
</head>
<body>

<form name="frm" onsubmit="return false;">
<textarea name="f" rows="20" cols="20">

</textarea>
<button onclick="doit()">doit!</button>
</form>

</body>

The idea is to ”compute” the multiline text by concatenating its lines, but
the outcome is not exactly what we expect:

0

012
01234
0123456

012345678

The point is that in Javascript a variable, even if declared or assigned a value
inside a function, like the loop variables i in the functions makeIt and makeOne,
is a global one unless declared with the var keyword. So in our case we use the
same global i in these functions as loop variable, so these functions interfere with
each other through the side effect conveyed by this coupling variable. There is
a general principle to put the variables in the narrowest possible scope in order
to avoid situations like this and also to avoid littering a broader scope with
unneeded names. Having violated this principle, we introduced the bug.

The remedy can be to fix the loops like this:
for(var i=0;i<10;i++) ...

and
for(var i=0;i<=ind;i++) ...

so the loop variables are local ones and our ASCII art unfolds itself in its full
beauty:

0

01
012
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0123
01234
012345

0123456
01234567

012345678
0123456789

Solution 4.2. This file contains a solution for casting, copy memory and using
union.

#include <stdio.h>

#include <string.h>

void foo(void); // test funcion with casting
void bar(void); // test funcion using memcpy
void baz(void); // test funcion using union

int main(int argc,char *argv[] )

{
foo();

bar();
baz();

}

void foo() // with casting as in the book
{

char *pt = new char();
char pointer0[sizeof(pt)];
char pointer1[sizeof(pt)];

*(char **)pointer0 = pt; // Bitwise copy of pt.
*(char **)pointer1 = pt; // Bitwise copy of pt.

printf("%d\r\n",__LINE__);

printf("%p\r\n",pt);
pointer0[0] = 0xab;
pointer1[1] = 0xcd;

pt = 0;

printf("%p\r\n",pt);
pointer0[0] = pointer1[0];

pt = *(char **)pointer0;
printf("%p\r\n",pt);

#ifdef FREE
delete pt;

#endif
}
void bar() // using memcpy

{
char *pt = new char();

char pointer0[sizeof(pt)];
char pointer1[sizeof(pt)];
printf("%d\r\n",__LINE__);

memcpy(pointer0,&pt,sizeof(pt));

memcpy(pointer1,&pt,sizeof(pt));
printf("%p\r\n",pt);

pointer0[0] = 0xab;
pointer1[1] = 0xcd;
pt = 0;

printf("%p\r\n",pt);

pointer0[0] = pointer1[0];
memcpy(&pt,pointer0,sizeof(pt));

printf("%p\r\n",pt);
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#ifdef FREE
delete pt;

#endif

}

void baz() // using union
{

char *pt = new char();

union
{

char *pt0;
char pointer0[sizeof(pt)];

};
union
{

char *pt1;
char pointer1[sizeof(pt)];

};

printf("%d\r\n",__LINE__);
printf("%p\r\n",pt);
pt0 = pt;

pt1 = pt;

pointer0[0] = 0xab;
pointer1[1] = 0xcd;
pt = 0;

printf("%p\r\n",pt);

pointer0[0] = pointer1[0];
pt = pt0;

printf("%p\r\n",pt);
#ifdef FREE

delete pt;

#endif
}

/* compilation and results:

$ g++ -dumpversion

3.4.6

$ g++ *.cpp

$ ./a.out

19
0x99e8008

(nil)
0x99e8008
37

0x99e8018
(nil)

0x99e8018
63

0x99e8028
(nil)
0x99e8028

$ g++ -DFREE *.cpp

$ ./a.out
19

0x83b6008
(nil)
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0x83b6008
37
0x83b6008

(nil)
0x83b6008

63
0x83b6008
(nil)

0x83b6008

$ g++ -dumpversion
4.1.2

$ g++ a.cpp
$ ./a.out

19
0xe843010

(nil)
0xe843010

37
0xe843030
(nil)

0xe843030
63

0xe843050
(nil)
0xe843050

$ g++ -DFREE a.cpp

$ ./a.out

19
0x1b79c010
(nil)

0x1b79c010
37

0x1b79c010
(nil)
0x1b79c010

63
0x1b79c010

(nil)
0x1b79c010

//// ------------

bcc a.cpp

Borland C++ 5.5.1 for Win32 Copyright (c) 1993, 2000 Borland
a.cpp:
Warning W8057 a.cpp 11: Parameter ’argc’ is never used in function

main(int,char * *)
Warning W8057 a.cpp 11: Parameter ’argv’ is never used in function

main(int,char * *)
Turbo Incremental Link 5.00 Copyright (c) 1997, 2000 Borland

a.exe
19

00902C88
00000000

00902C88
37
00902C98

00000000
00902C98
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63
00902CA8
00000000

00902CA8

bcc -DFREE a.cpp

Borland C++ 5.5.1 for Win32 Copyright (c) 1993, 2000 Borland

a.cpp:
Warning W8057 a.cpp 11: Parameter ’argc’ is never used in function

main(int,char * *)
Warning W8057 a.cpp 11: Parameter ’argv’ is never used in function

main(int,char * *)
Turbo Incremental Link 5.00 Copyright (c) 1997, 2000 Borland

a.exe
19

00902C88
00000000

00902C88
37
00902C88

00000000
00902C88

63
00902C88
00000000

00902C88

*/

Solution 4.3. The C-like solution is as follows:
• /*

We make use of the standard C functions in (time.h)

in particular of this:
size_t strftime (char* ptr, size_t maxsize, const char* format,

const struct tm* timeptr );
*/
#include <stdio.h>

#include <time.h>
void long_running_function(void);

void foo(void);
void bar(void);

void baz(void);
void ctime1(char *buffer, const time_t *tp) {

struct tm * p = localtime(tp);

strftime(buffer,24,"%a %b %d %H:%M:%S %Y",p);
}

void ctime2(char *buffer, int bufflen,const time_t *tp) {
struct tm * p = localtime(tp);
strftime(buffer,bufflen,"%a %b %d %H:%M:%S %Y",p);

}
int main(int argc,char *argv[])

{
foo();

bar();
baz();

}

void foo(void)
{

char *before; char *after; time_t bt, at;
bt = time(NULL);
before = ctime(&bt); /* 1 */

long_running_function();
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at = time(NULL);
after = ctime(&at); /* 2 */
printf ("%s %s\n",before,after);

}
void bar(void)

{
char before[32];
char after[32];

time_t bt, at;
bt = time(NULL);

ctime1(before,&bt); /* 1 */
long_running_function();

at = time(NULL);
ctime1(after,&at); /* 2 */
printf ("%s %s\n",before,after);

}
void baz(void)

{
char before[20]; // deliberately too small in order to demonstrate

char after[20]; // the usefulness of the size parameter.
time_t bt, at;
bt = time(NULL);

ctime2(before,sizeof(before),&bt); /* 1 */
long_running_function();

at = time(NULL);
ctime2(after,sizeof(after),&at); /* 2 */
printf ("%s %s\n",before,after);

}
void long_running_function(void) {

clock_t when = clock() + CLOCKS_PER_SEC; // a second
while( when >= clock());

}

The object-oriented solution in C++ contains:

• The class definition:
#include <time.h>

class Ctime

{
private:

char buffer[25];

public:
Ctime(const time_t *tp);

const char *getBuffer();
};

• The class implementation:
#include "Ctime.h"
#include <time.h>

Ctime::Ctime(const time_t *tp)

{
struct tm * p = localtime(tp);
strftime(buffer,sizeof(buffer),"%a %b %d %H:%M:%S %Y",p);

}

const char * Ctime::getBuffer()
{

return buffer;
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}

• The test program:
#include "Ctime.h"

#include <time.h>
#include <stdio.h>

void long_running_function(void);

int main(int argc,char *argv[])
{

char before[32];
char after[32];
time_t bt, at;

bt = time(NULL);

Ctime ct1(&bt);
long_running_function();
at = time(NULL);

Ctime ct2(&at);
printf("%s %s\n",ct1.getBuffer(),ct2.getBuffer());

}

void long_running_function(void)
{

clock_t when = clock() + CLOCKS_PER_SEC; // a second

while( when >= clock());
}

Solution 4.4. The C++ solution without RAII:
void bar();
void foo()

{
char *pt = new char[1024];

char *pt1 = new char[1024];
char *pt2 = new char[1024];

try
{

bar();
delete[ ] pt;
delete[ ] pt1;

delete[ ] pt2;
}

catch (...)
{

delete[ ] pt2;
delete[ ] pt1;
delete[ ] pt;

throw;
}

}

The C++ solution with RAII:
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class mypuffer
{

char *pt;

mypuffer(const mypuffer&); // forbid copy
mypuffer& operator=(const mypuffer&); // forbid assignment

public:
mypuffer(int size) { pt = new char[size]; }
~mypuffer() { delete [ ] pt; }

};
void bar();

void foo()
{

mypuffer a(1024);
mypuffer b(1024);
mypuffer c(1024);

bar();
}

The java solution before version 1.7
/*
An exception can be thrown during the allocation of a resource
We declared random checked exceptions from the java.lang package

*/
public class ex4a

{
// this is a method that must be called on the object

// before it gets garbage collected
public void close()
{

}

// in a production code you might want to be more specific
// about the possible Exceptions
void doit() throws Exception

{
}

// resource allocation

ex4a getResource1() throws IllegalAccessException
{

return new ex4a();

}

ex4a getResource2() throws ClassNotFoundException
{

return new ex4a();

}

ex4a getResource3() throws InstantiationException
{

return new ex4a();
}

// in a production code you might want to be more specific
// about the possible Exceptions

public void foo() throws Exception
{

ex4a res1 = null;

ex4a res2 = null;
ex4a res3 = null;

try

{
res1 = getResource1();
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res2 = getResource2();
res3 = getResource3();
doit(); // do something here potentially throwing an exception

}
finally

{
if ( res3 != null )
{

res3.close();
}

if ( res2 != null )
{

res2.close();
}
if ( res1 != null )

{
res1.close();

}
}

}
}

The java solution using version 1.7 features
public class ex4b implements AutoCloseable {

public void close() throws Exception{}

public void doit( ) throws Exception{}

ex4b getResource1() throws IllegalAccessException {
return new ex4b();

}

ex4b getResource2() throws ClassNotFoundException {
return new ex4b();

}

ex4b getResource3() throws InstantiationException {

return new ex4b();
}

void foo() throws Exception {
try (

ex4b res1 = getResource1();
ex4b res2 = getResource2();

ex4b res3 = getResource3();
)
{

doit( ); // do something here potentially throwing an exception
}

}
}

Solution 4.5. public class ClassWithStaticObject {
static int staticObject[] = { 123, 456 };

}

javap -private -c ClassWithStaticObject

Compiled from "ClassWithStaticObject.java"

public class ClassWithStaticObject extends java.lang.Object{
static int[] staticObject;
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public ClassWithStaticObject();
Code:
0: aload_0

1: invokespecial #1; //Method java/lang/Object."<init>":()V
4: return

static {}; // static class initializer block
Code:

0: iconst_2
1: newarray int

3: dup
4: iconst_0

5: bipush 123
7: iastore
8: dup

9: iconst_1
10: sipush 456

13: iastore
14: putstatic #2; //Field staticObject:[I

17: return
}

Solution 4.6. #include <stdio.h>

int foo (int i)
{

if (i <= 0)

{
/* deliberately with no initial value */

int j;
return j;

}
return foo(i - 1);

}

int main (int argc, char *argv[])
{

printf ("%3d %8x\n", argc, foo (argc));
return 0;

}

A possible output looks like the following:
$ ./a.out

1 bffa4270

$ ./a.out 0
2 0

$ ./a.out 0 1

3 0

$ ./a.out 0 1 2

4 5b4e70

$ ./a.out 0 1 2 3
5 2ac6a4

$ ./a.out 0 1 2 3 4
6 11ca08

$ ./a.out 0 1 2 3 4 5

7 e98aa7

$ ./a.out 0 1 2 3 4 5 6

8 5b8573
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The core of the example is this function:

int foo (int i)
{

if (i <= 0) {

/* deliberately with no initial value */
int j;
return j;

}

return foo(i - 1);

}

It calls recursively itself diminishing the parameter with each iteration, and
returning a random value from the stack when bottoming out. Depending on
the argument, these random values will be different, due to their being grabbed
from different (uninitialized) locations of the stack.
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5

Data type is a central notion of modern
programming methodologies. Data types are the
abstraction that enable programmers to formulate
their algorithms using close to real life entities
instead of sequences of bits. Programming languages
provide a rich set of built-in data types. This
chapter provides an overview of these types and
their categorization, then it takes a look at the rules
of forming and evaluating expressions.



A

ny problem that we try to solve using a computer is somehow related to
the ”real world” around us. However, the programs that we create to
solve these problems operate within computers. Therefore, one of the

most important steps of solving a problem is modeling the objects of the real
world within a computer. Then, we can solve the problem using the computer
on these model objects, and finally we can project the result to the real world,
and interpret it there.

The world around us is extremely complex. Modeling it in full detail would
require a system of the same size as the world. When modeling real life objects we
use abstraction, i.e. we only include those attributes of an object in our model
which we deem relevant for the solution of the problem. This way we create
groups of objects that behave similarly from the problem’s point of view. This
similarity is expressed by data types.

Programming languages have built-in data types, which model some abstract
notions of the real world such as numbers, letters, text etc. These objects fre-
quently appear in all sorts of problems, building them into the programming lan-
guages enable reusing them and greatly simplify the programming task. In this
chapter, we will study these built-in data types. Most programming languages
provide means to create new data types as well. The construction methods of
these new data types are discussed in Chapter 6.

5.1 What is a data type?

Before starting the categorization of data types, we need to define what a data
type is. The introduction has demonstrated that a data type is a very complex
notion, but the informal description provided there is not suitable for deeper
study. To tackle the complexity, we will use multiple definitions – from different
points of view – which together will help us to get a better understanding of
data types.
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5.1.1 The programming language perspetive

Data type: an abstraction which collects the common attributes of certain objects
of the program. These attributes are encoding, size, structure and on a higher
level, semantics. Semantics is defined by the type-value set and the operations
(or methods) of the type.

This definition describes data types from the point of view of programming
languages. The language (i.e. the compiler or interpreter) needs to know how
the type is represented in memory (encoding), how much memory an object of
the type occupies (size). In case of composite types, the language needs to know
the internal structure of the type to make its components accessible. And finally,
it needs to know the semantics, at least on a lower level – e.g. for the integer
numbers, the programming language provides the basic operations.

Naturally, these four aspect appear on the programmers’ side as well, but
with very different emphasis.

5.1.2 The programmers' perspetive

We will use a more formal description to define data types from the programmers’
point of view. This definition separates the description of external behavior (type
specification) from the actual implementation. The model and the methodology
used in this chapter is described in details in [Fot83].

Type speifiation

The system TS = (T, IS ,F) is called type specification if

• T denotes an arbitrary base set,
• IS : T → L

1 is the invariant of the specification, TS = [IS ] = {t ∈
T |IS(t) = true} is called the type-value set,

• F = {F1, F2, . . . , Fn} is a set of problems – called operations or methods
of the type – where TS is part of the state space of Fi, i.e. which operate
on TS.

Type specification answers the question ”what”. It describes what the ele-
ments of the type are and what its operations do. Type specification provides
the programmer with all the information required to use the type.

From the above mentioned four attributes, type specification contains se-
mantics only. The base set T is a set of real life objects relevant to the current
problem. The invariant of the specification (IS) can further limit this set as,
for instance the limitations of the computer prevent us from representing the
whole set. For example, if T is the set of natural numbers, the invariant of the
specification might narrow it to a finite interval (e.g. 0 . . . 232 − 1), because the
finite memory of a computer cannot represent indefinitely large numbers. If T

1
L is the set of boolean values i.e. L = {true, false}
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is the set of real numbers, the limitation is stricter, not even an interval. The
invariant of the specification selects a subset of the base set called the type-value
set. This is typically finite, though sometimes it can be numerable, e.g. when
we don not want to limit the size of the files in the specification of some file
type. The limitations that are represented by the invariant of the specification
are important for the user of the type. Therefore, these limitations must be part
of the type specification, that is, they cannot be left for the implementation.

The third component of the system describes the relevant behavior of the
objects of the type, the so called operations. Important that this description is
declarative, it specifies what the operations do but leaves the how unspecified.

Notice that the valid values (type-value set) and the permitted operations on
those values are specified together. For the built-in types, separating these two
is not even possible, but this unity should be maintained in user-defined types
as well.

Type realization

The system T = (ρ, I, S) is called type if

• ρ ⊆ E∗ × TS is the representation function (relation), where TS is the
type-value set and E is some elementary type-value set.

• I : E∗ → L is the invariant of the type
• S = {S1, S2, . . . , Sn} are programs, for which E∗ is in the state space.

This system describes the realization of the type. E is an elementary type-
value set and E∗ is the set of finite sequences created from the elements of E.
E is a type-value set which is already available in our system. It can be an
already implemented user-defined type or a built-in type – simple or composite.
At the lowest level, E is the {0, 1} set of bits as all data types are represented
as sequences of bits. However, most of the time, we use higher-level data types
when defining the representation of a new data type.

Representation funtion

The first component of the system is ρ, the representation function. Formally
it is a relation because to the elements that do not satisfy the invariant of
the type it can assign anything. However, in practice, it is often a function
or partial function. It assigns to a sequence of elementary values the type-value
they represent. The definition implies that not all sequences of elementary values
represent a type-value, and some type-values can have multiple representations.
Let us suppose, for example, that we need to represent a subset of rational
numbers. The representation we choose is a sequence of two integer numbers,
where the first number is the numerator the second one is the denominator of the
rational number. In this representation, we do not assign any rational number
to a sequence where the second element is zero. On the other hand, all (kp, kq)
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pairs (where k, q 6= 0) will represent the same p/q rational number (where p and
q are relative primes).

Invariant of type

The third element of the system (I) is the invariant of the type. This property
describes which sequences of elementary values represent a type-value. Typically
not all sequences are valid, they have to satisfy certain internal constraints. In the
example above we have seen that only those pairs of integer numbers were valid
representation of a rational number where the second number – the denominator
– was non-zero. We may further restrain the representation by demanding that
the numerator and the denominator are relative prime or that the denominator
must always be positive.

Operations

The third component of the system is the set of type operations. These operations
are programs which state-spaces include the sequences of elementary values.

There is a close relationship between the invariant of the type and these
type operations. If a program has an outbound parameter of a sequence of
elementary values, the program – in its postcondition – must ensure that the
resulting sequence satisfies the invariant. On the other hand, if the program
has an inbound parameter of a sequence of elementary values, the program may
require in its precondition that the sequence satisfies the invariant. Clearly, the
implementation of the program depends both on the representation function
and the invariant of the type. Often these two together are referred to as the
representation of the type.

Types and speifiations

We will now determine when a type is adequate to a type specification. The
formal definition is the following:

The T = (ρ, I, S) type is adequate to the TS = (T, IS ,F) type specification
if:

• ρ([I]) = TS , and
• ∀F ∈ F : ∃S ∈ S : S is a solution of F through ρ.

The first condition means that all sequences of elementary values which sat-
isfy the invariant of the type represents a valid type-value, i.e. one that satisfies
the invariant of the specification. Additionally, there is a valid representation for
all type-values in the set TS .

The second condition is that for each specified operation there is a program
in the type which implements it. The ”solution through ρ” means that the input
data, which is given in the state space of F is transformed to state space of the
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solution program S using the inverse relation of ρ. There we execute S and then
the result is mapped back to the state space of F using ρ. If the result satifies F ,
then S is a solution to F through ρ, that is, it is a valid implementation of the
specified operation using the given representation. In other words, a program S
is a solution through ρ to F if it modifies the sequences of elementary values
in such a way that the interpretation of the results matches the expected result
specified in the problem.

Notice that many types can be adequate to the same type specification,
which may differ in the chosen representation, in the invariant of the type – see
the example above – or in the implementation of operations. Our mathematical
model only handles the functional correspondence between the type and the
specification. Which realization of a type is appropriate in a particular appli-
cation may depend on non-functional aspects such as execution time, memory
footprint, etc.

5.1.3 Type systems of programming languages

The objects our programs operate on have a type, which determines their behav-
ior, the set of operations on them. Essentially, a type is a set of semantic rules,
which specify what operations are permitted on the bit sequence representing the
object. If we perform an illegal operation on an object, it is a clear semantic error
in our program. One of the most important goals of programming languages is to
help the programmer write correct programs, to help discovering semantic errors
early, preferably in compilation time.2 One of the means of performing semantic
verifications in the programs is the type system and typedness of programming
languages [CW85].

Typedness means that programming languages assign a type to the entities
(objects) used in the programs. All constants, operators, variables or functions
have a type (in some languages other constructs can have a type as well).
The type of expressions is determined using a type inference system. In some
languages – for example Ada or Pascal – the type of symbols are specified in their
declaration and the compiler verifies that the definition and the usage of these
symbols is consistent. In other languages – for example in ML – instead of using
explicit declarations, the compiler determines the type from the expressions as
long as its possible and as long as consistency can be maintained.

In statically typed programming languages the type of all expression can be
determined at compilation time. While static typedness is a useful propery, it im-
poses too strict requirements against languages. Fortunately, these requirements
can be loosened a bit while maintaining consistency. A programming language is
called strongly typed if it guarantees that the type of all expressions is consistent,
even if the exact type of the expression cannot be determined at compilation
time. Clearly, all statically typed languages are strongly typed. However, there
2 Compilation time is a loose term in this chapter. It is used for interpreted languages as well.

It refers to the time of syntactic verification of the program.
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are strongly typed languages which are not statically typed. Languages which
support inheritance based subtype polymorphism cannot be statically typed
though many of them – for example C++, Java or Eiffel – are strongly typed.
Different variants of polymorphism are discussed further in details in Section
11.1 and Chapter 10.

In other languages the consistency of expressions can only be determined at
runtime. Therefore, evaluating such expressions might cause runtime errors. Such
languages are Smalltak, dBase, or many scripting languages. These langauges are
called weakly typed.

5.1.4 Type onversions

When developing an application, we often need to change the type of some
data. This operation is called type conversion, typecast or coercion. Depending
on the programming language and the actual types, the conversion can happen
automatically (coercion) or it can be explicit. There are different variants of
conversion which are further described in the following sections.

Changing representation

Type conversion can serve multiple purposes. One possible purpose is to change
the data representation. As we have seen in previous sections, an object can have
numerous different representations in memory. When solving a concrete problem,
we try to choose the most suitable representation, the one that serves our goals
the best. However, some objects may have multiple different representation in
our program. The simplest examples are numbers. Most modern programming
languages offer some integer data types using two’s complement representation
and some real data types using floating point data representation. This means
that for integer numbers, which are also real numbers, we have two distinct
representations in these languages. Though the represented ”real world” object
is the same, the available set of operations depends on the chosen representation.
Therefore, to perform some operations we might need to convert the data from
one representation to the other.

In some programming languages – such as Ada – these conversions must
always be explicitly denoted. In other languages, some of these conversions
can take place automatically. In such languages, when evaluating the 2.2 + 1
numeric expression, the representation of the integer number 1 is automatically
converted to floating point representation and the addition is performed on
floating point values. This conversion is called widening because we change from
a narrower type-value set of integer numbers to a wider set, the set of real
numbers. Widening conversion happens when a 16-bit integer value is converted
to 32-bit or a float value to double. Many languages allow automatic widening
conversions because it is safe, they can be performed without data loss. This is
also the reason why the integer value 1 gets converted in the expression above.
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Converting a floating point value (2.2) to integer has the risk of loosing some
precision, because it is a conversion to a more limited type-value set; it is a
narrowing conversion.

The example below is a syntactically correct code snippet in C, C++, and
Java as well.

double x;

int i;
x = 2.2 + 1;

i = 2.2 + 1;

When calculating the value of x, in all three languages a widening conversion
is performed automatically. However, the calculation of i requires two conver-
sions. The first is a widening conversion required to evaluate the expression. As
the type of the expression will be double, before the assignment to i, another
conversion is required. This is a narrowing conversion from the floating point
expression type to the integer type of the variable. This conversion is not always
safe to perform. In the example, we loose precision when the original value of
the expression 3.2 is converted to the integer 3. In language C this narrowing
conversion is automatic. In C++ the conversion is automatic, but the compiler
warns of the potential data loss during compilation. However, in Java the second
assignment is illegal and it results in a compilation error.

String onversions

Many programming language offers means to convert various objects to String
and convert Strings to objects. Though they change the representation of the
object, they are different from the representation changing conversions described
above. String conversion does not only change the representation, they actually
change the represented ”physical” object. When the number 42 is converted to
a string, the result – at least in most programming languages – is not a different
representation of the number 42 but a string of characters – a piece of text –
which consists of the characters ‘4’ and ‘2’. Not only does the representation
change but the represented object as well. Depending on the type and language,
the conversion may be irreversible. Examples for such string conversions are the
Image attribute of Ada or the toString() method of Java objects. In Ada the
conversion to String is always explicit while Java permits automatic conversion
as long as the result in not ambiguous.

Changing the interpretation

The conversions that change the representation of an object transform the bit
sequence that describes the object in memory. A different variant of type conver-
sions leaves the actual bit sequence intact while changes its interpretation. While
the former type of conversions results in some runtime operation, interpretation
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changing conversions are purely compile time constructs. Their purpose is to
”calm down” or ”work around” the type verification system of the compiler.

In object-oriented languages, the conversions between a subclass and a su-
perclass is an interesting mixture of representation- and interpretation changing
conversions. In languages like Java, where objects are stored by reference, the
conversions between subclass and superclass are possible in both directions,
provided that the dynamic type of the object (see Chapter 10) permits it.
In practice it is an interpretation changing conversion as the bit sequences
representing the object – both the reference and the referenced memory area –
remain unchanged. However, if the objects are stored by value – for example, in
C++ or the expanded objects in Eiffel –, then the conversion is only allowed from
subclass to the superclass, and it involves changing the representation because
the data members introduced in the subclass are truncated. Here the effect
of narrowing and widening conversions is modified as well. Converting from
subclass to superclass is a widening conversion, but it may result in data loss.
The conversion itself is safe, but the narrowing conversion is not possible later.

Type onversions in the languages

C

In C the type cast operator can be used for both the representation changing
conversions between the different numeric types – though denoting these explic-
itly is not required – and for the interpretation changing conversions between
the various pointer types and the int type. Any pointer can be converted to
any other pointer or int as this only involves changing the interpretation of the
representing bit sequence. However, they cannot be converted to floating points
types because it would involve changing the bit sequence as well. C also permits
interpretation changing conversions between the constant and variable versions
of a type as it leaves the representing bit sequences intact.

C++

In C++, for backwards compatibility, the type cast operator of C is available but
its usage is not recommended. Type casts in C are inherently dangerous, they are
mostly interpretation changing conversions, which effectively disable the rather
limited type safety of C. Using them requires careful consideration. Instead of this
single multi-purpose cast operation, C++ has introduced a number of different
type cast variants which are tailored for the different use cases of type conversion.
This separation enables selecting the conversion operator which fits the required
purpose the best.

• The static cast operator can be used for conversions between related
types, e.g. the pointer types of classes within the same type hierarchy,
between numeric types or between integer and enumeration types.
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• The dynamic cast operator is also used for conversions between pointer
types of classes within the same type hierarchy. However, at runtime when
converting from the superclass to the subclass this operator verifies that
the dynamic type of the referenced object also permits the conversion (see
Chapter 10).

• The const cast operator is used to convert a constant object to a non-
constant object of the same type.

• The reinterpret cast operator can be used to convert between types where
the only relationship between the types is that they are represented by
bit sequences of the same length. This corresponds to the original type
cast operation of C. Important to note that while the other three cast
variants are portable, the usage of reinterpret cast may result in platform
or implementation dependent code.

Java

In Java the conversion between scalar types is representation changing. In the
case of widening conversions, it is automatic, while in the case of narrowing
conversions, it needs to be explicitly denoted. Between reference types the con-
versions are limited. From subclass to superclass the conversion is automatic.
Conversion from a class to the interfaces it implements is also automatic. The
reverse conversions are possible but they include runtime type checking. During
the check the Java Virtual Machine verifies that the dynamic type of the refer-
enced object is assignable to the type it is being converted to. These conversions
need to be explicitly denoted in the code and if the type checking fails, a runtime
exception will get thrown.

Since Java 5.0 there is also a conversion between scalar types and their
corresponding Java wrapper type. This is an automatic representation changing
conversion called autoboxing.

Eiffel

In Eiffel, variables can store objects either by reference or by value. When storing
objects by reference, the variable only contains a pointer to the area in memory
where the attributes of the object are stored. When the object is stored by
value, the variable actually contains the attributes of the object. These objects
are called expanded in Eiffel. The rules of type conversions are essentially the
same as described in the introduction, but their effect depends on how the object
is stored. Conversion from subclass to superclass is automatic, but in the case
of expanded objects, it results in data loss; data members – called features in
Eiffel – introduced by the subclass are truncated. Conversion from superclass to
subclass for expanded objects is not permitted. For objects stored by reference, it
is possible to convert from the superclass to subclass provided that the dynamic
type of the object is really assignable to the subclass. This is done by using the
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reverse assignment attempt operator. If the dynamic type of the object is not
assignable to the left-hand side of the assignment, the value of the variable will
be void .

CLU

In CLU, there is a very special interpretation changing conversion. When creat-
ing a new abstract data type, the type system of CLU differentiates the abstract
type from the concrete type used for its representation, and mandates an explicit
type conversion between them. For further details see Section 9.5.3.

Ada

Finally the conversion between the base type and the derived types in Ada is
an interpretation changing type of a conversion as the derived type in Ada has
inherited the representation of the base type. Using conversion it is possible to
create connection between the derived types of the same base type (for further
details see Section 5.8.1).

5.2 Taxonomy of types

This section will provide a classification of types based on their structural prop-
erties.

On the highest level of the taxonomy there are two classes. Primitive types,
which are logically atomic, and have no identifiable parts, and composite types,
which are constructed from other, already existing types. This chapter will focus
on the former, that is the primitive types. Composite types are discussed in
Chapter 6.

Primitive types can be divided into two classes. Pointer types are the ab-
stractions of memory addresses, and are discussed in details in Section 5.6; scalar
types, on the other hand, represent simple atomic values or quantities.

Scalar types can be grouped into real and discrete types. The former category
contains the various representations of real numbers. The two most common
variants are floating point and fixed point representations. Discrete types can be
categorized as enumeration and integer types. Figure 5.1 gives an overview of
this type taxonomy.
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Figure 5.1: Type taxonomy

5.2.1 Type lasses

Type classes defined in the taxonomy are not just of theoretical relevance. They
often manifest themselves in the programming languages, and as they belong to
a type class, it determines the usage of the type. Common constraints are that
the loop variable of a for loop must be of a discrete type, or that arrays can only
be indexed by discrete, or sometimes by integer types only. Type class can also
determine the set of operations for the given type. Availability of some operations
might be determined based in their belonging (or not) to the corresponding type
class. When a new type is defined within the class, these operations become
available automatically.

5.2.2 Attributes in Ada

Type classes are very important in Ada. Each type class has a set of operations,
which are implicitly defined for each type in that type class. Part of these
operations are operators, e.g. in Ada each scalar type is ordered and relational
operators (<, <=, =, etc.) are implicitly defined for them. The other types of
operations are the so called attributes. Attributes are special type class specific
operations which are of three different kinds:

• There are attributes which are simple properties of the type. For example,
for a scalar type S the attributes S ’First and S ’Last are the smallest and
largest value of the type.

• Other attributes are operations of the type. These attributes have an
object of the corresponding type in their signature, either as the type of
an argument or as the type of their return value. Typical examples are the
conversion operations. For any discrete type T the attributes T ’Pos and
T ’Val are defined. These attributes are functions. T ’Pos maps elements
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of T to their ordinal number, while T ’Val is an inverse operation which
returns the type-value for the specified ordinal number.

• The third group of attributes is an interesting mixture of the previous two.
Mixture, because they operate on objects of the type, but they return
information about the type itself. For example, the attribute ’First is
defined for array types as well. For an array type A, A’First returns the
lowest value of the index interval of the type. However, in Ada it is possible
to define array types with indefinite index boundaries. For these types,
the actual index interval is defined when a concrete instance – an array
object – is created (see Section 6.6.4). The ’First attribute is applicable
to these array types and the objects as well, but in the case of such types,
the object itself is used as qualifier.

The following example is the definition of the enumeration type Dwarf :

type Dwarf is (Bashful, Doc, Dopey, Grumpy, Happy, Sleepy, Sneezy);

We have defined Dwarf as an enumeration type; therefore, a number of
operations are defined for it implicitly.

As it is a discrete type, it can be converted to integer type (to ordinal
numbers) and back using the attributes Dwarf ’Pos and Dwarf ’Val.

As discrete types are scalars as well, an ordering is defined on the type
Dwarf , and the relational operators (<, <=, etc.) may be used. It is possible to
create intervals (range), and using the in and not in operators, we can decide if
an element is part of an interval or not . Additionally, there are fourteen other
attributes defined for it – specific to the scalar type class –, which enable, among
others, getting the lowest and highest value of the type, conversions to and from
a string, and finding the dwarf following another according to the ordering.

5.3 Salar type lass

Scalar types are the simplest types of programming languages. type-values are
simple, they have no defined internal structure. Numerous types belong to this
type class, from integer type to enumerations or real numbers. Therefore, the
set of operations of these types vary on a wide spectrum. Nevertheless, there
are some common properties for scalar types which can be studied for the whole
type class.

5.3.1 Representation

The scalar type class is present in almost all programming languages in some
form. Even object-oriented languages tend to differentiate scalar types from other
classes.

One of the reasons for the special handling of scalar types is that these types
are often not implemented by the language itself but at least partly they are
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realized in hardware. All CPUs used today realize the integer type using two’s
complement representation, typically on 16, 32 or 64 bits. Most generic purpose
CPUs also support real numbers by using floating point representation. There-
fore, the most efficient way of realizing these types in programming languages is
to reuse the support built directly into the CPU. Additionally, these are the most
widely used types in programming solutions. Thus, their efficient realization is
crucial in all practical applications.

As a result, programming languages usually handle scalar types very similarly
in terms of representation and set of operations too. Even in those languages
where complex types are stored by reference to the corresponding object in
memory – such languages are, for example, Eiffel, Java or CLU –, scalar types
are stored by value. In Eiffel these types are called expanded types. Some excep-
tions are Smalltalk or JavaScript where variables have no type and all objects,
including scalar values, are stored by reference.

5.3.2 Operations

The most important common property of scalar types is that they are totally
ordered. Therefore, the common operations are related to ordering:

• Relational operators (<, ≤, >, ≥, =, 6=) are usually defined;
• It is common to have operations or built in constants to determine the

smallest and greatest element of a scalar type.

5.3.3 Salar types in Ada

In Ada-95 scalar types have the following operations:

• Relational operators: <, <=, >, >=. =, /=

• Interval definition: range 〈lower bound 〉. .〈upper bound 〉.
• Checking if a given value falls in an interval: in, not in

Additionally, for a scalar subtype S (see Section 5.8.1 for details) the following
attributes are defined:

• S ’First and S ’Last denote the lowest and highest value of the subtype
respectively.

• S ’Range is the type-value set (range S ’First . . S ’Last).
• S ’Base is the base type of the subtype S .
• S ’Min and S ’Max are functions with two arguments of type S . The

functions return the minimum and maximum of the specified values re-
spectively.
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• S ’Pred and S ’Succ are unary functions which return the values preceeding
and succeeding their arguments. The operations are not cyclic, both
S ’Pred(S ’First)) and S ’Succ(S ’Last)) results a CONSTRAINT ERROR
exception. Associating these operations with the scalar type class is un-
usual. Real numbers also belong to scalar type class and a real value has no
successor or predecessor, at least in mathematical sense. However, as we
can represent a finite subset of real numbers only – both using fixed point
and floating point representations –, it is possible to determine for each
real value the previous or next ”representable” real value. However, these
values are representation dependent and their mathematical meaning is
unclear.

• S ’Image and S ’Wide Image unary functions, can convert a value of type
S to a string. The function S ’Image produces 8 bit (ASCII) character
string while the other output of the other function is a 16 bit (ISO 10646)
character string.

• S ’Value S ’Wide Value unary functions convert a string to the correspond-
ing values in S . These functions are the inverse operations of the respective
Image attributes.

• The S ’Width and S ’Wide Width attributes specify the length of string
produced by the corresponding Image attributes.

5.4 Disrete type lass

There are two kinds of discrete types: enumerations and integer types. Almost
all programming languages have at least a few discrete types, though not all of
them supports enumerations. In some languages such as Pascal this type class is
called ordinal types. A very important property of this type class is that usually
only discrete types can be used for indexing arrays and as the loop variable in
for-like loops. Typical operations of the type class involve the following:

• Calculating the successor and predecessor of a scalar value. For integer
types this means incrementing or decrementing the value by one but the
operations can also be defined for enumerations to return the next or
previous element according to their ordering. Programming languages
differ on the basis whether they allow the values to wrap around.

• Converting to integer (ordinal number). Though this is meaningful for
enums only, sometimes it is allowed for the whole discrete type class.

A good example for integer conversion operators is Ada, where these operators
are attributes defined for the discrete type class. For a discrete type D
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• the attribute D’Pos is a unary function mapping the type D to integer
numbers. For integer types this function is identity. However, for enumer-
ations this function returns the ordinal number of the specified value, i.e.
the index of the value in the order of enumeration. Indexing starts at 0.

• The attribute D’Val is the inverse function of D’Pos, it determines the
type-value for the specified ordinal number.

An example for using these attributes is handling generic arrays. In Ada, arrays
can be indexed with any discrete type. Using the attributes above, we can create
generic subprograms for arrays, e.g. a generic binary search, which can convert
the index values to integer when determining the midpoint of an index interval.

5.4.1 Enumerations

The type-value set of enumeration types is defined simply by listing its elements.
These types are usually represented by mapping the values to integers in the
order of listing. Therefore, typically they have some operation to map to and
from integer values. Enumerations are both a type class and a type construction
technique. It is not listed among type constructs for two reasons. Firstly, they
differ from the other constructions because they do not use already existing types
for creating a new type. Secondly, programming languages which support this
construction method often contain some enumerations built in.

Pascal-type languages usually support enumerations. The following example
is the Pascal version of the previously defined Ada type Dwarf :

type Dwarf = (Bashful, Doc, Dopey, Grumpy, Happy, Sleepy, Sneezy);

On the other hand, many languages have no support for enumerations as they
can relatively easily be implemented by using some integer type and defining
constant values for the type-values. C and C++ even provide some syntactic
support for this. The enum structure is a simplified method for defining integer
constants. By default, the construct assigns successive integer values starting at
0, unless otherwise specified. In the example below the days of week will get the
values from 0 to 6 while the special NoSuchDay element will get the value 999.

typedef enum { Monday, Tuesday, Wednesday, Thursday,

Friday, Saturday, Sunday, NoSuchDay = 999
} DaysOfWeek;

The defined type DaysOfWeek can be used in type declarations of variables.
However, if the application uses multiple enumerations – for example, we have
a Month type as well –, nothing prevents us from assigning the value Thursday
to a variable of type Month. Actually, any integer value can be assigned to them
– we can just as well calculate Tuesday + January because all enumerations in
these languages are essentially integer types, the enum construct is just syntactic
sugar to simplify an often recurring task.
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The unique declarations of Eiffel work similarly:

Red, Yellow, Green: INTEGER is unique;

CLU has a better solution for replacing enumerations. The language offers dif-
ferent union constructs (see Section 6.4.3). By using the construct oneof we can
create a data type which behaves very similar to enumerations. When using this
labeled union construct for enumeration types, all information is carried by the
label itself. Therefore, it is useful to use the simplest type of the language, the
null type, as the component type for all components. The only valid value of
this type is nil , which is used to initialize the components. Though the result
is a bit inconvenient to use, it provides type safety – elements of an enumeration
cannot be assigned to a variable of another enumeration type.

Colors = oneof [ red, yellow, green : null ]

trafficlight : Colors := Colors$make green(nil)

tagcase trafficlight

tag red :

trafficlight := Colors$make green(nil)

tag yellow :

trafficlight := Colors$make red(nil)

tag green :

trafficlight := Colors$make yellow(nil)

end

if Colors$is red(trafficlight) then

Car$stop(my car)

end

In the first versions of Java, there was no enumeration construct. Similarly
to C or C++, integer or string variables and the corresponding constants are
used to represent enumerations. However, the need of type safety has eventually
lead to the development of the type safe enum pattern described in [Blo01]. This
construct is a bit similar to the solution used in CLU: it uses named instances
of a final class with a private constructor only.
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public final class Color {

static private int counter = 0;

private final String name;

private final int index;

private Color(String name) {

this.name = name;

this.index = Color.counter++;

}

static public final Color RED = new Color("Red");

static public final Color YELLOW = new Color("Yellow");

static public final Color GREEN = new Color("Green");

static private final Color[ ] elements = {RED, GREEN, YELLOW }

public String toString() { return name; }

public Color next() {

return elements[(index + 1) % elements.length];

}

}

Luckily, the developers of the language have also recognized this need, and
in the 5.0 version of the language the enum type construct was introduced. Enu-
merations in Java are classes, their values are objects, stored by reference. Each
enumeration implicitly extends the base class java.lang.Enum, and as there is
no multiple inheritance in Java, they cannot extend other classes. However, they
can implement interfaces, they can have their own methods, etc. The construct
ensures that each named value is unique. This ensures that – unlike for other
classes – the == operator can be used to check equality of enumeration values.
Another difference is that enumerations can be used as labels in switch-es:

public enum Color { RED, YELLOW, GREEN;

public Color next() {

switch(this) {

case RED: return GREEN;

case GREEN: return YELLOW ;

case YELLOW: return RED;

}

}

}

5.4.2 Integer types

Integer types are present in almost all programming languages. Their represen-
tation and set of operations are very similar too, because in practice they use the
integer arithmetics built into the CPU of the computer. As integer types are the
most frequently used data types in programs, programming languages put big



176

•
Data types

emphasis on efficient implementation. This efficiency often leads to interesting
compromise solutions in the types.

Type-value set

Programming languages usually support multiple different integer types. The
differences between these types are usually the number of bits used to represent
the values – which directly determines the length of the interval that can be
represented. Other differences concern the questions whether the interval is
symmetric around zero,3 or whether it contains non-negative values only. In
other words, whether the type is signed or unsigned.

Most programming languages follow these patterns. Even the number of bits
used in the representation are similar, the typical values being 8, 16, 32 and 64.
Sometimes the specification of the programming language does not explicitly
define the number of bits to be used, but specifies a lower bound only (i.e. an
integer type I must have at least 32-bit precision). However, these lower limits are
typically the numbers specified above, and implementations of these languages
rarely choose different values. To provide optimum performance, programming
languages want to base their integer types on the integer arithmetics of the
underlying CPU. Allowing for flexibility is an old practice dating back to times
when CPU architectures were less uniform.

There are some programming languages – typically scripting languages –
which use very different integer arithmetics. For example, numbers in JavaScript
or long integers of Python have a virtually unlimited type-value set. Supporting
such arithmetics usually comes with a performance penalty and it is rarely
necessary.

Operations

Integer types have operations of three categories. Firstly, the potential special op-
erations inherited from the type class, such as conversion operations, operations
to query the type-value set, etc. Secondly, the usual mathematical operations:
addition, subtraction, multiplication, division, sometimes exponentiation with
positive exponent, etc. And finally the bit-level operations such as left- and right
shift, bitwise and, or, exclusive or, and negation operations. Bitwise operations
are again an indicator of performance awareness. These operations are very rarely
used in mathematics, their exact semantics depends on the details of the used
representation. This contradicts the usual separation of type specification and
implementation where representation is part of implementation. Nevertheless,
for certain performance critical applications, we use our intricate knowledge of
the representation and make use of these ”strange” operations. The processors

3 In the most commonly used two’s complement representation the interval is not symmetric.
The type-values set of a k-bit two’s complement integer type is the [−2k−1 . . . 2k−1 − 1]
interval.
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of modern computers usually have built-in realization of these operations, often
they are the fastest operations of the processor.

There are two operations which may produce results out of the type-value set
and thus require further attention. They are division and exponentiation with
negative exponent. For both of them, the result can be a non-integer real number.
Instead of division, most languages provide integer division where the result of
the division a/b is the integer part of the quotient, e.g. 5/2 = 2. By contrast, in
languages which have an exponentiation operator, the usage of negative exponent
is typically not allowed.

The other mathematical operations may have a result outside of the type-
value set too, but these results are integer numbers, meaning they just exceed
the limitations of the used representation. This is called a numeric overflow.
Some languages (for example Ada) do check these cases at runtime and generate
some runtime error, e.g. an exception. However, most languages simply ignore
the overflowing bit, and the outcome of the operation will be just as many of the
least significant bits of the calculated results as what fits into the representation.
In the case of a k-bit integer type, this corresponds to the rules of modular arith-
metics modulo 2k. In the case of signed integer types – using two’s complement
representation – the results can, however, be strange. Consider the following
two 8-bit signed integer values: 96 and 32, in 8-bit two’s complement binary
representation 00110000 and 00010000. The sum of these numbers (128, or binary
10000000) exceeds the highest positive element of the type value set, which is
127. If the language does not support runtime range checks, no runtime error will
be generated, but the sum of two positive numbers will be negative, −128 which
is the interpretation of 10000000 in 8-bit two’s complement representation.

Integer types in Pasal

The type set of Pascal is implementation dependent. For example Turbo Pascal
has five integer types: the 8-bit signed ShortInt, the 8-bit unsigned Byte, the
16-bit signed Integer , the 16-bit unsigned Word and the 32-bit signed LongInt,
while Freepascal extends this set with five more integer types: the unsigned 32-
bit Cardinal , the signed 32-bit Longint, another unsigned 32-but type called
Longword, the signed 64-bit In64 and the unsigned 64-bit QWord types. The
language is configurable to support runtime range check, an option which can be
enabled or disabled using a compilation option. When enabled, the compiler adds
extra code to the binary program which generates runtime errors on arithmetic
overflows.

The set of operations is the following:

• Addition (+), subtraction (−) and multiplication (*) as usual;
• Two variants of division. The regular division, denoted by /, has an

unusual result, that is it returns a real value. The div operator can be used
for integer division. The residue is calculated using the mod operator;
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• Simple bit arithmetics: left and right shift (shl, shr), the bitwise negation
(not), and (and), or (or) and exclusive or (xor) operations;

• Some more complex mathematical operators, such as the absolute value
(Abs) and square (Sqr) calculation.

The int type of CLU

CLU has only one integer type called int . The type-value set is implementation
dependent. The set of operations is mostly the usual, but their notation is
different from other languages. In CLU even the basic arithmetic operations
are denoted using prefix notation and the English name of the operators. For
example the addition a+b in CLU is written as Int$add(a,b). To simplify writ-
ing arithmetic expressions, CLU provides syntactic sugar4 for most operations.
The operations are the following:

• Basic arithmetic operations: addition (add , +), subtraction (sub , -) mul-
tiplication (mul , *), integer division (div , /) and residue (mod);

• Some more complex mathematical operations: exponentiation with non-
negative exponent (power), absolute value (abs), and maximum (max)
or minimum (min) of two values;

• Relational operators: less than (lt , <), greater than (gt , >), less than or
equal to (le , <=), greater than or equal to (ge , >=) and equality (equals ,
=);

• Operators for converting from (parse) and to (unparse) string;
• Interesting additions are the iterators, which can iterate over the elements

of an integer interval, potentially with a specified step. The two default
iterators of the type are from to and from to by .

Integer type lass in Ada

Ada further divides the integer type class into two parts, signed integers and
modulo types. For the former, the type-value set is an interval of integer numbers
, while for the latter, it is the set of residue classes modulo m, where m is
defined in the type declaration. The difference between the two types is that in
the modulo type the residue classes are represented by the values 0 . . . m − 1
and the operations are cyclic (m − 1 + 1 = 0). In other words, there is no
range check. If the modulus (m) is some integer power of 2, then the type
corresponds to the unsigned integer types of other languages. The type-value
set of signed integer types can contain negative values as well, and there is a

4 For some operations, in addition to the default prefix form, CLU defines an infix variant
as well. This is called syntactic sugar because it is just a simplified notation for the other,
which the compiler automatically substitutes with the prefix form (for details see Section
5.7.1).
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range check in each operation. If the result is not in the specified type-value set,
a CONSTRAINT ERROR exception is raised.

−− 8-bit unsigned (0. .255) value:
type Byte is mod 256 ;

−− Altitude above sea level (in meter):
Type Altitude is range −15000 . .9000 ;

Though it seem we can create an arbitrary number of distinct integer types
in Ada, in reality all of them are derived from a special root integer type.5 In
other languages, where integer types often have an implementation specific value
set, when porting an application to a new platform, we may encounter hard to
discover errors caused by changes in the used representation, e.g. in C, the type
int has a platform specific precision. On 16-bit platforms it is 16 bits, on 32-bit
platforms it is 32 bits, etc. When porting an application across such platforms, it
changes the value set of the type int. In Ada, developers are strongly encouraged
to define their own integer types, which makes their application more portable.
The application has to explicitly declare what type-value set they expect for
the given type. The semantics of the type declaration is not platform specific.
Therefore, porting the application cannot change the type-value set.

Nevertheless, there are some built-in integer types in the language which are
directly usable. All implementation must support the Integer type. Its type-
value set must include at least the (−215 + 1) . . . (215 − 1) interval. Additionally,
the specification allows other built-in integer types such as Short Short Integer ,
Short Integer , Long Integer , Long Long Integer . It does not specify their exact
value set, it only mandates that the relationship of their respective type value sets
must correspond to what their names imply. Additionally it mandates that the
value set of the Long Integer type must include at least the (−231+1) . . . (231−1)
interval.

Apart from the above mentioned differences in the semantics of the arithmetic
operators, the set of available operations is identical in both integer type classes.
As integer types are discrete types, and therefore, they are scalar types, all
operations defined in those classes are available. Additionally, integer types have
the following operations:

• Usual basic arithmetic operations: addition (+), subtraction (−), multi-
plication (*) and division (/);

• Two different operators for calculating residue: Firstly, the operator mod,
for which a = b · n + (a mod b) for some signed integer n and the sign
of (a mod b) is the sign of b. Secondly the operator rem, for which a =
(a/b) · b + (a rem b) and the sign of (a rem b) is the sign of a (see Table
5.1 for examples);

5 The root integer type is special because it cannot be used in variable declarations. This type
is only used for deriving integer types.
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• Absolute value (abs) and exponentiation (**) with non-negative expo-
nent.

A B A/B (A mod B) (A rem B)

5 2 2 1 1
5 -2 -2 -1 1

-5 2 -2 1 -1
-5 -2 2 -1 -1

Table 5.1: Difference between the different residue operations of Ada integer
types

Brief overview of some other languages

C and C++

In C and C++ the signed integer types are the 8-bit char, the 16-bit short the
32-bit long and the platform specific int. On 64-bit architectures an additional
64-bit integer type long long has also been introduced. Additionally, from each
singed type the corresponding unsigned type can be created using the unsigned
modifier. The operations are the usual ones, there is no overflow check.

Java

As Java applications are executed in the standard virtual machine, the Java
language can very accurately specify the required representation of the various
integer types. The integer types byte, short, int, long use signed 8, 16, 32 and 64
bit representations respectively. Additionally, there is an unsigned 16-bit char
type as well. The set of operations is the usual, there is no overflow check at
runtime.

Eiffel

Eiffel has adopted a rather unique solution by integrating scalar types, such
as integers into the class hierarchy of the language. The class INTEGER is an
expanded class, its objects are stored by value, which ensures efficiency. The
class extends COMPARABLE and NUMERIC classes. From the former it has
inherited relational operations, while from the latter it has inherited the usual
arithmetic operations. Bit-wise operations are not supported directly on the
INTEGER objects. However, there are operations for converting INTEGERs
to bit sequences and vice versa. This approach gives a nice resolution for the
previously mentioned contradiction between the need for efficiency and hiding
representation.
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Python

Python supports two integer types as part of the language. The representation of
type plain integer is implementation dependent two’s complement representa-
tion as supported by the CPU, but it has at least 32-bit precision. Its operations
are the usual ones. However, the language has a more interesting second integer
type called long integer. This type has a virtually unlimited type-value set,
the representable maximum number is only bound by the memory limits. Such
big number types are usually not built into other languages. They might have
an implementation in some standard library like in the case of BigNumber class
of Java .

PL/I

In PL/I, arithmetic types are specified along multiple dimensions. They have
a base representation, which can be BINARY or DECIMAL, a scale, which can be
FIXED or FLOAT, a mode of REAL or COMPLEX and a PRECISION which is the
number of representable digits and a scale factor – number of decimal places
– for fixed point types. Therefore, integer types of PL/I are FIXED types of
BINARY or DECIMAL representation with a scale factor of 0. BINARY types use
two’s complement representation, while DECIMAL types are represented by BCD
– Binary Coded Decimal – representation. In BCD representation the decimal
digits of a number are stored as hexadecimal digits, e.g. the number 12345 is rep-
resented as 0x012345 in BCD. BCD representation is hardly used at all for integer
values. With regards to memory utilization, it is less economic as 4 bits (which
can represent 16 different values) are used to represent a decimal digit (which
has 10 different values), arithmetic operations are less efficient too. However,
this representation is more accurate when used for representing real values. For
example, the decimal value 0.2 is a repeating fraction of 0.00110011 . . . in binary
form. As data representation is finite, there is always some loss of precision.

5.4.3 Outliers

There are two types in the discrete type class which do not have a fixed position
in the provided taxonomy. These are boolean and character types, which are
sometimes treated as enumerations, and sometimes as integers in the different
languages.

Charater type

Computers can work with numbers only. When computers need to deal with
characters (text), they have to be represented as numbers. The mapping between
numbers and characters is called the character encoding.

There may be more than one character type in a language. Most modern
languages have built-in support for some character type which is compatible
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with character sets that have more than 256 characters – e.g. the Universal
Character Set, developed with Unicode (see Section 2.1.4 for details) – and
support some 16+ bit character encoding, whereas they often retain support for
the more traditional 8 bit character set as well. Such languages have two or more
different character types.

The distinction between languages which treat character types as integer
types and the ones that treat them as enumerations is very important. The
languages where the character type is an integer type are agnostic to character
encoding. The programs in that language do not manipulate text or characters
but sequences of numbers which are later translated to pieces of text. The
programs in these languages directly work on the representation of the character
type, it is not hidden from them. Therefore, the semantics of the programs are
character encoding specific. In languages where character types are enumerations,
the type-values represent actual characters, the programs manipulate sequences
of characters, meaning their semantics does not depend on the character encod-
ing, which is completely hidden from them.

In C and C++ the character type is implemented by the integer type char
which uses 8-bit two’s complement representation. Its operations are the usual
integer operations of the language. The languages do not specify the charac-
ter encoding, the interpretation of the character values is application specific.
The language hardly provides means for character manipulation as it would be
representation dependent.

Java is an interesting hybrid between the two approaches. Characters belong
to the integer types, char is 16-bit unsigned integer. However the language
specifies that the type values correspond to the characters of Unicode/UCS Basic
Multilingual Plane (BMP). The operations of the type are the same as for the
other primitive integer types and the data representation is not hidden, but the
interpretation of data is specified by the language. The wrapper class Character
provides a number of useful operations for character manipulations.

In Pascal-type languages such as Ada, characters are enumerations. Opera-
tions are the usual for that type class. Ada supports two character types. The
type Character has 256 elements, the type-values are the characters of ISO 10646
Basic Multilingual Plane (BMP) Row 00 (Latin-1), their ordering in the type
corresponds to the characters order in Row 00. Similarly the elements of type
Wide Character correspond to the 65536 code points of ISO 10646 BMP. In
this language the type-values represent the given characters, the underlying
representation is completely hidden from the applications which operate on
(sequences of) actual characters.

Boolean types

The other outlier type is the boolean type. Many languages (for example C) do
not have such type at all but they use some other type – typically integer – for
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representing boolean values. In these languages 0 represents the value false and
non-zero values represent true.

In Delphi there are multiple boolean types, but in reality all of them are
integer types. The type Boolean is represented on one byte, its permitted values
are 0 and 1 which correspond to false and true values respectively. Additionally,
the language defines the Bytebool , Wordbool and Longbool types which are 8, 16
and 32-bit integer types where the value zero represents false and the non-zero
values represent true.

In other languages the boolean type belongs to enumerations. Its elements are
false and true, typically in this order, i.e. false is less than true. Such languages
include Pascal, Ada, CLU or Eiffel.

Be it an enumeration or an integer type, the set of operations of boolean
types is wider than that of other members of its type class. Boolean types in
each language support a set of boolean operations. Typical operations are the
boolean and (∧), or (∨), exclusive or (⊕) and negation (¬). These operators
should not be mistaken with the corresponding bit-wise operators of integer
types, especially in those languages where boolean types belong to the integer
type class, or where there is no boolean type at all. In these languages both
kinds of operators can be applied to objects representing boolean values, but the
results of these operations can be very different.

When evaluating boolean expressions, often it is not necessary to evaluate
both operands of a binary operator – the result of the expression can be deter-
mined by evaluating only one of them. For example the expression A∧B is false,
independently of B if A is false. Similarly A∨B is true if A is true, independently
of B. For reasons of efficiency most programming languages do not evaluate the
operand B if the value of the expression can be determined after evaluating A. If
A and B are simple boolean values or variables, this lazy evaluation technique is
beneficial. However, when evaluating B has some side effects, evaluating or not
evaluating B makes a difference. For this reason, some programming languages
have two variants of boolean operators and and or. The lazy versions of these
operators do not evaluate the second operand if the value of the expressions is
known after evaluating the first one. The greedy variants always evaluate both
operands thereby ensuring that all side effects of the second evaluation take
place as intended. Such lazy operators in Ada and Eiffel are called and then and
or else, while in CLU they are cand and cor . The greedy variants in Ada and
Eiffel are and and or, in CLU they are & and |.

Additionally, Eiffel has one more boolean operator for logical implication (→).
The expression A → B is false if A is true and B is false. Otherwise it is true.
The implication operator is called implies.
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5.5 Real type lass

The real type class contains different realizations of real numbers. The cardinality
of real numbers exceeds the cardinality of integers. Therefore, realization of real
numbers is even more difficult. The most important difference between the types
in real type class is the used data representation.

5.5.1 Type-value set

During the history of computer science many different solutions have been cre-
ated for representing real numbers. Two major directions are fixed point repre-
sentation and floating point representation. Neither of these are clearly superior
to the other, that is both approaches have advantages and disadvantages. There-
fore, though not with equal importance, both approaches are in use.

Fixed point representation

One of the simplest mapping of real values to integers is rounding. This is
the intuition behind fixed point number representation, where real values are
represented on a fixed length. This length is divided to a fixed length of integer
part and a fraction. The advantage of this representation is that its precision is
clearly determined. When developing some financial application, legal require-
ments may mandate a certain precision, for example that each value must be
stored up to two-digits. Such requirements can be directly translated to fixed
point representation.

However, this representation has a big disadvantage as well. It does not scale
to numbers of different magnitude. If we need to represent big and small values
at the same time, we cannot apply it. If many digits are used for the fraction, it
is good for small numbers but in cases like that we do not have room for a big
integer part. If the integer part is big, we can represent big values, but we do not
have enough digits in the fraction part to represent small values. Additionally,
the result of computations must also fall into the type-value set defined by the
chosen precision. Consider, for example, that we try to compute the function
x → 1/x. If the chosen precision allows for large value of x, most likely it does
not have enough digits in the fraction part to represent the small value of 1/x
and vice versa.

These limitations make the use of fixed point representation in scientific and
engineering applications almost impossible. Besides this, manual implementation
of fixed point types is relatively easy. Consequently, most modern programming
languages do not have a built-in fixed point real type. Whereas languages which
have special support for financial applications do offer such a type.
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Floating point representation

Floating point representation was created to overcome the limitations of fixed
point representation. It is a computer realization of the standard form6 of num-
bers. In standard form numbers are written in the form of m · 10k where 1 ≤
|m| < 10 and k is an integer value.7 The value m is called significant digits or
mantissa of the number while k is the exponent. In floating point representation
a binary version of the standard form is used: m · 2k where 1 ≤ |m| < 2 with
special encoding rules for the value 0.

Most modern programming languages support floating point representation
of real values. Most generic purpose CPUs currently have built-in support for
floating point arithmetics. The corresponding standard of IEEE (IEEE 754 –
IEEE Standard for Binary Floating-point Arithmetic) was accepted in 1985,
which unified the different floating point implementations that were in use pre-
viously. In addition to representation, the standard specifies the exact semantics
of all operations and transformations. It defined five basic formats and some
more so called extended formats. The basic formats are half precision (16 bit),
single precision (32 bit), double precision (64 bit), double extended (80 bit) and
quadruple precision (128 bit) representations. These formats differ only in the
number of bits used to represent the different parts (mantissa, exponent) of
the numbers. The two most typically supported formats are single and double
precision floating points.

Single preision

Single precision floating point numbers are stored on 32 bits. The first bit denotes
the sign (s) followed by the 8-bit exponent (k) and the 23-bit mantissa. As
1 ≤ |m| < 2, the first bit of m would always be 1, this bit is not stored, it is
called the hidden or implicit bit. This way the precision of single precision floating
point representation is 24 bits. Some bit sequences have special meaning:

• If k = 255 and m 6= 0, then the value is not a number (NaN).
For example: 0 11111111 01000100010001000100010 → NaN .

• If s = 1, k = 255 and m = 0, then the value is negative infinity.
That is: 1 11111111 00000000000000000000000 → −∞.

• If s = 0, k = 255 and m = 0, then the value is positive infinity.
Therefore: 0 11111111 00000000000000000000000 → +∞.

• If 0 < k < 255, then the value is (−1)s · 2k−127 · (1.m), where 1.m denotes
the binary number with integer part 1, and fraction part m.
For example: 0 00000000 10000000000000000000000 → 2
or 1 10000001 10100000000000000000000 → −6.5.

6 Often called scientific notation as well.
7 The value 0 cannot be represented in standard form.
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• If k = 0 and m 6= 0, then the represented value is (−1)s · s−126 · (0.m).
These are non-normalized values. For example:
0 00000000 10000000000000000000000 → 2−127

or 0 00000000 00000000000000000000001 → 2−149, which is the smallest
possible value representable in this format.

• If k = 0 and m = 0, then the represented number – depending on the
value of s – is +0 or −0.
0 00000000 00000000000000000000000 → +0
and 1 00000000 00000000000000000000000 → −0.

Double preision

The representation of double precision numbers is similar, but 64 bit are used. 1
bit is the sign, 11 bits represent the exponent and 52 bit is used for the mantissa.
Similarly to single precision, there is a hidden bit which makes the precision 53
bits.

5.5.2 Operations

IEEE 754 also standardizes the set of operations for floating point types with
their exact semantics, which includes the result of operations when at least one
of the operands is a special value such as NaN, positive or negative infinity. The
operations include the basic arithmetic operations (+, −, ∗, /), exponentiation,
square root, and different conversion operations. Due to standardization most
modern general purpose processors have built-in support for these which makes
their implementation very efficient.

Additionally, most modern languages offer some mathematical functions as
part of standard libraries. These typically include logarithm and exponential
functions, trigonometric functions and simple random number generators.

5.5.3 Programming languages

In this sections we will have a look at some concrete implementations and their
unique features in various programming languages.

Pasal

Real types in Pascal use floating point representation. The type Real is 48-bit
long with 1 bit sign, 8 bit exponent and 39 bit mantissa. Depending on implemen-
tation, other real types might be supported. For example in Turbo Pascal there
are three other real types – Single, Double and Extended –, which correspond to
single precision, double precision and double extended representations specified
in IEEE 754.
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Pascal allows the mixed use of integer and real types in expressions, but in
these cases the result is always real. The operations of real types are:

• Arithmetic operations: addition (+), subtraction (−), multiplication (*)
and division (/);

• Absolute value (Abs) and integer part (Int), the result of this operation
is real;

• Square (Sqr) and square root (Sqrt);

• Natural based exponential (Exp) and logarithm (Ln) functions;

• Trigonometric functions: sine (Sin), cosine (Cos), etc.;

• Random number generator (Random);

• Conversion operators: truncate fraction (Trunc) and rounding (Round).

Real types in Ada

Ada supports both fixed and floating point representations. Similarly to integer
types, we can create new real types. In the type declaration we have to specify
the precision of the created type. Logically, all real types are derived from the
abstract root real type. All literals belong to the class of root real, they are of
type universal real. This enables using the same set of literals for both floating
and fixed point types. The types root real and universal real cannot be used in
type declarations.

Fixed point types

In the declaration of fixed point types the absolute precision of the type is
specified. If we want to represent numbers with k digit precision, the 10−k value
is called the delta of the type. As the language uses binary representation, the
values of the type will not be the form of n · 10−k but m · 2−p, where p is
the smallest positive integer such that 2−p ≤ 10−k. The value 2−p is called the
small value of the type as this is the smallest representable value. This difference
between the delta and the small value of the type can cause inaccuracies, e.g. in
the example below the value of Y is different from what might be expected:

type Fixed is delta 0.01 range 0.00 . . 1.00 ;

X : Fixed := 0.05 ; −− in reality X is 0.046
Y : Fixed := 5.0 * X ; −− Y = 0.23
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Floating point types

In the declaration of floating point types, first we need to specify the relative
precision of the type, and then the number of decimal digits of the mantissa.
For a floating point type with d decimal digit precision we need at least b =
⌈d · ln(10)/ ln(2) + 1⌉ bit long mantissa in binary representation. In this case the
exponent is in the −4 ∗ b . . . 4 ∗ b range.

The precision of the built-in Float type is implementation dependent, but it
should be at least 6 decimal digits. Similarly to integer types, implementations
may support other built-in types (Short Short Float, Short Float, Long Float,
Long Long Float) but the only requirement in the language is that their precision
should be consistent with the naming of the types.

The set of operations for fixed and floating point types is similar. It includes
basic arithmentic operations (+, −, *, /), exponentiation with integer exponent
(**) and absolute value (abs). The difference between fixed and floating point
types is attributes which can be used to obtain information about the precision
of the types.

For a floating point type T the attribute T ’Digits specifies the precision of
the type in number of decimal digits.

Fixed point types introduce four new attributes. For a fixed point type S , the
attributes S ’Delta and S ’Small are the delta and small value of the type. S ’Aft
is the number of decimal digits – digits after the decimal point – while S ’Fore is
the maximum number of digits in the integer part – i.e. before the decimal point
– including the potential sign.

5.6 Pointer types

Pointer and reference types are the abstractions of addresses in the memory
of the computer. there is no clear distinction between the two notions, but
generally references are a safer variant of pointers. This safety means that a
reference is guaranteed to point to an existing object, or if it is not, it has a
special ”nowhere” value, which is clearly recognizable. Beyond this difference,
the pointer and reference types show many similarities, which we will discuss
together (the term pointer will be used to denote both). The term reference will
be used for highlighting the occasional differences.

An important concept for understanding the usage of pointers is reference
level. If we have an object, for example the number 42, its reference level is 0. The
reference level of a variable v, which stores this object is 1. The reference level
of a pointer that points to v is 2 etc. When a variable is used in an expression,
its reference level is reduced by one, e.g. the expression a := b + 1 means that
the variable a should be assigned the value stored in b plus 1. The compiler
automatically dereferences the variable b.
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There is a wide spectrum of application of pointers. Often we do not even
notice that we are using them. For instance, in many languages when we need
to pass large and complex data structures as parameters to subprograms, the
compiler does not copy the whole structure but simply passes a pointer to
the structure as argument. Similarly, in object oriented languages to realize
polymorphism and dynamic binding we have to access the objects via pointers
(for details see Chapter 10). And often we apply pointers explicitly, for example
when building dynamic data structures, or when we want to share access to an
object.

5.6.1 Memory management

Before we elaborate on pointers, let us examine the memory management of
a program. Based on their lifetime the variables of a program fall into three
categories:

• Static variables are created upon the first evaluation of their declaration
and their lifetimes span for the complete runtime of the application. Not
all languages support the creation of static variables. These variables are
often global variables of the application, though in some languages – for
example C and C++ – subprograms can also have static variables, which
preserve their value between invocations of the subprogram.

• Automatic variables are automatically created and destroyed during the
runtime of the application. In languages which support block structures,
the variables declared within blocks are such automatic variables. Every
time the execution of the program enters a block, the variables declared
there get created. As soon as the execution of the block is finished,
these variables are destroyed. Therefore, they do not preserve their values
between distinct executions of the block. Many modern languages allow
subprograms to invoke themselves (recursion). In such cases multiple
instances of the same variable can exist at the same time.

• The lifetime of dynamic variables is managed – at least partly – by the
programmer. Dynamic variables are access via pointers. While in the case
of static and automatic variables the compiler or runtime environment
is responsible for allocating and releasing the required memory, dynamic
variables are created by the developer using some allocator. The program-
mer is also responsible, to some extent, for destroying these variables when
they are not needed anymore.

According to this categorization of variables, the memory used by the program
is divided into three parts:

• The static memory is used to store the static variables. The size of
this memory is determined at compilation time and the address of the
variables residing here do not change during the execution.
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• The call stack is the storage of automatic variables. When a block is
entered during execution, automatic variables of the block are allocated
at the top of the call stack. This solution enables having multiple instances
of the same variable during recursive execution. When the execution of
the block is finished, the automatic variables are removed from the stack.

• The third part of memory is the dynamic storage area. During program
execution free memory blocks are stored here in a structure called free list
or simply the heap. When the developer tries to create a new dynamic
variable, the allocator selects a free memory block big enough to store
the variable, removes it from the free list and returns its address to the
developer. When the dynamic variable is destroyed, the memory block
occupied by it is returned to the free list.

The lifetime of dynamic variables is controlled by the application developer.
They are created using an allocator, which can obtain the required amount of
free memory from the heap, and which can – in some languages – initialize the
obtained memory block. Destroying dynamic variables can be explicit or implicit.

Expliit dealloators

In some languages the developer is fully responsible for destroying dynamic vari-
ables when they are not needed anymore. These languages provide some explicit
deallocator operation. The developer is responsible for using this operation to
free up the memory block occupied by a dynamic variable. Along similar lines, in
some languages the deallocator is responsible for cleaning up the memory area
before releasing it to the heap, e.g. in C++ it executes a designated method of
the corresponding class called the destructor.

In these languages the developer has fine control over the memory usage.
However, such freedom comes with big responsibility. If the developer forgets
about releasing unused dynamic variables, the program can fill up the available
memory, which is called memory leak. On the other hand, the developer also has
to make sure that that the program does not attempt to access a memory block
once it has been released. Trying to access dynamic variables which have once
been destroyed may lead to runtime errors which are very difficult to find.

Garbage olletion

In other languages, deallocation of unused memory blocks is not the developers’
responsibility – it is handled by the runtime environment. In such languages
for each dynamic variable a reference counter is maintained which indicates
whether the corresponding variable is accessible from somewhere within the
application. When a variable becomes inaccessible, it becomes eligible for garbage
collection. The garbage collector is a mechanism in the runtime environment
which is responsible for finding memory blocks that can be released and for



5.6 Pointer types

•
191

deallocating them according to the rules of the language. Depending on the
runtime implementation, garbage collection can be triggered by a timer, a certain
level of memory usage or the combination of both. Some languages allow the
developer to explicitly trigger garbage collection as well.

The pointers in languages which support garbage collection are often called
references. Their usage is safer, meaning it cannot happen that the developer
forgets to release an unused variable or that he refers to a variable which has
already been released. However, the developer has a lot looser control over the
memory usage of his application. Another potential drawback of this approach
is that garbage collection generates periodic peaks in the CPU usage of the
application – it might even have to stop all other execution threads, which
might have undesirable effect on the real time characteristics of the application.
Garbage collection is a complex task, as it is not enough to release variables with
reference counter 0, there might be circular references between variables. The
garbage collection must be able to discover such blocks which have no external
references anymore and release all objects in them simultaneously. Nevertheless
the added safety and ease of use is a big motivation for using garbage collectors.
The popularity of Java and C# contributed a lot to understanding the challenges
of garbage collection and to the creation of better and better garbage collectors.

Memory management has fundamental influence on the usage of pointers and
their available operations. Further details of memory management are provided
in Chapter 4.

5.6.2 Type-value set

A pointer is an object which represents the location of another object in memory.
The actual representation is implementation dependent but often it is an un-
signed integer value which is the index (address) of the first byte of the referenced
object in memory. Other representations are also possible. Disconnecting pointers
from actual memory addresses might enable relocating objects at runtime for
instance to enable defragmenting the memory.

Untyped pointers

In most languages pointers are usually typed, meaning they can refer to certain
types of objects. Usually this typedness does not change the representation of the
pointer, but it enables the compiler to verify the correct usage of the referenced
objects. However, in some languages it is possible to define untyped pointers as
well. Untyped pointers represent a memory address without restricting the type
of object located at that position.

The usage of untyped pointers is rather limited. As the type of the referenced
object is not determined, dereference is not permitted on them. Usually any
pointer can be converted to untyped pointer automatically, while the opposite
direction requires explicit – interpretation changing – conversion.
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A typical use case for untyped pointers in languages which do not have a
common superclass for all objects is to create containers which can store any
kind of object. The following – C language – example is the implementation of
a list type which can contain arbitrary objects.

struct listelement struct;
typedef struct listelement struct* List;
struct listelement struct {

List next;
void* element;

};

List insert(List l, void* element) {

List p = malloc(sizeof(struct listelement struct));

if (p != NULL) {

p->next = l;
p->element = element;

}

return p;

}

. . .

List l = NULL;

int i = 5;

char text[ ] = "Hello world!";

l = insert(l, &i);

l = insert(l, &text);

As illustrated above, any kind of object can be inserted to the list. But
in order to use the objects after having retrieved them from the list, we need
to know their exact type. In C the void* pointers can be converted to any
pointer type, but the developer needs some solution to determine the type of the
retrieved objects to be able to use them. The language itself does not offer such
mechanism.

In object-oriented languages where the language defines a common base class
for all classes – for example in Java or Eiffel –, references of the common base
class can serve as untyped pointers. Though not exactly untyped – its type
is the common base class –, these references share the ability to point to any
object in the language. However, a significant advantage is that objects of these
languages typically carry information about their dynamic type, which enables
us to safely perform the conversion when using such an ”untyped” reference.
Before introducing generics to Java, the collection framework of the language
used Object references for the stored objects.
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Pointers to nowhere

In all programming languages the type-value set of pointers contains a special
value, the pointer to nowhere. This pointer is called NULL in C, 0 in C++,
null in Ada and Java, nil in CLU, void in Eiffel, etc. It has many names, but
its properties and function are the same. This pointer can be automatically
converted to any pointer type; therefore, it can be assigned to any pointer
variable. The value is almost always represented as the constant 0 bit sequence,
which is not a valid address in any system. Dereferencing the pointer to nowhere
always causes runtime error.

In many languages, especially the ones which provide references instead of
pointers – e.g. Ada, Java, Eiffel, CLU – the default value of references is the
pointer to nowhere. This means that uninitialized references can be clearly
distinguished. In C or C++ uninitialized pointers have undefined values.

If a language supports garbage collection and its pointers or references by
default are initialized to the pointer to nowhere, the pointers have a very useful
invariant property. Their value is either the pointer to nowhere or they point
to an existing object. This invariant greatly simplifies the development of sound
applications.

Forward delaration

A very important property of pointer types is that their representation is inde-
pendent from the referenced data type. We rely on this property to resolve the
”chicken and egg” problem of creating linked data structures. In the example
below – written in Ada – we describe the representation of linked list type.
The ListElement type consists of an integer value – the data – and a reference
pointing to the next element of the list. When declaring the type, we ran into a
problem immediately. That is, in Ada reference type can only be declared for an
existing type but components of a record type must also be of existing types. The
solution to this contradiction is the forward declaration of the ListElement type.
With forward declaration we let the compiler know that the type ListElement
exists. As the representation of references does not depend on the details of the
referenced type, the existence is enough to define the ListElementAccess type,
which is a fully defined type at this point. Therefore, it can be used in the
definition of ListElement as the type of one of its components.
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−− Forward declaration of ListElement type
type ListElement;

−− We can now define the referece type to it
type ListElementAccess is access all ListElement;

−− And now we can define the ListElement type as well
type ListElement is record

Data : Integer ;
Next : ListElementAccess;

end record;

5.6.3 Operations

Moving on to the operations of pointer types, some of the operations – e.g. as-
signment, or allocation – are present in all languages, others are very unique,
language specific operations – e.g. the pointer arithmetics of C and C++.

Assignment

Assignment of pointers usually means copying the address of the referenced
memory block. However, in languages which support garbage collection, such
as Ada or Java, assignment includes the maintenance of reference counters as
well. In the assignment p := q, if both pointer variables reference to existing
objects, the reference counter of the object referenced by p needs to be reduced
by one – p does not reference it anymore –, if its value drops to 0 it might also
trigger garbage collection, depending on the implementation. At the same time
the reference counter of the object referenced by q needs to be incremented by
one as it is now referenced by p a well.

Generally, there are five ways of assigning a new value to a pointer variable:

• The pointer to nowhere is assigned to them. In many languages this is
the default value of all pointers.

• The value of another pointer variable is assigned to them.

• The pointer to a newly allocated object is assigned to it using an allocator.

• The address of a static or automatic variable is assigned to it. However,
not all languages support this option as it can be unsafe, especially in the
case of automatic variables.

• Some languages allow assigning concrete memory addresses to pointers.
For instance in C any integer value can be converted to a pointer.
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Alloators

All languages that support dynamic variables must provide an allocator op-
eration. This operation is responsible for obtaining a free memory block of
sufficient size from the free list and returning its address. In many languages – in
object-oriented languages such as Java and C++ in particular – the allocator is
responsible for initializing the allocated memory block according to the type of
the object to be stored there.

Dealloators

Not all languages have an operator for deallocation. Languages that use garbage
collection typically do not provide explicit deallocators. However, some of these
languages might provide some means for the developers to control deallocation.

It is quite common to provide a mechanism to explicitly trigger garbage
collections, e.g. in Java we can use the System.gc() method.

Since the launching of Ada 95, Ada offers even deeper access. The devel-
oper can declare that he is taking full responsibility for maintaining the con-
sistency of memory management related to a certain type by instantiating the
Ada.Unchecked Deallocation generic for that type. The instance of this generic
is a deallocator usable for objects of the given type. It is important to note that
the type is removed from the scope of garbage collection.

Referening

Many languages allow assigning the address of a static or automatic variable
to a pointer variable. The address of the variable is created using the reference
operator of the language. Not all languages provide such mechanism, e.g. Ada 83,
Eiffel or Java do not have such means. In these languages pointers can only
reference dynamic variables.

In C and C++ the reference operator is $&$ . It can be used without limita-
tions on any objects.

The Ada 83 version of Ada did not allow the referencing of static and
automatic objects, but this restriction was loosened in the Ada 95 revision. As
the language is essentially garbage collection based, the references created using
the reference operator also had to be integrated into this system for safety.

The challenge of introducing a reference operator is that the lifetime of
automatic variables depends on the block structure of the language and the
thread of execution. When the thread enters a block, the automatic variables of
the block are created, and when it exits, the variables are destroyed.

Assume that we have a program which consists of blocks A and B, where B
is embedded in A. In block A we declare a pointer IP and in block B we have
an automatic variable I . We also have a statement in block B which assigns the
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reference of I to IP using the reference operator. The following code snippet
results in compilation error:

Type IntegerAccess is access all Integer ;
IP : IntegerAccess;

Procedure B is
I : aliased Integer ;
Begin

−− IP is visible here as it is global to this block
−− However, this assignment is invalid. . .
IP := I ’Access;

End B;

Begin
B;
−− . . . because at this point IP would point to invalid memory area
IP.all := 42 ;

End;

Figure 5.2: Difference between aliased and non-aliased variables in Ada

As shown in part a.) of Figure 5.2, when the execution exits B, the variable
I is destroyed. However, the pointer IP still points to the same memory area.
Destroying I would break the former invariant of references which guarantees,
that they either point to a valid memory area or their value is null.

Therefore, Ada does not allow the use of the reference operator on ordinary
automatic variables.

The solution of this problem in Ada 95 is that the developer needs to mark
automatic variables with the keyword aliased in case they want to use referencing
of that variable. The compiler will place these variables – even though they are
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automatic – in the dynamic storage area and it will replace them with a pointer
within the block. In other words, it converts these variables to dynamic ones,
and creates an automatic variable which holds the only reference to them. If the
referencing operator is not used, the automatic (reference) variable is destroyed
which will drop the reference counter of the dynamic variable to 0, which will
then be garbage collected. If the reference of the variable is assigned to some
other pointer, the variable can live safely after leaving the block as it resides in
the dynamic storage. See part b. of Figure 5.2. Below is the corrected example
of using the reference operator (the ’Access attribute) in Ada 95:

Type IntegerAccess is access all Integer ;
IP : IntegerAccess;

Procedure B is
I : aliased Integer ; −− Allocated I on heap, variable I is a reference.
Begin

IP := I ’Access;
End B;

Begin
B;
−− This is now valid, IP points to an address in the heap
IP.all := 42 ;

End;

5.6.4 Dereferene

One, if not the most important operation of pointers is dereference. Dereference
operation reduces the reference level by one, i.e. it produces the referenced object
based on its address.

In most languages dereference needs to be explicitly marked in code. For
example in C and C++ the operator of dereference is the prefix *. If p is a
pointer, *p denotes the referenced object. If p points to a structure (struct), or
in the case of C++, it point to a class, which has a field f , the (*p).f reference
to f can be shortened as p->f .

In object-oriented languages where objects are accessed through references
– for example in Java, CLU or partly Eiffel – there is no need to explicitly
mark dereference. The language defines for each operation whether they work
on the reference or the referenced object. For example, if a and b are two object
references in Java, the a = b assignment or the a == b equality operator are
operations on the references. However, method invocation is always an operation
on the referenced object; therefore, a.equals(b) will compare the objects and not
their references.
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Ada combines the two approaches. When it cannot be decided unambiguously
on the basis of the context if the operation should be applied to the reference or
the referenced object, dereference needs to be explicitly indicated. Dereference is
indicated using the .all qualifier. Let us assume that I is an integer variable, IP
and JP are two integer access – reference – variables. In the case of the I :=IP and
IP:=I assignments or the I = IP equality check, the indication of dereference
is not needed. In each case it follows from the context that the referenced object
should be used, otherwise the operations would not be defined.

However, if we replace I with JP in the expressions, they will become ambigu-
ous. The operations are defined at both reference levels – on references as well as
on the referenced objects; therefore, we have to explicitly indicate dereference.
The assignment IP:=JP is interpreted at the reference level; if we want to assign
the referenced object, we have to use the IP.all := JP.all form.

Equality

Almost all languages provide means to check the equality of pointers. This
equality is always interpreted at the reference level, meaning it is independent
from the equality operation of the referenced objects, irrespective of whether
they have such operations. Two pointers are equal if they point to exactly the
same object, i.e. they contain the same memory address.

5.6.5 Pointers to subprograms

A special variants of pointers are the pointers to subprograms. The type-value
sets of these types consist of the entry points of subprograms, rather than of
the memory addresses of objects. The pointer to nowhere is element of these
type-value sets as well.

Pointers to subprograms are always typed. The type of the referenced subpro-
gram is the signature of the subprogram, which is the list of formal parameters
and in case of functions the type of the returned value.

The set of operations for subprogram pointers is a lot more limited than
for pointers of objects. There are no allocators or deallocators as subprograms
cannot be dynamically created. Assignment and equality check is similar to
object pointers. There are reference and dereference operators. The later in
practice means the invocation of the subprogram.

C – and therefore, C++ as well – support subprogram pointers. The example
below is a function which calculates the definite integral of a real function over
a specified interval. The first parameter of the function is the integrand real
function, which is followed by the end points of the interval and the number
of integration points. Notice that neither reference, nor dereference need to be
indicated explicitly, though both are allowed.
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typedef double (*RealFunction)(double);

double Integral(RealFunction fn, double a, double b, int n) {

double x = a;

double delta = (b - a) / (double)(n);

double s = 0.0;

if (b <= a) return 0.0;

while ((x + delta) <= b) {

s += delta * (fn(x) + fn(x + delta)) / 2.0;

x += delta;

}

return s;

}

double sininteg = Integral(sin, 0.0, 1.0, 1000);

In object-oriented languages, the importance of subprogram pointers is smaller.
Subprogram pointer types can be substituted with an interface or abstract class
which declares a single method, the subprogram to be passed. Then objects
that implement the specified interface or abstract class can be created, which
realize the required variant of the method. These objects typically do not have
data members at all. They are called function objects or functors. Below is a
Java implementation of the definite integral calculation. Notice the usage of an
unnamed embedded class as functor.

public interface RealFunction {

public double calc(double x);

}

public static double integral(RealFunction fn,double a,double b,int n) {

double x = a;

double delta = (b - a) / (double)(n);

double s = 0.0;

if (b <= a) return 0.0;

while ((x + delta) <= b) {

s += delta * (fn.calc(x) + fn.calc(x + delta)) / 2.0;

x += delta;

}

return s;

}

. . .

double sininteg = integral( new RealFunction() {

public double calc( double x ) {

return Math.sin(x);

}

}, 0.0, 1.0, 1000);
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5.6.6 Language speialties

In this section we will examine some special, language specific solutions related
to pointers.

Pointer arithmetis of C

One of the most interesting and probably most often used property of C is pointer
arithmetics. By using pointer arithmetics we can use pointers very conveniently
and in C, we may create close connection between arrays and pointers. Pointers
in C are unsigned integers. Their value is the memory address – index – of the
first byte of the referenced object.

C supports typed pointers. The type of pointers to a type T is T*. It has
untyped pointers as well. The type of untyped pointers is void*, which behaves
as if it were a pointer to byte type (unsigned char) but dereference is not allowed
for this type.

The pointer arithmetics of C extends the usual set of pointer operations in
the following respects:

• The operator sizeof specifies the number of bytes used for the represen-
tation of a type T .

• Any pointer type can be converted automatically to void*.
• The pointers of type void* can automatically be converted to any pointer

type.
• Pointers can be converted to integers (int or unsigned int). This is an

interpretation changing conversion. The conversion must be indicated
explicitly.

• Similarly, integers can be converted to pointers of any type.
• Integers can be added to pointers. Let us assume that T* p is a pointer

and i is an integer. The type of the expression p+i is T*. The addition
modifies the numeric value of the pointer p with i*sizeof(T). By using
this property, we can iterate over the elements of an array by setting a
pointer to the first element, and by always incrementing the pointer by 1
(p++), which will then point to the next element of the array. If the added
integer is negative, the pointer will move in the opposite direction.

• Pointers of the same type can be subtracted from each other. The result
is an integer, which, when added to the first one, gives the second pointer.

• Pointers can be indexed like arrays. Arrays and pointers in C are closely
related. Arrays behave like pointers to the first element of the array. If t
is an array, the reference to the ith element of the array (t[i]) is defined
as *(t+i). As the latter is a valid expression for any typed pointer p as
well, C allows the usage of p[i] for the typed pointers too.

Pointer arithmetics makes pointers a very flexible and efficient tool in C,
which has largely contributed to the popularity and success of the language.
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Referene type in C++

In addition to pointers inherited from C, C++ has introduced reference types
as well. For a type T , $T&$ denotes the reference type to T . A reference is
similar to a constant pointer. References must be initialized at declaration, and
from that point on they behave like an alternative ”name” – an alias – to the
memory area used at initialization. For reference types there is no need to denote
reference operation, any type T can automatically be converted to its reference
type $T&$ .

In the case of reference types, there is no need to explicitly indicate derefer-
ence either. As the reference itself is constant after initialization, all operations
apply to the referenced object. The most important usage of reference types is in
the formal parameter list of subprograms. By using reference types we can realize
call-by-reference argument passing in C++. C only supports call-by-value. For
out and in-out parameters8 we have to use pointers in C. However, pointers
are not guaranteed to be initialized, their usage is risky. References are always
initialized, they offer a lot safer alternative in C++.

Pointers to onstants

Let us assume that p is a pointer to an integer type. Using dereference, we can
access the object it points to, and we can change the object, e.g. by adding
another integer to it. Let us assume that c is an integer constant. If we could
assing the reference of c to p, we could modify the value of c through p because
at the point of dereference it is not possible to decide whether the referenced
object is a constant or not. To prevent such errors, it is not possible to assing
the reference of a constant object to a pointer.

To resolve this restriction, C and C++ have introduced the constant type
const T for each type T . T and const T are distinct types; therefore, their
pointer types are distinct as well. We get a compile time error if we try to modify
the referenced object through a const T* pointer. The conversion from T to
const T is automatic; likewise T* can automatically be converted to const T*.
Therefore, a const T* pointer can point to non-constant objects of type T . Such
a pointer is a constant view of the variable object.

The most common usage of constant types – constant pointers in particular
– is in the formal parameter list of subprograms. If the subprogram does not
want to modify the value of the referenced object, it is a good practice to
use the constant pointer type. This has two advantages. First, it makes the
subprogram safer as it cannot change the value of the program accidentally – if
it still changes the value, we get compilation a error. Second, the subprogram
will be more widely applicable as it can be invoked with constant objects in

8 Depending on the direction of communication, parameters of a subprogram can be in, out
or in-out. For the latter two the subprogram can modify the values of the actual parameters.
For further details, see Chapter 7
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the actual parameters. The following example shows the implementation of the
standard library function strcpy:

char* strcpy(char* dest, const char* src)

{

char *d = dest;
while (*src != ’\0’) *d++ = *src++;

*d = *src;

return dest;
}

. . .

char buffer1[100], buffer2[100];

strcpy(buffer1, "Hello world!");

strcpy(buffer2, buffer1);

Ada 95 distinguishes access types based on whether it is possible to modify
the referenced object via the access. This distinction is made in the declaration of
the access type. Only read only (constant) access types can reference constants.

type IntegerAccess is access all Integer ;
type ConstantIntegerAccess is access constant Integer ;

IP : IntegerAccess;
KP : ConstantIntegerAccess;
I : aliased Integer := 21 ;
K : aliased constant Integer := 42 ;
begin

IP := I ’Access; −− Correct.
IP := IP + 1 ; −− Correct.
IP := K ’Access; −− Compilation error!
KP := K ’Access; −− Correct.
KP := KP + 1 ; −− Compilation error!
KP := I ’Access; −− Correct.
KP := KP + 1 ; −− Compilation error! KP is constant view of I.

end;

Notice that updating the access KP is allowed as the access itself is not
constant, only the object it points to.

5.7 Expressions

Expressions in programming languages are usually the function calls – including
operators –, evaluations of variables and constant and combinations of these.
Expressions are essential for implementing computations. In some languages,
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such as C or C++, expressions are the simplest statements of a program. In
ALGOL 68 all statements, including control statements, are considered units,
i.e. expressions.

5.7.1 Struture of expressions

An important property of functions is arity, that is, the number of arguments
the function accepts – functions of arity 1 are called unary functions, functions
that accept two arguments are called binary, and in general, functions accepting
k arguments are k-ary. In this section if we need to explicitly denote the arity
of a function we will use a superscript like fk. Constants can be treated like
functions of arity 0. If we loosen our definition of functions a bit, variables and
the control statements, blocks and other units of ALGOL 68 may also be treated
as functions, and thus expressions are just function calls nested at arbitrary
levels.

Operators are special functions. The primary difference is in the notation
used to invoke these functions and the identifiers used to denote them. The set of
operators in most languages is fixed. Even in languages which allow overloading
of identifiers (see Section 7.6), overloading operators may not be supported. For
example in Java, method identifiers of classes can be overloaded but operators
cannot. Very few language allows creating new operators. One of these languages
is Eiffel.

Operators are typically indentified by symbols (e.g. +, -, /, *, ++, <, etc.)
instead of names, though in some languages there are named operators as well –
for example new or delete in C++. The other difference compared to ordinary
functions is the form of applying operators. Ordinary functions are usually
called using prefix notation – the name of the function is followed by the list
of arguments –, where the arguments are listed in parentheses. The reason for
this form is that programming languages allow functions of arbitrary arity, and
the parentheses helps the compiler to determine the list of actual arguments –
f(arg1, . . . , argk). The arity of operators is fixed – even if the language supports
operator overloading, it is not possible to change the arity of the operator.
Therefore, there is no need for the parenthesis. Operators are often used in
infix and postfix notation as well, especially when this is the common usage of
the operator in mathematics.

Operators can be used in four different notations:

• In prefix – or Polish – notation, operators precede their arguments in
expressions – e.g. for a k-ary operator: opk arg1 . . . argk. As the arity of
operators is fixed and well known, such expressions can easily be processed
and evaluated from right to left. Unfortunately, this notation is quite hard
for human readers – for example -*bb**4ac is the prefix form of b2 −4ac.

• In postfix – or reverse Polish – notation, the operator is placed after
the operands – e.g. for a k-ary operator: arg1 . . . argk opk. The example
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above in postfix notation is bb*4a*c*-. These expressions are also very
easy to evaluate using a simple algorithm and a stack: from left to right
processing, if the next item is an operand – variable or constant –, it is
pushed to the stack. If a k-ary operator is encountered, k elements are
poped from the stack, the operator is evaluated on them, and the result
is pushed back to the stack. At the end of the processing, the stack will
contain a single element, the value of the expression. Notice that during
the evaluation we used the fact that the arity of the operators is known.

• In infix notation, binary operators are placed between the two operands
in arg1 op2 arg2 form. This notation is used in mathematics, and there-
fore, it is the common notation of arithmetic operators. The drawback
of this notation is that the evaluation is ambiguous. When evaluating
the expression b*b-4*a*c, the order of evaluating operators cannot be
determined based on syntax. To disambiguate this expression, we need
two more notions precedence and associativity which are discussed in
detail in Section 5.7.1.

• Mixfix operators do not properly fit the groups above. An example is
the conditional expression operator of C-like languages, which has the
form of 〈condition 〉 ? 〈expression-1 〉 : 〈expression-2 〉.Another group of
examples are the control statements of ALGOL 68.

Programming languages usually support a mixture of prefix, infix, postfix
and mixfix operators. Unary operators – having only one parameter – often use
prefix notation, though for example the ++ and -- operators of C-like languages
can be used both in prefix and postfix form. Their mode of evaluation actually
differs in the two notation, and in C++, which supports overloading operators,
the two forms can have completely different implementations as well.

Binary mathematical operators, such as arithmetic operators or relational
operators, are typically used in infix mode as this is the standard notation
in mathematics. However, there are exceptions as well. In CLU all functions
are called in prefix notation, the arguments are listed in parentheses, after the
identifier of the function. To simplify the writing of mathematical expressions
and to improve their readability, CLU provides an alternative notation called
syntactic sugar for certain function calls. The binary add(a,b) function call
can be written as a + b as well. It is important to notice that this is simply
an alternative notation which the compiler replaces with the original prefix
form function call as a preprocessing step, before attempting to interpret the
expression at all. This means that the a + b notation is usable on any type if it
has a binary function called add .

Functional languages, such as LISP, often prefer prefix notation for arithmetic
operations as well. An interesting property of LISP is that – due to the extensive
usage of parentheses – associative operators can be used with arbitrary arity
without any ambiguity. For example, the expression ( + 1 2 3 4) is a 4-ary
addition which evaluates to 10.
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5.7.2 Evaluating expressions

In the previous section, we have defined expressions as function calls embedded
at arbitrary levels. To help the description of expression evaluation, we will define
the notion of expression tree:

• The expression tree of a zero argument function – including variables or
constants – consists of a single node labeled with the function;

• The root of the expression tree of a k-ary function (k > 0) is labeled with
the function, and it has k subtrees, that is, the expression trees of its k
operands;

• The root of the expression tree of a control statement is labeled with the
control statement, and it has edges pointing to the roots of the expression
trees of the expressions used in the control statement.

The evaluation of an expression is simple if we have its expression tree. The
tree needs to be evaluated in a bottom-up order, starting with the leaf nodes.

• A leaf node is always a 0-argument function, variable or constant. It can
be evaluated at any time.

• A node representing a k-ary function can be evaluated once all of its direct
descendants have been evaluated. The value of the node is the result of
the function applied on the values of the operand nodes. If fk be the label
of the node and the values of the direct descendants are v1, . . . , vk, the
value of the node is fk(v1 . . . , vk).

• To evaluate a node labeled with a control statement, we need to execute
the statement in its label. During the execution we may have to evaluate
the direct descendant expression trees several times. The value of the
node is the value of the last evaluated expression.

Figure 5.3: Expression tree of the expression b2 − 4ac
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Figure 5.3 is the expression tree of the expression b2 − 4ac. From the prefix
-*bb**4ac and postfix bb*4a*c*- variants, we would get the exact same tree.
Both forms lead to the same syntax tree. In these notations by the means of
syntax we can ensure unambiguous semantics.

The results are much less clear when using infix notation. The expression
tree in Figure 5.3 matches the expression b*b-4*a*c, but so does the tree in
Figure 5.4 as well.

Figure 5.4: Expression tree for the expression b(b − 4)ac

In case of infix notation, the means of syntax are not enough to unambigu-
ously define the expression tree and thereby the semantics of the expression.
This problem is not specific to programming languages; in fact this notation is
borrowed from mathematics. To achieve unambiguity, mathematics uses a sec-
ondary tool, the so called precedence. Operator precedence is a rule used to define
the order of evaluating operators in a mathematical expression. This rule states
that in the expression b2 − 4ac, we first need to calculate the multiplications,
then the subtraction; and therefore, the correct interpretation is the one shown
in Figure 5.3. The ordering defined by the rules of precedence can be overridden
by using parentheses.

By using precedence, we can classify the operators; which, however, is not
enough to completely resolve the ambiguity of expression trees. Operators of
the same precedence level can be present in the expression. There are different
operators on the same level – e.g. addition and subtraction – and the same
operator may be used multiple times in the expression. In mathematics this is
not a problem – operations can be performed in arbitrary order, as it does not
affect the end result. However, in the world of computers this is not always true.
Assume that we have a small program written in Ada. We use an integer type
with a type-value set of the −100 . .100 interval, and we want to evaluate the
expression 70+70−50 . In Figure 5.5 we can see the possible expression trees
for this expression. From the point of view of mathematics the two trees give
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the same result. However, in light of the (known) details of the implementation
there is a subtle difference between the two. If we use the first variant, the
result will be 90 , as expected. However, if we use the second variant we get a
CONSTRAINT ERROR exception because a partial result (i.e. 70+70 ) falls
outside of the permissible range of the used type.

Figure 5.5: Two different expression trees for the expression 70 + 70 − 50

We have a similar problem when evaluating the expression 10 ∗ 10/100. The
mathematical value of the expression is 1, regardless of the evaluation order, but
the result can be very different in many programming languages. In mathematics
it is 10/100 = 0.1, while in most programming languages the value of the
expression 10/100 is 0. The reason for the difference is that in mathematics
there is only one division operator, and the ”type” of the operation – whether it
is integer or real – is determined after performing the division. However, in most
programming languages the type of an expression depends only on the types of
the operands, and it is determined at compilation time. In many programming
languages the operator / denotes integer division, and therefore, its result is an
integer too.

To resolve these ambiguities and determine the order of evaluation of opera-
tors of the same precedence level, the notion of associativity has been introduced.
An operator is called left associative if the evaluation of the expression v1 ⊙ v2 ⊙
· · · ⊙ vn happens from left to right, i.e. it corresponds to the evaluation of the
expression (. . . (v1 ⊙ v2) ⊙ . . . ) ⊙ vk). Similarly, right associative operators are
evaluated from right to left. The direction of associativity within a precedence
class is uniform; therefore, it defines the evaluation order for mixed use of the
operators as well. The evaluation order can be overridden using parentheses.

The majority of operators in most programming languages are left associa-
tive. C-like languages show a more colorful picture. Table 5.2 summarizes the
operators of C in a decreasing order of precedence, defining the direction of
associativity for each precedence class.
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Prec. Operators Associativity

1. Parentheses: ( and ) none
2. Function calls: (), member selection: -> and . left to right
3. Unary operators: sign operators: + -, boolean

negations: !, arithmetic (bitwise) negation: ˜,
reference: &, dereference: *, pre- and postfix
increment: ++, -decrement: –, typecast: (〈type 〉),
size: sizeof

right to left

4. Multiplicative operators: multiplication: *, modu-
lus: %, division: /

left to right

5. Additive operators: addition: +, substraction: - left to right
6. Bitwise shift: left: <<, right: >> left to right
7. Relationa operators: <, <=, > and >= left to right
8. Equality: ==, inequality: != left to right
9. Arithmetic (bitwise) ”and”: & left to right

10. Arithmetic ”exclusive or”: ˆ left to right
11. Arithmethic ”or”: | left to right
12. Boolean ”and”: && left to right
13. Boolean ”exclusive or”: ˆˆ left to right
14. Boolean ”or”: || left to right
15. Assignment: =, +=, -=, *=, /=, %=, & =, ˆ=, |=, <<=,

and >>=

right to left

16. The comma operator: , left to right

Table 5.2: Precedence classes and their directions of associativity in C.

The precedence of operators and their directions of associativity are not
modifyable in most languages. An interesting exception is ALGOL-68, where
the developer can specify the precedence of non-unary operators on a scale from
1 to 10. The codesnippet below will print 45:

begin
prio +=3, *=2 ;
print(6 + 3 * 5 );

end

5.8 Other language speialties

In this section we will discuss other language peculiarities related to types, which
did not fit in the with taxonomy-driven overview provided above.

5.8.1 Ada: Type derivation and subtypes

In Ada types may be created by using two methods.
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Figure 5.6: Difference between type derivation and subtyping

Subtypes are created by constraining the type-value set of an existing type.
Subtyping does not create a new type, it simply defines a designated subset
of the base type (see part a. of Figure 5.6). Therefore, objects of the subtype
are objects of the base type as well. They can be assigned to each other; the
assignment is correct at compilation time, but during execution a range check
is performed. If the range check fails, a CONSTRAINT ERROR exception is
raised. In the sample below we may see two standard subtypes of the language:

subtype Natural is Integer range 0 . .Integer ’Last;
subtype Positive is Integer range 1 . .Integer ’Last;

In contrast to subtyping, type derivation creates new types by ”copying”
an existing type (see part b. of Figure 5.6). The derived type will use the
representation of the base type and will inherit its set of operations, which,
however, will be treated as a completely independent set. The derived type is
a new type, assignment between the two types is considered invalid. However,
the language allows the use of explicit – interpretation changing – conversion
between them.
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What are the benefits of type derivation? Assume that we need to create an
application which can determine speed (v) based on distance (s) and time (t)
by using the well-known equation v = s/t. Distance, time and speed are real
quantities which suggests the following solution:

S : Float := 42.0 ;
T : Float := 21.0 ;
V : Float := S * T ;

However, the solution contains a ”small” error and it will produce false re-
sults. Finding this error might require tedious testing and debugging, depending
on how deep this small calculation is embedded into our system.
The improved solution below uses type derivation:

type Distance is new Float range 0.0 . . Float’Last;
type Time is new Float range 0.0 . . Float’Last;
type Speed is new Float range 0.0 . . Float’Last;

function "/"(S : Distance; T : Time) return Speed is
begin

return Speed(Float(S)/Float(T));
end "/";

S : Distance := 42.0 ;
T : Time := 21.0 ;
V : Speed := S / T ;

In the solution above, we have created three distinct types for the three
physical quantities and have defined a division operation which only allows the
division of distance by time and ensures that the result is speed. To implement
this operation, we have to use the conversion between the base type and the
derived types. In the example, this has been the only operation between these
types, which has prevented the error of the first example. Even if we define, for
example, multiplication between Speed and Time, the operation ensures that
the result is of type Distance, which cannot be assigned to any other variable.
Overall, by using the strong typedness of Ada, we may express semantic relations
between these quantities, which the compiler can verify at compilation time.

5.9 Summary

In the following, we summarize what aspects of the languages we need to examine
when studying its type system:

• Is the language strongly or weakly typed?
What kind of type checks are made by the compiler? Is the type of
objects, variables, functions, subprogram formal parameters, etc. known
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at compilation time? These question are fundamental for the usage of
a language. Strongly typed languages are Ada, CLU, Java, C++, etc.;
weakly typed languages are Smalltalk, Perl, JavaScript, dBase, etc.

• Does the language use type classes?
As we have seen the types of programming languages may be assigned
to the type classes defined in our taxonomy or to some other similar
taxonomy. Sometimes these type classes are used consciously in the spec-
ification, and they are applied consistently in various constructs of the lan-
guage. For example in Ada the type class determines the set of operations
available for a type and the usability of the type. Type classes also appear
as the ”type” of the formal parameters of generics. In other languages
the role of type classes is weaker but still present. For example in Pascal,
arrays can be indexed by discrete types and there are operations which are
uniformly applicable to all discrete types. Finally, in some languages the
classification of types is quite artificial, which only helps when comparing
the languages to each others. Such languages are C or FORTRAN.

• What are the built-in types of the language?
The set of built-in types shows a great degree of similarity in the languages
though there are smaller differences, e.g. in the precision of representation
of numeric types. Nevertheless, there are types that are rather rare, e.g.
the type of complex numbers which is supported in a few languages (e.g.
FORTRAN or ALGOL 68) only.

• Does the language support enumeration types?
Enumeration is the simplest type construction method, yet programming
languages are divided in supporting it. Even modern languages such as
Java – before Java 5.0 – or Eiffel do not support it, or provide only
”syntactic-sugar-like” support for enumerations. However, the example
of Java shows that there is great demand for this type construct among
developers.

• If there is no enumeration in the language, is there an idiomatic way to
substitute it?
We have seen some examples of how enumerations can be substituted in
languages which do not support it like the labeled unions of CLU, the
unique declarations of Eiffel, or the type safe enum pattern of Java. In
the study of these solutions, an important criterion of evaluation is if and
how they provide type safety.

• What are the integer types of the language?
All programming languages support some built in integer types, but they
show a great variance in terms of type-value set. In most languages,
integer types are based on the integer arithmetics built into the CPU
– mostly for performance reasons – but the actual set of types can vary.
Usual ones are the 8, 16, 32 or 64-bit signed or unsigned integer types,
but in case of Python we have seen an example of a built-in integer type
which is only bound by the size of memory.



212

•
Data types

• Does the language have a boolean type?
In many languages, there is some boolean type, but for example in C
integers play the role of booleans.

• If there is a boolean type, does it belong to enumerations or integers?
Even those languages which have a built-in boolean type show variance
on where it belongs in the type taxonomy. In Pascal or Ada the boolean
type belongs to enumerations, it has enumeration-like properties. In other
languages, such as CLU or Delphi it belongs more to integer types.

• Are boolean operators lazy or greedy or does the language support both?
The majority of languages support lazy evaluation only, but as we have
seen Ada, CLU and Eiffel offer a choice for the developer. Binary boolean
operators of these languages have a lazy and a greedy version as well.

• Is the character type an enumeration or an integer type?
Similarly to boolean type, character types are half way between integers
and enumerations. In some languages – e.g. C, C++ or Java – they fall
under the category of integers, in other languages such as Ada or Pascal
they are enumerations.

• Does the language define character encoding?
This question is mostly relevant in languages where characters are an
integer type. In the case of C we have seen that the language is mostly
independent of the actual encoding, while Java explicitly specifies the
encoding to be used.

• What real types does the language support?
Most languages nowadays use the floating point arithmetics defined in
IEEE 754 mainly becuase this is supported by most modern, generic pur-
pose CPUs. However, there are different levels of precision. Additionally,
some languages – for example, Ada – support fixed point representation
as well.

• What memory management does the language support?
In the case of C or C++, we have seen examples where the developer is
fully responsible for memory management. However, most object-oriented
languages support garbage collection instead of explicit deallocation.

• If the language supports garbage collection, does it still allow explicit
deallocation?
When implementing performance critical systems, it might be necessary
for the developer to take full control over memory management. Some
languages, which are essentially garbage collection based – for example
Ada –, offer means for the developer to explicitly deallocate certain ob-
jects. In other languages, it is possible to trigger garbage collection at
least – e.g. in Java using the System.gc() method call.

• Does the language support untyped pointers?
C and Pascal have a pointer type which is untyped, meaning it points
to no particular data types. The advantage of this pointer type is that it
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is convertible to all typed pointers. Such pointers are inherently unsafe;
therefore, many languages do not support it. In modern object-oriented
languages where there is a common class hierarchy, references of the
common base class offer a much safer alternative.

• Does the language support subprogram pointers?
In C, C++ or Ada 95, pointers can reference subprograms, which can be
invoked through the pointer. Other languages such as Ada 83 or Java do
not offer such possibility, but functors can replace subprogram pointers
in object-oriented languages.

• Does the language have a reference operator?
In Ada 95, C or C++, it is possible to obtain a pointer to an automatic or
static variable using a reference operator. Other languages limit pointer
types to dynamic variables only.

• Is there constant pointer in the language?
Can a pointer be constant? Can a pointer point to a constant? Can a
constant be modified through a pointer?

• What are the specifics of the type system of the language?

5.10 Exerises

Exercise 5.1. Give an example of a strongly typed programming language which
is not staticly typed!

Exercise 5.2. What is the type of the following literals in Java?

5465435 ’\u2343’

123 "\u2343"

’a’ "\\u2343"

3.14

Exercise 5.3. Compare the advantages and disadvantages of fixed and floating
point representations!

Exercise 5.4. What are the risks of using integer constants as a substitute for
enumerations?

Exercise 5.5. Create an enumeration type in Java for the days of the week.
Provide a solution for Java 1.2 as well as for Java 5.0.

Exercise 5.6. What is the difference between the following two expressions of C:
$A&B$ , $A&&B$?

Exercise 5.7. What is the value of the expression 3 / 2 in C, Ada and Pascal?
Explain the difference!
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Exercise 5.8. What is the difference between lazy and greedy boolean operators?
Give examples for the application of each!

Exercise 5.9. Why is the following C language code snippet incorrect?

long* find(long *first, long *last, long value)

{

long *p = first;
while (p <= last) {

if (*p == value) {

return p;

}

p += sizeof(long);

}

return NULL;

}

Exercise 5.10. Why do we need the aliased qualifier for automatic variables in
Ada 95 if we want to use the reference operator on them?

Exercise 5.11. Create a program to evaluate expressions given in reversed Polish
notation!

Exercise 5.12. What does forward declaration mean and why do we need it?

5.11 Useful tips

Tip 5.1. The difference between strongly types and statically typed languages is
that the former only requires that the language guarantees that the usage of types
is consistent, while the former requires knowing the exact type at compilation
time. Consider the effects of polymorphism.

Tip 5.2. Consider the literal definitions of Java and the type-value set of the
primitive types.

Tip 5.3. Consider the precision loss of operations and the elements of the type-
value set. Notice that some property being advantage or disadvantage depends
on the application!

Tip 5.4. Consider how many ways an enumeration value can be abused if its
actual type is integer.

Tip 5.5. In Java 5.0 enumerations can be defined simply by listing their elements,
the syntax is very similar to C/C++ enums. The same could be achieved before
Java 5.0 by a class. Keep in mind that enumerations are: typesafe, ordered, can
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be converted to and from Strings, can be compared using the == operator and
they can be enumerated. Try to make sure your implementation satisfies all these
requirements!

Tip 5.6. Consider the difference between bit arithmetics and boolean operations!

Tip 5.7. Consider how the different languages handle the fact that 3/2 is not an
integer value!

Tip 5.8. Consider boolean expressions where evaluating the second argument
has some side effect!

Tip 5.9. Consider what p=p+1 means for a pointer p in C pointer arithmetics!
What is the result of p += sizeof (long)?

Tip 5.10. Consider what happens if you set a global reference to an automatic
variable and the execution of the corresponding block is finished?

Tip 5.11. Evaluation of an expression in reverse Polish notation can be done
with the help of a stack. The expression is read token-by-token from left to
right. If the next token is an operand – variable or literal – then it is pushed
to the stack. If the next token is an operator with arity n then n elements are
popped from the stack, the operator is applied to them and the result is pushed
to the stack. If the expression was well-formed, at the end of the algorithm –
after processing the last token – there is only one element at the bottom of the
stack which is the value of the expression.

Tip 5.12. Consider recursive data constructs (lists, trees, etc.) which are imple-
mented by using pointers. How do we define the required types?

5.12 Solutions

Solution 5.1. In staticly typed programming languages the type of all expres-
sion can be determined at compilation time. A programming language is called
strongly typed is it guarantees that the type of all expressions is consistent, even
if the exact type of the expression cannot be determined. Clearly all staticly
typed programming language is strongly typed. The simplest example of strongly
typed programming languages which are not staticly typed are strongly typed
object oriented programming languages which support polymorphism, such as
Java, C++ or Ada95. In these languages the exact type of certain variables,
functions or expressions cannot be determined at compilation yet the consistency
of all expressions is guaranteed by the language. For example in the following
Java example the dynamic type of o can literally be anything. Yet, the expression
printing the object is consistent:
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String className = System.in.readLine();

Class c = Class.forName(className);

Object o = c.newInstance();

System.out.println(o.toString());

Solution 5.2. 5465435 : int
123 : int
3.14 : float

’a’ : char
’\u2343’ : char

"\u2343" : String
"\\u2343" : String

Solution 5.3. Fixed and floating point representations complement each other in
terms of features. Whether these are advantages or disadvantages depends on
the usage.

The precision of fixed point types are is defined as the number digits they
can represent. This precision loss of fixed point operations is independent of
the operands, it only depends on the precision of the type. This property can
be important for example in accounting applications. The drawback of this
representation is that fixed point types cannot efficiently represent very small
and very large values at the same time. A given number of digits has to be split
up between the integer part and the fraction.

The precision of floating point numbers is defined as the number of digits
used to represent the mantissa and the exponent. The precision loss of floating
point operations depends on the scale of the operands and the scale of the result
as the mantissa always contains the most significant digits of the represented
value. This property allows making calculations with numbers of different scale
which is often a requirement in scientific applications.

Solution 5.4. There are multiple risks:

• Lack of type safety: the value of one enumeration ”type” can be assigned
to a variable of another. Or even to any integer variable.

• Similarly, any integer value can be assigned to any enumeration, even
values outside of the typevalue set.

• The enumeration ”types” inherit a large set of operations (e.g. arith-
metics) which is not meaningful for them but which are defined not
only for the type but for any pairs of enumeration types or even for
enumerations and integer types.

Solution 5.5. Java 1.2 (or rather ”before Java 5.0”):
public final class DayOfWeek implements Serializable, Comparable {

private static final long serialVersionUID = 358506482305518507L;
private static int counter = 0;
private static final List VALUES = new ArrayList();

public static final DayOfWeek SUNDAY = new DayOfWeek("SUNDAY");
public static final DayOfWeek MONDAY = new DayOfWeek("MONDAY");
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public static final DayOfWeek TUESDAY = new DayOfWeek("TUESDAY");
public static final DayOfWeek WEDNESDAY = new DayOfWeek("WEDNESDAY");
public static final DayOfWeek THURSDAY = new DayOfWeek("THURSDAY");

public static final DayOfWeek FRIDAY = new DayOfWeek("FRIDAY");
public static final DayOfWeek SATURDAY = new DayOfWeek("SATURDAY");

private final String name;
private final int ordinal;

private DayOfWeek(String name) {

this.name = name;
this.ordinal = counter++;

VALUES.add(this);
}

public static DayOfWeek[] values() {
DayOfWeek[] res = new DayOfWeek[VALUES.size()];

for( int i = 0; i<res.length; ++i ) {
res[i] = (DayOfWeek) VALUES.get(i);

}
return res;

}

public String name() {

return this.name;
}

public static DayOfWeek valueOf(String name) {
for( Iterator i = VALUES.iterator(); i.hasNext(); ) {

DayOfWeek d = (DayOfWeek) i.next();
if( d.name().equals(name) ) return d;

}
throw new IllegalArgumentException("No enum constant " +

DayOfWeek.class.getName() + "." + name);

}

public String toString() { return this.name; }

// Overriding readResolve to ensure that only one object with a given

// ordinal can exist. This guaratees the e1.equals(e2) implies e1 == e2
private Object readResolve() throws java.io.ObjectStreamException {

return VALUES.get(ordinal);
}

public int compareTo(Object o) {
return this.ordinal-((DayOfWeek)o).ordinal;

}
}

Java 5.0:

public enum DayOfWeek {

SUNDAY,

MONDAY,

TUESDAY,

WEDNESDAY,

THURSDAY,

FRIDAY,

SATURDAY
}
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Solution 5.6. The expression $A & B$ is an arithmetic (bitwise) ”and” operation
between A and B. A and B must be some integer type or a type that can
automatically be converted to an integer type. The result of the operation will be
an integer type too, the smallest integer type both A and B can be automatically
converted to.

The expression $A && B$ is a boolean ”and” operation between A and B. A
and B can be any type that can be converted to an integer type, any non-zero
value represents the boolean value true, zero represents false. The result will
be of integer type. The value will be 1 if both operands were true (non-zero)
otherwise the result will be 0.

Solution 5.7. In C the value will be 1 as operator / with integer operands denotes
integer division. The type of the expression is int. Due to automatic conversions
of C, this can then be assigned to various integer types.

In Ada the result is 1 too but the type is Universal Integer , a special type of
Ada, which can automatically be converted to any integer type. This is the type
of all integer literals to make sure that they can be assigned to variables of any
integer type.

In Pascal, the type of the expression is some real type and the value is 1.5.
Even though the operands are integer literals, the operator / in Pascal denotes
real division.

Solution 5.8. The difference between lazy and greedy boolean operators is that
in case of lazy operators the second operand is not evaluated if the value of
the expression can be determined based on the first operand only. For example
in ADA the expression A or else B, if the value of A is true, the expression
B never gets evaluated. If A and B are side effect free expressions, this is a
simple performance enhancing optimization. However, if evaluation of expression
B has some side effect, we might want to force the evaluation of B even if the
result does not contribute to the value of the expression. For this cases Ada
offers the operator or, the greedy version of or else, which always evaluates both
arguments. Similarly the boolean and operation can also have greedy and lazy
variants. Many programming language offers only one version - typically the
lazy one - though there are some, such as Ada or Eiffel where both variants are
available for the developer.

Solution 5.9. The code snippet demonstrates a typical mistake in using C pointer
arithmetics. The developer wants to advance the pointer p to the next long value
in the array of longs and adds the size of long (the number of bytes occupied
by a long value) to pointer p. However, in case of typed pointers adding 1 to
a pointer advances the pointer by 1 unit of the referenced type, in our case by
sizeof(long). Therefore, if for example sizeof(long) is 8, p+=sizeof(long) will
advance p by 8 longs.

Solution 5.10. Normally, automatic variables are allocated in the call stack and
they are cleaned up when execution of the corresponding block of code is finished.
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If an external (global) reference is set to such a variable during the execution of
the block, the reference will point to an invalid memory address after the block
is finished. To prevent this, Ada does not allow references to point at ordinary
automatic variables. The aliased qualifier, introduces in Ada 95, informs the
compiler that we might want to set a reference to an automatic variable. Such
variable will then be allocated on the heap; therefore they can survive finishing
the declaring code block.

Solution 5.11. import java.util.HashMap;

import java.util.Map;
import java.util.Stack;
public class ReversePolishEvaluator {

static interface Expression {
public Integer evaluate( Map<String, Integer> variables);

public int getArity();
public void setArguments(Expression[] args);

}
static abstract class InfixOperationExpression implements Expression {

protected Expression left;

protected Expression right;
public int getArity() { return 2; }

public void setArguments(Expression[] args) {
if( args.length != 2 ) throw new IllegalArgumentException(

"Invalid arguments: " + args);

this.left = args[0];
this.right = args[1];

}
protected abstract String getSymbol();

public String toString() {
return "(" + left.toString() + getSymbol() + right.toString() + ")";

}

}
static class AddExpression extends InfixOperationExpression implements

Expression {
public Integer evaluate(Map<String, Integer> variables) {

Integer l = this.left.evaluate(variables);
Integer r = this.right.evaluate(variables);
return Integer.valueOf(l.intValue() + r.intValue());

}
protected String getSymbol() { return "+"; }

}
static class SubExpression extends InfixOperationExpression implements

Expression {

protected String getSymbol() { return "-";}
public Integer evaluate(Map<String, Integer> variables) {

Integer l = this.left.evaluate(variables);
Integer r = this.right.evaluate(variables);

return Integer.valueOf(l.intValue() - r.intValue());
}

}

static class MulExpression extends InfixOperationExpression implements
Expression {

protected String getSymbol() { return "*"; }
public Integer evaluate(Map<String, Integer> variables) {

Integer l = this.left.evaluate(variables);

Integer r = this.right.evaluate(variables);
return Integer.valueOf(l.intValue() * r.intValue());

}
}

static class DivExpression extends InfixOperationExpression implements
Expression {

protected String getSymbol() { return "/"; }
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public Integer evaluate(Map<String, Integer> variables) {
Integer l = this.left.evaluate(variables);
Integer r = this.right.evaluate(variables);

return Integer.valueOf(l.intValue() / r.intValue());
}

}
static class VariableExpression implements Expression {

private final String variableName;

public VariableExpression(String variableName) {
this.variableName = variableName;

}
public Integer evaluate(Map<String, Integer> variables) {

return variables.get(variableName);
}
public int getArity() { return 0; }

public void setArguments(Expression[] args) {
throw new UnsupportedOperationException(

"VariableExpression has no arguments.");
}

public String toString() { return this.variableName; }
}
static class LiteralExpression implements Expression {

private final Integer value;
public LiteralExpression(Integer value) { this.value = value; }

public Integer evaluate(Map<String, Integer> variables) { return value; }
public int getArity() { return 0; }
public void setArguments(Expression[] args) {

throw new UnsupportedOperationException(
"LiteralExpression has no arguments.");

}
public String toString() { return value.toString(); }

}
static class ExpressionTokenizer extends java.util.StringTokenizer {

private static final String DELIMITERS = " \t\n\r\f,";

private static final String ADD = "+";
private static final String SUB = "-";

private static final String MUL = "*";
private static final String DIV = "/";
public ExpressionTokenizer(String expression) {

super(expression, DELIMITERS);
}

public Object nextElement() {
String token = super.nextToken();

Expression res = null;
if( token.equals(ADD) ) {

res = new AddExpression();

} else if( token.equals(SUB) ) {
res = new SubExpression();

} else if( token.equals(MUL) ) {
res = new MulExpression();

} else if( token.equals(DIV) ) {

res = new DivExpression();
} else {

try {
Integer value = Integer.decode(token);

res = new LiteralExpression(value);
} catch( NumberFormatException ignore ) {

res = new VariableExpression(token);

}
}

return res;
}

}

public static void main(String[] args) {
if( args.length == 0 ) help(null,0);
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Expression exp = parseExpression(args[0]);
Map<String, Integer> variables = parseArgs(args);
System.out.println(exp.toString()+"="+exp.evaluate(variables));

}
private static Map<String, Integer> parseArgs(String[] args) {

Map<String, Integer> vars = new HashMap<String,Integer>();
for(int i=1; i<args.length; ++i) {// args[0] contains the expression

int p = args[i].indexOf(’=’);

if( (p<1) || (p==args[i].length()-1) ) {
help("Invalid variable specification: " + args[i], -1);

}
String name = args[i].substring(0, p);

Integer value = Integer.decode(args[i].substring(p+1));
vars.put(name,value);

}

return vars;
}

private static Expression parseExpression(String exp) {
Stack<Expression> s = new Stack<Expression>();

ExpressionTokenizer et = new ExpressionTokenizer(exp);
for( ; et.hasMoreElements(); ) {

Expression next = (Expression) et.nextElement();

if( next.getArity() == 0 ) s.push(next);
else {

Expression[] args = new Expression[next.getArity()];
for( int i = 0; i<args.length; ++i ) args[i] = s.pop();
next.setArguments(args);

s.push(next);
}

}
return (Expression) s.pop();

}
private static void help(String message, int exitCode) {

if( null != message ) System.err.println(message);

System.err.println("Usage:\n\t" +
ReversePolishEvaluator.class.getName()+

" <expression> [<variable>=<value>]...");
System.exit(exitCode);

}

}

Test is with the arguments: ”c x b ∗ x x a ∗ ∗ + +” a = 1 b = 2 c = 3 x = 5

The output should be: ((((a ∗ x) ∗ x) + (b ∗ x)) + c) = 38

Solution 5.12. Forward declaration of an identifier is a statement for the com-
piler. It declares the existence of some construct without giving its full definition.
In the case of data types this means that we declare that the type with the given
name exist but do not specify its structure at all.

The typical use case of forward declarations is the definition of recursive data
types which use pointers. Consider the following code snippet in C:
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struct Node;

typedef struct Node* BinaryTree;

struct Node {

int data;

BinaryTree left;
BinaryTree right;

};

BinaryTree create(int data) {

BinaryTree res = malloc(sizeof(struct Node));

res->data = data;

res->left = NULL;

res->right = NULL;

return res;

}

The snippet is the definition of a BinaryTree data type. The struct Node
represents a node of the tree, the tree itself is represented as a pointer to its root
node. A node consists of three components: the data stored in the node, which
is an integer value in the example and pointers to the left and right child nodes.
The data structure is recursive. For the definition of the struct Node we need the
definition of the struct Node* pointer type. But we can define pointer types for
existing types only. To resolve this ”chicken and egg” problem, we use forward
declaration. We inform the compiler that the type struct Node exists, without
giving a definition. However, the representation of the struct Node* pointer type
does not depend on the internal structure of struct Node. Hence we can define
the pointer type and after that we can give the definition of the type struct Node
as well.
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No matter how rich the set of data types built into a
programming language is, it will not be enough to
solve all possible problems. In order to create usable
models of the world, the language needs to provide
means to create new types. Enumerations are one
such means of creating a new type by simply
enumerating its type-value set. In this chapter we
look at the many composition methods which the
different languages offer. By using these methods we
show how new types can be created on the basis of
existing types.



I

n the previous chapter we have seen the built-in data types which are available
in almost all programming languages. They form a useful but basic toolset,
which is far from enough for solving real life problems. Therefore, most

programming languages1 provide methods for extending the existing set of data
types and for combining existing types into new ones.

In this chapter we will categorize the different type composition methods
into three categories. We do not necessarily have all the three in a particular
programming language and they do not necessarily have the same form; yet,
they do preserve some of their generic properties, which we can study. These
archetypical type composition methods are the following:

• Cartesian product types,
• Union types,
• Iterated types.

These names are the abstract names of these type constructs. Different
programming languages can use different names for them and there can be
variations between their realizations as well. First, we will study the common
properties of these type constructs and then we will have a look at the specifics
of certain languages. To emphasize the distinction between the construction in
general and its realization in different languages, when we refer to a construct
in general, we will use the abstract names given above. When referring to the
language specific realization, the language specific term for the type construct
will be used.

As in the previous chapter, when introducing types, the type composition
methods will be described by the type-value set and by the operations of the
created constructs.
1 Interestingly, there are programming languages which offer no type composition methods.

Assembly languages and some domain specific languages do not have this feature. For
example SuperNova is a DSL designed for manipulating database tables and it has no
type composition support. Nevertheless, generic purpose programming languages – with
the exception of assembly languages – do offer type composition methods.
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Note: this chapter will focus on the type composition methods of imperative
programming languages. The composite types of functional programming lan-
guage are discussed in Chapter 15, while Section 16.4 provides an introduction
to data structures of logic programming languages.

6.1 Type equivalene

Equivalence of types is a crucial question of programming languages. The type-
checker of a statically typed language must verify that the type of any expression
is consistent with the type expected by the context in which that expression ap-
pears. Type equivalence determines if the value of an expression can be assigned
to a particular variable, which formal parameter an actual parameter corresponds
to, etc. In the context of type composition, we need to reconsider our definition
of equivalence. Consider the following – Ada language – example:

R: Array(1 . .10 ) of Integer ;
S, T : Array(1 . .10 ) of Integer ;

Similar declarations are possible in most programming languages. The ques-
tion is the relationship between the types of R, S and T .

Many strongly typed programming languages – including Ada – would con-
sider the types of all three variables distinct. The form used to declare S and
T is just a shortened variant of two distinct declarations. A variable declaration
like above implicitly contains the declaration of an anonymous type as well. As
the type is anonymous, we have no means to reference it later in any form. The
three variable declarations create three – distinct – anonymous types. Therefore,
due to strong typing, assignment between these variables is not allowed. Such
languages consider types equivalent only if their names are equal. Therefore, the
type equivalence of these languages is called name equivalence.

C uses a different equivalence definition. Writing multiple variable names in
the same declaration – separated by comma – is semantically different from writ-
ing separate declarations with exactly the same type structure. In the example
below, b and c has the same – anonymous – type, while a has a different one.

struct {

int x;

} a;

struct {

int x;

} b, c;

. . .

b = c; /* Valid assignment */
a = b; /* Invalid assignment */
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Another difference is that by using the typedef keyword, we can introduce
aliases to existing types. typedef does not create a new type just provides an
alternative name for the same type. This form of type equivalence is called
declaration equivalence, because two types are equivalent, if they lead back to
the same original declaration.

struct A {

int x;

};

typedef struct A T1;

typedef struct A T2;

struct A a;

T1 b;

T2 c;

. . .

c = a; /* Valid assignment */
a = b; /* Valid assignment */
b = c; /* Valid assignment */

The other extreme end of type equivalence is structure equivalence, which
considers two types equivalent when their structures are isomorphic, regardless
of their names. Such equivalence is used for example in Modula-3. Obviously,
this equivalence definition significantly weakens the type safety of the language
as it considers semantically distinct types equivalent because they have the same
representation. The following two type definitions are equivalent in Modula-3:

TYPE Stack = RECORD
top: INTEGER;
elements: ARRAY(1 . .100 ) OF CHAR;

END;

TYPE Text = RECORD
length: INTEGER;
text: ARRAY(1 . .100 ) OF CHAR;

END;

6.2 Mutable and immutable types

Another aspect of classifying types is mutability. An object is called immutable
if its state cannot change after it has been created. A type is called immutable if
its type-value objects are immutable. If the state of an object can change after
creation, it is called mutable.
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Even immutable types can have operations which ”modify” the type-values.
The difference is that these operations always create a new object instance, which
represents the result of the operation. The code snipped below is an immutable
implementation of complex numbers in Java:

public final class Complex {

private final double re;

private final double im;

Complex(double re, double im) {

this.re = re;

this.im = im;

}

public Complex add(Complex z) {

return new Complex(re + z.re, im + z.im)

}

. . .

}

The class uses canonical representation of complex numbers. The two fields
of the object store the real and imaginary parts of the number. The fields
have a modifier final, which ensures that the fields cannot get new values after
initialization. This ensures the immutability of the object. Nevertheless, the type
has an add operation, which adds a complex number to this object. The operation
does not modify this, but rather creates a new object which represents the sum
instead.

This solution might appear uneconomical and inefficient. Firstly, as in the
case of evaluating a complex expression, a large number of temporary objects
need to be created and destroyed until we get the final result. Indeed, if object
creation is ”expensive” for a particular type, it is not recommended to make it
immutable. However, immutable types have numerous advantages. Probably the
most important one is that immutable types are inherently thread-safe, when
using them in a multi-threaded application they can be safely shared between the
execution threads without the need for any synchronization mechanism. As the
object state cannot change, it cannot happen that a thread accesses the object
in a partially updated, inconsistent state. Another advantage is that immutable
objects can be safely shared between objects as well. Multiple objects can safely
reference the same instance of an immutable type even if they have no semantic
relationship. Modifications made through one instance will not interfere with the
other. This way we can save lots of memory in our applications.

Depending on the nature of the problem at hand, use of immutable types
makes our application safer, sometimes more efficient as well. Therefore, it is
recommended to examine what support the different programming languages
provide for implementing immutable types. The example above demonstrates
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how immutability in Java can be achieved. Java alone makes use of this feature:
it provides a large number of immutable classes in its standard libraries, e.g.
String, BigNumber , Integer and all other wrapper classes of the primitive types
are immutable. However, Java has no explicit means to declare a type immutable.
We will see examples – e.g. in CLU – which make immutability an explicit
property of the type.

For the effective use of immutable types, it is important for the language
to store objects by reference. Immutable objects stored by value are constants,
meaning they cannot be modified. Support of garbage collection is also very im-
portant, otherwise the burden of dealing with creating and destroying temporary
objects during expression evaluation would make the type completely unusable.
Thus, both CLU and Java share these properties, and they both use immutable
types.

6.3 Cartesian produt types

Assume that we design an application which manages the data of employees of
a company. We have to store many different pieces of data about an employee:
name, address, bank account number, salary, social security number, etc. We
need this data with reference to every single employee. Furthermore, we need
to keep the data which belongs to the same employee together as related data.
Such relationships can be expressed using cartesian product types.

A cartesian product is a very common composition method supported by
most languages (the exceptions are, for example FORTRAN and BASIC). It is
typically called struct(ure) or record. However, classes of object-oriented pro-
gramming languages are also special cases of cartesian product.

6.3.1 Type-value set

The declaration of a cartesian product typically consists of the enumeration of
its component types and their respective selectors (see Section 6.3.2). The Ada
code snippet below is a possible representation of the employee data from the
example above:

Type Employee Type is record
Name : Name Type;
Address : Address Type;
AccountNumber : AccountNumber Type;
Salary : Salary Type;

End record;

The identifiers ending with Type are the names of the component types,
while the identifiers before the colons designate the selector of the corresponding
component.
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In cartesian products we can use the same component type – Ti – multiple
times, but all selector names must be different. The order of specifying compo-
nents is also relevant, as it may affect the memory usage of the cartesian product
(see Section 6.3.3). In languages which use structural equivalence, two cartesian
products are equivalent if their component types and their order of specification
are the same.

Taking all this into consideration, the formal definition of cartesian product
type is the following: T1, T2, . . . Tn are types and T1, T2 . . . Tn are their type-value
sets, respectively. The type T is the cartesian product of the types T1, T2, . . . Tn

if its type-value set is T = T1 × T2 × · · · × Tn.

6.3.2 Operations

Next, we will look at the operations of the created cartesian product type.

Seletors

The most important operation of cartesian product types is selection. If we have
a type-value t ∈ T , where t = (t1, t2, . . . tn) ∧ ∀i ∈ [1 . . . n] : ti ∈ Ti, we likely
want to access the ti component values.

The functions si : T → Ti are called selectors if ∀i ∈ [1 . . . n] : si(t) = ti

using the notation above. Very often the type of the value of si is not Ti but Ti

reference,2 because through them we can modify the value of the corresponding
component. In other words si is an L-value3 even in those languages which
otherwise do not support reference types.

Most programming languages use selectors in a qualified form – instead
of si(t) the notation t.si is used. The selectors are identified as part of the
declaration of the cartesian product.

The selectors – often called fields or members of the type – provide access
to the components of the cartesian product. Through them we may apply the
operations of the component type to the corresponding component. Selectors
are available in all languages supporting cartesian products as without them
the constructed types would unusable.

Assignment

Selectors are essential in all languages, but the support for assignment is a lot
controversial. The natural definition of the assignment of cartesian products

2 See Section 5.6 for details about reference types.
3 An L-value – locator value – represents an object with an identifiable location in memory,

in fact a reference. An important property of L-values is that they can stand on the left side
of assignments.
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is the component-wise assignment. Unfortunately, this approach may not be
applicable if one of the components have no assignment operations.4

Some languages do not consider these risks, and define assignment operation
for cartesian products automatically. For example, in C the assignment of structs
is performed by copying the corresponding piece of memory byte by byte. It is
the responsibility of the developer to avoid using assignment when the semantics
is not appropriate.

A safer solution is offered by Ada where the developer can prevent assignment
by declaring the type limited. Non-limited cartesian products have an implicit
assignment operation which corresponds to the component-by-component as-
signment. This assignment operation is not allowed for limited types. Using a
limited type as a component of a non-limited type leads to a compilation error.

A much more flexible solution would be if we could define the assignment op-
eration ourselves. Unfortunately, in Ada, the assignment operation is a statement,
which cannot be overridden by the developer. In C-style languages, assignment
is an operator. If such a language (e.g. C++) supports operator overloading (see
Section 7.6.1 for details), a solution is to override the default semantics if it is
not suitable for a particular type. We can even prevent assignment – achieve
similar semantics to that of limited types in Ada – by restricting the visibility
of the assignment operator (see Section 4). An important consequence of this
flexibility in C++ is that it cannot apply simple memory copying in the default
implementation of assignment operator, but rather it has to perform assignments
component by component. This way it can be ensured that the potentially
overridden assignment operations are applied on the component types.

Constants

When dealing with assignment, we also need to check if the language allows
the declaration of constants of the cartesian product type. Constant variables
need to be initialized at the place of declaration. Therefore, to support them the
language must allow the assignment of the cartesian product types, and we have
to have means to specify the value. It can happen by referencing a variable –
which raises the question how it has been initialized – or we need other means
to create instances of cartesian products.

In object-oriented languages we can use the constructors of the type, which
initialize an instance of the type based on some arguments. In non-object-
oriented languages, if the language supports dynamic evaluation and function-
like subprograms, we can create functions which return cartesian product ob-
jects. There exists another possibility if the language supports cartesian product
literals (see Section 2.4 for details). Consider the following example in Ada:

4 For example, if the corresponding component is a file, it is not guaranteed that it has
assignment operations.
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type Complex is record
RE : Float := 0.0 ;
IM : Float := 0.0 ;

end record;
type Point is record

X : Float := 0.0 ;
Y : Float := 0.0 ;

end record;
I : constant Complex :=(0.0,1.0 );
Z : Complex ;
P : Point;
begin

Z :=(42.0,42.0 );
P:=(42.0,42.0 ); −− Aggregate type is Point, inferred from context.
Z :=Complex ’(1.0,1.0 );−−Direct indication of the type of the aggregate
P:=(Y =>1.0, X=>1.0 );

end;

Cartesian product literals – called record aggregate – are typed in Ada. In
the initialization of the constant I , or in the first assignments to Z and P the
type of the aggregates are inferred by the compiler. Therefore, though formally
the aggregates assigned to Z and P are identical, they will be of different types.
Nevertheless, it is more readable if the expected type is explicitly indicated as in
the second assignment to Z . In the first assignments, the aggregates are specified
using positional notation; the first value is assigned to the first field – in the
order of declaration –, and the second vale is assigned to the second field. The
last assignment demonstrates the use of named components. Positional notation
is more compact; however, named components have a number of advantages:

• The code is more readable, it is clear which value corresponds to which
component;

• The type of the aggregate is clearer;
• Components can be specified in an arbitrary order;
• The compiler can print more elaborate diagnostic messages.

Cartesian product literals are supported by other languages as well. For
example in C and C++, literals can be specified by listing the values of the
fields between curly braces – { and } –, but the type of the literal cannot be
specified and named components are not supported, either.

Equality hek

The natural semantics of equality is that two cartesian product objects are equal
if they have the same set of components and the component values are equal. The
challenges listed at assignment are present here as well but there are additional
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complexities which prevent the trivial solution of byte-by-byte comparison of the
corresponding pieces of memory. These issues are discussed in detail in Section
6.3.3. However, as a consequence of these additional challenges, programming
languages are more restrictive on equality check of cartesian products. For ex-
ample, in C the assignment of struct is allowed, but the equality is not defined
for them.

WITH Statement

In Pascal-like languages, there is a special operation for cartesian product –
record – types called WITH. A WITH statement specifies a record variable and
a statement sequence. In these statements, the qualification of field identifiers
may be omitted, if they are to refer to the variable specified in the with clause.
The following code snippet is from Modula-2:

TYPE DateType = RECORD
year : YearType;
month: MonthType;
day: DayType;

END;
TYPE ManType = RECORD

name: NameType;
bithday: DateType;

END;
VAR

myDarling: ManType;
BEGIN

WITH myDarlin.birthday DO
year := 1974 ; month := January; day := 22 ;

END;
END;

Usage of WITH statements simplifies access to fields of records and makes the
code more readable, especially when dealing with records embedded at several
levels.

6.3.3 Representation of artesian produt types

The representation of cartesian product types in memory is often language
specific. Nevertheless, there are properties and characteristics which are common
to most languages.

The physical representation of a cartesian product usually contains the com-
ponents in their declaration order. Each component is represented according
to the representation defined in its type. This is logical, the implementation of
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the operations of the type will not change just because a particular object is a
component of a cartesian product. At least usually.

In Ada for certain fields it is possible to specify their physical representation
within the record, which may differ from their ”natural” representation. The
solution is provided by the selectors. Selectors can hide the actual representation
from the operations of the type. When accessing a component through the selec-
tor, it can perform the required conversion between the different representation.
Such conversion requires intricate knowledge of the represented types.

The example below (from [Ada95]) is the declaration of a record type which
represents the state of a program. In the execution environment this state is
represented on two words (64 bits altogether), where individual bits or small
groups of bits have distinct functions. The specified record is an abstract, high-
level, and strongly typed representation of this state descriptor.

Normally this record would be represented on several bytes according to
the representation of the different component types. However, the fields of this
record type are mapped to the corresponding bits of the state descriptor using
the specified record representation clause. The usage of this clause help access of
the components of this compact state descriptor through a strongly typed view
which suits the strongly typed type system of Ada, and uses the built-in data
types of the language. The usage of standard types and the representation clause
also greatly improve the readability of the code, and ensure that all particularities
of the used representation are described at a single location in the code.

Word : constant := 4 ;−−storage element is byte, 4 bytes per word

type State is (A,M,W,P);
type Mode is (Fix, Dec, Exp, Signif );
type Byte Mask is array (0 . .7 ) of Boolean;
type State Mask is array (State) of Boolean;
type Mode Mask is array (Mode) of Boolean;

type Program Status Word is
record

System Mask : Byte Mask;
Protection Key : Integer range 0 . . 3 ;
Machine State : State Mask;
Interrupt Cause : Interruption Code;
Ilc : Integer range 0 . . 3 ;
Cc : Integer range 0 . . 3 ;
Program Mask : Mode Mask;
Inst Address : Address;

end record;
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for Program Status Word use
record

System Mask at 0*Word range 0 . . 7 ;
Protection Key at 0*Word range 10 . . 11 ;−−bits 8,9 unused
Machine State at 0*Word range 12 . . 15 ;
Interrupt Cause at 0*Word range 16 . . 31 ;
Ilc at 1*Word range 0 . . 1 ; −− second word
Cc at 1*Word range 2 . . 3 ;
Program Mask at 1*Word range 4 . . 7 ;
Inst Address at 1*Word range 8 . . 31 ;

end record;
for Program Status Word’Size use 8*System.Storage Unit;
for Program Status Word’Alignment use 8 ;

Consider for example the field System Mask. Its type is Byte Mask, an array
of boolean values. The representation of Boolean is implementation specific,
meaning it always takes at least one byte (see Section 5.4.3), but typically
more, for better performance. However, the representation clause allocates 8
bits altogether to the whole array. The compiler must represent each element of
the array on exactly one bit.5 These bits function as some sort of state indicators,
handling them as an array of booleans matches their function much better than
interpreting System Mask as an unsigned integer. Mapping the bit to an array
makes their access simpler and the resulting code more readable.

Representation clauses are powerful tools when implementing a low-level
system program, e.g. a device driver or a communication protocol. However, in
most cases we do not want to specify the representation of our cartesian product
types bit by bit, but leave it for the compiler. The order of components in the
representation usually matches their declaration order in the type specification,
and normally the usual representation of the component type is used. However,
often the compiler adds padding to the components to ensure that they start at
special addresses in the memory, e.g. at word boundaries. This is an optimization
which makes the access of these component faster in memory. Clearly, the
size of padding depends on the computer architecture, language, and even the
realization of the language too. This usage of padding makes it difficult to check
the equality of two cartesian product objects by comparing their representation
byte by byte. Byte by byte comparison includes the padding as well. However,
these bytes are often uninitialized, meaning their value is not specified.

6.3.4 Language speifi features

Many programming languages have additional, language specific feature which
make cartesian products in that language more flexible or safer to use.

5 Though the specification of the language ([Ada95]) allows the use of representation clauses,
not all compilers are able to generate code in line with to them.
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Default values

In the declaration of Ada record types we may specify the default initial value
of fields. When an instance of the type is created, the corresponding field is set
to its default value. This feature is particularly useful when the record is used
in the representation of an abstract data type. By using the default value we
can ensure that the invariant of the type is true after creating the instance (see
Section 9 for further details). In the following snippet the default salary of each
employee is 100000 forints.6

type Employee Type is record
Name : Name Type;
Address : Adress Type;
Bankaccount : Bankaccount Type;
Salary : Salary Type := 100000 ;

end record;

Cartesian produt types of CLU

The realization of cartesian product type in CLU is unique in several ways. One
of the peculiarities is that – similarly to all type composition constructs of the
language – there are two cartesian product variants in the language. One of them
is the mutable record , the other is the immutable struct . The other unique
feature is that the selectors are implemented as real subprograms. And due to
the difference between the mutable and immutable constructs, the corresponding
selectors are different as well.

Selectors in CLU are not functions which return a reference to the corre-
sponding component of the type, but rather they are pairs of subprograms which
are automatically defined for each component of the cartesian product. These
subprograms represent the two distinct tasks of a selector: reading and writing
the value of the corresponding component. In the following code snippet we can
see the definition and selectors of a record type:

EmployeeType = record [ name : NameType,

address : AddressType,

bankaccount : BankAccountType

salary : SalaryType

]

boss : EmployeeType :=

EmployeeType${ name: "Tim L. Eader",

address: "42 Carrot Street",

bankaccount: "12345678-87654321",

salary: 800000

}

6 Forint (HUF) is the currency of Hungary.
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salary: SalaryType := EmployeeType$get salary(boss)

EmployeeType$set salary(boss,salary+100000)

The function get salary is used to read the value of the field salary and
its value is updated using the procedure set salary. These subprograms are
automatically generated for the field salary and similarly a get 〈fieldname 〉 and
set 〈fieldname 〉 subprogram pair is created for each field. As these subprograms
are not qualified by the name of the record, it needs to be passed as parameter
to them.

The immutable struct types also have get operations for reading the field
values, and update procedures in the form of replace 〈fieldname 〉. This differ-
ence emphasizes the semantic difference between the mutable and immutable
types. While the set procedures simply update the corresponding field of the
record, the replace operations create new structs which are identical with
the old ones in all fields but the one being replaced, which will contain the new
value.

Note: CLU supports the more ”traditional” qualified notation of selectors as it
is more compact and developers are more familiar with its application. However,
that notation is just ”syntactic sugar”, that is, simplified notation of calling the
get , set or replace subprograms described above. Qualified references are
automatically replaced by the compiler with the corresponding subprogram call.

6.4 Union types

Let us assume now that we have to create an application for handling demo-
graphic data. About males we have to store their names, addresses and the length
of their military service in years. As we have seen, this can be solved using a
cartesian product type. About females we have to store their names, addresses
and maiden names. This can be done using another cartesian product. However,
now we are faced with the problem that the population of a country consists of
males and females. How can we express that each citizen of the country is either
a male or a female? The solution is the union composite type.

Union as a type composition method is less widely used, and therefore less
widely supported construct. Languages such as BETA, Oberon, Python or the
dBase language family do not support it at all. In modern, object-oriented
languages its role can be fulfilled using inheritance and polymorphism (see
Chapter 10). Therefore, it is not supported in Eiffel, Java or Smalltalk, either.

Given that sometimes we need to use more traditional, non object-oriented
languages, it is worth discussing it briefly. Another consideration is that in
object-oriented languages, the union of types can be created with arbitrary types,
whereas in the inheritance based solution the component types of the union must
have a common base class, that is we have to know in advance whether they will
have to be components of a union.
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6.4.1 Type-value set

The declaration of a union type includes the list of component types and their
corresponding selectors. However these declarations show such wide variety that
they will be introduced among the language specific features. Nevertheless, in
each case the type value set of a union type is the union of the type-value sets
of the component types, so the formal definition is as follows:

Let T1, T2, . . . Tn be types and let T1, T2 . . . Tn denote the corresponding type-
value sets. The type T is the union of types T1, T2, . . . Tn if its type-value set is
T = T1 ∪ T2 ∪ · · · ∪ Tn.

6.4.2 Operations

As in the case of declarations, the set of operations is also very language specific.
Selectors can be defined for union types as well, but their function is very different
from the selectors of cartesian product types.

Formally, the si : T → L
7 function is the selector function for the component

type Ti if ∀t ∈ T : (si(t) = true ⇐⇒ t ∈ Ti). However, very few programming
languages implement selectors in this format with this semantics. Due to the
wide variety of implementations, it is more correct to speak about ”union like”
type composition methods, and to examine them one by one.

Tagged and free union

In strongly typed languages the compiler is responsible for verifying that the
types of operands in an expression are consistent. These verifications are made
during compilation time by considering – among others – the fact that the
types of variables are determined at compilation time, and cannot change during
execution, and that these variable can contain objects compatible with the type
of the variable only. However, this assumption cannot be fulfilled if the language
supports union type composition.

If we could create unions of arbitrary types, the compiler would have no
means to determine consistency of a variable expression as the validity of the
expression would depend on the actual type of the object stored in the variable,
which is a runtime property. This is similar to the concept of polymorphism in
object-oriented languages but is more unsafe as there is no requirement for the
component types to meet – there is no common base class. Hence, the compiler
has no information about the set of operations available for the corresponding
object.

Though there are many – formally different – solutions for this problem,
essentially there are two main approaches only:

• One possible solution is to use runtime type checking. If the language –
at runtime – verifies that the dynamic type of the object stored in the

7
L is the set of boolean values, i.e. L = {true, false}
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variable is compatible with the context, we call the union tagged. Such a
type always has a tag which indicates the dynamic type of their value.
The price of these solutions is the runtime cost of checking this tag.

• The other alternative is that the language makes no runtime verification,
and thus the developer is responsible for ensuring the consistency of usage.
This solution focuses on runtime efficiency and simplified code generation.
The union construct which makes no runtime type checking is called free
union.

6.4.3 Union-like omposite types

union types of ALGOL 68

Probably the union construct of ALGOL 68 matches the definition of union
types best. The following code snippet is the definition of NumberType as the
union of integer and real types.

mode union (int, real) NumberType;
NumberType number ;
. . .
number := 3 ;
number := 3.14 ;
. . .
case number in

(int i): print(("integer", i)),
(real r): print(("real", r))

esac

Both assignments are valid in the example, the variable number can contain
integer and real values as well. The type of the current value is determined by
using a special variant of case statement. This matches the formal definition of
selectors.

The value of the number variable – unless assigned to another variable of
NumberType – can only be accessed within the case statement. This structure
ensures type safety – that is if we want to use the value of number as integer, it
can only happen in the int branch of the case structure, which is executed only
if the dynamic type of number is integer.

union types of C

C took over many things from ALGOL 68; nevertheless, there are significant
differences. The following code snippet is a C language example:
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typedef union {

MaleType male;

FemaleType female;

} HumanType;

In the example we define HumanType as the union of MaleType and FemaleType.
An object of HumanType will occupy enough memory to be able to store either
an object of MaleType or an object of FemaleType.

The selectors male and female do not help in determining the dynamic type
of an object of HumanType. In C the selectors of union types are used to access
the memory area of the object as if it were an object of the corresponding
component type. In other words they function as interpretation changing type
conversions (see Section 5.1.4). The language provides no means to determine the
dynamic type of the union, that is, it cannot verify if the actual value is indeed
of MaleType or of FemaleType. This makes the use of union types difficult and
unsafe and it can easily lead to errors which are hard to discover and fix, such
as in the following example:

#include <stdio.h>

typedef char NameType[100];

typedef struct {

NameType name;

int was in army;

} MaleType;

typedef struct {

NameType name;

NameType maiden name;

} FemaleType;

typedef union {

MaleType male;

FemaleType female;

} HumanType;

int main() {

MaleType m = {"John Doe",1};

HumanType h;

h.male = m;

printf ("Name: %s\nMaiden name: %s\n",h.female.name,

h.female.maiden name);

return 0;

}
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The example can be compiled without a warning, but when executing the
program the printed maiden name will be gibberish, the program might even
stop with some runtime error.

Neither the language, nor the compiler offer any means to prevent this error.
The developer is responsible for ensuring the safe usage of union types. The
following snippet offers one possible solution:

typedef enum { MALE, FEMALE } GenderType;

typedef struct {

GenderType gender;

union {

MaleType male;

FemaleType female;

} data;

} HumanType;

In the example we manually implement the selectors defined in the formal
definition of union types by wrapping the union in a struct and adding an extra
gender field. This also means that the union is pushed one level lower in the type
structure, it becomes accessible via the data selector of the top-level struct, and
the former reference h.female.name becomes h.data.female.name, etc. Notice
that it is still the responsibility of the developer to ensure consistency between
gender and the actual value of data. It is possible to change the gender of a
human without updating his or her data. Similarly, the developer is responsible
to verify the value of gender before trying to access data.

As structs can be used as components of unions, equality check is not sup-
ported on unions. However assignment is allowed as it can be performed simply
by copying the corresponding piece of memory byte by byte.

union types of C++

The union types of C++ are very similar to C as backward compatibility with
C was an important design goal of the language. This essential requirement has
lead to some very interesting compromises.

In C++ structs are variants of classes (for the definition of class – see Chapter
10), in fact, they are equivalent. Classes of C++ can define constructor methods.
The compiler is responsible for ensuring the execution of a constructor when an
instance of the corresponding class is created. This is a very useful feature, as
the constructor is made responsible for the initialization of the object and for
ensuring its internal consistency upon creation. However, such strong support of
constructors can cause problems when trying to create a union of classes (e.g.
structs). In an object of a union type, objects of different classes can be stored
overlapping in the same piece of memory. Through the union, the corresponding
memory area can be accessed as any of the component types. However, running
the constructors is not possible, execution of a constructor would overwrite the
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results of the previous one. Even if there was a pointed component of the union
which could be used during initialization, the language would provide no means
to verify the dynamic type of the value of the union and thus the corresponding
memory area could be accessed through any of the selectors.

To resolve this conflict C++, has made some compromises. C++ restricts
the component types of unions. If a class has a non-trivial constructor, it cannot
be the component of a union. A class has a non-trivial constructor if it is a
subclass of a base class which has a non-trivial constructor, or if the definition
of the class contains a constructor definition. The trivial constructor of a class
makes no initialization. Unions of classes which only have trivial constructors
are safe, as the constructors cannot overwrite each others results. Besides, this
semantics is compatible with C which has no support for constructors. With the
given restriction, union of C++ is backwards compatible with C.

This solution is restrictive and a very artificial compromise. Luckily in C++
we have other means to achieve union-like semantics in the form of inheritance
and polymorphism (for details see Chapter 10). A base class in a class hierarchy
is the union of its subclasses and the instanceof operator functions as the selector
of the union, as it can be used for runtime verification of the dynamic type.

Tagged unions of CLU

Similarly to ALGOL 68, the union types of CLU are straightforward realizations
of the formal definition. In line with the philosophy of CLU, there are two union
types, the mutable variant and the immutable oneof . Both are tagged unions,
each component has a tag, which is stored along with the corresponding object
value. The selectors of the type can be used to verify the tags and ensure type-
safe usage of the unions. The following snippet is the CLU implementation of
the usual HumanType, omitting the details of the component type:

a woman: FemaleType${name: "Jane Deer", maiden name: "Jane Doe"}

a man: MaleType${name: "John Deer"}

HumanType = variant [ male: MaleType, female: FemaleType]

f : HumanType := HumanType$make female(a woman)

m : HumanType := HumanType$make male(a man)

h : HumanType := n

mm : MaleType

ff : FemaleType

tagcase e

tag male :

mm:=HumanType$vaℓue male(h)

HumanType$change female(h, a woman)

tag female (female tmp : FemaleType) :

ff := female tmp

end
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if HumanType$is male(h) then

mm := HumanType$vaℓue male(h)

HumanType$change female(h,a woman)

else

ff := HumanType$vaℓue female(h)

end

The semantics of the tagcase and if structures is the same. The tagcase

statement is very similar to the case structure of ALGOL 68 but it contains
some simplifications. The use of branch variable – as seen in the female branch
– is optional, we can use the value 〈tagname 〉 operations instead, which are
automatically defined for each defined tag. The is 〈tagname 〉 selectors can be
used to identify the actual tag of the variant . These operations are generated
automatically. There is a third – automatically defined – group of operations for
the variant structure, these are the change 〈tagname 〉 operations which can
be used to modify the value of the object. The operations also update the tag
accordingly.

In comparison to ALGOL 68, in CLU the relaxed syntax can lead to runtime
errors. For example the call below is syntactically correct, but can cause runtime
error if the value of f is a female.

mm := HumanType$vaℓue male(f)

On the other hand, by making the tags explicit the meaning of the compo-
nents can be differentiated from their type, and it is possible to use the same
type as a component multiple times.

The immutable version of union types is called oneof . It only differs from
the variant in that it does not have the change 〈tagname 〉 update operations.

Variant reord

The union-like construct of Pascal-type languages is the variant record. As the
name indicates, it is based on the record construct which is the realization of the
cartesian product type in these languages. Logically it is similar to the solution
we have used above for preserving type information in the case of C unions. The
snippet below is a possible implementation of HumanType in MODULA-2:

TYPE GenderType = (male, female);
TYPE MaleType = RECORD

name: NameType;
was in army: BOOLEAN ;

END;
TYPE FemaleType = RECORD

name: NameType;
maiden name: NameType;

END;
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TYPE HumanType = RECORD
CASE gender : GenderType OF
| male: m: MaleType;
| female: n: FemaleType;
END;

END;

In variant records there are pointed fields which affect the structure of the
record. The example above is the direct translation of the C language example,
but even this solution has an important advantage over C. The system – at
runtime – verifies the value of the gender field. If the field value is male, when
trying to access female part, or vice versa, we will get an error at runtime. This
cannot be prevented as the actual type of the variant record may just as well
depend on user input, and it is not possible to verify it at compilation time.
Nevertheless, the advantage of this solution is that the error is immediate and
guaranteed, while in C the error might be missed or its result can manifest later;
therefore, finding and fixing the error is much more difficult.

If we do not need to separate MaleType and FemaleType, we can have a
simpler solution as well:

TYPE GenderType = (male, female);
TYPE HumanType = RECORD

name: NameType;
CASE gender : GenderType OF
| male: was in army: BOOLEAN ;
| female: maiden name: NameType;
END;

END;

In this solution the overlapping parts of the MaleType and the FemaleType
are combined, and the variable part of the record only contains the gender-
specific fields. This solution does not fit the category of union in the classical
sense of notion as the component types of the union are only implicitly given.

From practical point of view, the tag fields of the record are not distinguished
from the other fields. However, when the value of the tag field changes, it may
mean a change in the record structure. As the representations of the different
variants are physically overlapping, changing the tag field might easily leave the
record in inconsistent state. It is the responsibility of the developer to ensure
the proper update of the variable part when the tag field is modified.

There is only one restriction for the tag field: it must be of a discrete type.

Disriminated reords of Ada

The discriminated records of Ada are the improved versions of variant records.
Discriminated records have parameters – called the discriminants of the type
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– and the structure of the record can vary depending on the value of the
discriminants. The snippet below is a solution for the above problem:

Type GenderType is (male, female);
Type HumanType(gender : GenderType) is record

name: NameType;
Case gender is

When male => was in army: Boolean;
When female => maiden name: NameType;

End case;
End record;

Syntactically discriminated records are very similar to the variant records of
Modula-2, but their behavior is significantly different. In line with the declaration
above, we need to specify the gender of the person whenever a new object is
created, and changing the gender later is not possible. This ensures that no
part of the record becomes undefined later. Unfortunately, this way the type
only partially functions as a union. The type-value set is union-like, but in each
object creation we restrict the type-value set to one of the component types, in
fact, we create a subtype of the union implicitly.

What is the use of such a construct then? We can use it as the type of formal
parameters of a subprogram, in which case we do not have to specify the value of
the discriminant. We can create subprograms that are equally applicable to male
and female categories, for example the one that prints the name of the person.
We can access the fields of the variable parts as well, but to make sure that the
referenced fields indeed exist, we need to verify the value of the discriminant.
Otherwise we will get runtime errors.

However, it is possible that we need a real union-like structure, that is we
want to create objects for which we can modify the value of the discriminant
after creation. This can be achieved by using a default discriminant. We modify
HumanType so that we can create object without specifying the gender:

Type GenderType is (male, female);

Type HumanType(gender : GenderType:=male) is record
name: NameType;
Case gender is

When male => wa in army: Boolean;
When female => maiden name: NameType;

End case;
End record;

M : HumanType(male);
F : HumanType(female);
H : HumanType;
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Begin
F := M ; −− The compiler warns here that the value of discriminant
H := M ; −− on the right hand side is not compatible and a
H := F ; −− Constraint Error exception will be raised at runtime.

End;

The example above shows three different ways of creating objects of HumanType.
When creating M , the memory reserved for the variable is suitable for storing
the data of a male. Similarly, when creating F , the reserved amount of memory
is enough for storing data of a female. Changing discriminant in these cases is
not allowed because it might also change the required amount of memory.

When the object H is created, its gender field will be male, and its structure
will be suitable for storing data of a male. However, in this case the compiler
allocates enough memory to store the object with any possible value of the
discriminant. This allows modification of the discriminant but we must update
the whole record to ensure that no field remains uninitialized.

The values of the discriminants cannot only control the set of fields, but also
the length of the fields of array types. In the code snippet below we define a Text
type which is an improvement of the built-in String type of Ada. The String type
is an unconstrained array, its index range is specified when an object is created.
However, the length of the text is fixed afterward. In the Text type, the length
of the text is variable within a range. The actual text is stored in a String but
we only use the first length characters:

Type Text(maxlength: Natural) is record
length : Natural := 0 ;
data : String(1 . .maxlength) := (others => ’ ’);

End record;

In practice we create a union of Texts with maximum length of 1 , 2 , . . . ,
Natural’LAST .8 It is important to note that the language allows the use of a
default discriminant here as well. However, the rule is the same – if we create an
object without specifying the value of the discriminant – i.e. by using the default
value – the compiler will allocate enough memory to store the object with any
value of the discriminant. In this example, this would mean allocating memory
for storing a String of length Natural’LAST characters, which would likely take
more memory than available on the platform.

6.5 Iterated types

Assume that our task is to administrate the students of a class in school. In the
previous sections we have seen how we can represent a single person – student –

8 The attribute Natural’LAST denotes the biggest element of the Natural type. The actual

value is implementation specific but it is at least 231 − 1.
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according to the requirements. Now the task is to represent the whole class as
the collection of its students. We need a type composition method which allows
the creation of sequences or sets of objects of an existing type. Such constructs
are called iterated types, and as we will see, they have a great number of variants
in the different programming languages.

This type composition method offers the widest variety of all. Unlike unions
and cartesian products, this construct is homogeneous, and it uses a single com-
ponent type.9 Another difference is that programming languages often support
more than one kind of iterated composite types.

The most common variants are the following:

• Array (or vector);
• Multi-dimension array;
• List;
• Hashtable;
• Queue;
• File;
• Set.

Programming languages often provide standard implementations of various
container data structures which are similar to these composite type constructs.
This chapter does not discuss these data structures. These structures are dis-
cussed along with standard library functions in Chapter 14. This chapter deals
with construction methods that are part of the core language, and which enable
the creation of composite types. Typically, the implementation of those library
types rely on the composition methods discussed in this chapter.

6.6 Array

Assume that we identify the students of our class by consecutive integer numbers,
and that we find students by their number. We need an iterated type which
enables efficient access to students based on their number. This construct is the
array. Arrays are probably the most widely supported and the simplest iterated
composite type. Almost all programming languages support them in some form.

6.6.1 Type-value set

There are two important components of the definition of an array: the type of
elements – values – and the index interval. The former requires simply naming the
type of values, and therefore, it is quite similar in all languages; by contrast, the
specification of the index interval shows wider variety. In certain implementations

9 Some associative data structures use two component types, one for the keys and one for the
values.



248

•
Composite types

of BASIC it can just as well be omitted, and then it defaults to the 0 . . . 10 integer
interval. If we need an array of different size, we can indicate that by specifying
the upper limit of the index interval. The lower limit is always 0.

In C-like languages10 arrays are defined by specifying their size, the number
of elements they can store. The index interval of an array of n element is the
0 . . . n − 1 integer interval. The ClassType defined in the following snippet can
store the data of 42 students:

typedef HumanType ClassType[42];

In Pascal-like languages, the index interval of an array can be a non-empty
range of an arbitrary discrete type. The following examples are in Ada, but there
is no significant difference in other languages either:

Type ClassType is array (1 . .42 ) of HumanType;

Type DwarfType is (Bashful,Doc,Dopey,Grumpy,Happy,Sleepy,Sneezy);

Type SevenDwarfs is array (DwarfType) of HumanType;

Type FiveDwarfs is array (DwarfType range Doc. .Sleepy) of HumanType;

There are programming languages between the two extremes as well. For
example in ALGOL 68, the index type must be an integer type, but any interval
can be used as index. The array constructs of CLU11 are also indexed with
integer values, but their interval is extensible.

Taking all this into consideration the formal definition of arrays is: let (H, ≤)
be a totally ordered finite or countable set – the index set or index type – and
T0 an arbitrary type, the value type. The type-value set of the A = array(H, T0)
array type is {a : [m . . . n] → T0|m, n ∈ H ∧ m ≤ n}. In other words, an a ∈ V
array is a mapping of an index interval to the value type.

Notice that the index interval can be specified in three different ways depend-
ing on the languages. In Pascal or C/C++ the index interval is static, defined
in the declaration of the type. In Ada we can create unconstrained array types
where the index interval is specified only when an array object is created. CLU
and Eiffel are even more flexible, they allow the dynamic modification of the
index interval.

6.6.2 Operation

The set of operations of array types are largely the same in all languages; there
are only a few specifics.

10 Just like in case of Pascal, many languages used C as the basis for their syntax definition.
Such languages include Java or C++.

11 In CLU there are two array constructs the mutable array and the immutable sequence .



6.6 Array

•
249

Seletion

The most important operation of arrays is selection. The natural definition of se-
lection suggests that for an arbitrary a ∈ A and i ∈ H selection is the evaluation
of a(i). Similarly to the cartesian products, this is a bit of oversimplification. In
most programming languages, a(i) is an L-value, the type of a(i) is not T0 but T0

reference (see Section 5.6 for details). Most programming languages do not make
this distinction in the specification of the language: they treat a(i) as of type T0,
yet allow using it on the left-hand side of assignments. This is so because the
full formal distinction would make the definition of the language very complex.
One of the exceptions is the specification of ALGOL 68. In that language the
type of variables is always a reference to some type T while the type of objects
is T . Assignment is always defined between a reference type – L-value – and the
referenced type – R-value – (see [Tan76] for details).

Notation of selection is quite uniform in the different languages, i.e. usually
the index is specified after the name of the array in square brackets (a[i]). One
of the few exceptions is Ada which uses parentheses (a(i)).

Assignment

Similarly to cartesian product types, assignment is much more controversial
operation. Many languages do not support it at all, claiming that an array can
be copied to another array by a simple loop. Or as another alternative, sometimes
the language offers an implementation as part of its standard libraries. On the
other hand, Pascal-like languages typically provide assignment support between
arrays of equal type and length.

6.6.3 Language speifi features

While the basic concepts are similar, programming languages provide many
interesting features for their respective array types. This section provides an
overview of the most interesting ones.

Arrays in C and C++

Pointers and arrays are closely related in C – an array is represented as the
pointer to its first element, and often they can be used interchangeably. For
example, the operation of selection is realized by replacing the expression a[i]
with the expression *(a+i) where + is the addition operator between integers
and typed pointers12 and * is the dereference operator. This equivalence has two
very interesting implications. Firstly, the selection operator can be applied to
any typed pointer (in the expression above a is used as a pointer). Secondly, the

12 C provides a very powerful pointer arithmetic toolset which is described in details in Section
5.6.
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selection operation in C is ”commutative”, a[i] and i[a] designate the same
element, because the + operator of pointer arithmetics is commutative.

Given this relationship between pointers and arrays, we can create generic
purpose subprograms which can handle arrays of arbitrary length – similarly to
unconstrained arrays of Ada – because in practice, the subprogram is always
invoked with the pointer to the first element. An important difference to Ada is
that the array type does not know its length, thus, we either need to specify the
length as a separate argument, or we need to use some special value to designate
the last element of the array.

C and therefore C++ treats selection as an operator. C++ supports operator
overloading which applies to the selection operator ([ ]) as well. By using this
property, we can define the selection operator for our own types, e.g. for different
container types (queues, hashtables, etc.).

6.6.4 Arrays in Java

Arrays of Java closely resemble arrays of C and C++ syntactically. However,
there are subtle differences in their semantics. It is not possible to declare named
array types in Java. For each type T there is an implicit array type T[ ]. This is
an unconstrained array type, as what we have in Ada. Arrays of Java are always
indexed by integers, the lower limit of the index interval is necessarily 0. The
length of an array is determined when the corresponding array object is created,
and an array of length n is indexed by the integer interval 0 . . . n − 1. Similarly
to Ada – but quite unlike C/C++ – arrays know their number of elements. For
an array a it is available as a.length.

Arrays in Ada

When declaring an array type in Ada we do not necessarily have to define the
exact index interval, it is enough to specify the index type. Any discrete type
can be used to index arrays. If only the index type is specified the array type
is called unconstrained. For such types the index interval needs to be specified
when an array object is created. This always generates an implicit, constrained
subtype (see Section 5.8.1) of the unconstrained array type.

The unconstrained array type cannot be used in variable declarations, but it
can be used as the type of formal parameters enabling subprograms to handle
any instance of the unconstrained type in a generic fashion.

type RealArray is array (Integer range <>) of Float;

function MaxIndex(T : in RealArray) return Integer is
MINDEX : Integer := T ’First;
begin

for I in T ’Range loop
if T(I ) > T(MINDEX) then
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MINDEX := I ;
end if ;

end loop;
return MINDEX ;

end Max ;

A: RealArray(1 . .4 ) := (5.0, 6.7, 2.11, 1.0123 );
MAX : Integer := MaxIndex(A);

In the example above, the variable MINDEX is initialized as T ’First. This
expression is a special operation – attribute – of the array type of Ada. It specifies
the lower bound of the index interval. Similarly, the attribute T ’Last specifies
the upper bound, while the attribute T ’Range designates the index interval –
range T ’First. .T ’Last – itself. Additionally, we may use the T ’Length attribute
which is the number of elements of array T . By using these attributes, we can
write generic purpose subprograms.

Ada allows assignment between arrays if they are subtypes of the same array
type and they have the same number of elements. This property is particularly
useful when combined with slicing (see below).

Arrays can be initialized as seen in the code snippets above and below. Array
aggregates are literals of type array. In positional array aggregates elements are
assigned to indexes based on their position (order). The first element will be
assigned to the lowest index, the second one to the second lowest index, etc. In
named array aggregates we can explicitly specify which element is assigned to
which index and we can use the others notation for the remaining, unspecified in-
dexes. Since the release of Ada 95, positional and named notations can be mixed
within the same aggregate, starting with positional notation and continuing with
named one. For example, see array C in the code snippet below.

There are two additional operations available for arrays in Ada: slicing and
concatenation. By using slicing we can create a subarray of an array by specifying
its index subinterval. The other operation is concatenation which can be used
to join two arrays if they are of the same base type. The following code snippet
demonstrates the usage of aggregates, slicing and concatenation:

type IntegerArray is array (Integer range <>) of Integer ;
A: IntegerArray(11 . .31 ) := (11 . .20 => 5, others => 42 );
B: IntegerArray(101 . .142 ) := (1, 2, 3, 4, others => 0 );
C : IntegerArray(1 . .42 ) := (1 => 7, 5 |6 |11 |41 => 6, others =>0 );
C := A & B(111 . .131 ); −− The index intervals do not have to match

Array types of CLU

As all other composite type construct, CLU has two variants of array types: the
mutable array and the immutable sequence.
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The index boundaries of arrays are modifiable. We can create an array as
empty – in this case the lower bound of the index interval is 1 while the upper
bound is 0 – or by enumerating its element in some sort of aggregate notation. In
the latter case we can also specify the lower bound of the index interval. There
are no multi-dimensional arrays, but we can create arrays of arrays.

IntegerArray = array[ int ]

ia1 : IntegerArray := IntegerArray$new()

ia2 : IntegerArray := IntegerArray$[3:42, 21, 14, 7, 6, 3, 2, 1]

i : int := IntegerArray$high(ia2)

while i >= IntegerArray$ℓow(ia2) do

e : int := IntegerArray$fetch(ia2, i)

IntegerArray$addℓ(ia1, e)

i := i - 1

end

The array ia1 is created empty by the constructor new while ia2 is initialized
with the positive dividers of 42 in descending order. The code copies the content
of ia2 to ia1 in a reverse order. The functions high and low are used to query the
index boundaries of ia2. CLU also offers a function size which is the number
of elements in the array. All three functions return integer (int) values. The
arrays of CLU are always indexed with integers; therefore, in their declaration
we only need to specify the type of the elements. Notice the array aggregate
used to initialize ia2. Syntactically it is a constructor call. The number before
the colon indicates the start index. The elements are listed after the colon; there
must be at least one element listed when this form is used.

For selection, we use the operation fetch in the example. Its opposite is
store which is used to update the array at a specific index. CLU supports the
short ia2[i] form – syntactic sugar – as well, which translates to either a fetch

or a store, depending on whether it is on the right or left side of an assignment.
The addl operation is used to extend the index interval of ia1 at the lower

end and insert the specified element at the new index. Symmetrically there is an
operation addh to extend the array at the upper end, and there are operations
reml and remh which retrieve and remove to element at the lower (upper) end
of the array, reducing the index interval.

The external behavior of sequence types is very similar to arrays. The set of
operations is mostly the same, though the update operations do not modify the
sequence object, but create a new instance as the result of the operation. Other
differences are that the operation store is renamed to replace and that the
lower index bound cannot be specified in the constructor (it is always 1). There
is an additional operation for concatenating two sequences called concat or | |.
Such an operation is not needed for the mutable array ; it can be implemented
by a simple loop moving the elements from one array to the other one by one.
The same implementation on the immutable sequences would mean the creation
of a large number of temporary objects and a lot of copying into them.
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6.6.5 Generalization � multi-dimensional arrays

Assume that we need to create a chess game. We need to store a chessboard and
for each square of the board we need to store the piece that occupies that place,
if any. The squares of the chessboard are identified by their coordinates, that is
by the coordinates of the rows and columns. The best construct to represent the
chessboard in the computer memory is a multi-dimensional array.

A multi-dimensional array is the generalization of the composite type array.
Let (H1, ≤1), . . . (Hd, ≤d) be ordered finite or countable sets, the index types and
T0 an arbitrary value type. The type value set of the A = array(H1, . . . , Hd, T0)
(multi-dimensional) array type is:
{a : [m1 . . . n1] × . . .×[md . . . nd] → T0|∀i ∈ [1 . . . d] : (mi, ni ∈ Hi ∧ mi ≤i ni)}.

Often, programming languages have no explicit support for multi-dimensional
arrays as they can be represented as arrays of arrays, provided that the language
allows the use of arrays as value type. The following code snippet illustrates how
we can create multi-dimensional arrays in C using this solution:

int a[42][42][42][42];

int **p;

int l = 0;

p = a[21][21];

l = (p[21][21] == a[21][21][21][21]);

As the example shows, we can omit indexes from right to left during selection.
The result is an array with lower number of dimensions showing that the created
construct is indeed an array of arrays embedded in the required depth. Notice
also the symmetry with pointers, each new dimension is expressed by adding a
new level of reference (see Section 5.6).

Other languages support multi-dimensional arrays but may impose a limita-
tion on the number of dimensions. For example FORTRAN 77 supports multi-
dimensional arrays but it requires implementations to support at least three
dimensions only. FORTRAN 90 kept this option for limited dimensions, but
increased the minimum required dimensions to seven.

In the languages which support multi-dimensional arrays there is a syntactic
difference between a multi-dimensional array and an array of arrays as illustrated
by the following code snippet written in Ada:

Type Vector is array(1 . .10 ) of Float;
Type Matrix is array(1 . .10, 1 . .10 ) of Float;
Type NonMatrix is array(1 . .10 ) of Vector ;
V : Vector ;
M : Matrix ;
NM : NonMatrix ;
M (3,4 ) := NM (3 )(4 );
NM (2 ) := V ;
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Notice the differences between the usage of Matrix and NonMatrix types. The
indexes of Matrix are written within the same pair of parentheses and indexes
cannot be omitted. In the case of NonMatrix , the different indexes are written
in separate pairs of parentheses, and they can be omitted from right to left.

Representation of arrays

Multi-dimensional arrays are multi-dimensional while computers typically use a
linear addressing model. Therefore, the elements of the array need to be put in
sequential order. Theoretically, arbitrary ordering could be used as long as we
are able to determine the address of the elements based on their indexes, but
this computation needs to be very efficient as it is used in every single selection
operation.

In practice two methods of ordering are used: row-major order and column-
major order. The idea behind the two is very similar, functionally there is no
difference between them. Some languages – for example FORTRAN, MATLAB
or R – use column-major representation, while PL/I or Python use row-major
ordering. The chosen representation might have an impact on performance when
traversing the array as loading elements from close memory locations is usually
faster due to caching used in the CPU. Otherwise the two representations are
equivalent.

To demonstrate how the addressing works in the case of row-major ordering,
consider the following example. Let A be an k-dimensional array which has
n1 × n2 × · · · × nk elements. The index intervals of the array are [0 . . . ni − 1] for
i ∈ [1 . . . k]. Let pk = 1 and for j ∈ [1 . . . k − 1]:

pj =
k

∏

i=j+1

ni−1

The base address of the array A is the address of element A(0, 0, . . . , 0) which
is denoted by Abase and let s be the size of the elements of A. With this notation
the addres of the element T (i1, i2, . . . , ik) is

Abase +
(

k
∑

j=1

ijpj

)

s,

6.7 Sets

Assume that the students in our hypothetical class can join a number of op-
tional courses and we need to store and decide if a particular student attends a
particular course. Therefore, for each student we need to store the set of courses
he or she attends.
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6.7.1 Type-value set

Let T0 denote an arbitrary element type and T0 be its type-value set. The type-
value set of the S = set(T0) set type is the 2T0 powerset, an s ∈ S set is a subset
of the type-value set of the element type (s ⊆ T0).

Sets are much more uncommon composition type than the previously dis-
cussed arrays. Even if the language supports sets, it has strict restrictions for
the element type. It is typical to restrict it to discrete types only, often limiting
the size of its type-value set too. For example, in Pascal the element type is
restricted to enumeration types of maximum 256 elements, while in Modula-2, it
is limited to discrete types represented as one machine word at maximum. The
reasons for these restrictions are rooted in the representation of the type.

Set types are usually represented as bit vectors, which consist of as many
bits as the size of the type-value set of the element type. Each bit in the vector
corresponds to an element of the type-value set. The bitvalue 1 means that
the corresponding element is in the set, while the value 0 means it is not.
The advantage of this representation is that the most common set operations –
e.g. union, intersection, complement – can be implemented by using simple bit
arithmetics operations – i.e. or, and, negation –, which have efficient realizations
at the processor level. The drawback of this representation is that it can grow
very big if the type-value set of the element type is big.

Due to these restrictions, the applicability of the sets of this form is quite
limited. Therefore, most programming languages do not offer such a composite
type, but offer a set data structure in their standard libraries instead. Typical
examples are the Set implementations of the Java Collection Framework or the
set templates in the Standard Template Library of C++, see Chapter 14.

6.7.2 Operations

Assignment and equality hek

As a result of all the restrictions and specific representation, implementing as-
signment and equality check is simple, and therefore permitted in all realizations.

Set operations

The usual set operations – e.g. union, intersection, difference – are usually
supported to a different degree in the various languages. However, support for
complements is rare because it might create very big sets.

Membership

One of the most fundamental operations of sets is membership, which decides if
a particular value is element of the given set. Interestingly this operation may
be present in languages which do not provide a set composite type. For example,
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in Ada the operator in can be used to check if a value belongs to a specified
interval, but the language itself does not support sets.

6.8 Other iterated types

This section provides an overview of some other specific iterated types.

Hashtables in Perl

Assume that we want to change our student management system and wish to
identify students by their names instead of their indexes. We could continue using
an array and we could now consider creating our own selector or find operation
which could in turn be used to access the data of a student based on his or her
name. However, this solution would have an impact on our system’s performance.
Finding a student by his/her index in an array takes O(1)13 time, while finding
them by name takes O(n).14 Hashtables are associative data structures which
store key-value pairs and support efficient retrieval of data based on its key.

The operations of hashtables are similar to the operations of arrays with some
differences. For example, the selection operation takes the key as an argument
rather than an index. As the set of keys is not necessarily ordered, there are
no ”key intervals”; therefore, slicing is not supported. To improve access to the
stored data, most hashtable realizations provide support for enumerating the
keys used in the table.

Programming languages usually support hashtables as part of their standard
libraries, such as Hashtable class in Java. However, in Perl the language itself
offers a hashtable composite type. The language restricts the keys and values to
scalar types but treats strings as scalar. The following simple example (taken
from [Til96]) counts the frequency of words in a text file.

#!/usr/bin/perl

while ( $inputℓine = <STDIN> ) {

while ( $inputℓine =˜ / /b[A-Za-z] /S+/g ) {

$w = $&;

$w =˜ s/[;.,:-]$//;

$words{$w} += 1;

}

}

13 The big O notation is the usual measure of complexity. O(1) time means that the time
needed to perform the task does not depend on the number of elements in the array. O(n)
complexity means there is a linear relation between the time needed to complete the task
and the size of input (for example the number of elements in the array).

14 If the array is sorted by the names, we can find the student in O(log n) but then adding a
new student to a class will be more expensive.
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print("Words and their frequencies:");

foreach $w (keys(%words)) {

print("$w: $words{$w} /n");

}

Curly braces – { and } – are the selection operator. Notice that when selection
is used, the name of the hashtable is prefixed with the dollar sign ($). In Perl
this indicates that the following expression has scalar value. However, when
referencing the hashtable as a whole, the name of the table is prefixed with a
percent sign (%). If no value was assigned to a particular key, it has a special
”empty” value. Values are set or updated by a simple assignment. An existing
value is removed using the delete operation.

Perl allows assignment of hashtables which means copying the whole content
of the table. Another important operation is keys which provides the list of
keys used in the hashtable. This can be used to enumerate the data stored in
the table, e.g. when printing the result in the example above.

6.9 Summary

This section summarizes the most important issues in the area of type compo-
sition that we need to answer when studying a new programming language.
We also give possible answers or solutions to these questions by looking at
specific examples from the languages listed in this book. However, answering
these questions is not always easy, the familiar patterns do not necessarily apply
to new languages. Most probably the list of questions below is not complete –
the existing languages are developing and new constructs are being invented.
However, these questions are a good starting point and help to shed light on the
most important issues in type composition.

• What type equivalence does the language use?
We have seen examples of strongly typed languages like Ada, which use
a very strict equivalence definition – that is, name equivalence. Modula-3
represented the other extreme which requires structural equivalence only.

• Does the language support the creation of immutable types?
In Java we can create immutable types by using the means provided by
the language, but there is no explcit immutable type construct. In CLU
all composite types have a mutable and an immutable variant. For the
efficient use of immutable objects the language must support garbage
collection and objects should be stored by reference.

• Does the language have cartesian product composite type?
There are languages such as FORTRAN which do not support the carte-
sian product composite type. Other languages – e.g. CLU – offer multiple
solutions. If the language does not support cartesian products, does it
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offer any alternative? For example, Perl has no cartesian product type,
but hashtables are a good substitute for them.

• How do the selectors of cartesian product types work?
The most common form is qualifying the selector with the cartesian
product object in the form t.si, which designates a reference of the cor-
responding component so that it can be used as an L-value as well.
However, for example in CLU, selectors are realized as a getter-setter
pair of subprograms.

• Does the language support assignment of cartesian product objects?
In most languages, the assignment of cartesian products is allowed, the

default semantics corresponds to a component by component assignment
of the values. However, in some languages – e.g. in the case of the limited
types of Ada – it is possible to restrict assignment.

• Can we influence how assignment works?
In C the answer is a simple no. In Ada we have the opportunity to
restrict assignment on certain types using the limited keyword. C++
offers the most sophisticated solution where we can define the semantics
of assignment by overloading the assignment operator.

• Is there equality check defined for cartesian products?
Most modern languages allow equality check but for example C does not.

• Can we influence the definition of equality?
As equality is an operator in almost all languages, if the language supports
operator overloading, it applies to the equality operator as well. Java is
an interesting case where the equality of references is an operator which
cannot be overloaded, whereas the equality of objects is checked using the
equals method of the class, which can be overridden by the developer.

• Does the language have a WITH-like construct?
We have seen this operation in the Pascal-like languages. It can be used
to simplify the complex qualified expressions.

• What means does the language offer to influence the physical representa-
tion of cartesian product types?
Some languages offer no means at all, whereas other languages offer
compilation directives, pragmas to specify alignment of components, to
control the use of padding and other physical aspects of the representa-
tion. In Ada we can specify the details of representation bit by bit by
using the representation clauses.

• Can we specify the default value of components of the cartesian product?
We have seen this feature in Ada where the declaration of a record type
can include default values for the fields.

• Does the language have cartesian product literals?
We have seen aggregate notation of cartesian products in multiple lan-
guages. It is often used to initialize variables or defined constants. Natu-
rally, this assumes support for assignment.
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• Does the language support union type composition?
Support for union is less frequent in languages than for cartesian products.
If the language does not support it, it is worth to check what alternatives
it offers. We have seen how inheritance and polymorphism can provide
similar functionality in object-oriented languages.

• Free or tagged union?
We have seen languages such as C where the union does not have a
selector as defined in the type construct, and the language provides no
means to verify the dynamic type of the union object. On the other hand,
the content of a union of ALGOL 68 can only be accessed in a tagcase
structure which ensures type safe usage.

• Does the language support arrays?
Though in most languages the answer is yes, there are special cases like
SuperNova which does not offer this construct.

• What are the allowed element types of arrays?
There is large variety in this area. Arrays of FORTRAN can only store
scalar values. Perl also restricts the element type to scalars, though in the
case of Perl this includes strings as well. In Ada the element type cannot
be an unconstrained type. Can arrays be elements of arrays?

• What types can be used for indexing?
Arrays of C are indexed by integers from 0. CLU allows arbitrary index
intervals, but the index type must be an integer. In Pascal-like languages
typically any discrete type can be used for indexing.

• How flexible is the index interval?
In most languages, the index interval is specified in the declaration of
the array type. In C-like languages only the number of elements can
be specified, and indexing always starts at 0. In Java, array types have
no fixed length, it can be specified when the corresponding instance is
created. Similarly, Ada allows the declaration of unconstrained array
types where the index interval can be arbitrary, and it is specified when
the instance is created. The arrays of Eiffel or CLU are even more flexible,
the index interval can be modified dynamically, arrays can expand or
shrink as needed.

• Does the array contain information about its index interval?
Arrays of C or C++ do not contain any structure information, they are
barely a pointer to the first element of the array. In these languages, it
is the responsibility of the developer to make the required information
available if needed. In Pascal-like languages arrays usually ”know” their
size and index interval. Depending on compilation options, the selectors
might do range checks at runtime to ensure that the specified index is
in the permissible interval. Many languages – for example Ada, Java or
CLU – offer some means for querying the index boundaries.
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• Does the language support assignment of arrays?
Often the answer is no. C-like languages define an assignment operator
for array types but as arrays are represented by the pointer of their first
element, this does not mean copying the array, but rather sharing the
reference. Pascal-like languages usually allow assignment, but only for
named array types. Most languages that use structural type equivalence
allow assignment between arbitrary array types as long as the number of
elements is the same.

• Can we use unconstrained arrays as a formal parameter of subprograms?
In languages which have unconstrained array type – fe.g. Ada – it can be
used as the type of formal parameters of subprograms. Using these types
makes the subprogram more generic. We can have similar results in other
languages as well. For example in C or C++, arrays are simple pointers
to the first element of the array, which also enables creating subprograms
that work on arrays of arbitrary length.

• Does the language support multi-dimensional arrays?
Many languages support one dimensional arrays – vectors – only. How-
ever, most of them allow using vectors as element types of vectors. Other
languages support real multi-dimensional arrays, though they might im-
pose limitations on the number of dimensions (e.g. FORTRAN).

• Does the language support the set composite type?
Set is a much more infrequent composite type than arrays, cartesian
products or even unions, though some languages like Pascal or Modula-2
support it. Often sets are implemented as a standard container data type
in some standard library of the language.

• What are the restrictions of the element type of sets?
Languages that support the set composite type impose strict limitations
on the element type. They usually require discrete or enumeration types
and often limit the size of the type-value set as well.

• Does the language have other composite types?
Some languages support other type composition methods. We have seen
examples like the lists and hashtables of Perl. Other languages may also
have constructs that do not fit in with the archetypical composites de-
scribed in this chapter. When encountering a new composite, we should
try to determine its type-value set and the set of its operation as seen
in the previous sections. However, we have to pay close attention to the
type composition methods of the language which need to be distinguished
from the container data structures that are usually provided as part of
the standard libraries of the language.
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6.10 Exerises

Exercise 6.1. What are the advantages and disadvantages of immutable types?

Exercise 6.2. What does structural type equivalence mean?

Exercise 6.3. What are the advantages of unconstrained array types?

Exercise 6.4. Specify the formulas to calculate the address of elements of quadratic
matrices when using row-major, column-major or spiralic15 order of the elements.

Exercise 6.5. Explain the challenges of the complement operation in the case of
set types!

Exercise 6.6. Create a quadratic matrix type in Ada. The size of the matrix
should be the parameter of the type. How can you guarantee that the matrix is
quadratic?

6.11 Useful tips

Tip 6.1. Consider thread safety and the impact on memory usage.

Tip 6.2. This is the weakest form of type equivalence.

Tip 6.3. Consider what kind of generalizations the use of unconstrained arrays
enable!

Tip 6.4. Consider the addressing of multidimensional arrays:

Tip 6.5. Consider the complement set of {apple, peach} or {0, 1, 2, 42}!

Tip 6.6. The index boundaries of unconstrained two-dimensional arrays can be
specified independently. The array should be wrapped in a discriminated record
which has a single discriminant, the size of the quadratic matrix. The actual
array is then defined using the discriminant. The drawback of this solution is
that getter and setter subprograms need to be created for accessing and setting
the elements of the matrix.

15 Spiralic order is highly impractical and it is not used in any programming language. The
goal of this exercise is to demonstrate that any address function could be used.
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6.12 Solutions

Solution 6.1. The biggest advantage of immutable types is that they are safe for
concurrent or even parallel use. As the internal state of the object cannot change
after initialization, there is no risk of conflicting concurrent modifications. The
drawback of the use of immutable types is that as each modification will create
a new copy of the complete object. This adds to the memory footprint of the
application and to the execution time as well. There are many possibilities to
optimize this copying process but still the overhead can be prohibitively large
for certain complex types.

Solution 6.2. Structure equivalence is the weakest form of type equivalence,
which considers two types equivalent when their structure is isomorphic, re-
gardless of their names. Such equivalence is used for example in Modula-3. Even
structural equivalence can have different levels, e.g. whether the name of fields
in a cartesian product type are considered part of the structure. In the case of
Modula-3 the following definition is used:

Two types are the same if their definitions become the same when expanded;
that is, when all constant expressions are replaced by their values and all type
names are replaced by their definitions.16

According to this definition, the following types are equivalent:

TYPE Coordinates = RECORD
X : INTEGER;
Y : INTEGER;

END;

TYPE RationalNumber = RECORD
N : INTEGER;
D : INTEGER;

END;

Solution 6.3. Unconstrained array types allow the creation of more flexibly us-
able subprograms. Sorting, finding or aggregating the elements of the array and
other often used algorithms can be implemented in a more generic fashion.

The following Ada generic implements conditional maximum search, that is
it select the maximum element of an array which satisfies a given condition (e.g.
find the greatest odd value). The parameter of the generic is an arbitrary array
type. In the generic the array type is treated as unconstrained. Notice the use
of array attributes!

16 Source: Modula-3 language definition
http://www.cs.purdue.edu/homes/hosking/m3/reference/
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generic
type Element is limited private;
type Index is (<>);
type Vector is array(Index range <>) of Element;
with function Cond(E : Element) return Boolean;
with function "<"(A,B: Element) return Boolean is <>;

procedure CondMax(V : in Vector ; FOUND: out Boolean; I : out Index);

procedure CondMax(V : in Vector ; FOUND: out Boolean; I : out Index) is
begin

FOUND:=False;
I :=V ’First;
for J in V ’Range loop

if Cond(V (J)) then
if (not FOUND) or else (FOUND and then V (I )<V (J)) then

I :=J ;
FOUND:=True;

end if ;
end if ;

end loop;
end CondMax;

Solution 6.4. Let N denote the size of the quadratic matrix and A denote the base
address of matrix A. For simplicity, let us assume that the matrix is zero-indexes
(i.e. both row and column indices are from the [0..N − 1] interval). The address
function of the matrix

• Row-major order: A(i, j) −> A + i ∗ N + j
• Column-major order: A(i, j) −> A + j ∗ N + i
• Spiralic order (assuming clockwise order starting from A(0, 0):
A(i, j) = A + A′(i, j, N) where
A′(0, 0, 1) = 0

A′(0, j, N) = j where 0 <= j < N and N > 1

A′(i, N, N) = N − 1 + i where 1 <= i < N and N > 1

A′(N, j, N) = 3 ∗ N − 3 − j where 0 <= j < N − 1 and N > 1

A′(i, 0, N) = 4 ∗ N − 4 − i where 1 <= i < N − 1 and N > 1

A′(i, j, N) = 4 ∗ N − 4 + A′(i − 1, j − 1, N − 2) where N > 2 and
1 <= i <= N − 2 and 1 <= j <= N − 2

Solution 6.5. The biggest problem with complement operation is that the re-
sulting set is often infinite. Consider for example a set of strings. There are
infinite possible strings but even if the length of possible elements is limited, the
size of the complementer set is prohibitively large. For this reason complement
operation is not supported for set types except for languages where the supported
base type is highly restricted (for example in Pascal it must be discrete type with
maximum 256 elements).
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Solution 6.6. Package QuadraticMatrix is
-- QMatrix is defined as discriminated record to ensure that the matrix is
-- quadratic

Type QMatrix(N:Positive) is private;

-- Unfortunately we need to create getters and setters for the matrix
-- elements.
Procedure Set(M: in out QMatrix; I,J: Natural, VALUE: Float);

Function Get(M: QMatrix; I,J: Natural) return Float;

Function "+"(A,B: QMatrix) return QMatrix;
Function "-"(A,B: QMatrix) return QMatrix;

Function "*"(A,B: QMatrix) return QMatrix;

-- Multiplication by a constant. F*M and M*F need to be declared separately
Function "*"(F: Float; M: QMatrix) return QMatrix;

Function "*"(M: QMatrix; F: Float) return QMatrix;

Private
Type Matrix is array(Integer range <>, Integer range <>) of Float;

Type QMatrix(N: Positive) is record
M : Matrix(0..N-1, 0..N-1) := (others=>(others=>0.0));

End record;
End QuadraticMatrix;

Package body QuadraticMatrix is

Procedure Set(M: in out QMatrix; I,J: Natural; VALUE: Float) is
Begin

M.M(I,J) := VALUE;

End Set;

Function Get(M: QMatrix; I,J: Natural) return Float is
Begin

Return M.M(I,J);
End Get;

Function "+"(A,B: QMatrix) return QMatrix is
R : QMatrix(A.N);

Begin
If A.N /= B.N then

Raise CONSTRAINT_ERROR;
End if;
For I in R.M’Range(1) loop

For J in R.M’Range(2) loop
R.M(I,J) := A.M(I,J) + B.M(I,J);

End loop;
End loop;
Return R;

End "+";

Function "-"(A,B: QMatrix) return QMatrix is
Begin

Return A + (-1.0*B);
End "-";

Function "*"(A,B: QMatrix) return QMatrix is
R: QMatrix(A.N);

Begin
If A.N /= B.N then

Raise CONSTRAINT_ERROR;

End if;
For I in R.M’Range(1) loop

For J in R.M’Range(2) loop
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For K in A.M’Range(2) loop
R.M(I,J) := R.M(I,J) + A.M(I,K) * B.M(K,J);

End loop;

End loop;
End loop;

Return R;
End "*";

Function "*"(F: Float; M: QMatrix) return QMatrix is
R : QMatrix(M.N);

Begin
For I in R.M’Range(1) loop

For J in R.M’Range(2) loop
R.M(I,J) := F * M.M(I,J);

End loop;

End loop;
Return R;

End "*";

Function "*"(M: QMatrix; F: Float) return QMatrix is
Begin

Return F*M;

End "*";

End QuadraticMatrix;
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In this chapter we discuss the subprograms – the
programming language features for implementing
control abstraction. We will learn why these
subprograms are useful? What differences are
between procedures and functions? The related
notions such as the specification, definition and
calling of subprograms will be described. This
chapter also reviews the parameters for
subprograms, and which techniques can be applied to
pass them. Recursive subprograms will also be dealt
with, like how much they differ from macros,
co-routines and iterators. We examine how
subprograms fit the frame defined by the structure of
the program, and how they can be nested and what
scope rules apply to them. At the end the most
important language elements for subprogram
implementations will be shown.



T

he most important task of the programmers is to design quality software.
Data abstraction skills help finding good solutions, but for program lan-
guage implementations also proper tools are needed. Subprograms offer

support for control abstraction possibilities. ”Subprograms have already existed
before the first programming languages” - writes Ravi Sethi in the introduction
to his chapter about subprograms [Set96], and explains: ”there were attempts
already since 1944 to make the writing of programs easier and faster by copying
code snippets from each others note-books and pasting it into own programs.”

Sebesta mentions an even more preliminary example: the first programmable
computer, the Analytical Engine built in 1840 by Charles Babbage was also
capable of reusing a batch of control cards at more locations during program
execution. The subprogram is such a language structure which allows to map a
name to a code snippet for easy reuse later at will. Execution of the code snippet,
or subprogram calling is initiated by specifying the given name (and possible
actual parameters). By using parameters, subprograms can easily implement
parametrized computing. In this case the named code snippet, the subprogram
can rely on data specified as actual parameters. The notion of subprograms is
very similar to that of the function already used by mathematicians for centuries.

The following Ada program snippet shows a function subprogram which com-
putes the maximum of two integers. This code can be called from anywhere where
such functionality is needed, and permits the easy reuse by parametrization.

function Max (A, B: Integer) return Integer is
begin

if A > B then return A; else return B; end if ;
end Max ;

Calling this subprogram can take place in the following way. Assuming K , L
and M being integer variables:

K := 3 ; L := 2 ; M := 5 ;
K := Max(K,Max(L,M ));
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7.1 The effet of subprograms on software quality

The subprogram is a construct to implement control abstraction. Beside the fact
that it can be used to pass parameters to sequences of program statements and
reuse them multiple times, it also allows to handle logically independent code
snippets and well defined calculations as a separate unit, meanwhile hiding the
concrete program statements sequence. That is why the subprogram is a crucial
language element not only for reusability, but also for other software quality
aspects such as readability, changeability and maintainability. The importance
of these software quality aspects can be acknowledged if we think of the life
cycle of software products where the production itself is usually just a small
proportion of the whole process.

Reusability

The role of the subprograms from this aspect is obvious: the same code snippet
can be reused with different parameters without the need to invest more in
its production (design, implementation, compilation, correctness proving and
checking, testing). This makes software development more economical. Besides
this, the endproduct usually has a smaller size, as well.

Readability

A properly chosen name can be more expressive to the reader of the program
source than the implementing code, since the subprogram usually implements
a well defined, logically separated subtask. If the call of a subprogram appears
multiple times in the program source, its function does not need to be understood
again and again, only once, at its first definition. (In fact, its goal could be
deduced just from its name, or documentation, and the reader does not even
need to look at the implementation.).

The arrangement of the program source into subprograms can positively in-
fluence readability even if it will be called only once. In this way the subprogram
is not only appropriate for logical structuring, but is also a construct for physical
arrangement1 of the program source.

Based on this one can say that using subprograms makes the program source
shorter and more readable, and the code complexity can be reduced significantly.

1 It could be vital for the arrangement of the program source how the size of the subprograms
are chosen. As a rule of thumb a subprogram should be maximum one screen long, that is
approximately 20-25 lines. Longer subprograms which still implement an autonomous task
should be broken-up, some parts of them should be arranged into separate subprograms –
even if only used once.
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Changeability

The subprograms solve well defined tasks. For their users and caller program
units it is indifferent how these subprograms solve their tasks. The statement
sequences from which the subprograms are made of can be changed without any
effects on the caller program units. (This statement will be clarified later, see
7.3.2.) For example, if the task of a subprogram is to sort a number sequence,
it can be used without the need to know the concrete sorting algorithm applied.
In case of a well-designed subprogram its implementing statement sequence can
be changed (for example, from bubble sort to a more efficient sorting such as
quick-sort), without the need to modify anything on the caller program units.

Maintainability

The subprograms reduce the amount of unnecessary code repetitions in program
source (the redundancy of the source), and this – besides easier readability and
changeability – has also a positive effect on the maintainability of the program.
If a change is needed in the solution of an often used subtask, this modification
must only be made in one place, in the solving subprogram.

Although subprograms offer language constructs primarily for implementing
control abstraction, they also play an important role in implementing data
abstraction. The essence of data abstraction is that during the development of
the program units the representations of the data worked with can be abstracted:
data is handled with the help of some predefined operations. These operations
are subprograms that is control abstractions: these are used independently of
their concrete implementations as abstractions to handle our data. For more
detail about data abstraction please refer to Chapter 9.

The role of subprograms will be analyzed also in respect to program design.
A complex task is usually solved by breaking it up into simpler ones which
are tried to be solved independently. This above mentioned top-down design
method creates a simple task from a complex one, then from the simplified ones
– even simpler subtasks, until reaching a simplicity level where subtasks can be
solved easy. The bottom-up, so-called fountain design method focuses on how
solutions of simple tasks can be combined to solve more complex tasks. Both
design methods are based on the principle that a complex task can be expressed
with simpler subtasks. According to this when trying to solve a problem namely
the production of the software, more complex programs are built from simpler
ones where these simpler ones can be implemented as subprograms which are
called by the more complex programs.

7.2 Proedures and funtions

In programming theory there are two common kinds of subprograms: procedures
and functions. Procedures implement transformations on the state space defined
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by their variables or on the environment of the program. Functions on the other
hand compute a value, but do not make transformations, and have no effect
either on the values of the program variables, or on the program environment;
this is often said the functions have no side-effects.

Calling procedures can be considered as a statement, calling a function is
more like an expression. It can be seen that procedures extend the statement set
of the language, and functions extend the operator set used for expressions. The
Max subprogram on the beginning of this chapter is a function. It has no side-
effects, it computes the result value from two input values. A call to it occurs in
an expression. The following Ada subprogram is a procedure which swaps the
values of two variables passed as parameters:

procedure Swap (A, B: in out Integer) is
Temp: Integer := A;

begin
A := B; B:= Temp;

end Swap;

The Swap procedure implements a transformation on variables, calling it
results in the modification of two variables. (Assuming again that K and L are
integer variables.)

K := 42 ; L := 24 ;
Swap(K,L);

As shown, the call of the procedure is a separate statement. Procedures and
functions should be differentiated also by naming them properly. As procedures
are used as statements and describe some kind of activity, it is practical to name
them like verbs. By contrast functions are used in expressions to compute values
– so a noun, an adjective or a participle is more expressive. A subprogram for
sorting a sequence of numbers can be called Sort if implemented as a procedure,
or Sorted if it is a function.

Subprograms execute their operations with the values received as parameters.
These are called input parameters. Functions return their computed values to the
caller as the so-called return value. By contrast procedures use output parameters
for this purpose. For example, the two parameters of the Swap procedure are
input and output parameters at the same time. Functions do not have output
parameters, only input parameters are allowed.

We will consider how programming languages implement procedure and func-
tion subprograms.

7.2.1 Languages with no differene between proedures and funtions

Many programming languages, such as C, C++, Java, C# or CLU do not really
differentiate between procedures and functions. In these languages there is no
sharp dividing line between statements and expressions either. An expression
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can stand alone as a statement, and its execution means the evaluation of the
expression which often causes some side-effects. For example, the value of the c++

expression is the same as the value of the c variable, but as a side-effect, the value
of the variable is incremented by one. In these languages all subprograms are
”functions”, but some of them have a return value of an empty ”void type”. These
kinds of functions are practically procedures. Consider the following example how
to implement the maximum searching and swapping subprograms in C:

int max (int a, int b) {

if (a > b) return a;

else return b;

/* Or simpler: return (a > b) ? a : b; */
}

void swap (int *a, int *b) {

int c = *a;

*a = *b;

*b = c;

}

Functions with void return type are used rarely in expressions,2 but real
functions with non-void return values are used more often as statements, ”dis-
carding” the return value and having it evaluated only for the side-effects. In
such languages where there is no dedicated construct for exception handling
(see Chapter 8.), these discardable return values are usually used to signal an
abnormal termination of the subprogram. A good example for this are the printf
and fprintf standard library C functions which are used to output formatted
texts. (The first uses standard output, the second writes to a file passed as a
parameter.) These functions return an integer value after execution: if this value
is negative, it signals an error during the output, otherwise the execution was
successful. It is obvious that the caller of these functions is not mainly interested
in the return value, but their side-effect is more important, namely how they
influence the program environment (the standard output, or the file). If the
programmer wishes, the return value can be checked, but it is not mandatory.
In the code below the first return value will be checked, the second discarded:

FILE *f = fopen ("apple.txt", "w");

if (fprintf (f,"jonathan\n") < 0) {

printf ("Unable to write to file!\n");

}

2 In C for example, there are expressions applying the comma operator which have void sub-
expressions. The value of the swap($&$k,$&$ℓ), max(k,l) expression is equal to that of the
max(k,l) expression, but before the evaluation of the latter, swap is also executed.
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7.2.2 Languages whih distinguish between proedures and funtions

There are programming languages which have a sharper line between procedures
and functions. In Ada, as shown before, there are two different keywords for
procedures and functions which can be used in quite different contexts: proce-
dure calls can only be statements, function calls only be expressions. In other
languages, such as Modula-2, ALGOL 60 or PL/I, there is a difference, but
both kind of subprograms are defined with the same keyword, e.g. procedure. In
Modula-2 for example, there is only a syntactical difference between procedures
and functions: for functions the return type is specified after the parameter list
is separated by a colon.

PROCEDURE Max (VAR a, b: INTEGER) : INTEGER;
BEGIN

IF a > b THEN RETURN a ELSE RETURN b END
END Max ;

The Modula-3 language also differentiates between procedures and functions,
but there is the possibility (with the EVAL statement) to have a function
evaluated just for its side-effects and discarding its return value.

Most of the programming languages do not force the programmer to im-
plement function subprograms without any side-effects, strictly according to
the semantic model and only mimicking pure mathematical functions. In those
languages which do differentiate between procedures and functions, this char-
acteristic has some feasibility reasons as well.3 So the absence of side-effects
in functions remains mostly a matter of programming style. The programmer
must assure that a function, for example, does not change any global variables,
because this would lead to a less clear and harder to maintain program, on the
other hand it would inhibit the reusability of the subprogram. In case of parallel
processes the usage of global variables could even make the functioning of the
program untraceable.

Ada assumes the programmer to follow the above style. This assumption
pays off directly when writing parallel programs. Protected units (see 13.10.5.)
are objects of which procedures can only be executed under mutual exclusion, but
their functions can be called simultaneously (concurrently) – knowing that these
have no side-effects, so these cannot interfere with each other. So for complying
with the proper style the language offers more efficient parallel programs.

At the end we mention those languages where there is no way to write
functions, or even procedures with side-effect. Such are the so-called purely
functional languages (see Chapter 15.), such as Haskell. In these languages
subprograms can directly map to mathematical functions. By eliminating side-

3 It would not be wise to forbid a function to call a procedure, since it can be useful for
debugging and logging purposes, if the function could write to a file. This is already a kind
of side-effect. If a function can call a procedure, in there – and so indirectly in the function
– other side-effects could also be caused.
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effects, the complexity of the programs is intended to decrease. Undoubtedly
this has certain benefits, for example, when trying to prove program correctness
with mathematical tools.

Avoiding side-effects also improves program readability, clarity and portabil-
ity. If functions with side-effects are called in an expression, their value (and the
order of the statements causing side-effect) also depends on the evaluation order
(precedence) of operators within the expression. This makes the understanding
of the code more problematic even if the evaluation order within expressions is
precisely defined. If this is not defined clearly, expressions can occur easily with
uncertain results undefined by the language, and this error is not even captured
by the compiler. In such a case, the program can ”accidentally function properly”
on a given architecture, but on a different system, or just after switching to
another compiler everything goes suddenly wrong. The value of the ++i+t[i]
expression in C, for example, depends on the C implementation used: either ++i
or t[i] is evaluated first. In Java, expressions are unambiguous (here the left side
of addition, then its right side gets evaluated), usage of this kind of expression
is thus strongly discouraged: it makes the reading of the program source too
difficult.

7.3 Struture of subprograms and alls

The definition of subprogram program units are usually made of two parts: the
specification and the body. Specification provides information about how the
subprogram must be used and called. The body contains the statement sequence
which will be executed if the subprogram is called.

Calling a subprogram is usually initiated by specifying its name and the
values of required parameters. It is usually said that the subprogram becomes
active by its calling. Important notions are also the formal and actual parame-
ters. Formal parameters are those specified in the definition of the subprogram.
They are used throughout its body to describe the operations. Actual parameters
are passed by the caller to the subprogram which has to perform its operation
with these received parameters. This means that actual parameters must be
matched against formal parameters. The formal or actual parameter sequence of
a subprogram is commonly called as the parameter list.

7.3.1 What ould be a parameter or return value?

It is an interesting question what kinds of entities are allowed as parameters
and return values for a subprogram. In a programming language entities are
usually vales, types, subprograms and modules.4 To use entities as parameters
is allowed almost in every programming language. (Except, for example, some

4 In Ada additional entities are processes (see Chapter 13.), or in Clean the type constructors
(see Chapter 15.).
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early variants of BASIC among others, which did not allow any parameters
for subprograms at all.) Value entities as parameters were shown in the above
examples in multiple languages, such as the function computing the maximum
and the parameter swapping procedure. Now we look at which parameters are
handled differently by the various languages.

Unonstrained array

Many languages allow formal parameters to have indefinite types. With these,
such programs can be made which can handle unconstrained arrays.5 The length
of array typed variables is determined differently in various languages. In some
languages (such as ASA FORTRAN, BASIC, Pascal) it takes place in compile
time, in other languages at declaration evaluation time (Ada, FORTRAN 90
etc.), and there are languages where this happens dynamically (APL, Perl,
Common LISP). In most of the languages formal parameters are less strictly
handled than variables. Even in Standard Pascal it is possible to write a sorting
procedure which is able to use arbitrary length arrays.

procedure sort(var V : array [low, high: integer ] : integer);

In PL/I, Pascal, Modula-2, Ada etc. the actual parameter will fully determine
the type of the formal parameter. In the above example low and high can be used
to reference the lowest and highest index of the actual parameter. In Ada, if the
array V is a formal parameter of a subprogram, the lowest index of the matched
actual parameter array can be referenced by the expression V ’First, the last with
V ’Last, the full index range with V ’Range. So the subprogram implementation
can rely on these expressions. (In Ada because of the equivalence of types is
based on their names, the type of the formal parameters cannot be constructed
within the specification of the subprogram that is why we defined the Vector

5 In Ada, not only the unconstrained, i.e. variable length array can be indefinite, but also the
unconstrained discriminated record type. These indefinite types can also appear as formal
parameters.
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type separately.)

type Vector is array (Integer range <>) of Integer ;
procedure Sort (V : in out Vector) is

J : Integer ;
Temp: Integer ;

begin
for I in V ’Range loop

J := V ’First;
while J < I and then V (J ) < V (I ) loop

J := J + 1 ;
end loop;
Temp := V (I );
V (J+1 . .I ) := V (J. .I −1 );
V (J ) := Temp;

end loop;
end Sort;

In C, arbitrary length arrays can be passed with the help of pointers as
parameters. The length of the actual parameter cannot be accessed through the
formal parameter, so usually it is passed as an extra parameter. This solution
is, of course, more complex and more problematic to read, and tends to be
more error-prone: attention must be paid for every call, to set the size formal
parameter to the right value.

void sort (int[ ] v, int size)

. . .

In Java arrays are objects too, and ”know” their own length. This information
can be queried with the length attribute. In this language the length of the
array is not even part of its type: the declaration of an array variable or formal
parameter must not contain any length information. In the next section there
will be an example showing how to pass an array as a parameter in Java.

Multidimensional array

The question of unconstrained arrays is getting more exciting if the array is mul-
tidimensional. In those languages which support the runtime query of array index
boundaries, this is not much of a problem. In Java, multidimensional arrays are
such one-dimensional arrays which contain arrays. The length of the contained
arrays can, of course, differ, but this is not a problem: the containing array only
stores object references. For example, the compiler looks up an element within
a two-dimensional array by searching for the subarray reference specified by the
index in the first dimension which will be unreferenced and in the result array the
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value targeted by the index in the second dimension will be accessed. Consider
the following example how to sum the elements of a two-dimensional matrix:

double sum(int[ ][ ] mat) {

int sum = 0;

for (int i = 0; i < mat.length; ++i) {

for (int j = 0; j < mat[i].length; ++j) {

sum += mat[i][j];

}

}

return sum;

}

In Ada, multidimensional arrays behave like real multidimensional arrays.
So every row of a matrix has the same number of elements.6 The compiler will
store the elements more efficiently than Java, most likely with row- or column-
major mapping. The boundaries of the actual parameter can be queried with
the indexed versions of Range, First etc. attributes by the number of desired
dimension.

In FORTRAN, C, C++ etc. multidimensional arrays are also stored with
row- or column-major mapping, but the compiler cannot access the size of the
actual value through the formal parameter. This is a problem, since, for example,
in row-major mapping the number of columns must be known to be able to locate
an element. In FORTRAN the declaration of the formal parameter can include
the desired information. The following is a FORTRAN 77 implementation of the
above function summing all the elements:

INTEGER FUNCTION MATSUM(MATRIX, ROWS, COLS)

INTEGER ROWS, COLS, MATRIX(ROWS, COLS), I, J

MATSUM = 0

DO 20 I = 1, ROWS

DO 10 J = 1, COLS

MATSUM = MATSUM + MATRIX(I,J)

10 CONTINUE

20 CONTINUE

END

The usage of this FORTRAN function requires much more attention than
the Java or Ada variant: and this is a rather negative aspect of FORTRAN.
Why? Because in the calling of the MATSUM function, the programmer must set
the actual sizes to the ROWS and COLS parameters. If accidentally wrong values
are specified for these two parameters, the function will use wrong data, and

6 In Ada it is possible to define an array of arrays, but in this case the element type of the
array must be an already definite type. (This definite element type could be, of course, such a
pointer type which has an indefinite base type. This corresponds to the array representation
in Java the most.)
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instead of the elements of the matrix junk content will be accessed from the
memory.

In C and C++ the situation is even worse. The type (or just the size)
of a formal parameter cannot be passed as another formal parameter, like in
FORTRAN. Of course, a plain numeric value can be used for this purpose.
Because of the row-major mapping representation of multidimensional arrays
the number of columns must be specified for the compiler to be able to generate
the proper index function to locate array elements. The number of rows need
not be specified, or at least not in the formal parameter array type:

int sum (int matrix[ ][10], int rows)

{

int i, j, s = 0;

for (i = 0; i < rows; ++i)
for (j = 0; j < 10; ++j)

s += matrix[i][j];

return s;

}

Such a subprogram can be parametrized by the number of rows in the array
(carefully matching the rows formal parameter to the actual value), but the
number of columns is ”wired in” into the subprogram definition: only matrices
with 10 columns can be passed to this sum function. For a more general form
of this function an other solution must be found. For this, for example, pointer
arithmetic could be used! In this case the number of rows and columns can be
passed in extra formal parameters. This approach is sufficiently general, but
it has the same problem as in FORTRAN, namely, it is easy to mess up the
function calling, and in addition, this has another problem: indexing must be
implemented by the programmer, because the compiler cannot automate this for
the lack of information.

int sum (int *matrix, int rows, int cols)

{

int i, j, s = 0;

for (i = 0; i < rows; ++i)
for (j = 0; j < cols; ++j)

s += *(matrix + i * cols + j);

return s;

}

At calling a two-dimensional array can be created, and passed after an explicit
typecast as the actual parameter to sum:

int m[2][2] = {{1, 2}, {3, 4}};

printf ("%d\n", sum ((int*)m, 2, 2));
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In C it is also possible to declare arrays of arrays, more precisely arrays made
of pointer types. This results in a significantly different solution.

int sum (int **matrix, int rows, int cols)

{

int i, j, s = 0;

for (i = 0; i < rows; i++)

for (j = 0; j < cols; j++)

s += matrix[rows][cols];

return s;

}

This function cannot be called with a two-dimensional array. The actual
parameter must be defined quite differently – in a much more complicated way
– than in the examples before. The following can be used, for example:

int s0[2] = {1, 2}, s1[2] = {3, 4};

int *m[2] = {s0, s1};

printf ("%d\n", sum(m,2,2));

As the elements of the array m are pointers, a wrong index can lead to
reference an unused memory location, which can result in a runtime error (such
as segmentation fault).

Subprogram

To use a subprogram as a parameter for another subprogram – this would be
sometimes very practical. Consider, for example, a subprogram which has the
task to estimate the definite integral of functions. To assess the area under the
curve of a function, its value in some basic points must be determined, as shown
in the next Pascal example:

function integral(function f (n: real):real; low, high, step: real):real;
var x, sum: real;
begin

sum := 0.0 ;
for x := low to high by step sum := sum + f (x) * step;
integral := sum;

end;

To generalize the integral function, there must be a way to pass a subprogram
as a parameter. This was not allowed at all in some early imperative languages
(ASA FORTRAN, COBOL etc.). The possibility appeared in the functional
languages (including LISP already born in the end of the 50’s), in ALGOL 60 and
in numerous languages designed later (PL/I, SIMULA 67, ALGOL 68, Pascal,
FORTRAN 77, Modula-2, Modula-3 etc.).



7.3 Struture of subprograms and alls

•
279

In several current languages subprograms cannot be, but pointers to them
can be passed as parameters. Such languages are, for example, C, C++ or Ada.
The above integral function would be implemented in C in the following way:

double integral (double (*f )(double),

double low, double high, double step) {

double sum = 0.0;

while (low <= high) {

sum += f (low) * step;

low += step;

}

return sum;

}

Within the body of the integral function f can be called without explicit
dereferencing. Of course the (*f )(low) form can also be used.

The same duality also exists in Ada. In some modern languages using sub-
programs as parameters for subprograms, it is not so obvious as in the languages
mentioned before. In Ada 83 only actual parameters that are evaluated in compile
time can be used, with the help of the so-called ”template” structure. In Java
interfaces can be used as parameter subprograms. These two last possibilities
will be discussed in detail in Chapter 11.

Subprograms passed as parameters to subprograms raise many interesting
questions, so this topic will also be treated in Section 7.7.

Label

In ALGOL 60, PL/I, SIMULA 67, ALGOL 68 etc. labels can also be passed to
subprograms as a parameter. Consider the following ALGOL 60 function:

real procedure log(x, error);
value x ; real x ;
label error ;

begin
if x > 0

then . . .
else goto error ;

If the statement goto error is executed, the execution of the subprogram is
terminated, and along with all other calling subprograms, until the calling level
is reached where the given label exists.

Label parameters can be used for exception handling (see Chapter 8.). Such
a label indicates a code which can react to an exceptional event (in this case if
the logarithm function was called with a negative parameter). In more modern
languages label parameters are replaced by the exception handling mechanisms.
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Type and module

The reusability of a subprogram can greatly be improved if types could be passed
as parameters. This topic is discussed in more detail in Chapter 11.

What ould be a return value?

The type of the return value is usually more limited by the languages than the
parameter types. In FORTRAN and in ALGOL60, for example, functions could
only return scalar values. In Pascal and in early versions of Modula-2, beside
scalars, pointers were also allowed. Many imperative languages are more flexible.
In Ada, C or ALGOL 68 composite types can also be returned. In Modula-3 the
return value can also be a subprogram. (In Ada 95, C and C++ it can be just a
pointer to a subprogram.) In the functional languages (Haskell, LISP, ML etc.)
returning a function from a function is not considered to be special case. [Sco09]
In these languages, or for example in CLU, BETA, or Sather etc. a function
can even return ”multiple results”. The following CLU subprogram accepts two
integers as parameters and returns them in ascending order:

sort = proc (a, b: int) returns (int, int)

if a < b then return (a, b)

else return (b, a)

end

end sort

This subprogram can be called in the following way:

x, y: int := sort(4, 2)

At the end please note that types can be more than just parameters (see
Chapter 11.). In languages following the ”types are also values” principle, there
is nothing special about having a type as a return value of a function. For this
kind of function an example will be shown on page 284.

7.3.2 Speifiation of subprograms

For the caller program units the specification of the subprogram is what they
can access. It is sometimes also said that the interface of the subprogram to the
outside word is its specification. Callers cannot see anything from the body. So
the control abstraction is realized in this way: the callers face only an abstraction
of the concrete statement sequence. The specification usually contains the name
of the subprogram, whether it is a function or not, and if yes, the type of the
return value, and also which parameters are accepted. Specification is also-called
as the header of the subprogram.

function Max(A, B: Integer) return Integer
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In some languages (such as FORTRAN, ALGOL, Pascal etc.) the header
of the subprograms contain a keyword marking the given syntactical unit as a
subprogram. Other languages (such as C and its descendants) do not use extra
keywords for this. The above line would look like as the following in C:

int max (int a, int b)

Even the return type could be omitted from the above specification, as in C
the subprograms are functions returning an int by default:7

max (int a, int b)

There are big differences between languages how much information a sub-
program specification contains. The more precisely the specification describes
how to use the subprogram, the easier it is to write correct programs in the
given language. The compiler uses the specification to check whether the caller
of a subprogram is using it correctly or not, for example passing the proper
count of parameters. Let us examine in more detail what kind of information a
subprogram specification can include in various languages.

Parameter types

One of the most important questions is if it is checked at the calling of the
subprogram, if properly typed actual parameters are matched with the formal
parameters. In FORTRAN 77 there was no such checking, but in FORTRAN 90,
Ada, Pascal, Java and commonly in most of the modern languages it is already
done automatically. The C language is an interesting transition between the two
possibilities. In the original C language the compiler did not check the number
of actual parameters, neither their type. In this language even the syntax was
different, it was closer to ALGOL 60, PL/I, etc.8

int max (a, b)

int a, b;

{

return (a > b) ? a : b;

}

ANSI C already supports so-called prototypes that is the usage of such
specifications which also contain the type of the parameters.9 There was an
example for this on page 271.If formal parameters are specified in the traditional
way in ANSI C, the compiler does not check the number and types of actual

7 Another strange default return type can be found in the Objective-C language, see Section
7.3.4.

8 It is important to note that only the syntax was similar, since in ALGOL 60 and in PL/I
the number and types of formal and actual parameters had to be identical.

9 This possibility was in fact introduced in the C++ language first, ANSI C took it from
there.
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parameters, but if the new prototype approach is used it does.10 In C++ only
the prototype variant is allowed.

Another interesting question is how deep the type checking of parameters
is performed. For example in ALGOL 60, in the early versions of Pascal or in
FORTRAN 77, by passing a subprogram as a parameter, the type of the formal
parameter could not be specified. Nonetheless in ALGOL 68, Standard Pascal
or FORTRAN 90, this could be specified. The formerly shown Standard Pascal
example on page 278was the following:

function integral (function f (n: real) : real;
low, high, step: real) : real;

var x, sum: real;
begin

sum := 0.0 ;
for x := low to high by step

sum := sum + f (x) * step;
integral := sum;

end;

At calling the integral subprogram, the f formal parameter can only be
matched with such actual functions which return a real value for a real argument.
The compiler can check, if the f function, or the matched actual parameter
function is used with proper types within the integral function. Without this
check the integral function could receive a parameter which does not return a
real from a real, so a correct (accepted by the compiler) call could be pointless
or cause type mismatch.

Type correctness of actual parameters can be influenced by the language
having subtypes, or generally polymorphism (for more detail see Chapter 11.).
In C, for example, an int actual parameter can be matched with a double
formal parameter: the compiler converts the actual parameter to the proper
type automatically. Of course, an array actual parameter cannot match a double
formal parameter, since an array ”cannot be casted” to double type.

In object-oriented languages (see Chapter 10.) types can build a hierarchy.
These kinds of subtypes allow a formal parameter with a more general type (such
as Shape) to be matched with a more specific typed (such as Rectangle) actual
parameter.

In the Ada language, subtypes are not types, and the compiler ignores sub-
type information at type correctness checking. So, for example, an Integer formal
parameter can be matched with a Positive actual, and vice versa; since Integer
and Positive denote the same type.

10 In case of a subprogram without parameters the prototype is distinguished from the
traditional subprogram specification by directly signaling the absence of parameters in the
parameter list: int f (void).
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Number of parameters

There are languages where the compiler does not even check the number of
actual and formal parameters. Such languages are typically script languages. The
following JavaScript subprogram is a function which can concatenate any number
of text objects received as parameters, inserting the separator between them,
which is passed as the first parameter. Within the function actual parameters
can also be accessed through the arguments predefined array object, their count
is given by the length attribute of that array. (Arrays are indexed from zero
to the length minus one.) Please note that the specification of the subprogram
neither includes the types of the formal parameters, nor of the return type.

function cat (separator) {

result = ""

for (var i = 1; i < arguments.length; ++i) {

result += arguments[i]
if (i != arguments.length) result += separator

}

return result
}

As already mentioned, the original C compiler did not check if the subpro-
gram was called with the proper number (and type) of actual parameters. This
by no means provided that kind of flexibility which was shown in the JavaScript
example above, since in a C subprogram there was no information about the
actual parameters. In C and C++ there is nevertheless, another possibility. If
at the end of the formal parameters the \dots is specified, then any number of
formal parameters can be matched. Subprograms with this sequence must have
at least one normal formal parameter. Usually the actual parameter(s) matching
this(these) deliver the information, what other actual parameters follow. A good
example for this is the already shown printf standard library function, which
has the following specification:

int printf (char *format, . . .)

The format array holds control characters which specify what actual pa-
rameters should the subprogram expect. These control sequences start with the
percent character. For example, "%d" denotes an integer actual parameter which
must be printed out in a decimal format, "%s" signals a character array. Some
correct calls of this function:

printf ("10*10=%d", 10*10);

printf ("%s=%d","10*10", 10*10);

printf ("no extra parameters needed");
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In the case if the control signs in the format character array and the given ad-
ditional actual parameters do not match, the function of the printf subprogram
is not defined – unfortunately the compiler cannot check for such kind of errors.

There are also languages with rather complex type system and compiler to
be able to express such things, like if the type of a parameter of the subprogram
is dependent on the value of another parameter. Such a language for example is
Cayenne, which has a type system based on the notion of ”dependent type”.

In the next example [Aug99] the type of the first parameter (called fmt) of the
printf function is String. The type of the other parameters and of the return
value depend on the value of this parameter: PrintfType fmt. For example, if
the fmt string is started with the %d characters, the printf is awaiting an Int

typed second parameter, and the type of the additional parameters and of the
return value is defined by the further part of fmt. For example, if the further
part of fmt is the empty string (Nil), then there are no more formal parameters,
and the type of the return value will be String.

PrintfType :: String -> #

PrintfType (Nil) = String

PrintfType (’%’:(’d’:cs)) = Int -> PrintfType cs

PrintfType (’%’:(’s’:cs)) = String -> PrintfType cs

PrintfType (’%’:( :cs)) = PrintfType cs

PrintfType ( :cs) = PrintfType cs

printf :: (fmt::String) -> PrintfType fmt

In some languages the formal parameters of the subprogram can have default
values. This can help (a little) to achieve the flexibility shown in the previous
example. The question will return on page 293.

In other languages passing an array can mimic variable length parameter
lists. This possibility can be used only for parameters with the same type in
strongly typed languages, but in weakly typed languages, such as Smalltalk, an
array can hold multiple parameters with arbitrary types. In the strongly typed
C# also arrays can mimic variable length parameter lists. Using the params
keyword allows to avoid arrays within the calls:

void ShowNumbers (params int[ ] numbers) {

foreach (int x in numbers) {

Console.Write (x + " ");

}

Console.WriteLine();

}

. . .

int[ ] x = {1, 2, 3};

ShowNumbers (x);

ShowNumbers (4, 5);
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In C and C++ languages the main programs have another interesting feature,
according to the number of formal and actual parameters. In these languages the
main program is a function called main which can have two kinds of parameter
lists. If the command line arguments are not used within the program, the
specification of main would look like this:

int main()

If the command line arguments are needed, main must be specified like this:

int main (int argc, char* argv[ ])

Here the array (argv) of command line arguments and their count (argc) are
passed by the operating system as actual parameters.

In Java the fist variant – omitting the command line arguments from the
formal parameter list – is not an option. The main program in Java must be
specified this way:

class Arguments {

public static void main(String[ ] args) {

for (int i=0; i < args.length; ++i)
System.out.println(args[i]);

}

}

In other languages (such as Ada, Pascal, Modula-2) the main program cannot
receive parameters. In this case usually standard libraries help programmers to
access command line arguments.

The above Java subprogram looks the following in Ada:

with Ada.Command Line, Ada.Text IO;
procedure Arguments is
begin

for I in 1 . .Ada.command Line.Argument Count loop
Ada.Text IO.Put Line(Ada.Command Line.Argument(i));

end loop;
end Arguments;

Name of parameters (mathing by name)

although in most languages the names of the formal parameters are part of the
subprogram specification, they are not for the caller program units: for checking
the validity of the call the compiler only uses the number of parameters and
their type. (This is usually called as the profile of the subprogram. The profile
of the subprogram, and – in case of a function – the return type is usually called
as the protocol of the subprogram.) The names of the formal parameters only



286

•
Subprograms

have informal meanings, which helps the programmer to better remember their
role.

In contrast, for example, in Ada, PL/SQL or Modula-3, the subprogram spec-
ification makes also the names of the formal parameters accessible to the caller
program units. In these languages at calling a subprogram its formal parameters
are not only be matched by position, but also by name with the actuals. Positional
matching means that the first formal parameter is matched with the first actual,
the second with the second, and so forth. When using matching by name, the
order is not relevant. Consider the following Ada subprogram specification from
the standard library which inserts a string into another before a given position:

function Insert(Source : in String;
Before : in Positive;
New Item : in String) return String

The following function calls are all valid:

Insert("Duck", 3, "lo") −− positional matching
Insert(Source => "Duck", Before => 3, New Item => "lo")
Insert(Before => 3, Source => "Duck", New Item => "lo")
Insert(New Item => "lo", Before => 3, Source => "Duck")

The programmer does not have to remember the exact order of the param-
eters: if the names of the formal parameters are known, actual values can be
passed in any order. Positional and matching by name can even mix. In this case
the first few parameters are matched by position, the rest by name, for example:

Insert("Duck", New Item => "lo", Before => 3 )

Parameter matching by name is particularly useful when combined with
default parameter values. (See also page 293.)

Throwable exeptions

Exceptions that a subprogram can throw are ”special return values”. The caller
should be prepared to handle these thrown exceptions. So it is fully justifiable
to have the throwable exceptions of a subprogram listed in its specification. In
Ada it is not possible, in C++ not mandatory, but for example in Java it is
mandatory11 to specify the throwable exceptions in the subprogram header:

int readin(InputStream in) throws IOException

This readin operation receives an InputStream parameter, and usually returns
an int. In exceptional cases the execution terminates with an IOException. For
more details about exceptions please refer to Chapter 8.

11 To be precise, only the so-called ”checked” exceptions must be named in the subprogram
specification.
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Speialty of objet-oriented languages

In some languages the specification of a subprogram can hold additional informa-
tion. In object-oriented languages (C++, Java, C#), for example, the visibility
of the subprogram (which is usually a member of the class definition) can be
specified. For this purpose usually the public, protected and private keywords
are used. The public modifier denotes the most wide, private the most narrow
visibility. For example in Java like this:

public void start()

In object-oriented languages the static keyword can appear in the subprogram
specification. This is to denote that the subprogram is not executed on an actual
object, but on a class.

public static int exit()

For more details about object-oriented languages, please refer to Chapter 10.

7.3.3 Body of subprograms

The body of the subprograms contains the statements which have to be executed
at every call. Usually it is possible to define so-called local variables within
the subprogram, which can be used as auxiliary variables for the implemented
computations. The variable declarations and the statements using them are
completely separated in some languages (such as Pascal, Ada), in other ones
(such as C) it is not that strictly regulated, and in some others (such as Java,
C++) not at all. The body of a Pascal subprogram, for example, is made of two
parts: the declaration part where – among others – local variables are defined,
and the statement sequence part. These two parts are separated by the begin
keyword.

procedure swap(var a, b: Integer);
var temp: Integer ;
begin

temp := a;
a := b;
b := temp;

end;
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In C nothing is written between variable declarations and the statements.
Statements must simply be preceded by the variable declarations.

void swap (int *a, int *b)

{

int temp;

temp = *a;

*a = *b;

*b = temp;

}

In Java, for instance, this limitation does not exist. Declaration statements
can be mixed freely with other statements. In Ada (or, for example, PL/SQL)
exception handling (see Chapter 8.) is not managed as a statement (such as in
Modula-3, C++ or Java), but can be appended to a block. According to this,
the body of a subprogram in Ada can consist of three parts: declaration part,
statement part and an optional, exception handling part. The subprogram below
is an operation of a stack. The stack is represented by a record which has an
array field named Data: this array will hold the elements of the stack. The Top
field of the record is the index within the array for the last stored element. The
size of the array is set by the type definition of the stack, or at the creation of
the stack object. If too many elements are attempted to be stored in the array,
its index will overflow, and a Constraint Error is raised. In this case, we have
to throw a Stack Overflow exception.

procedure Push (S : in out Stack; E : in Element) is
begin

S.Top := S.Top + 1 ;
S.Data(S.Top) := E ;

exception
when Constraint Error => S.Top := S.Top−1 ; raise Stack Overflow;

end Push;

In this subprogram definition the declaration part is empty, the statement
part has two statements, and there is an exception handling part as well.

In many languages (such as Eiffel, Turing, Blue) the subprogram body can
also contain logical assertions useful for correctness proving. This question is
further discussed in Chapter 12.

Return from subprograms

By returning from a function, a properly typed value must be returned to the
caller. This has a wide variety of forms in different languages. Perhaps the most
common is to use the return statement. This is used, for example, in Ada
(see page 267.),in C (see page 271),in JavaScript (see page 283.),and in most
of the other modern imperative languages. The return statement causes the
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subprogram to terminate immediately12 and returns the value of the expression
specified after it.

In the early imperative languages, such as FORTRAN, ALGOL 60 and
Pascal, instead of the return statement an assignment to the name of the function
had to be performed (see for example page 278.). This was unfortunate, because
the name of the function could not be hidden within the function body, and this
made the rules of hiding declarations a little too complicated.13

The return statement has its own problem as well. If a function has already
computed its return value, but it still has to perform further operations (for
example it has to close a file, or release a resource), a local variable must be
used to temporarily store the intended return value. A similar problem occurs
also in the following Ada function:

function Max Pos (V : Vector) return Index is
Rtn: Index := V ’First;

begin
if V (I ) > V (Rtn) then Rtn := I ; end if ;

end loop;
return Rtn;

end Max Pos;

A more efficient solution is supported by the SR language14 [Sco09].

procedure Max Pos (ref V [1 :*]: int) returns rtn: int
rtn := 1
fa i := 1 to ub(V ) −>

if V [i] > V (rtn) −> rtn := I fi
af

end

Here the memory allocated for the return value could be addressed as a plain
variable. In Eiffel the return value of the function can be managed as a local

12 An exception to this rule is, if the return statement is within a sequence which has exception
handling, like in Java within a try block, which has a finally part as well. In this case the
finally part gets executed before leaving the subprogram. Likewise in C++, the destructors
of locally instantiated objects within the subprogram are also executed before exit.

13 There is also a RETURN statement in FORTRAN, which causes the subprogram to return.
Nevertheless this statement can not be used to specify a return value.

14 In this example the meaning of fa is ”for all”, ub denotes ”upper bound”. The arrow has
the same meaning as in other languages do and then. For closing composite statements, the
language uses the statement starting keyword reversed.
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variable, but the name of this variable is fixed: it is always called Result.

Max Pos (v: ARRAY [INTEGER]) : INTEGER is
local

i: INTEGER
do

Result := v.lower ;
from i := v.lower until i>v.upper loop

if v@Result < v@i then
Result := i

end
end

end

The Euclid language combines the above possibilities with the usage of the
return statement interestingly. If a name is specified for the return value in
the header of the subprogram, an assignment to this name must be done within
the subprogram body, but if it is unnamed, the return statement must be used.

In functional languages and in ALGOL 68 (the latter one does not differ-
entiate between statements and expressions) the return value of a function is
the value of the function body, as an expression. The function computing the
maximum of two numbers is the following in ALGOL 68:

proc max = (int a, b)int: if a > b then a else b fi

Let us turn back to the return statement for one moment. This statement
can be used not only in functions, but often in procedures as well, but of course,
without any return value specified in this case. For example, if a subprogram
should be left from the middle of its code, one can use something like the
following Ada 95 procedure:

procedure Search Zero (M : in Matrix ; I, J : out Index) is
begin

I := M ’First(1 );
while I <= M ’Last(1 ) loop

J := M ’First(2 );
while J <= M ’Last(2 ) loop

if M (I,J ) = 0.0 then return;
end if ;
J := J + 1 ;

end loop;
I := I + 1 ;

end loop;
end;
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The return statement need not be used in a procedure, but it is obligatory
in functions. In Java, for example, it causes a compilation error, if the compiler
detects that a function could end without executing a return statement.

int notCompilable() {

int i = 42, j = 42 * i - 42 * (i - 1);

if (i == j)
return 1;

}

This function is sound, but not correct – in the sense that the compiler
will not accept it, even if we know that execution will always reach the return
statement. The compiler in Ada is not so rigorous. In case of such a function
definition we would receive only a compilation warning at most. Nonetheless if
a function misses the return statement in runtime, the Ada system will throw a
Program Error exception.

Body in an other language

Sometimes the body of a subprogram should be implemented in a language
different from the one where it should be called. This could have efficiency reasons
(for example, if some code must be very efficient, so it should be implemented
in assembly), or because of reusability (if the desired subprogram is already
implemented, and should be used without rewriting it from another language).

In Ada, for example, special compiler directives and library units can be used
to be able to call subprograms implemented in other languages from the Ada
program, or vice versa. If, for example, the Sqrt function was implemented in
FORTRAN, the Import compiler directive can be used to make it visible within
the Ada program.

function Sqrt (X : Float) return Float;
pragma Import(FORTRAN, Sqrt);

As another example shows it: in Java the subprogram specification can con-
tain the native keyword, which means that the body of this subprogram is
implemented in a different language than Java:

public native float sqrt(float x);

The Java virtual machine approach also enables programs written in other
languages (such as Ada) to be integrated without any special effort into Java
programs. Only a compiler for the other language is needed which is able to
produce machine code for the Java Virtual Machine (such as jgnat for Ada). The
same principle is utilized by the .NET architecture: for a given code snippet it
does not matter in which programming language it is written or presented, its
meaning is described based on a Common Language Runtime.
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7.3.4 Calling subprograms

Starting (activating) a subprogram is usually done by specifying its name and
its actual parameters. In some early imperative languages, such as FORTRAN
and PL/I, to call the procedures the CALL statement had to be used:

CALL SWAP (A, B)

The parameter list is in most of the languages enclosed by ( and ) charac-
ters. Usually empty parameter lists are also denoted by empty parentheses. For
example, the following C ”function” reads in a number and prints it out squared:

#include <stdio.h>

void square() {

int n;

scanf ("%d",&n);

printf ("%d",n*n);

}

This subprogram can be called like this:

square();

In some languages the empty parentheses for empty parameter list need not
(PL/I) or must not be (Ada) specified. In Ada, for example, the squaring sub-
program can be implemented like this:

with Ada.Integer Text IO; use Ada.Integer Text IO;
procedure Square is

N : Integer ;
begin

Get(N );
Put(N*N );

end Square;

To call this subprogram use this:

Square;

Functional languages, among others, have special parameter notations. In
LISP, for example, not the actual parameter list, but the whole call is enclosed:
(+ 4 2). In the modern functional languages, such as Haskell, the function name
and its parameters are only separated by a space, as in the exp 5 expression.
This form is very strange, since the function call has the highest priority in these
languages. Despite this, the two parts (namely the name of the called function
and its parameters) which have the most tight connection, are connected with
a character, the space, mostly used for separation. The same holds also for
Smalltalk, for example: h at: k put: o.
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Default value of formal parameters

There are languages which support default values for formal input parameters.
In this case it is not needed to match all the formal parameters with actual
values: formal parameters without actual values will have their default values –
if specified. In these languages the handling of the number (and types) of formal
parameters is not so flexible, as in C/C++ with \dots or in JavaScript that uses
the arguments array. This is because such subprograms always have the same
number of parameters, but not all of them must be explicitly set. Consider the
following C++ example:

void draw rectangle (int width, int height,
int x = 0, int y = 0, int color = 0)

When calling this subprogram it is enough to set the width and height
parameters – the others can also be set, but it is not mandatory. The following,
with exception of the last one are all correct calls:

draw rectangle (10, 10);

draw rectangle (10, 10, 20)

draw rectangle (10, 10, 20, 15)

draw rectangle (10, 10, 20, 15, 3)

draw rectangle (10) // Error, height has no value.

This feature is very useful for subprograms with many formal parameters
which usually have the same values. So there are parameters which are important
to be set (such as width and height in the above example), and there are ones,
that are less important (all the others above).

In C++ there is a rule that if the default value of a formal parameter is used
in a call, all the following parameters must use their defaults as well. According
to this, formal parameters with default values must be placed at the end of the
parameter list, in a descending order of their importance.

In Ada, Modula-3, etc. parameter matching by name can be combined with
default parameter values. So subprograms can be called very flexibly. In C++,
for example, there is no equivalent to this Ada procedure call:

Draw Rectangle(10, 10, color => 3 );

In languages where formal parameters cannot have default values, overloading
the name of the subprogram can be an – less elegant and flexible – alternative.
We will return to this question in Section 7.6.

Entry points

In some languages, such as PL/I and FORTRAN 77, several entry points can
be defined for a subprogram, so it can be started not only ”from its beginning”,
but also ”from the middle”. Entry points can be placed anywhere within the
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subprogram body, can have parameter list, and can be called the same way as
the subprogram. The body belonging to a given entry point starts from the
entry point, and ends at the end of the including subprogram. Local variables
and statements of the subprogram are also reachable from the entry points.

With the help of entry points, for example, default valued formal parameters
can be mimicked. As we can see, the following FORTRAN 77 subprogram
increases a variable with the given value or with one if the default increment
is used.

SUBROUTINE INCWITH (K, L)

INTEGER K, L, I

I = L

GOTO 10

ENTRY INC (K)

I = 1

10 K = K + I

END

In contrast to the subprograms with formal parameters with default values,
this FORTRAN 77 procedure must be called by two different names for the two
different cases.

CALL INCWITH (I, 3)

CALL INC (I)

The ”main section” of the procedure body which is executed for both calls,
starts from the label 10 and in this case it includes only one statement. The
subprograms with multiple entry points in PL/I approximate the module concept
of later languages. With their help abstract objects could also be implemented
elegantly [Koz92]:

STACK: PROCEDURE(SIZE);

DECLARE SIZE FIXED BIN;

DECLARE S(*) CHAR(1) CONTROLLED,

N FIXED BIN STATIC INIT (0);

ALLOCATE S(SIZE);

RETURN;

PUSH: ENTRY(X);

DECLARE X CHAR(1);

N = N+1;

S(N) = X;

RETURN;

POP: ENTRY RETURNS (CHAR(1));

N = N-1;

RETURN (S(N+1));

END;
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This subprogram defines a stack object with hidden implementation. Creat-
ing this object takes place through the STACK entry point. For this, the maximal
size of the stack must be specified. Allocation of CONTROLLED variables hap-
pens during runtime with the ALLOCATE statement, specifying the size of the
variable to be created. STATIC variables keep their values also between multiple
executions of the subprogram. The above subprogram can be used like this:

DECLARE C CHAR(1);

CALL STACK(10);

CALL PUSH(’A’);

CALL PUSH(’B’);

C = POP;

More modern languages replaced the entry points with more structured and
elegant constructs, such as default values for formal parameters of subprograms,
also modules and classes supporting data abstraction (see Chapter 9.).

Currying

In functional languages not necessarily all actual parameters must be specified by
referencing a subprogram. The value of an expression which contains a function
call with a partially filled parameter list, would be a new function with fewer
expected parameters. For more details about this method, called currying, please
refer to Chapter 15. The Sather language offers similar possibilities. With the
help of bind a parameter (such as 3) can be specified for an operation (such as
plus), while other parameters can be left unset. The latter is substituted by an
underscore. The following a function awaits only one INT parameter, and returns
the same type:

a:ROUT{INT}:INT := bind(3.pℓus( ));

Subprograms defined this way can be called later with a call by specifying
value(s) for unset parameter(s):

x: INT := a.call(4); – x will become 7

It is an important limitation that all output (also input-output) parameters
must be left unset when using bind, since these parameters will return values
after an actual call of the subprogram.

Calling subprograms in objet-oriented languages

In object-oriented languages (see Chapter 10.) subprograms often rely on objects,
they are called ”on an actual object” and are called not subprograms, but
methods. That is why their first parameter is not in the parameter list, but
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comes before the name of the subprogram. For example, in Java the translate
operation of an p object of type Point would be called like this:

p.translate(4.0, 2.0);

The same call in Ada would look like the following:

translate(p, 4.0, 2.0 );

In object-oriented languages within the body of an operation the actual object,
for which this operation was called, can usually be referenced by a special
keyword (such as this, self , Current or me). The formal distinction of the object
written before the operation and of the other parameters often covers differences
in their meaning. In these languages by calling a subprogram, it is possible for
the runtime environment to choose from multiple (alternative) bodies of the
operation which has to be executed (see: late or dynamic binding in Section
10.7.2.). This choice is based on the dynamic (that is only known during runtime)
type of the object, for which the given operation applies.

In some of the object-oriented C-derived languages it is very common to have
nearly never operations with void return type. If an operation of an object would
not return any value, it could be altered to have something to return: the object
itself. With this method ”call chaining” can easily occur on the object:

rectangle.translate(4.0,2.0).mirror(0.0,0.0).enlarge(2.0,0.5);

For this the operations could be defined the following way in the Rectangle class
– using Java syntax:

public Rectangle translate (double dx, double dy) {

xpos += dx; ypos += dy; return this;
}

Please note that some languages offer quite exotic syntax for specifying the
name and formal parameter list of subprograms. For example, in the Objective-
C language such a subprogram specification can be given:

- putObject: element atX: (int) x Y : (int) y

This is an instance level method (subprogram assigned to an object, see Chapter
10.). Instance level methods begin with the - sign, class level methods with the
+ sign. The name of the method is the following:

putObject:atX:Y :

The method has three parameters, the last two (x and y) are integers, the first
(element) and the return value are object references (id). If the return type of
a method is not specified, the language assumes the common id type. In this
language it is usual for methods to return the actual object, if there is nothing
else to return.
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The calling of methods is also rather interesting in the Objective-C language.
For example, if the above method can be executed on matrix typed objects, and
m is of this type, furthermore e is an object, the following call could be used.

[m putObject: e atX: 5 Y : 3];

7.3.5 Reursive subprograms

Subprograms, which call themselves directly or indirectly are called recursive
subprograms (see Section 3.11.). Multiple instances of a recursive subprogram
can be active at a given point of the program execution, which makes their
implementation more complex and costly than for subprograms without recur-
sion. Using recursive subprograms, complex calculations can be implemented
simply and understandably, with mathematical methods (the induction) in an
easily manageable way. Recursion is an alternative to loops. The following Ada
function sums the elements of an array by using recursion:

type Irray is array (Integer range <>) of Integer ;
function Sum (V : Irray) return Integer is
begin

if V ’First >= V ’Last
then return V (V ’First);
else return V (V ’First) + Sum(V (V ’First+1 . .V ’Last));

end if ;
end Sum;

The designers of the first few languages have not realized the possibilities
of recursion [Set96], or just found its implementation too costly. In FORTRAN
(until FORTRAN 90) there was no way to write recursive subprograms. This
is possible in FORTRAN 90 and PL/I, but the specification of the subprogram
must indicate that it is recursive. This allows the compiler to produce much
more efficient code for non-recursive subprograms. The following PL/I function
computes the factorial:

FACT : PROCEDURE (N) RECURSIVE RETURNS (FIXED BIN);

DECLARE N FIXED BIN;

IF N=0 THEN RETURN(1);

ELSE RETURN(N * FACT(N-1));

END;

7.3.6 Delaration of the subprograms

In some languages there is a limitation for every entity appearing in the program
so their type must be specified before usage. Technically, it is customary to say
that all entities must be declared before usage. In such languages this is also true
for subprograms. There are situations when subprograms cannot be declared by
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giving their definition. For example, in case of an indirect recursion, that is, if
subprogram A calls subprogram B which calls subprogram A, there is no way to
give the definition of the two subprograms so that they both would be defined
before usage.15 In this case a forward declaration can help. It essentially consists
of the specification of the subprogram, giving only information about how to use
it. Consider the following not too creative, but simple enough Ada code snippet
to illustrate this principle:

procedure Print Tree (T : in Tree);

procedure Print Children (T : in Tree) is
begin

Print Tree(Left(T));
Print Tree(Right(T));

end Print Children;

procedure Print Tree (T : in Tree) is
begin

if not Empty(Tree) then
Print Node(Node(T));
Print Children(T);

end if ;
end Print Tree;

Another case is if the subprogram should not be declared by its definition
because of implementation hiding. In Ada, Modula-2 and other languages that
support modules, modules are not only the constructs of encapsulation, but also
of implementation hiding (see Chapter 9.3.). In the specification part of the
module its usage is specified (such as its exported subprograms, types, variables
etc. can be declared here), the body of the module contains the implementation
of its exported entities. So the specification part of the module only contains the
specification of the subprograms, which is enough to decide if these are called
correctly by the user program units of the module. The full definition of the
subprogram is contained by the body of the module. Consider the following
Modula-2 example:

DEFINITION MODULE Stack;
EXPORT Push, Pop, IsEmpty;
TYPE ELEM = INTEGER;
PROCEDURE Push (i: ELEM );
PROCEDURE Pop() : ELEM ;
PROCEDURE IsEmpty() : BOOLEAN ;
END Stack.

15 Unless they are nested in each other. But this has the effect that the nested subprogram is
not accessible from outside of the including one, so it cannot be called from outside.
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For the user program units of the Stack module the subprograms Push, Pop
and IsEmpty were declared in the specification part of the module, called as
the definition module in Modula-2. The implementation of the subprogram is
delivered by the so-called implementation module.

In the object-oriented languages the notion of the module usually overlaps
with that of the classes. In Objective-C the specification (interface) and the
implementation (implementation) of a class are separated: in the specification
subprograms and types are declared, but their definition is contained in the
implementation. There are object-oriented languages, such as Java, which do
not separate the specification and the implementation of classes (for example, in
two separate compilation units). Furthermore, the operations of a class are not
in a sequence, but in a set, so at indirect recursion there is no need for separate
declarations. (The functional languages are similar in this respect: the order of
functions defined within the same compilation unit is arbitrary, the definition
does not have to precede the usage.) In C++ there are two possibilities to define
the methods. One form of it is like in Java, when the body of the subprogram is
given within the code of the class, the other form only specifies the method there
(according to C/C++ notion, only its prototype is given), the body is defined
later.

class Stack {

void push (int element); // only a specification
int pop () { . . . } // full definition

};

void Stack::push (int element) { . . . } // definition

In connection with separate compilability we will return to subprogram decla-
rations in Section 7.5.1.

7.3.7 Maros and inline subprograms

Macros can be considered as the ancestors of subprograms. They were intro-
duced in the assembly languages, but can be used in RATFOR (a preprocessor
for FORTRAN), LISP, BLISS, or in the C preprocessor, probably this is the
best known. The C macro can be used to arrange the program source, like
the subprograms. It is an efficient, but not too safe language construct. It can
accept parameters, but the type of actual parameters will not be checked against
the types of the formal parameters. Macros are more efficient than subprograms,
from the aspect that the extras of subprogram calling and returning are omitted.
The body of the macro is substituted at every call into the program source, so no
extra administration is required for calling (such as saving registers and return
address, etc.). For shorter running time, it is more efficient to use macros, but
the final size of the program with macros will be greater than with subprograms.

The main concern about macros is that their substitution is performed before
the actual compilation and program correctness checking, so their correctness is
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not checked by the compiler. Errors within macro bodies only occur at the first
usage of the given macro, and it is relatively difficult to understand where to
find the cause of the error from the substituted source within the original source.
Besides, the proper usage of the macro (proper types of the actual parameters)
can only be figured out by reading the source of the macro. After modifying the
body of the macro, all the macro calls must be rethought, and if needed, they
have to be modified as well. All of these violate the principle of implementation
hiding. Consider the following C macro:

#define MAX(a,b) (((a) > (b)) ? (a) : (b))

Please note, how many seemingly unnecessary parentheses the body of the macro
contains. They are indeed needed, as the body of the macro must be prepared
for any environment where it should appear after substitution. For example, the
parameters of the macro are always between parentheses, because if the actual
parameter is an expression, it must be evaluated before the body of the macro.16

Regarding C macros there is another negative issue: within the macro no
language structure can be used which is not allowed at the place of the macro
call. For example, if the macro is returning a value, and is used within an ex-
pression, its body cannot contain variable declarations or composite statements
(branching, loop). This again violates the principle of implementation hiding,
since not only the specification of the macro, but its implementation also depends
on the source context where the macro will be used, and vice versa: possible calls
depend not only on the specification of the macro, but also on its body.

Some languages (Ada, C++, Euclid, LISP etc.) try to combine the advantages
of macros and subprograms by supporting the usage of inline subprograms. In
these languages the programmer can usually give hints to the compiler, which
subprograms should be compiled as substitutions. In Ada, for example, the
Inline compiler directive can be used for this purpose.17 Consider the following
C++ example how to hint the compiler to compile for substitution:

inline int max (int a, int b) { return a > b ? a : b; }

Inline programs beside having the efficiency of macros, can offer safety by their
subprogram specification, and can also ensure the production of semantically
clearer code. The inline subprograms represent only an implementation tech-
nique, they do not have an effect on the function of the program. This statement
can be fully understood by considering an example where an actual parameter
has also side effects.

16 The efficiency of the macros is greatly reduced if the actual parameter is a complex, time
consuming expression. In this case the expression is evaluated as many times as often it
appears within the macro body.

17 In Ada other compiler directives (pragmas) can also be used to influence the optimization
made by the compiler. For example, with the Optimize pragma one can specify if a given
subprogram should be optimized for running time or for memory usage.
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Calling the MAX(++x, y) macro the value of variable x will be increased
by two, which seems inexplicable, until the body of the macro is examined. The
same problem will not appear if calling the inline subprogram: max(++x, y).
We will return to some other problems concerning macros on page 307.

7.3.8 Subprogram types

In some programming languages (such as ALGOL 68, PL/I, Modula-2 or 3)
variables of subprogram type cannot only occur as formal parameters for sub-
programs. In Modula-2, for example, such a type can be defined, contrary to the
Standard Pascal that can have subprograms as type values:

TYPE Sorting = PROCEDURE (VAR ARRAY OF INTEGER);
PROCEDURE QuickSort (VAR V : ARRAY OF INTEGER); . . .
PROCEDURE HeapSort (VAR V : ARRAY OF INTEGER); . . .
VAR Sort: Sorting;
VAR V : ARRAY (1 . .10 ) OF INTEGER;
. . .
Sort := QuickSort;
. . .
Sort(V );

In C, C++, Ada etc. only types that point to subprograms can be defined.
In Ada 95 the previous code would look like this:

type Vector is array (Integer range <>) of Integer ;
type Sorting is access procedure(V : in out Vector);
procedure QuickSort (V : in out Vector) is . . .
procedure HeapSort (V : in out Vector) is . . .
Sort: Sorting;
V : Vector(1 . .10 );
. . .
Sort := QuickSort’Access;
. . .
Sort(V );

In some languages subprogram typed literals are also supported. In functional
languages for example, (see Chapter 15.) the λ-expression can be used to assign
a function definition to a variable. ALGOL 68 supports something similar:

1. proc(int)int f ;
2. f := (int i)int:i+1 ;
3. print(f (10 ));

f here is a function variable which will be assigned a function literal in line
2 which will be called in line 3 through f .
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7.4 Passing parameters

Subprogram parameters can be grouped in three groups based on the direction
of information flow. The input parameters can be found in the first group. They
deliver information from the caller into the called subprogram. The second group
is for the output parameters which return information from the subprogram to
the caller. The last group of in- and output (inout) parameters ensure a two way
information flow.

Programming languages implement these input, output, and in- and output
parameters in different ways. Parameters even from the same group are imple-
mented differently in various languages. Different parameter passing modes for
the various languages exist to pass the actual to the formal parameters. This
section will cover the most widespread parameter passing modes.

7.4.1 Parameter passing modes

The classification of parameters by information flow direction is semantics based.
In this section the implementation based classification of parameters will be
covered. By elaborating the various parameter passing modes not only semantic
issues were raised, but also those of efficiency. This kind of comparison will be
discussed in Section 7.4.2.

Parameter passing by value

This parameter passing mode supports only the implementation of input param-
eters. It means that the value of the actual parameter at calling time is used
within the subprogram. The formal parameter can be seen as a local variable
of the subprogram which will get its starting value assigned at the calling of
the subprogram from the value of the actual parameter. Changes of the formal
parameter have no effect on the actual parameter. The actual parameter does
not even have to be a variable, a complex expression can be matched with the
formal parameter. At the calling of the subprogram, the expression in place of
the actual parameter is evaluated, and then the result value is assigned to the
formal parameter.

This is the default parameter passing mode in Pascal, and in C this is
essentially the only mode. Arrays are the only exception from this last statement.
The notion of arrays and pointers in C are a little blurred together. So by passing
an array as a parameter, in fact, its address is passed. If an array element is
modified within the subprogram, the modification is made in the array referenced
by the actual parameter. So arrays are, in fact, passed by address – see next
section – in C.
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Consider the following example for parameter passing by value. This C
subprogram computes the greatest common divisor for two positive integers:

int gcd (int a, int b) {

while (a != b)

if (a > b) a -= b;

else b -= a;

return a;

}

How would this function be called?

int x = 10, y = 5;

y = gcd(x, x + y + 1);

After executing the second line, the value of variable x stays the same that is
10 , the variable y will be set the greatest common divisor of 10 and 16 as a new
value, so its new value will be 2 .

It is important to note that the actual parameter will be evaluated only once,
at calling time, and will be set to the formal parameter. The consequence of this
is that not only the actual parameter is indifferent to the changes of the formal
parameter (in the example above x against the changes of a), but also vice versa,
the changes of the actual parameter will have no effect on the formal parameter.
For example, if the actual parameter is a non-local variable for the subprogram,
changing it through a non-local reference will not change the value of the local
parameter. Consider the following C example to understand this:

int x = 1;

int f (int a) {

++x;

return a + x;

}

int main () {

int y = f (x);

}

By calling f , the formal parameter a is set to the value of the global variable
x , to 1. Afterwards x is incremented by one – this will not change a –, and the
return value will be 1 + 2 that is 3.

Parameter passing by referene

This parameter passing mode is most often used to implement in- and output
parameters. This means, that the formal parameter gets the address of the actual
parameter, or a reference to it. So the formal parameter is another name (an
alias) for the actual parameter. During the subprogram execution both denote
the same instance (the same memory location) in every moment. Changes of
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the actual parameter cause the same changes on the formal parameter, and
vice versa. This is how outward information flow is implemented: the result
of the computation performed by the subprogram in the formal parameter is
reached after its returning through the actual parameter. Of course, the actual
parameter has to be an L-value that is such an expression to which a value can
be assigned, so that it can be used on the left side of an assignment. The actual
parameter could be, for example, a variable, an array element, a record field, etc.
The evaluation of the actual parameter means the determination of the memory
address of the L-value: this address will be passed into the formal parameter.
The evaluation of the actual parameter is performed once, before the beginning
of the execution of the subprogram.

For output, as well as in- and output parameters, the compiler checks if the
actual parameter is an L-value. If not, there would be no target for the result
computed by the subprogram ”to store into”. FORTRAN is an exception to this
rule, as it will be described on page 312.

In Pascal, the declaration of a formal parameter can specify if the actual
parameter should be passed by address. For this the var keyword is used.

procedure swap (var a, b: Integer);
var temp: Integer ;
begin

temp := a;
a := b;
b := temp;

end;

The fact that the actual and the formal parameters are the same instance,
can cause strange anomalies. The reason for this, is the formation of so-called
”aliases”. By this, it is meant that at some point within the program two different
variables denote the same instance. Consider the procedure p having two formal
parameters by address, a and b. Let us assume that the task of this procedure
is to print out and set to zero the two parameters. This is not exactly a real
life problem, but it illustrates the anomaly well. Let us assume that there is an
auxiliary procedure s which already implements the print out and zeroing with
one parameter. So the following implementation of p looks quite simple:

procedure p (var a, b: integer);
begin

s(a); s(b);
end;

If this procedure is called with the same actual parameter passing twice as formal
parameters (for example p(x,x)), a and b will denote the same instance within
the body of p. What is done with one of them occurs immediately to the other.
Until the call s(b) is reached, b has already been set to zero. So p(x,x) will not
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print out twice the value of x at the calling, as we would expect: the second print
out will be zero.

Aliases could occur also in less trivial ways. For example, if the above p
procedure is called with two array elements, t[i] and t[j], there is no alias at
first sight – but there is, if i actually equals j. Aliasing can also occur, if the
subprogram is awaiting a composite and a scalar typed variable (such as an array
and an array element) as parameters, and the second actual is a component of
the first. An alias also occurrs if a global to the subprogram variable is passed
as a parameter, as in the next example.

var global: Integer ;
procedure r (var local: integer);
begin

global := global + 1 ;
local := local + global;

end r ;
. . .
global := 1 ;
r(global);

After calling r the value of the global variable will be 4.
The emergence of aliases is very harmful. It can easily lead to programming

errors, negatively impacting not only the program reliability, but also its clarity,
and makes the formal proving of program correctness very hard. One of the basic
design principles of Euclid, a language also using parameter passing by address,
was to avoid alias emergence consistently, but also OCCAM enforces a strict
zero-aliasing.

Parameter passing by result

This parameter passing mode is appropriate for implementing output parame-
ters. The computed result in the formal parameter of the subprogram will be put
back into the actual parameter. The formal parameter, just like at parameter
passing by value, is a local variable of the subprogram, but at the end its value
is copied into the actual parameter. Because of this, the actual parameter has
to be an L-value. The formal parameter does not receive the value of the actual
parameter at the calling of the subprogram, that is why the information flow is
only one-way.

This parameter passing mode is quite seldom – many times it is not even
differentiated from the next discussed passing mode by value/result. Neverthe-
less, in Ada certain parameters are passed by result. For example, the operation
reading in a character in the standard Ada.Text IO library looks like this:

procedure Get (Item: out Character);
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The problems of this parameter passing mode will be discussed together with
those of the next discussed by value/result mode.

Parameter passing by value/result

This parameter passing mode is usually used to implement in- and output pa-
rameters. Basically it is the joint application of by value and by result parameter
passing modes. The formal parameter is a local variable of the subprogram, which
at the calling of the subprogram becomes the value of the actual parameter, then
at the end its value is copied back into the actual parameter. Like in the case
of the two previous parameter passing modes that implement output semantics,
the actual parameter can only be an L-value here as well, so that it can receive
the result computed by the subprogram.

The first language which chose this form of parameter passing was AL-
GOL W. Please consider the following Ada example.

procedure Swap (A, B: in out Integer) is
Temp: Integer := A;

begin
A := B;
B := Temp;

end Swap;

On the face of it there is no difference between the Pascal Swap procedure
(using parameter passing by address) and the Ada implementation (using pa-
rameter passing by value/result). Both work correctly. The essential difference
between these two parameter passing modes is manifested if the emergence of
aliases is examined. For example, in case of parameter passing by value/result the
a and b formal parameters denote independent instances during the execution
of the p(x,x) procedure call. Calling s(a) has no effect on b, so the value of x at
calling will be printed out twice.

The former example using a global variable would also function differently,
if the parameter passing used would not be by address, but by value/result. In
Ada this has the following form:

Global: Integer ;
procedure R (Local: in out Integer) is
. . .

In this case, the value of the Global variable would be 3 after the execution
of the code snippet.

Unfortunately, there are also problems with the parameter passing modes
by result and by value/result. One of the problems is that the actual parameter
which could not only be a variable, but an arbitrary L-value, can be evaluated in
two ways. The first possibility is to determine the memory address for the value
of the formal parameter to be copied back by the subprogram at the moment of
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the call, while the second is that it is determined at the moment of the return. For
example, if the former r procedure is called with the actual parameter t(global)
where t is an array, these two possibilities will deliver different results. If the
L-value t(global) is evaluated before the execution of the subprogram, such as
in Ada, the subprogram will change t(1 ) to t(1 )+2 . However, if the L-value
t(global) is evaluated at the end of the execution of the subprogram, such as
in ALGOL W, the subprogram will change t(2 ) to t(1 )+2 . (Please note that
in the second case a different instance delivered the initial value of the formal
parameter, as which received its final value.) These same two possibilities would
occur also in case of parameter passing by simple result, if within the subprogram
the local := local + global assignment would be replaced with local := global .
Parameter passing by address does not set this kind of problem: in that case
local is just an alias to t(1 ) during the whole execution time of the subprogram,
so r would change t(1 ).

Some sources consider the parameter passing by value/result variant, used
in Ada, to be different logically from the one that of ALGOL W, and call it as
parameter passing by copy. In our book we consider, like most of the sources,
parameter passing by copy and by value/result to be logically the same, the
difference is only considered to be an implementation anomaly.

However, there is still another problem with the parameter passing by result
and by value/result. Let us change the body of p and adopt it to Ada like this:

procedure P (A, B: out Integer) is
begin

A := 1 ;
B := 2 ;

end P;

Now let us examine the effect of the call P(X,X). In this example it has certainly
not much sense to set X to 1 and also to 2, but in a more complex example a
similar call can also occur. Using parameter passing by address the meaning is
totally clear: during the execution of P X , A and B denote the same instance,
so the value of X after returning from the subprogram is determined by the
last assignment to this instance. So X would be 2. Using parameter passing
by result, the question arises, if A or B should be copied first into X . The
definition of a given programming language must clarify this question, because
if this stays implementation dependent, the portability of programs written in
the given language will suffer.

Textual substitution

Textual substitution is the ”parameter passing mode” used by macros. This
cannot even be called parameter passing physically, since the parameter need not
be passed to anywhere: the body of the macro is substituted into the location of
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the call, so that the formal parameters of the macro can be replaced textually
by the actual parameters.

This parameter passing technique also causes interesting anomalies. As we
have already mentioned before (see page 300.),the body of the macro and its for-
mal parameters should be put between parentheses to ensure proper expression
evaluation order. An example has also been shown that the actual parameters of a
macro could be unexpectedly evaluated multiple times (if that formal parameter
appears multiple times within the body of the macro), which causes not only
efficiency concerns, but could influence the meaning of the program, if the actual
parameters have side effects (see page 300.).

Please note that aliases can also occur the same way as in case of parameter
passing by address. The examples shown there can all be transferred to textual
substitution also. Just as a negative example, consider the following macro:

#define M(a) (((a) <= ++n) ? (a + n) : n)

This macro uses the variable n at the location of its call. If it is called in the
form M(n), the value of n is incremented by one, and the value of the expression
would be not n+(n+1), but (n+1)+(n+1).

Much greater problems would arise than the emergence of aliases if the actual
parameters and local variables defined within the macro are mixed up.

#define MPRINT(x,n) {int i; for(i=0;i<(n);++i) printf ("%d ",(x));}

This macro can be used as a statement. What happens if a program unit wishes
to print out the value of its i variable ten times? The call MPRINT(i,10) would
print out the numbers from zero to nine, and not the value of i ten times. This is
the case because within the body of the macro i as the actual parameter would
replace x, but it would be hidden by the local variable named i of the macro
according to the declaration hiding rules.

Finally, please note that for some subprograms there is no way to make
macro replacements. For example, consider the two parameter swapping swap
procedure as a macro.

#define SWAP(a,b) { int c = a; a = b; b = c; }

Let us assume that t is an array, i is a valid index within this array. If the
above macro is called in the form SWAP(i,t[i]), it would not swap the two
parameters. The usual swap would properly function with these parameters using
the parameter passing by address and by value/result. But in case of textual
substitution, if t contains only ones, i is zero, the following will happen. The c=i
assignment will set c to zero. Then the a=b assignment is expanded to i=t[i],
so i will be set to the value of t[0] which is one. Finally, the b=c assignment is
expanded to t[i]=c, which will set t[1] to zero. The goal would have been, to
swap the values of i and t[i] (that is t[0]), from (0,1) to (1,0). Instead i is
set to one, but zero was not assigned to t[0], but to t[1].
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Parameter passing by name

This parameter passing mode can be used again to implement in- and output
parameters, but its functioning is much more complicated than the ones that
have been mentioned previously. This parameter passing was spread by the
appearance of ALGOL 60, at the beginning of the emergence of programming
languages. That time many people programmed in assembly languages which
supported the use of macros. So, it seemed reasonable to introduce a parameter
passing mode which imitated macro substitution. The parameter passing by
name is very similar to the textual substitution, but there are differences between
them in some important questions.

One odd feature of the parameter passing by name is that it does not function
in a single way, but it mixes diametrically different techniques (such as passing by
value and by address). Furthermore, it chooses from the different implementation
modes based on the form of the actual parameter. To understand the functioning
of a subprogram that uses such a parameter passing is much harder than of the
subprograms containing/introducing aliases.

If a ’by name’ formal parameter is matched with a literal or a constant
expression (for example 4+2 ), then the actual value is passed. But if a scalar
variable is matched, then it is passed by address. Now comes the next oddity:
if the actual parameter is an expression, it will be evaluated every time when
a reference is made to the formal parameter within the subprogram body. So,
if the actual parameter is an expression which has some components changing
during the execution of the subprogram, the formal parameter will have different
values according to these changes.

If, for example, the actual parameter is the expression t[i], and the value of
i has changed at one point during the execution of the subprogram, the formal
parameter will denote, from that point on, another array element according
to the new value of i. The situation is different if the actual parameter is an
expression in the form a+b, and b is modified by the subprogram, so the value
of the formal parameter would also change, according to the new value of b.

Consider the following ALGOL 60 example famous by the name ”Jensen’s
device” [Sco09] which can compute a sum expression:

real procedure sum (expr, i, low, high);
value low, high;
real expr ;
integer i, low, high;

begin
real rtn;
rtn := 0 ;
for i := low step 1 until high do rtn := rtn + expr ;
sum := rtn;

end sum
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The first two parameters of the function (the real expr and the integer i)
are passed by name (this is the default parameter passing mode in ALGOL 60),
the other two (integer) parameters are passed by value. Now let us compute the
value of the following expression:

y =
10

∑

x=1

3x2 − 5x + 2

For this only the above function must be called with the parameters shown in
the formula:

y := sum (3*x*x − 5*x + 2, x, 1, 10 );

x is a scalar variable, so it is passed essentially by address to the formal
parameter i. In the subprogram i and x denote the same instance. By running
the loop from one to ten (these values are passed into low and high), the value of
x is running through this interval. The expression to sum (the actual parameter
in expr) is evaluated in the loop body again and again, always using the actual
value of x .

Please note the similarity between the parameter passing by name and textual
substitution. Independently from the form of the actual parameter, the formal
parameter will always behave as if it was replaced in the program source by the
actual. If the actual parameter is a constant expression, the value of the formal
parameter stays the same: the value of the constant expression. If the actual is a
scalar variable, the formal parameter will denote always the same instance; it is
like using the actual parameter within the source of the subprogram. Finally, if
the actual parameter is an expression containing variables, then every reference
to the formal parameter causes the new evaluation of the expression, as if the
actual parameter occurred in place of the formal parameter. In Section 7.5.3. we
will show that parameter passing by name is not simply a smarter variant of the
textual substitution, but it differs in its important aspects.

If using parameter passing by name, a significant part of the problems expe-
rienced by textual substitution will not occur. Nonetheless some problems (such
as the emergence of the aliases) will remain. The fact that some very simple
operations cannot be described by using parameter passing by name, still causes
trouble. The swap procedure, that has been mentioned several times cannot be
implemented with parameter passing by name either.

7.4.2 Comparison of parameter passing modes

The parameter passing by value is the clearest from all the above mentioned.
If during programming only by value parameter passing and functions without
side-effects are used, the ready program product will be clear, well readable and
maintainable, furthermore, it will be easily manageable by mathematical tools
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(such as proving of correctness, program transformations). It is not a coincidence
that functional languages are usually praised just because of this.

Many programmers think that procedures in imperative languages enable
them to write the most programs more efficiently than with just functions. Pro-
cedures can pass their computed results to the caller through output parameters.
This cannot be modeled with parameter passing by value: it can only be used
for input parameters. (For by value parameters the usual swap procedure would,
of course, not work.) For passing output, and in- and output parameters by
address, by result, by value/result and by name modes can be used.18 Parameter
passing by name is a very flexible technique. Its principle is late binding. The
actual parameter is not bound to the formal parameter at the calling of the
subprogram, but later, during the execution of the subprogram. Furthermore,
this binding is done again and again within the body, every time when the
formal parameter is referenced. This results in great flexibility, and dynamic
adaptability during runtime. The principle of late binding has the same effect
on other areas of the programming languages. Consider those object-oriented
languages where the implementation of polymorphism is mainly based on the
late binding of the operations (methods, messages) to the object in runtime (see
Chapter 10.). The lazy evaluated functional languages (see Chapter 15.) or the
”short circuiting” logical operators in the imperative languages follow the same
principle.

Despite its great flexibility, parameter passing by name could not really
become widespread. The primary reason for this is because of its complexity.
In case this technique is used the programs often become hard to understand.
Its semantic problems (consider, for example, the unimplementabilty of swap) are
also against it. The implementation of this parameter passing is also not easy: in
ALGOL 60, for example, for the by name actual parameters a parameterless pro-
cedure (thunk) is compiled which has the job to evaluate the actual parameter. In
fact this procedure is passed to the subprogram which will call it every time the
formal parameter is referenced. (We will discuss the implementation difficulties
of subprograms passed as parameters in more detail in Section 7.7.1.). This short
description also reflects that parameter passing by name is not very efficient. In
fact, this is the least efficient amongst all the parameter passing modes. Please
note that in practice there are only a handful of problems where using parameter
passing by name would result in such a brilliant solution, as in the summarize
function shown previously; and all of these can be usually rewritten elegantly by
passing a subprogram as a parameter.

For modeling the output parameters accordingly, parameter passing by ad-
dress and by result, or by value/result are usually chosen by the designers of the
programming language. The last two are chosen primarily to avoid the aliases,
and they are semantically clearer, as well as easier to use as the by address

18 Textual substitution is not even mentioned here: this technique causes so much semantic
problems that it is not used to implement parameter passing for subprograms, just for
macros.
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parameter passing. But as we already mentioned, this is not the only aspect
which must be taken into consideration at designing a language. Efficiency is
also an important question.

Parameter passing by value, result, and value/result are collectively referred
to as data transferring passing. This naming indicates that a copy of the actual
parameter will be created within the called subprogram, and into/from this
data must be copied: the value of the actual parameter, or the computed result.
This data transfer can be very costly in memory and in execution time. For big
parameters, such as arrays and matrices, parameter passing by address is usually
much more efficient: only the address of the actual parameter, which is only a
machine word, must be stored into the formal parameter at the time of calling
the subprogram.

The situation is further complicated since the efficiency is not only deter-
mined by the amount of administration and data transfer needed at calling the
subprogram and returning from it. It is also an important aspect how efficiently
the used data can be accessed from within the subprogram. In this sense the
data transferring parameter passings are better: only the memory location of the
copy for the formal parameter must be known. In case of parameter passing by
address there is an additional indirection: after looking up the formal parameter
in memory, its content must be used as a reference to the actual parameter to
work with. If there are many references within the subprogram to the formal
parameter, and the actual parameter is not quite big, then data transfer by
parameter passings is much more efficient than that by address.

For large parameters parameter passing by address is so much more efficient
than data transferring that it can even reach the efficiency of parameter passing
by value, in its aspect of modeling a purely input parameter. Pascal programmers
are taught that var keyword should be used in front of the formal parameter, if
the actual one should be changed, or the parameter is very large, for example, an
array [Sco09]. Of course, this kind of approach can easily result in writing faulty
programs: to place efficiency in front of the semantics is always dangerous. At
parameter passing by address, if – unwittingly, but – unintentionally the input
kind of actual parameter is changed, the compiler cannot warn us for this error.
Likewise, if a ”purely output” parameter is implemented with parameter passing
by address, the compiler will not give a warning, if the actual parameter is used
within the computation!

In the next section some interesting programming languages are chosen to
demonstrate how the above mentioned problems are usually solved.

7.4.3 Parameter possibilities in some programming languages

All the parameters in FORTRAN are in- and output parameters. The language
does not determine which parameter passing mode must be used by the compiler
to implement this, the by address or the by value/result mode. Nearly all the
implementations before FORTRAN 77 use exclusively parameter passing by
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address, but newer implementation usually use by value/result passing for scalar
parameters. If a FORTRAN programmer would like to use an input parameter,
it must be manually ensured not to change the formal (and through it the actual)
parameter. For example, a local variable could be defined within the subprogram
which would receive the value of the formal parameter. Within the subprogram
this local variable can be modified without any consequences.

In contrast to other languages, the FORTRAN compilers do not count it as
an error if an in- and output actual parameter is a right value (such as a numeric
literal, or not an L-value complex expression). If this was considered to be an
error, it would be hard to use input parameters in the language. All right, but
in case of a right value how will it be passed by address? In case of complex
expressions, the compiler will define a temporary variable which will hold the
value of the expression. This temporary variable will be passed by address. If
the subprogram changes the value of the formal parameter despite the planned
input semantics, the temporary variable will be changed. The programmer, of
course, will not have access to this temporary variable; the computed result by
the subprogram in the formal parameter will be inaccessible.

What happens to the literals, if they are passed by address or by value/result?
The compiler stores the literals within the program in the same way, as variables.
In case of parameter passing by address for example the memory location will be
passed where the literal is stored. If the subprogram again violates the assumed
input semantics, and changes the formal parameter, the compile time constant
would change, which could be fatal for the further functioning of the program.
Many FORTRAN IV implementations were not prepared for this problem. In
programs compiled by such a compiler, it could happen that after a SWAP(0,1)

call, the 0 and 1 constants were really swapped. After this, if on some later
points of the program the X = 1 statement occurred, the X variable was not set
to one, but to zero.

The next high-impact language, ALGOL 60 uses parameter passing by name
as a default, and by value if the formal parameter is introduced by the value
keyword. There are not many languages which took parameter passing by name
from ALGOL 60. One, which did it is the fairly widespread language, SIM-
ULA 67. In this language the default parameter passing mode is already done
by value, and the by name method can be chosen.

Because of the problems of parameter passing by name, in the ALGOL W
language the in- and output parameters are passed by value/result. The language
Ada also uses this parameter passing in certain cases. This will be discussed later.

In ALGOL 68 and Pascal the input parameters are passed by value, in- and
output parameters by address. (The default is the by value; in case by address is
used it must be indicated separately.) In COBOL the parameter passing by value
and by address can also be chosen by the programmer for the nested programs.

In C, basically, there is only one kind of parameter passing: by value. To
implement in- and output parameters the programmer usually has to pass an
address, i.e. a pointer – by value – explicitly:
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void swap (int *a, int *b) {

int c = *a;

*a = *b;

*b = c;

}

This subprogram can be used in the following way to swap two integer variables:

int a = 2, b = 4;

swap (&a,&b);

The exceptions to this rule are arrays which are in C very similar to pointers.
Arrays are passed by address:

void sort (int t[ ]) { . . . }

int t[ ] = { 3, 4, 1, 2 };

sort (t);

One of the novelties of C++ compared to C was that it introduced a special
kind pointer type, the so-called reference type. This type also makes the usage
of in- and output parameters easier. Parameter passing by address is done
through reference types. Explicit marking of pointers are not necessary within
the subprograms, nor at calling:

void swap (int &a, int &b) {

int c = a;

a = b;

b = c;

}

int a = 2, b = 4;

swap (a, b);

Consider another example based on [Sco09]. Reference types can also be used to
specify return values. This is especially useful, if a function should return such a
value which would not make sense to assign to. Such could be for example a file.
Of course, a returned pointer can reference anything, even a file, but by using
pointers the reference must be explicitly dereferenced, and this could be pretty
uncomfortable. In C++ for example the operator << can be used to write to an
output (file, standard error, etc.). This operator returns a reference to its first
argument. This allows to ”chain” the << calls to an output.

cout « a « b « c;

If there were no reference types, the << operator would have to be implemented
by pointers. In this case the call would look like this:

*(*(cout « a) « b) « c;
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C++ and the ANSI C contain a very interesting language element: in the
definition of the formal parameters const keyword can appear. In the example
below, this keyword can be used to signal that the formal parameter should
be a pointer referencing a constant.19 This means that the instance referenced
by the formal parameter cannot be changed by the subprogram. The actual
parameter does not need to be a pointer referencing a constant: the compiler can
automatically convert it according to the proper type of the formal parameter.
Consider T being a type the following function definition and call.

int f (const T *p) { . . . }

T x = . . .;

int i = f (&x);

Even if variable x is passed to function f mimicking parameter passing by ad-
dress, it cannot change the value of x . Semantically x became an input parameter
of f . If the values of type T are large, this trick helps avoiding data transferring
which would occur at parameter passing by value: instead, only the costs of
passing by address, which is usually more efficient, would occur at subprogram
call. The advantages of this technique are even better visible, if combined with
the reference type of C++. In this case an input parameter is implemented
purely with parameter passing by address.

int f (const T &p) { . . . }

T x = . . .;

int i = f (x);

Please do not think that this technique will ”cheaply” ensure the same semantic
safety which is provided by parameter passing by value. Because passing by
address is used, aliases can still occur. Although the subprogram cannot change
the actual parameter through the formal p parameter, within the body of the
subprogram it cannot be known if the same has been done through another
reference. At parameter passing by value it is always guaranteed that the value
of the formal parameter will not change during the execution of the subprogram,
unless it is explicitly done by the subprogram. Consider the following example
for this: here the resulting output will not be 42 twice, but first 42 , then 43 will
appear.

void g (const int &p, int &q) {

cout « p;

++q;

cout « p;

}

int x = 42;

g (x, x);

19 If a declaration should denote variable r to be a constant pointer, it would be written like
this: T* const r .
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At parameter passing by value the formal parameter can be used as a fully
functional local variable, even a value could be assigned to it (of course, without
having any effects on the actual parameter). This cannot be done in case input
parameters are implemented by const keyword and passed by value.

In other languages there are also similar constructs to const. In Modula-
3, for example, the formal parameter can be declared as READONLY. The
compiler will ensure that the formal parameter will not appear on the left
side of an assignment, and will not be passed in an in- and output manner
as the actual parameter to another subprogram. The input parameter, declared
as READONLY, will usually be passed by value, if it is small in size, and by
address, if it is large. If a right-side expression is passed as the actual to a
READONLY parameter by address, the compiler will – just like in FORTRAN
– use a temporary variable to store the value of the right-side expression, and
its address will be passed to the formal parameter.

In Ada (and other similar languages) a semantically clearer approach is used.
The programmer is not specifying parameter passing modes, but semantic modes
for the formal parameters. Parameters specified as for in mode are input, as for
out mode are output, and as for in out mode are in- and output parameters. The
actual parameter passing technique used is not relevant for the programmer: such
implementation details are left for the compiler. According to the rules of Ada an
in mode parameter cannot be changed by the subprogram, not by assignment,
nor by passing it to a subprogram as an out or in out mode parameter. Likewise,
out mode parameter cannot be read by the subprogram (in Ada 83, not at all, in
Ada 95 yes, until it was already assigned a value). For in out mode parameters,
of course, everything is allowed.

For scalar and pointer typed values Ada uses the appropriate data transfer
parameter passing, for composite typed values the language definition does not
determine, if data transferring or parameter passing by address should be used;
compilers can differ from each other in this respect. (For example, for access types
by address mode it is obligatory, but not for records.) This will theoretically not
cause any portability problems, because Ada defines a program erroneous, if its
result depends on which parameter passing mode the compiler uses. However,
compilers are not forced to notice this kind of erroneous conditions and prevent
it with a compilation error.

There are some interesting differences between various languages regarding
formal parameters which are declared with subtypes [Sco09]. In Pascal, for
example, if an interval typed parameter should be passed by address, the type of
the actual parameter cannot be narrower than the type of the formal parameter.
Otherwise, it could happen that the subprogram executes an operation which
delivers a result not passing into the actual parameter.

type onetohundred = 1 . .100 ;
var a: 1 . .10 ;

b: 1 . .1000 ;
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procedure p (var n: onetohundred);
begin

n := 100 ;
end;
. . .
a := 5 ; b := 5 ;
p(b); (* This is O.K. *)
p(a); (* This causes a compilation error. *)

In Ada such a parameter would be passed with data transferring. Both calls
would be valid, since within the subprogram the assignment to the formal pa-
rameter (managed as a local variable) will not cause any problems. Nonetheless
when the subprogram ends, the value of the output parameter must fit into
the subtype of the actual parameter. If this is not the case, a runtime error (a
dynamic semantic error) is raised in form of a predefined exception.

In Java parameter passing by value is applied. As objects can be accessed
through implicit references, and passing an object as a parameter means passing
the reference by value, so a subprogram can change the object received as the
actual parameter, or to be more precise, the object which is referenced by the
reference received as the actual parameter. (This is usually called parameter
passing by sharing. This name is originated from CLU.) Of course, the value
of the actual parameter, that is the reference itself cannot be changed by the
subprogram. In the next example the call f (a,sb) would only append the string
"hello!" to the object referenced by sb.

int a = 5;

StringBuffer sb = new StringBuffer();

void f (int x, StringBuffer s) {

++x;

s.append("hello!");

s = new StringBuffer();

s.append("bye!");

}

C# uses a much more complex parameter passing model. By default, it functions
in the same way as Java: at passing so-called reference types – classes, interfaces,
delegate types and arrays – the implicit reference is passed by value, and for so-
called value types – primitive types, enumeration types and struct types – the
values themselves are passed. To deviate from the default mechanism, one can use
by address and output semantic parameters. Parameter passing by address must
be signaled by the ref keyword in front of the formal and of the actual parameter.
(This has the same form as the one used in C when parameter passing by address
was mimicked.) By using ref , reference and value typed actual parameters can
be changed by the subprogram. (In case of a reference typed parameter, not only
the referenced object, but the reference itself!)
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At last, using the out keyword (which must also be placed in front of the
formal and the actual parameters) parameter passing by address can be achieved
where the compiler will ensure the output semantic. (Namely the actual param-
eter need not be initialized, because the formal parameter will not be initialized
automatically, either. The value of the formal parameter cannot be read before
a value is assigned to it. The subprogram cannot return without setting a
value to the output parameter. After returning from the subprogram, the actual
parameter counts as initialized.) Please be aware that passing a reference typed
parameter by value is not the same like passing a value typed parameter by
address. Consider C being a class, with one data member, the integer typed i.
Consider furthermore S being a struct type with the same structure.

void g (C c, ref S s) {

c = new C(); c.i = 1;

s = new S(); s.i = 1;

}

C a = new C(); a.i = 0;

S b = new S(); b.i = 0;

The call g(a, ref b) will not modify the reference a, but the value of the variable
b will be changed, the value of its i field will be set to one.

In Eiffel the subprogram cannot change its formal parameters, in the same
way as in Ada the in mode parameters cannot be changed. In Eiffel – like in
Java or C# – two kinds of types are differentiated: reference types and so-called
expanded types. Every type has an expanded and also a reference variant.

If the formal parameter is of some reference type, the formal parameter cannot
be assigned a new value (new reference), but the referenced object (its fields) can
be changed within the subprogram. If both the actual and the formal parameters
are of some reference type, parameter passing by address is realized: the formal
parameter is referencing the same object as the actual. If both the actual and
the formal parameters are of expanded types, parameter passing by value is
realized: the actual parameter is copied into the formal parameter. If the actual
parameter is of reference type, the formal parameter is of expanded type, the
actual parameter (its referenced object) is copied into the formal parameter.
This is often called dereferencing. In this case, if the actual parameter does not
reference any object, i.e. its value is void, a runtime exception will occur. The
last case is, if the actual parameter is of expanded the formal parameter is of
reference type. In this case the actual parameter is copied into the referenced
object by the formal parameter.

In CLU the situation is also very similar. Types are categorized as muta-
ble and immutable. Mutable typed values contain object references, immutable
typed values contain actual objects. Primitive types are immutable types, but
type constructions have their mutable and immutable variants. Mutable objects
are passed as parameters by sharing, immutable objects by value.
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At the end, the parameter passing mode of the lazy evaluated functional
languages must be mentioned. In these languages parameter passing takes place,
as if parameter passing occurred by value. The difference is that the evaluation of
the actual parameter and the determination of the value of the formal parameter
are not carried out at the calling of the function, but later, when the value of the
parameter is needed for the first time. This kind of parameter passing is called
by need.

Parameter passing by need is a bit like by name, because of the principle of
late binding. But opposed to parameter passing by name, the value of the actual
parameter will only be evaluated once. So, if there are no side effects during
the evaluation, there would be also no difference between these two parameter
passing modes.

7.5 Environment of the subprograms

In this section it will be examined how subprograms fit into their environment,
the whole program. The most important relevant scope and visibility rules will be
mentioned, and the issues of nesting and separate compilation will be discussed.
For more details please see chapters 4 and 9.3.

7.5.1 Separate ompilability

Only those languages are suitable for developing large, long life software systems
which enable the separate compilation of different parts of the program without
the need of full recompilation [Seb13]. This possibility is really crucial for sup-
porting development in teamwork, and for the efficiency of coding, the reusability
of the software and the less costly changeability. Separate compilability of the
program parts allow to only recompile those part of the system which were
changed in the latest step of software development or maintenance.

Subprograms offer a natural separation layer for those languages which sup-
port compilation units at all that is the separate compilation of program parts.
In ASA FORTRAN, for example, the compilation unit and the subprogram are
essentially coinciding terms.20 In C a subprogram can be a separate compilation
unit, but a compilation unit can consist of multiple subprograms (and also
variable and type declarations). In Ada it is the same: a subprogram can appear
as a compilation unit, and there are also other program units which can occur as
compilation units. Nonetheless there are also languages where the subprogram
cannot be a separate compilation unit: Modula-2, Clean, Java etc. only support
higher structural levels, such as the module or class to form compilation units.

In some languages, such as FORTRAN II or the early variants of Pas-
cal, compilation units could only be whole programs. Separate program parts
(subprogram or other program units) cannot be compiled on their own. These

20 Except the main and data segments which are also compilation units.
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languages are essentially unusable for developing serious applications. The later
versions of FORTRAN and Pascal tried to put an end to this serious deficiency.
In ASA FORTRAN (and for example in C) independent compilation is already

supported. This means that the application can be assembled from multiple
compilation units, but these are completely independent from each other, and
do not have information about the others. The disadvantage of this technique
is that there is no type checking at cross referencing compilation units. In
ASA FORTRAN, for example, the subprograms (procedures and functions) are
separate compilation units (called segments in FORTRAN terminology). There
is no language feature which could enable communication between two segments.
So, when calling a subprogram the number or types of the actual parameters do
not match with that of the formal parameters, the compiler cannot catch this
error.

In PL/I by calling subprograms in the same compilation unit, the compiler
will check the actual and the formal parameters, but when calling (so-called
external) subprograms from a different compilation unit it is not able to do
this. To increase the safety of the programs, PL/I supports the declaration
of an external subprogram that is its specification can be given in the calling
compilation unit. This specification, which is given at the declaration can be
checked at all calls. Unfortunately, the compiler is still unable to compare the
specifications from the subprogram definition and from the declarations in other
compilation units.

In C those functions that are defined in other compilation units and returning
non-int typed values, must be declared. The compiler is still unable – such as in
PL/I – to compare these declarations with the definition of the subprogram. For
non-declared external subprograms, C assumes a int typed return value, and
demands it when using the subprogram. The return type from the (external)
subprogram definition does not matter for the C compiler. The situation is
further complicated since in the original C the type of the parameters were
not included in the specification of the subprogram. In ANSI C if no prototype
is used, that is the type of the parameters are not given, the number and types
of the actual parameters get also not checked. So, if a declaration is written, and
it does not contain parameter types, the usage of the subprogram (its calling
or passing its address as a parameter) will not be type checked properly. The
– nearly perfect – solution is the usage of header files. The declaration of the
subprogram is stored in a header file, which will be loaded in the definition, and
also in the caller compilation units by the #include statement. This method can
prevent a lot of errors, only it must be assured that the definition and all caller
compilation units load the same header file, and all the functions usable from
other compilation units must be declared in the header file.

In newer languages, such as FORTRAN, Modula etc. usually it is possible
to define separate compilation units. In these languages – in contrast to the
independent compilation – the connections between compilation units must be
described. In Ada the compilation units specify the elements (objects, types,
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subprograms etc.) accessible from the outside, and describe some information
about them, which will enable their type correct usage from other compilation
units. In Ada, for example, a subprogram can be a separate compilation unit. If
this subprogram should be called from another compilation unit, then it must
be made accessible for the caller. For this the with statement can be used which
must be placed at the beginning of the calling compilation unit.

with Swap;
procedure Sort (A, B: in out Integer) is
begin

if A > B then Swap(A,B); end if ;
end Sort;

The with statement signals the compiler that the Swap reference within the Sort
procedure must be matched with the specification of the Swap implemented as
a separate compilation unit.

7.5.2 Embedding

ALGOL 60 did not support the decomposition of the program into multiple
compilation units, but introduced another very important concept: the block
structure. This means that program units can be nested in each other. Languages
support block structures for different extents. In ASA FORTRAN, for example,
there is no possibility to say embed two subprograms in each other. Neither C
is called a block structure language, although its nesting block statements show
some similarities with the nested subprograms. In the C example below in the
block embedded within the body of the f subprogram a variable j is also declared
which hides the variable with the same name from the nesting block.

void f (int p) {

int i = 1, j = 1;

{

int j = 2, k = 2;

printf ("Embedded block. %d %d %d", i, j, k); /* 1 2 2 */
}

printf ("Nesting block. %d %d", i, j); /* 1 1 */
}

The more advanced languages support not only subprograms, but also modules
and classes for arranging the program source. The subprograms are important
building blocks of these language structures that enable the higher level arrange-
ment. In Java, classes can be nested, even into subprograms, but subprograms
cannot be nested. In Clean the opposite is the case: modules cannot be nested
within modules, nor in subprograms, but subprograms can be nested. Lastly,
there are languages which support nesting ”everything into everything”. Such
are for example Modula-2 or Ada.
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procedure Sort (A, B: in out Integer) is
procedure Swap (X, Y : in out Integer) is

Z : Integer := X ;
begin

X := Y ; Y := Z ;
end Swap;

begin
if A > B then Swap(A,B); end if ;

end Sort;

Nesting of program units is the basis for the scope and visibility rules. For
example, if a subprogram is nested into another subprogram, the embedded
subprogram is only usable within the nesting subprogram. With this method, the
number of connections between program units, and so the program complexity
can be reduced.

The embedded subprograms cannot only access the variables (and other
entities such as subprograms, types) defined within them locally. They can
also use the entities defined in the nesting block, or in its nesting block and
so forth, recursively. Finally, they also can use the entities (modules, classes,
subprograms), which are global, that is not nested in anything. The entities
accessible from a subprogram, but not defined there locally are usually called
non-local entities. In the previous Ada example the Swap procedure can use the
A and B variables, because these are non-local variables of it.

Through common non-local variables the subprograms can exchange infor-
mation with each other. This is usually a very efficient possibility but greatly
increases the complexity of the code. Modularization, and so the readability and
maintainability of the program is supported, if the subprograms communicate
with each other through their parameters. By exchanging information through
non-local variables, the efficiency of the program can be increased. Parameter
passing is costly, mainly in case of data transferring parameter passing modes.
By reasonably applying subprogram nesting and communication through non-
local variables, the efficiency of the program can be increased without increasing
the complexity and violating the principles of modularity. The previous Ada
procedure could be modified to let the Sort and Swap communicate through
common variables instead of parameters:

procedure Sort (A, B: in out Integer) is
procedure Swap is

Z : Integer := A;
begin

A := B; B := Z ;
end Swap;

begin
if A > B then Swap; end if ;

end Sort;
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7.5.3 Stati and dynami sope

The majority of the programming languages use static (or lexical) scope rules.
This means that scope is based on the nesting of program units. A declaration is
valid exactly only until the end of its embedding program unit: outside of this,
it is not valid, but it is valid also within the following nested program units.
That is why an embedded subprogram can access the variables of the nesting
subprogram.

There are also some languages (many LISP-variants, SNOBOL, APL or Perl)
which use dynamic scope rules.21 This means that the scope of a declaration will
not only cover the contained, but also the called program units. If a variable
is declared in the subprogram A, then the subprogram B is called, this B
subprogram can use the variable, even if B is not nested within A. In the following
ALGOL-like example the integer variable I is increased by one, if static scope
is applied, or in case of dynamic scope, the real variable I will be increased.

begin
integer I := 1 ;
procedure P is
begin

I := I +1 ;
end P;
begin

real I := 1.0 ;
P;

end;
end;

It is not a coincidence that most of the languages use static scope rules. A
program is much easier to understand with static than with dynamic scope
applied. Furthermore, the static type checking also requires the static scope
rules. There are still tasks which can be solved very elegantly and efficiently by
applying dynamic scope.

Concerning subprograms, the principle of static and dynamic scope can ex-
plain the difference between parameter passing by name and textual substitution.
In a language applying static scope rules, subprograms using parameter passing
by name comply with the rules of static scope, but macros using textual sub-
stitution do not. The actual parameter of the subprogram passed to the formal
parameter will be evaluated again and again in the environment of the caller
when the formal parameter is referenced, but the actual parameter for the macro
will be evaluated in the environment of the macro body. (This strange behavior
was already shown in the MPRINT example on page 308.)The body of the

21 The newer versions of LISP already use mainly static scope. Originally there was only
dynamic scope in Perl, but the recent language lets the programmer choose between dynamic
and static scope rules.
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subprogram is executed in the place of its definition, in the environment which
is determined by the program source lexically (statically) for the subprogram.
In contrast to this the body of the macro is evaluated in the environment valid
at the place of the call that complies with the dynamic scope.

Before demonstrating the above idea through an example, an alternative
definition of the parameter passing by name in ALGOL 60 will be given:

• Actual parameters will be textually substituted into the places of the
formal parameters, but without conflicting variable names within the
actual parameters and the locally defined variables in the subprogram. If
there is a variable within the actual parameter with the same name which
exists as a local variable in the subprogram, then this local variable and
all the references to it must be renamed.

• The resulting subprogram body must be substituted into the location of
the call. If there are non-local variables in the subprogram with the same
name as local variables have in the caller, then these local variables (and
all the references to them) must be renamed.

Consider the following ALGOL example:

begin
integer n;
procedure P(x);
begin

integer i;
i := n;
print i; print x ;

end;
n := 1 ;
begin

integer n; integer i;
n := 2 ; i := 3 ;
P(i + 1 );

end;
end;

During the first step of the calling, i+1 is substituted into the places of x, which
will cause the i in the actual, and also declared within P to conflict. The solution
is to rename the local variable, to, say, j. Afterwards the body of P will look like
this.

begin
integer j;
j := n;
print j;
print (i + 1 );

end;
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During the second step, this body it substituted at the call location. Another
naming conflict will occur, since there is an n within the body of P, but the n
variable at the location of the call denotes something else. So, at the location
of the call n must be renamed to m. After this, the program will become the
following:

begin
integer n;
n := 1 ;
begin

integer m; integer i;
m := 2 ; i := 3 ;
begin

integer j;
j := n;
print j;
print (i + 1 );

end;
end;

end;

The program will print out the following: 1 4.

What would happen if an ”equivalent” C program is written, but instead of
the above subprogram that uses parameter passing by name, a macro would be
used? As usual, the formal parameter of the macro is well bracketed.

int n = 1;

#define P(x) { int i = n; printf ("%d %d", i, (x)); }

int main () {

int n = 2;

int i = 3;

P(i + 1);

return 0;

}

After substitution, the following code is generated:

int n = 1;

int main () {

int n = 2;

int i = 3;

{ int i = n; printf ("%d %d", i, (i+1)); };

return 0;

}

This program will print out the following: 2 3.
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7.5.4 Lifetime of the variables

The local variables and formal parameters of the subprogram usually live until
the end of the subprogram. The local variables and formal parameters of the
subprogram are created at every call, and at the end of the subprogram they are
destroyed. The C code snippet below demonstrates a typical error. According
to the compiler, this is a valid function, but after calling it and the integer
referenced by the returned pointer is used, the result might be that the number
does no longer exist: it was destroyed at leaving the function.

int * do not call () {

int i = 1;

return &i;
}

In some languages there are exceptions to the above rule. In ASA FORTRAN,
for example, the local variables of the subprogram are static, that is their lifetime
will last for the whole program. In other languages, such as PL/I, CLU, C or
C++ static lifetime local variables can be declared with a specific keyword.

int next () {

static int i = 0;

return ++i;
}

The i variable declared in the next function has a static lifetime. After leaving
the function it is not destroyed, and even its value is preserved until the next
call. That is why calling the next function will return always the next proceeding
integer value. The following program has the same effect:

int j = 0;

int next () {

return ++j;
}

The difference between the two approaches is that the first one is more modu-
larized. The scope of the i variable, which is defined there, will not cover the
whole program, as the j variable in the second example, since it is limited only
to the next function. Outside of the function this i variable is not accessible.

In Java – using nested classes – not only local variables, but actual parameters
can also ”survive” the execution of the subprogram.

Object nameIt (final String forename) {

final String surname = "Smith ";

return new Object() {

public String toString() { return surname + forename; }

};

}



7.6 Overloading subprogram names

•
327

If this method is called with an actual parameter, an object is returned which
will remember the actual parameter, even long after the return of the method.
Having pete printed out, its toString operation will be called which will look up
the actual parameter and local variable of the former method call which created
pete, and the resulting String object will be computed based on these values.

Object pete = nameIt("Pete");

System.out.println(pete);

7.6 Overloading subprogram names

Some languages allow that at some point of the program the same subprogram
name can denote multiple subprograms. If a subprogram is called by that name,
the compiler will find out from the context of the call, which subprogram should
be executed. If the compiler is unable to determine exactly which subprogram by
the same (overloaded) name should be called, it will generate a compilation error.
Also, if there is no overloaded version which would match the call, a compilation
error will be thrown again.

Accordingly, the selection between the overloaded subprograms is done during
compilation time in a language using static type checking. The compiler must
make its decision based on the information needed to call the subprogram. What
can be this information? This depends on the given language. For example the
compiler can select one or the other subprogram based on the type of the
actual parameters. Surely, the information for this decision comes from the
specification of the subprogram, since the caller program unit only ”knows”
the called specification. Usually it is said that the ”signature” of the diverse
overloaded variants must be different. But the signature has a different meaning
for the various languages.

In Ada the subprograms can be called with qualified name. The name of
that package is used for qualification contains the definition of the subprogram
If in two different packages subprograms with the same name are defined, the
qualified name helps distinguish between them which should be called. If the
subprogram should not be called by qualified name, or the subprograms have
the same qualified names (that is they are defined within the same package),
there must be some other differences at the location of the call. This can be,
for example, in the number of actual parameters, or their types. For further
differentiation the return value (if any that is if the subprogram is a function),
and also the type of the return value can be used. Although the name and mode
of the formal parameters are part of the subprogram specification, they cannot
be used to differentiate between overloaded subprograms.

function A return Integer ;
function A return Boolean;
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procedure A;
procedure A (S : String);
procedure A (I : in out Integer);
procedure A (I : in Integer ; J : in Boolean := True);
procedure A (V : Natural := 42 ); −− this is troublesome!

The first six subprograms are valid overloadings of the name A. The seventh
subprogram cannot be defended in addition to the first six, since it does not differ
enough from the fifth. Calling one of the first six, the context of the call will
nearly always determine which variant should be executed. However, such calls
are possible, when this is not the case. If K is an integer variable, the call A(K )
is ambiguous: it can refer to the fifth or the sixth subprogram. Furthermore, the
Ada compiler will handle the call A(2 ) also ambiguously, although this would
not match the fifth subprogram.

In Java and C++ subprograms with a declared return value can be called by
omitting it, so the type of the return value was not included into the signature
in these languages: if two subprograms only differ from each other by this, then
they cannot be seen as overloaded variants. The subtype relation defined in
object-oriented languages makes the rules of overloading even more complex.
Because of subtypes, an actual parameter can match multiple types at the same
time. Consider the following Java code snippet:

void m(Object o) { . . . }

void m(String s) { . . . }

The call m("Hello") would match both overloaded variants, but the second
is ”better”: so the compiler will see this situation as straightforward, and the
second subprogram will be called.22

In the Clean language overloading is used differently: overloaded variants can
only differ very little, and overloading must be signaled separately. Overloading
in Clean is a feature for passing types as parameters to subprograms, so it
resembles the notion of the template in Ada or C++. (See Chapter 11.)

Why would two subprograms be named the same way? Primarily this is
a good possibility only if the subprograms do, in fact, nearly the same. For
example, the subprogram sorting an integer array could be named as sort, and
also the variant sorting a real array.

According to this, many languages offer predefined overloaded subprograms
for the programmers. This is the case for Ada, C++, Java, and even for languages
(ALGOL 60, FORTRAN etc.) which do not allow the programmers to write
overloaded subprograms. For example, in the standard library of Ada there are
procedures with the name Put, which print out strings, characters, or integer
numbers to the standard output or into a file.

22 To force the first variant, the following syntax can be used: m((Object)"Hello"). With this
typecast (see Section 5.1.4.) the static type of the actual parameter is changed to Object, so
the second subprogram will no longer match the call.
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Another field of the application of overloading is the assignment of default
values to formal parameters. In Java, for example, the following code would be
similar to that discussed on page 293.:

void draw rectangle (int width, int height) {

draw rectangle(width, height, 0, 0, 0);

}

void draw rectangle(int width, int height, int x, int y, int color){. . .}

The disciplined usage of overloading has a positive effect on the readability and
understandability of the program, because it is a feature of data abstraction
and polymorphism (see Chapter 11.). Nonetheless its careless and clumsy usage
could easily increase the complexity of the code. Additionally, the interference
with subtypes, default parameter values and automatic type conversion causes
often trouble.

7.6.1 Operator overloading

Operators are such subprograms which can be called with special syntax (see
7.6). For example, for addition in most of the languages the + operator can
be used, which is usually called in contrast to subprograms not in prefix, but in
infix form. Many languages offer for their predefined types predefined (often
overloaded, such as the + for integers and for reals) operators, but do not
allow the programmer to define operators with similar semantics for user types.
Such a language is, for example, Java which otherwise allow normal subprogram
overloading. In contrast, in C++ or Ada, if a matrix type is written, an infix +
operation can also be defined:

function "+" (A, B: Matrix) return Matrix is . . .

If X and Y are matrices, the expressions X+Y and "+"(X,Y ) are both valid.
Operators defined in this way inherit the precedence of the operator defined by
the language.

In Ada it is an important limitation that operators defined by the language
can be overloaded, but no new operators can be defined. In ML, Clean etc.
also this is supported. Please consider the following example to implement the
exponentiation (x to the n):

infixr 8 tothe;

fun x tothe 0 = 1.0

| x tothe n = x * (x tothe (n-1));

This ML function called tothe [Sco09] is an infix operator which is associative
from the right (this is signaled by the letter r in the keyword infixr), and
has a precedence level of 8. FORTRAN 90 also allows the definition of new
infix operators, but requires to enclose the operator between dots (such as
A .cross. B), and every such operator is assigned the same precedence level.



330

•
Subprograms

Finally, please note that some languages (such as LISP or Smalltalk) provide
a completely uniform notation system for control structures, operators and
subprograms. A simple example of searching for the bigger number can be
examined for a better comparison:

if a > b then max := a else max := b; (* Pascal *)

(if (> a b) (setf max a) (setf max b)) ; LISP

(a > b) ifTrue: [max <- a] ifFalse: [max <- b]. "Smalltalk"

7.7 Implementation of subprograms

To better understand why these languages have the support for subprograms
that they have, it is practical to know, at least schematically, the way of the
implementation of subprograms. This section will serve this purpose.

During program execution subprograms call each other, so at a given moment
multiple subprograms can be active, and in case of recursion even the same
subprogram can be active multiple times (”in multiple instances”). The calling
semantics of subprograms is reminiscent of a stack data structure: always that
subprogram will be finished first which was called last. No wonder that calling
of subprograms is implemented by a stack, the so-called runtime stack.

By activating a subprogram, information about it is pushed to the top of the
runtime stack. If the subprogram is calling a newer subprogram, the called one
will be stored above the caller within the stack. As long as the called subprogram
is active, the caller also stays active. When the callee is finished, its data is
removed from the runtime stack, and control is transferred back to the caller.
After this, the caller can call another subprogram which will again be placed
above the caller within the runtime stack. If the caller has finished all of its
statements, its data is removed from the stack, and control is transferred back
to its calling program unit.

Accordingly, at any point during program execution the active subprograms
can be determined by looking up the runtime stack. The subprogram at the top
of the stack shows where the control at the moment is, that is in which of them
the actual statement is being executed.

The entries in the runtime stack show how subprograms are activating other
subprograms. More precisely, in case recursion is also taken into account: how
subprogram instances are activating the instances of other subprograms. Every
instance (except the one at the top of the stack) has activated exactly that
other one which is stored above it within the stack; and likewise, every instance
(except the main program) is activated by exactly one other which is stored
underneath it within the stack. The subprogram instances activating each other
are also-called the call chain.
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What kind of information is stored in the runtime stack about a subpro-
gram instance exactly? The memory address must be stored definitely, where
to return back after the execution of the subprogram has finished. Furthermore,
the original values of the register at call time must be stored. This information
is needed, because after returning from the called subprogram, the caller must
continue from the same state, as it was in at the time of the call. The data which
is stored within the runtime stack about an instance of a subprogram, is called
the activation record of that instance.

In most of the programming languages the activation record usually contains
the local variables and parameters of the subprogram instance as well. During
the execution of the subprogram, there is an activation record in the runtime
stack assigned to it, which stores its local variables and parameters. After leaving
the subprogram, its activation record is removed from the runtime stack, so its
local variables and parameters also cease to exist. Exception to this are local
variables which are declared with static lifetime. These variables are not stored
within the runtime stack, but in a dedicated memory space with the size and
allocation determined in compilation time, the so-called static memory.

Figure 7.1: Activation records in the runtime stack

Do not forget that subprograms can also be recursive: at one given moment
in time there can be multiple instances of them active. In this case every instance
has its own activation record within the runtime stack, and these records hold
their own set of local variables. The local variables are stored in the activation
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record just to enable all called instances of a recursive subprogram to have their
own set of local variables.

In FORTRAN (until FORTRAN 90) recursive subprograms were not sup-
ported, so (or that is why?) the local variables of subprograms have static
lifetime. Static local variables make programs much more efficient, because there
is no need to allocate memory at calling of the subprogram, and after leaving
to release that memory area, and because the address of the local variables
can be determined at program loading (otherwise local variables could only be
accessed by indirect addressing) – although in return there is no possibility to
write recursive subprograms. In FORTRAN 90 and PL/I a deal can be made: if
a subprogram is declared to be able to call it recursively, then its local variables
are stored within the runtime stack, the local variables of other subprograms
will have a static lifetime. It is also true that using static local variables is only
more efficient in relation to running time, but not in terms of allocated memory.
Because all the static variables of all used subprograms exist during the whole
execution time of the program, and this takes up memory.

The sizes of the activation records of subprograms are different, since it
depends on the number and type of the local variables and formal parameters.
What is more, in many languages the different instances of the same subprogram
can have different sized activation records: just consider that, for example, in Ada
the size of a formal parameter or local variable is only determined in runtime,
depending on the actual parameters. So managing the calls is not that simple,
as it looks for the first time. Within the activation record it must be stored as
well where this record ends, that is where the activation record of the calling
program unit starts. These pointers are also-called as the dynamic link.

The next problem is caused by non-local variables. Global variables have
a static lifetime, so they are stored in the static memory. For this reason, their
usage is very simple. In contrast to this, those non-global variables which are non-
local for a subprogram cause much more trouble. In the non-block structured
languages, such as C where every non-local variable is static, the subprograms
have a much easier task than in the block structured languages. How can be
a non-local, but also non-global variable found within the runtime stack? If
dynamic scope rules are in effect, then the non-local variable must be in one of the
caller subprograms. The dynamic link must be traversed, and the first activation
record must be looked up where the given variable is declared. Nevertheless if
the language applies a static scope, then not the callers, but one of the nesting
subprograms will have the appropriate variable. Luckily, according to the rules
of the static scope, an embedded subprogram can only be active, if the nesting
subprogram is also active: since the embedded subprogram cannot be called
from the outside of the nesting subprogram. So, within the runtime stack, there
must be somewhere an activation record which holds the data for the nesting
subprogram. Of course it is possible that the non-local variable cannot be found
in the direct nesting, but in one of the indirect nesting subprograms. To support
an easier lookup of the activation records of the nesting classes, the compiler
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stores the location of the activation record of the nesting subprogram in every
subprogram activation record. This is also-called the static link. For this reason,
in case of static scope rules a non-local variable can be found by traversing the
static link.23

The compiler can make a lot of optimizations during the compilation of
subprograms. As mentioned before, the compiler can decide to substitute the
code of the subprogram into the location of the call like with macros. The
programmer can even hint this to the compiler in some languages. Another
important and well known optimization method can be applied to recursive
subprograms. Recursion is a very costly programming technique in terms of
running time and memory usage, although it is very elegant and results in an
easily readable code. Using a loop is much more efficient. There are recursive
subprograms which can be easily converted into a loop by the compiler: these
are the so-called tail-recursive subprograms. In these the recursive call is the last
statement of the subprogram. This optimization technique will be shown on an
example. Consider the following C function implementing a binary search [Set96]:

#define yes 1
#define no 0
int X[ ] = { 0, 11, 22, 33, 44, 55, 66, 77 };

int T;

int search (int lo, int hi)
{

int k;

if (lo > hi) return no;

k = (lo + hi) / 2;

if (T == X[k]) return yes;

else if (T < X[k]) return search(lo, k - 1);

else return search(k + 1, hi);

}

This search function can be converted to the following form:

int search (int lo, int hi) {

int k;

L: if (lo > hi) return no;

k = (lo + hi) / 2;

if (T == X[k]) return yes;

else if (T < X[k]) hi = k - 1;

else lo = k + 1;

goto L;

}

23 There is another widespread method for keeping a record and looking up non-local variables
which is based on the usage of so-called display. This method will not be discussed here.
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The recursive call is located at the end of the subprogram, so when returning
from it, the caller will also end immediately. This means that the local variables
(including also the formal parameters) are no longer needed. It is unnecessary to
create new instances from them for the recursive call, the already given variables
should be used instead. Attention must be paid only to assure that the variables
implementing the formal parameters are correctly set with the actual parameters
of the recursive call.

7.7.1 Implementation of subprograms passed as parameters

The non-local variables can also make the implementation of subprograms, which
are passed as parameters, rather complex. The subprogram passed as a param-
eter can refer to variables which were not declared within it, which means they
are not part of the subprogram definition. It can be said that for the execution
of the subprogram the knowledge of it is not enough, the environment of the
subprogram is also needed – this can be different from the environment of that
subprogram which received the subprogram as a parameter.

In non-block structured languages the environment of subprograms is very
simple: all non-local variables are global, having a static lifetime. Every reference
to a non-local variable can be dereferenced during program loading, that is why
in these languages passing subprograms as parameters will not cause much of a
problem: simply the starting address of the subprogram code must be passed.
So in C and C++, for example, the implementation of the subprograms passed
as parameters is done with pointers to the subprograms.

In the block structured Modula-2 the rule is that only most outer level
subprograms can be passed as parameters, embedded ones cannot. This means
that in this language it is possible to pass parameter subprograms with the help
of a memory address: only if there are no references to non-global non-local
variables from the passed subprogram.

Modula-3 (and some other languages) also supports passing embedded sub-
programs as parameters. In this case the subprogram passed as a parameter
”carries” an environment, in which it must be executed. This information is
called a closure: the encapsulated environment seals the subprogram, so that
every outward reference from the subprogram can be dereferenced within this
environment. The implementation of passing the closure is quite complex. Ac-
cording to the scope rules there are three possible approaches.

Shallow binding

The environment within the closure is the same as the environment of the caller
of the subprogram received as a parameter. This is the trivial solution: dynamic
scope is assumed, the subprogram passed as a parameter is executed within the
environment of its caller. (This approach is used, for example, by the SNOBOL
language.)



7.8 Iterators

•
335

Deep binding

The environment within the closure is that of the static scope, so the subprogram
passed as a parameter will see during its execution what it can see at the location
of its definition. This approach is used by most of the languages.

Ad-ho binding

The environment within the closure will be of that statement which passes the
subprogram as a parameter.

Subprograms as return values of functions cause even more complex prob-
lems. For this reason, Modula-3 allows a function to return a subprogram, but
it reserves that the returned subprogram must be from the outermost level.

Parameter passing by name is also usually implemented by passing the clo-
sure. This is done also in ALGOL 60. Instead of the parameter by name, a
subprogram is passed with the proper (deeply linked) reference environment.
This (parameterless) subprogram will be called, when the formal parameter by
name is referenced. The subprogram will be executed within the environment
passed with it together, and the actual parameter will be evaluated. It can be
seen that parameter passing by name is very inefficient. Every reference to the
formal parameter causes the execution of a subprogram.

7.8 Iterators

In Sections 3.10.7. and 3.10.8. we have already introduced the notation of itera-
tors. Let us compare now iterators with subprograms.

A loop is often written for an operation on all the elements of a value
sequence. For example, to compute the factorial of the number n, the following
loop can be used:

long factorial = 1;

for (int i = 1; i <= n; ++i)
factorial *= i;

So, for all the values 1 , 2 , . . . n the operation of a multiplication with the
factorial variable should be carried out. Another example can be to write out all
members of a data structure (such as a list, or binary tree) to the screen. The
values for this operation are the elements of the data structure, the operation is
the writing to the screen. If there is a way to access all the elements of the data
structure one after the other, the task can be easily solved by a loop:

while 〈there is something to process 〉
〈take the next one 〉
〈print it out 〉
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Iterators implement this kind of control structure as a language construct. In-
stead of implementing all the details of the loop, only the operation should be
focused on; handling of the loop variable, checking the end of the loop and
advancing the loop can be left for the iterator. Every programmer has already
written loops to iterate through the elements of an array at least thousand times.
All such loops look essentially the same. Why should this loop be rewritten all the
time? Let us hide the details in a reusable program unit, a control abstraction!
If such a loop is needed, only that part must be programmed which is unique in
it: the operation to execute on the sequence of elements. So, a proper iterator
should be parametrized and used!

In the CLU language, for example, there is a predefined iterator, the from to

which will iterate through integers within a given x. .y interval. The implemen-
tation of this iterator could be imagined like the following:

from to = iter (x, y : int) yields (int)

i: int := x

while i <= y do

yield i

i := i + 1

end

end

The yield statement causes the execution of the iterator to be suspended,
and returns the value of i to the calling program unit. At the next call of the
iterator the execution will not start from its beginning, but from the last location
where it was last suspended: from the statement following the suspending yield

statement. The iterator ends if it reaches the end of its statements, in this case,
after leaving the while loop. The iterator can be used the following way to
compute the factorial:

factorial: int := 1

for i in from to(1, n) do

factorial = factorial * i

end

The for in structure calls the iterator, as long it can return some value. If
the iterator ends, the execution of the for in will also end.

For our own data structures, an iterator operation can be written which
will enumerate the elements stored within the data structure. Afterwards, the
processing of the elements of the data structure, whatever this should mean, can
be achieved comfortably with this iterator.

There are several languages which support the writing of iterators. Such
languages are, for example, the Sather, Trellis or Alphard. The last one was
probably the first language which introduced the iterators. Please note that in
Alphard terms the iterators are called generators. This name is also appropriate,
because iterators can be seen as a kind of element generators. An important
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requirement is that the iterator should not count on the representation or the
order of the elements during the generation. In Alphard iterators are not atomic
language constructs, but they appear as special classes. These classes have
similar characteristics and behavior, more precisely every generator class has
the following (or similar) interfaces:

• Generating the first element ($&$start)
• Generating the next element ($&$next)
• Ending the generation ($&$finish)
• Getting the actual element ($&$vaℓue)
• Checking if the generation has been ended ($&$done)

Of course, from the above methods the first three are procedures, the fourth is
a getter function, the last is a predicate. The language supports the following
iterator structures:

• upto (iterating on a closed interval given by integers)
• stepup (same as upto, but also stepping can be specified)
• first (searching for the first element meeting the given requirements)
• invec (enumerating the elements of a vector)

The following Alphard example demonstrates the high abstraction power and
combining of generators.

first i from upto(1,n) suchthat A[i]>max then

max:=A[i]; maxpos:=i

fi

The source line above resembles a complete English sentence thanks to the
high expression power. The code searches amongst the elements of an array
within a given interval for the first element which is greater than the value
stored in the max variable. The index of this element will be stored in the maxpos
variable.

Another interesting fact is that the designers of the language – analyzing the
behavior of the iterators and utilizing the fact that the iterators are themselves
also classes – defined verification rules to the iterators, and verified them. The
significance of this lies in the fact that assuming the predicate (such as the
expression after the suchthat keyword) and the operation on the elements
during the iteration will terminate, the constructions using iterators will also
terminate and function properly.

Java introduces the notion of iterators with the java.util.Enumeration and
java.util.Iterator interfaces. Java also uses data abstraction (objects) to imple-
ment iterators. The state of the iterator is not represented by an interrupted,
suspended ”subprogram”, but rather as an inner state of an object which has
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operations to advance the iterator. The following Java code would print out the
elements of a v vector:

Enumeration e = v.elements();

while (e.hasMoreElements())

System.out.println (e.nextElement());

C# offers a more elegant language structure for traversing with an iterator
object. Let us assume that numbers is a data structure containing integers, and
it has an enumerable type (for example an array).

foreach (int x in numbers) {

Console.WriteLine(x);

}

In C++ the iterators [Jos99] from the Standard Template Library can be used to
traverse the data structures. They mix the iterator behavior hidden by data ab-
straction with the possibilities of operator overloading, so their usage is formally
the same as that of the pointers. The implementing classes of data structures
usually contain an iterator member which is a type (the actual representation de-
pends on the data structure), and the member functions begin and end returning
iterators (positions) for accessing the beginning and end of the data structure.
Consider, for example, the list data structure. The following code prints out the
elements of an integer list named data to the standard output:

list<char>::iterator pos;

for (pos = data.begin(); pos != data.end(); ++pos) {

cout « *pos « ’ ’;

}

The C++ iterators can be categorized into two groups based on the operations
they allow: iterators which only allow the reading of the elements of the data
structure (these are the constant iterators, their type is usually contained by
the member called const iterator), and those which allow the modification of
the elements as well. Another kind of categorization of iterators is based on the
order in which they can return the elements of the data structure (forward, for-
and backward, or random access), or if they can be used to read (input iterator)
or set (output iterator) the data structure.

7.9 Coroutines

Coroutines and subprograms are very similar program units. Their execution is
performed according to the symmetric control model, in contrast to the asym-
metric (caller–callee) control model of the subprograms. Coroutines are not
executed continuously, such as subprograms, but discontinuously. The caller
subprogram instance will not receive control back until the called subprogram is
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not finished. In the case of coroutines the situation is different. A coroutine can
pass control back to another coroutine even before it finishes. Next time when
it is called, its operation continues from the point where it was last stopped.
Coroutines can pass control between each other, as they like: they are not bound
to the rigorous LIFO rules of the runtime stack, as the subprograms. Coroutine
calls are often not even called as calls, but as resuming.

For what kind of tasks can coroutines be used? One of their most important
field of usage is the mimicking of parallelism. A coroutine can be seen as equiva-
lent to a ”process”, a logically connected sequence of statements. The coroutines
are executed parallel to each other in one time, just like processes in a concurrent
system. Of course, at one given moment in time only one coroutine is active, but
if they pass control to each other quite frequently, they can mimic parallelism.

Iterators and coroutines are related concepts. If a language supports corou-
tines, it is not problematic to implement iterators in that language [Sco09].
Consider the following CLU code using the from to iterator:

for i in from to(first, last) do . . . end

This should be converted to be something like the following ALGOL-like code:

begin
i: int;
isend: bool;
it: coroutine := new from to(first, last, i, isend, current corutine);
while not isend do

. . .
transfer it

end
destroy it

end

Before starting the loop, a coroutine is created which will use the i and isend
variables to return the next number and signal if it runs out of the specified
interval. Using transfer will pass control again and again to the coroutine, until
the isend variable becomes true. After the loop the coroutine is destroyed.
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The implementation of the iterator can look like the following:

coroutine from to(from,to:int; ref i:int; ref done:bool; caller :coroutine);
i := from
done := from <= to
detach
loop

i := i+1
done := i <= to
transfer caller

end
end

At the time of calling this coroutine the first data to be returned is set right
away into the i and done parameters passed by address, and the new coroutine
is detached from the old one. The next call of the coroutine will enter the loop
which will – until the coroutine is destroyed – be again and again evaluated
as the coroutine is called. After setting the i and done variables with the next
computed data, the last statement of the loop body transfers the control back
to the caller coroutine.

The first high level language supporting coroutines was SIMULA 67. This lan-
guage was, as its name suggests, designed for making simulations. For simulations
the modeling of separate processes is often needed that is why the coroutines
came into the language. Other languages also adopted this language feature, such
as BLISS, Interlisp or Modula-2. Some languages offer better language elements
to implement parallelism, like execution threads in ALGOL 68, Modula-3, Ada,
Occam or Java. This will be dealt with in more detail in Chapter 13.

7.10 Summary

In this chapter the control abstraction and the subprograms as language elements
for the implementation were discussed. It was shown that using subprograms
decreases the complexity of the code, and increases the reusability, readability,
changeability and maintainability of the finished software product.

Two kinds of subprograms are distinguished based on the mode of their
call. The subprograms used as statements are called procedures, those used in
expressions are called functions. It was discussed that side effects for functions
should be avoided.

Subprograms receive the required information for their operation through
input parameters, and return results through output parameters, or in case of
functions as return values to the caller. Subprograms can also use and modify
the values of non-local variables. The specification of the subprogram contains
all the information needed to call the subprogram. The compiler may check if
the calls match this specification.
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The languages model the input, output and in- and output subprogram
parameters with different parameter passing modes (by value, by address, by
result, by value/result and by name, etc.). Subprograms may also be parameters
for other subprograms. The implementation of subprograms passed as a param-
eter in a block structured language following static scope rules, is based on the
concept of the closure.

The flexible usage of subprograms may be supported in the different lan-
guages by variable length parameter lists, default values of the formal param-
eters, overloading, indefinite typed parameters and operators defined by the
programmer. Recursive subprograms, subprogram types and the Curry-method
can further increase the usability of languages.
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7.11 Exerises

Exercise 7.1. Answer the following questions briefly!

1. What is the difference between procedures and functions?
2. What does it mean if a function has side-effects?
3. What is the purpose of the subprogram specification, and what does it

consist of?
4. When is it necessary to declare subprograms in advance?
5. In which case should inline subprograms be used? How do they differ from

macros?
6. What does the overloading of subprogram names mean?
7. Give examples for languages which support operator overloading and

definition of new operators!

Exercise 7.2. Refresh your knowledge concerning parameter passing - give short
answers for the following questions!

1. What is the formal and what is the actual parameter?
2. What can be a parameter for a subprogram? Give examples from different

languages!
3. Why is it good if the compiler checks the types of the actual parameters?
4. Why is it good if the formal parameter can have a default value?
5. How can parameters be categorized based on the direction of information

flow?
6. Give examples for languages where it is possible to forbid for a subpro-

gram to modify the value of the actual parameter? Why is this good?
7. What does parameter passing by copy, by sharing and by need mean?

Give examples for languages which can support these!

Exercise 7.3. Write a function which determines if some natural numbers stored
in an array are relatively primes!

Exercise 7.4. Implement the binary search algorithm!

Exercise 7.5. Make a sorting procedure using the quicksort algorithm!

Exercise 7.6. Write a subprogram for transposing a matrix! Write it as a function
and also as a procedure. Which one when should be used?

Exercise 7.7. Write a subprogram to search within a given interval specified by
parameters the first zero point of a function also passed as a parameter!

Exercise 7.8. Make a C++ and Ada function to multiply two matrices! Com-
pare the language elements used! (Operator-overloading, number of parameters,
definiteness of the types of parameters.)
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Exercise 7.9. Write a subprogram to compute the nth Fibonacci number! Solve
this task with a loop and with recursion. What differences in the efficiency can
be observed?

Exercise 7.10. Make a summarizing procedure in the C++ and Ada languages.
To which extent can the solution be made generic in these languages?

Exercise 7.11. Is the output of the following C++ program computing the fac-
torial of a given number correct?

#include <iostream>

using namespace std;

int factorial(int & i){

int fact;
fact=1;

while (i > 1){

fact = fact*i;
i–;

}

return fact;
}

int main() {

int i;
cout« "Give the serial number of the factorial: ";

cin » i;
cout « i « "! = " « factorial(i) « "\n";

cout « i « "! = " « factorial(i) « "\n";

return 0;

}

Exercise 7.12. The following C++ program compiles without any errors or warn-
ings. Thus, the displayed result is non-deterministic and not expected. Why?

#include <iostream>

using namespace std;

int multiply(int a){

int n;

return a*n;

}

int main() {

int v=2;

cout « "the result is: " « multiply (v);

return 0;

}
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Exercise 7.13. Compare the output lines with the values of n in the following
java code, and explain the differences!

public class Hello {

public static void main(String[ ] args) {

Integer n = new Integer(2);

System.out.println("n=" + n);

multiply(n,3);

System.out.println("n=" + n);

}

public static void multiply(Integer n, Integer m) {

n=n*m;

System.out.println("in multiply: n=" + n);

}

}

7.12 Useful tips

Tip 7.1. We will reference the sections discussing the given questions.

1. As described in Section 7.2, both procedures and functions are common
kinds of subprograms, for the main difference between them consider
which computes mainly return values and which implement transforma-
tions on the state space.

2. Think of the previous question, and about the expected role of the func-
tion. Consider the case if some additional effects appear besides this
expected role. We have also discussed in Section 7.2.1, what if this side-
effect is actually the desired behavior, and otherwise if not expected, why
this situation should be avoided (see Section 7.2.2).

3. In Section 7.3.2 we have covered the need of an interface of the sub-
program to the outside word to present in some form how it can be
called. Consider the possibilities and restrictions of different programming
languages, how and how much of this information is required and can be
specified, and who (or what) could possibly need this kind of information?

4. In Section 7.3.6 we have mentioned some programming languages, which
require that all entities must be declared before usage. How and in which
order could subprograms calling each other be declared in such program-
ming languages? Also think of the possibility of implementation hiding.

5. In short, think of the question of efficiency. As we have explained in
Section 7.3.7, inline subprograms and macros both are compiled as sub-
stitutions, but consider the different levels, where these substitutions are
actually applied.



7.12 Useful tips

•
345

6. Please refer to Section 7.6, where we have explained how some languages
can support the same name for multiple different subprograms.

7. In Section 7.6.1 we have identified the operators as special subprograms
which can be called with special syntax (see 7.6). Appropriate language
support and examples have been also introduced there.

Tip 7.2. Parameter passing have been discussed in Section 7.4. Refresh your
knowledge from there.

1. Based on Section 7.3, consider how the parameters are referenced within
the subprogram body and how the values are passed to these parameters
during subprogram call.

2. Section 7.3.1 has listed the entities that are allowed as parameters for a
subprogram. Language support for indefinite types, unconstrained arrays,
multidimensional arrays, subprograms and labels as parameters have been
discussed with examples, type and module parameters have been mention
here and are covered in Chapter 11 in more detail.

3. Consider how the compiler could help program reliability by checking
type correctness.

4. In Section 7.3.4 we have seen how default values can help shortening the
form and increase the flexibility of subprogram calling.

5. In the beginning of Section 7.4 the three basic types of parameters have
been mentioned based on the direction of information flow between the
caller and the called subprogram.

6. Think of the const or the READONLY modifiers of the formal parameters
discussed in Section 7.4.3. Consider also how this write protection for the
actual parameter can influence program reliability and parameter passing
performance.

7. Some sources consider the parameter passing by value/result variant, used
in Ada, to be different logically from the one that of ALGOL W, and call
it as parameter passing by copy. In our book we consider, like most of the
sources, parameter passing by copy and by value/result to be logically the
same, the difference is only considered to be an implementation anomaly.
In Java parameter passing by value is applied. As objects can be accessed
through implicit references, and passing an object as a parameter means
passing the reference by value, so a subprogram can change the object
received as the actual parameter, or to be more precise, the object which
is referenced by the reference received as the actual parameter. (This is
usually called parameter passing by sharing.
In the lazy evaluated functional languages parameter passing takes place,
as if parameter passing occurred by value. The difference is that the
evaluation of the actual parameter and the determination of the value
of the formal parameter is not carried out at the calling of the function,
but later, when the value of the parameter is needed for the first time.
This kind of parameter passing is called by need.
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Tip 7.3. Two integers m and n are said to be relatively prime if the only positive
integer that evenly divides both of them is 1. This means also that their greatest
common divisor (denote it by gcd(m, n) is 1. We have to check in the array v
that

∀i, j in v′range if i 6= j gcd(v[i], v[j]) = 1

holds.

Tip 7.4. The binary search algorithm finds the position of a specified input value
within a sorted array. In each step, the algorithm compares the searched value
with the middle element of the array. If they do not match, and the value is less
than the middle element, then the algorithm repeats its action on the sub-array
to the left of the middle element or, if the value is greater, on the sub-array to the
right. If the remaining array to be searched is empty, then the value cannot be
found in the array. This binary search halves the number of items to check with
each iteration, so locating an item (or determining its absence) takes logarithmic
time.

Tip 7.5. The quicksort algorithm is well known, for details see e.g. the book
[Cor09]. Write a generic procedure which solves the problem for unconstrained
amount of data stored in a vector, for which an ordering relation exists.

Tip 7.6. The transpose of an m × n matrix A is another matrix A
T of the

size n × m where [AT]ij = [A]ji. From this definition it can be seen, that
the dimensions of the original matrix are swapped for the resulting matrix, this
condition must be checked or ensured. The transposing itself can be implemented
as a nested iteration over all the elements of the source or the target matrix,
and setting the appropriate element according to the above definition.

Tip 7.7. For an exact solution the domain of the function should be finite, i.e.
discrete. So for all the possible values the function may be evaluated and checked
if it gives zero or not. This is a simple iteration over all the domain values in
the given interval. As we are searching for the first zero point, the type of the
domain for the function must support ordering, and the iteration should loop in
an ascending order. The type of the value set of the function must have a zero
value and support the equality comparison with it.

Tip 7.8. If A is an m × n matrix and B is an n × p matrix, the result AB of
their multiplication is an m×p matrix where (AB)ij =

∑m
k=1 AikBkj . From this

definition it can be seen, that the number of columns of the first matrix must
be equal to the number of rows of the second matrix, so this condition must
be checked. The multiplication can be implemented as a nested iteration over
all the elements of the product matrix, and computing the appropriate element
with another summarizing loop according to the above definition.

Tip 7.9. The sequence of Fibonacci numbers is defined by the recurrence relation
Fn = Fn−1 + Fn−2 where F0 = 0 and F1 = 1 by definition. As this definition is
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already recursive, that kind of solution is pretty straightforward. The iterative
approach is practically the enumeration of all the Fibonacci numbers until n,
where only the two last result numbers are required to compute the next one.

Tip 7.10. Summarizing requires a data type which can be indexed, the index
range should have an ordering (to be able to iterate over it), the value typeset
should have a zero value and an addition operation. Generally summarizing
works as iterating over the index range and adding up the indexed values, starting
from a zero result value. The extent of genericity depends on the generic support
of the given language (see Chapter 11) and the generic possibilities of the chosen
data types fulfilling the above mentioned requirements for the proper working
of summarizing.

Tip 7.11. Run the example program! Please note, that the computation of the
factorial is invoked twice, so the result should be also displayed twice. If you see
different, incorrect results, check the code of the computation algorithm. Could
that function cause some kind of side-effects?

Tip 7.12. Take a closer look, what the expected result of the function call should
be. Can you identify and explain it?

Tip 7.13. As we have explained in Section 7.4.3, in Java parameter passing is
done by sharing. Within the body of the multiply static method, the received
object is seemingly modified through its reference, but according to the output
of the program, the caller object stays unmodified. So, what has been changed
exactly by the assignment within this method?

7.13 Solutions

Solution 7.1. 1. In programming theory there are two common kinds of sub-
programs: procedures and functions. Procedures implement transforma-
tions on the state space defined by their variables or on the environment
of the program. Functions on the other hand compute a value. Calling
procedures can be considered as a statement, calling a function is more like
an expression. It can be seen that procedures extend the statement set of
the language, and functions extend the operator set used for expressions.

2. Usually functions compute a value, but do not make transformations,
and have no effect either on the values of the program variables, or on the
program environment; this is often said the functions have no side-effects.
Many programming languages, such as C, C++, Java, C# or CLU do not
really differentiate between procedures and functions. In these languages
there is no sharp dividing line between statements and expressions either.
An expression can stand alone as a statement, and its execution means
the evaluation of the expression which often causes some side-effects.
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For example, the value of the c++ expression is the same as the value of the
c variable, but as a side-effect, the value of the variable is incremented by
one. In these languages all subprograms are ”functions”, but some of them
have a return value of an empty ”void type”. These kinds of functions
are practically procedures. Avoiding side-effects also improves program
readability, clarity and portability. If functions with side-effects are called
in an expression, their value (and the order of the statements causing side-
effect) also depends on the evaluation order (precedence) of operators
within the expression. This makes the understanding of the code more
problematic even if the evaluation order within expressions is precisely
defined. If this is not defined clearly, expressions can occur easily with
uncertain results undefined by the language, and this error is not even
captured by the compiler. In such a case, the program can ”accidentally
function properly” on a given architecture, but on a different system, or
just after switching to another compiler everything goes suddenly wrong.

3. For the caller program units the specification of the subprogram is what
they can access. It is sometimes also said that the interface of the subpro-
gram to the outside word is its specification. Callers cannot see anything
from the body. So the control abstraction is realized in this way: the
callers face only an abstraction of the concrete statement sequence. The
specification usually contains the name of the subprogram, whether it is
a function or not, and if yes, the type of the return value, and also which
parameters are accepted. The more precisely the specification describes
how to use the subprogram, the easier it is to write correct programs in
the given language. The compiler uses the specification to check whether
the caller of a subprogram is using it correctly or not, for example passing
the proper count of parameters.

4. In some languages there is a limitation for every entity appearing in the
program so their type must be specified before usage. Technically, it is
customary to say that all entities must be declared before usage. In such
languages this is also true for subprograms. There are situations when
subprograms cannot be declared by giving their definition. For example,
in case of an indirect recursion, that is, if subprogram A calls subprogram
B which calls subprogram A, there is no way to give the definition of
the two subprograms so that they both would be defined before usage.
In this case a forward declaration can help. It essentially consists of the
specification of the subprogram, giving only information about how to
use it.
Another case is if the subprogram should not be declared by its definition
because of implementation hiding. In Ada, Modula-2 and other languages
that support modules, in the specification part of the module its usage is
specified (such as its exported subprograms, types, variables etc. can be
declared here), the body of the module contains the implementation of its
exported entities. So the specification part of the module only contains
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the specification of the subprograms, which is enough to decide if these
are called correctly by the user program units of the module. The full
definition of the subprogram is contained by the body of the module.

5. Macros can be considered as the ancestors of subprograms. They were
introduced in the assembly languages, but can be used in LISP, BLISS,
or in the C preprocessor, probably this is the best known. The C macro
can be used to arrange the program source, like the subprograms. It is an
efficient, but not too safe language construct. It can accept parameters,
but the type of actual parameters will not be checked against the types
of the formal parameters. Macros are more efficient than subprograms,
from the aspect that the extras of subprogram calling and returning are
omitted. The body of the macro is substituted at every call into the
program source, so no extra administration is required for calling (such
as saving registers and return address, etc.). For shorter running time,
it is more efficient to use macros but the final size of the program with
macros will be greater than with subprograms.
Some languages (Ada, C++, Euclid, LISP etc.) try to combine the ad-
vantages of macros and subprograms by supporting the usage of inline
subprograms. In these languages the programmer can usually give hints
to the compiler, which subprograms should be compiled as substitutions.
Inline programs beside having the efficiency of macros, can offer safety
by their subprogram specification, and can also ensure the production
of semantically clearer code. The inline subprograms represent only an
implementation technique, they do not have an effect on the function of
the program.

6. Some languages allow that at some point of the program the same subpro-
gram name can denote multiple subprograms. If a subprogram is called
by that name the compiler will find out from the context of the call, which
subprogram should be executed. If the compiler is unable to determine
exactly which subprogram by the same (overloaded) name should be
called, it will generate a compilation error. Also, if there is no overloaded
version which would match the call, a compilation error will be thrown
again.

7. Operators are such subprograms which can be called with special syntax.
For example, for addition in most of the languages the + operator can be
used, which is usually called in contrast to subprograms not in prefix, but
in infix form. Many languages offer for their predefined types predefined
(often overloaded, such as the + for integers and for reals) operators, but
do not allow the programmer to define operators with similar semantics
for user types. Such a language is, for example, Java which otherwise
allow normal subprogram overloading. In contrast, in C++ or Ada, if a
matrix type is written, an infix + operation can also be defined. In Ada
it is an important limitation that operators defined by the language can
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be overloaded, but no new operators can be defined. In ML, Clean etc.
also this is supported. FORTRAN 90 also allows the definition of new
infix operators, but requires to enclose the operator between dots (such
as A .cross. B), and every such operator is assigned the same precedence
level.

Solution 7.2. 1. Formal parameters are those specified in the definition of
the subprogram. They are used throughout its body to describe the opera-
tions. Actual parameters are passed by the caller to the subprogram which
has to perform its operation with these received parameters. This means
that actual parameters must be matched against formal parameters. The
formal or actual parameter sequence of a subprogram is commonly called
as the parameter list.

2. In a programming language entities are usually vales, types, subprograms
and modules. In Ada additional entities are processes or in Clean the type
constructors. To use entities as parameters is allowed almost in every pro-
gramming language. (Except, for example, some early variants of BASIC
among others, which did not allow any parameters for subprograms at
all.)
Value entities as parameters are the most basic possibility supported by
all modern programming languages.
Many languages allow formal parameters to have indefinite types. With
these, such programs can be made which can handle unconstrained arrays.
In Ada, not only the unconstrained, that is variable length array can be
indefinite, but also the unconstrained discriminated record type. Even in
Standard Pascal it is possible to write a sorting procedure which is able
to use arbitrary length arrays. In C, arbitrary length arrays can be passed
with the help of pointers as parameters. In Java, multidimensional arrays
are such one-dimensional arrays which contain arrays.
To generalize a possible implementation of an integral function, there
must be a way to pass a subprogram as a parameter. This was not allowed
at all in some early imperative languages (ASA FORTRAN, COBOL
etc.). The possibility appeared in the functional languages (including
LISP already born in the end of the 50’s), in ALGOL 60 and in nu-
merous languages designed later (PL/I, SIMULA 67, ALGOL 68, Pascal,
FORTRAN 77, Modula-2, Modula-3 etc.).
In ALGOL 60, PL/I, SIMULA 67, ALGOL 68 etc. labels can also be
passed to subprograms as a parameter.
In several current languages subprograms cannot be, but pointers to them
can be passed as parameters. Such languages are, for example, C, C++
or Ada.
The reusability of a subprogram can greatly be improved if types could be
passed as parameters. This is supported by so called generics, in languages
such as Java, C++ and Ada for example.
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3. The compiler ensures program reliability by checking type correctness at
parameter passing. The compiler uses the specification to check whether
the caller of a subprogram is using it correctly or not, for example passing
the proper count and types of parameters. This is done in compile time,
so unexplainable runtime errors caused by type mismatch can be avoided
in advance.

4. There are languages which support default values for formal input pa-
rameters. In this case it is not needed to match all the formal parameters
with actual values: formal parameters without actual values will have
their default values – if specified. Such subprograms always have the same
number of parameters, but not all of them must be explicitly set. This
feature is very useful for subprograms with many formal parameters which
usually have the same values. So there are parameters which are important
to be set, and there are ones, that are less important. According to this,
formal parameters with default values must be placed at the end of the
parameter list, in a descending order of their importance.

5. Subprogram parameters can be grouped in three groups based on the
direction of information flow. The input parameters can be found in
the first group. They deliver information from the caller into the called
subprogram. The second group is for the output parameters which return
information from the subprogram to the caller. The last group of in- and
output (inout) parameters ensure a two way information flow.

6. C++ and the ANSI C contain a very interesting language element: in the
definition of the formal parameters the const keyword can appear. This
means that the instance referenced by the formal parameter cannot be
changed by the subprogram. If the values of type of the formal parameter
are large, this trick helps avoiding data transferring which would occur at
parameter passing by value: instead, only the costs of passing by address,
which is usually more efficient, would occur at subprogram call. The
advantages of this technique are even better visible, if combined with the
reference type of C++. In this case an input parameter is implemented
purely with parameter passing by address. In other languages there are
also similar constructs to const. In Modula-3, for example, the formal
parameter can be declared as READONLY. The compiler will ensure that
the formal parameter will not appear on the left side of an assignment, and
will not be passed in an in- and output manner as the actual parameter
to another subprogram. The input parameter, declared as READONLY, will
usually be passed by value, if it is small in size, and by address, if it
is large. If a right-side expression is passed as the actual to a READONLY

parameter by address, the compiler will - just like in FORTRAN - use a
temporary variable to store the value of the right-side expression, and its
address will be passed to the formal parameter.

7. Some sources consider the parameter passing by value/result variant, used
in Ada, to be different logically from the one that of ALGOL W, and call
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it as parameter passing by copy. In our book we consider, like most of the
sources parameter passing by copy and by value/result to be logically the
same, the difference is only considered to be an implementation anomaly.
This parameter passing mode is usually used to implement in- and output
parameters. Basically it is the joint application of by value and by result
parameter passing modes. The formal parameter is a local variable of the
subprogram, which at the calling of the subprogram becomes the value
of the actual parameter, then at the end its value is copied back into the
actual parameter. The actual parameter can only be an L-value, so that
it can receive the result computed by the subprogram.
In Java parameter passing by value is applied. As objects can be accessed
through implicit references, and passing an object as a parameter means
passing the reference by value, so a subprogram can change the object
received as the actual parameter, or to be more precise, the object which
is referenced by the reference received as the actual parameter. This is
usually called parameter passing by sharing. This name is originated from
CLU.
In the lazy evaluated functional languages parameter passing takes place,
as if parameter passing occurred by value. The difference is that the
evaluation of the actual parameter and the determination of the value
of the formal parameter is not carried out at the calling of the function,
but later, when the value of the parameter is needed for the first time. This
kind of parameter passing is called by need. Parameter passing by need is
a bit like by name, because of the principle of late binding. But opposed
to parameter passing by name, the value of the actual parameter will only
be evaluated once. So, if there are no side effects during the evaluation,
there would be also no difference between these two parameter passing
modes.

Solution 7.3. The solution is in Ada, it is embedded into a very simple test
procedure:

with Text_IO; use Text_IO;

procedure Rel_Prime_Test is
package Pos_IO is new Integer_IO(Positive);

use Pos_IO;
package Bool_IO is new Enumeration_IO(Boolean);
use Bool_IO;

type Myvect is array(Positive range <>) of Positive;
Vector1 : Myvect(1..n) := (7,8,9,11,5);

Vector2 : Myvect(1..n) := (7,8,9,11,10);
Rel_Prime : Boolean;

I,J : Natural;
function Greatest_Common_Divisor( A, B: Positive ) return Positive is

X : Positive := A;

Y : Positive := B;
begin

while X /= Y loop
if X > Y then X := X-Y; else Y := Y-X; end if;

end loop;

return X;
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end Greatest_Common_Divisor;
function Relative_Prime( A, B : Positive) return Boolean is
begin

return Greatest_Common_Divisor (A,B) = 1;
end Relative_Prime;

procedure Rel_Prime_Vect (V : in Myvect; Rel_Prime : out Boolean;
I, J : out Natural) is

M : Positive := V’First;

N : Positive := V’Last;
begin

I := M-1;
Rel_Prime := True;

while I < N and Rel_Prime loop
I := I+1;
J := I+1;

while J <= N and Rel_Prime loop
Rel_Prime := Relative_Prime(V(I),V(J));

J:=J+1;
end loop;

end loop;
if not Rel_Prime then

J := J-1;

end if;
end Rel_Prime_Vect;

begin
Rel_Prime_Vect(Vector1, Rel_Prime, I, J);
if not Rel_Prime then

Put_line("The first elements in the vector");
Put_line("which are not relatively prime:");

Put(Vector1(I)); Put(" "); Put(Vector1(J));
else

Put("The elements in the vector are ");
Put_Line("relatively prime");

end if;

Rel_Prime_Vect(Vector2, Rel_Prime, I, J);
if not Rel_Prime then

Put_line("The first elements in the vector");
Put_line("which are not relatively prime:");
Put(Vector2(I)); Put(" "); Put(Vector2(J);

else
Put("The elements in the vector are ");

Put_Line("relatively prime");
end if;

end Rel_Prime_Test;

Solution 7.4. The solution is in Ada as a generic procedure. The specification of
the generic binary search algorithm:

generic
type Item is private;
type Index is (<>);

type Vector is array (Index range <>) of Item;
with function "<"(X, Y : Item) return Boolean is <> ;

procedure Log_Search(V:in Vector; X:in Item; T:out Boolean; Ind:out Index);

The body of the generic algorithm:
procedure Log_Search(V:in Vector; X:in Item; T:out Boolean; Ind:out Index) is

M, N, K : Integer;
L : Boolean;

begin
M := Index’Pos(V’First); N := Index’Pos(V’Last); L := False;

while not L and then M <= N loop
K := (M + N) / 2;

if X < V(Index’Val(K)) then
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N := K - 1;
elsif X = V(Index’Val(K)) then

Ind := Index’Val(K);

L := True;
else

-- the function ">" is not supposed between
-- the generic parameters

M := K + 1;

end if;
end loop;

T := L;
end Log_Search;

A simple test of the procedure:
with Text_IO, Log_Search, Quick_Sort; use Text_IO;
procedure Log_Search_Test is

type Months is
(January, February, March, April, May, June,

July, August, September, October, November, December);
package Int_IO is new Integer_IO(Integer); use Int_IO;
package Month_IO is new Enumeration_IO(Months); use Month_IO;

package Bool_IO is new Enumeration_IO(Boolean); use Bool_IO;

type My_Vect is array (Integer range <>) of Months;

procedure My_Log_Search is

new Log_Search(Months, Integer, My_Vect);
procedure My_Sort is

new Quick_Sort(Months, Integer, My_Vect);
-- we can use the Quick_Sort algorithm from Exercise above

V : My_Vect (1 .. 5) := (October, March, February, August, September);
Elem : Months;
Found, OK : Boolean;

Ind : Integer;

begin
My_Sort(V);
Put_Line("Give the month");

OK:=False;
while not OK loop

begin
Get(Elem); OK:=True;

exception
when Data_Error =>

Put_Line("Please give it once more, it has to be a month: ");

end;
end loop;

My_Log_Search(V,Elem, Found, Ind);
if Found then

Put("The month ");

Put(Elem);
Put(" is in the vector at the index: ");

Put(Ind);
New_Line;

else
Put("The month ");
Put(Elem);

Put(" is not in the vector");
New_Line;

Put_Line("The element in the vector are:");
for I in V’First..V’Last loop

Put(V(I)); Put(" ");

end loop;
New_Line;
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end if;
end Log_Search_Test;

Solution 7.5. The solution is in Ada as a generic procedure. The specification:
generic

type Item is private;
type Index is (< >);
type Vector is array(Index range < >) of Item;

with function "<"(X, Y : Item) return Boolean is < >;
procedure Quick_Sort(V : in out Vector);

The body:
procedure Quick_Sort(V : in out Vector) is

procedure Sort (Left,Right : in Index) is

Pivot : Item :=
V(Index’Val((Index’Pos(Left)+Index’Pos(Right))/2));

Leftind : Index := Left;
Rightind : Index := Right;
begin

loop
while V(Leftind) < Pivot loop

Leftind := Index’Succ(Leftind);
end loop;
while Pivot < V(Rightind) loop

Rightind := Index’Pred(Rightind);
end loop;

if Leftind < =Rightind then
declare

Temp:Item := V(Leftind);
begin

V(Leftind) := V(Rightind);

V(Rightind) := Temp;
end;

Leftind := Index’Succ(Leftind);
Rightind := Index’Pred(Rightind);

end if;

exit when Leftind>Rightind;
end loop;

if Left < Rightind then
Sort(Left,Rightind);

end if;
if Leftind < Right then

Sort(Leftind,Right);

end if;
end Sort;

begin
Sort(V’First,V’Last);

end Quick_Sort;

A small example demonstrates the instantiation of the generic procedure:
with Quick_Sort, Text_IO; use Text_IO;

procedure Quick_Demo is
subtype Element is Integer range 0..1000;
subtype index is Integer;

type Vect is array (Index range <>) of Element;
A : Vect(1..5):=(7,3,4,2,0);

procedure Qsort is new Quick_Sort(Element,Index,Vect);--the actual procedure
package Int_IO is new Integer_IO(Integer);
use Int_IO;

begin
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Put("The original vector:"); New_Line;
for I in A’First..A’Last loop

put(A(i));

end loop;
New_Line;

Qsort(A);
Put("The sorted vector:"); New_Line;
for I in A’First..A’Last loop

put(A(i));
end loop;

New_Line;
end Quick_Demo;

Solution 7.6. Both solutions are Ada generics. The specification of the generic
procedure:

generic
type Elem is private;

type Index is (<>);
type Matrix is array (Index range <>, Index range <>) of Elem;

with function "+"(A, B : Elem) return Elem is <>;
with function "*"(A, B : Elem) return Elem is <>;

procedure Matrix_Transp_Proc(A :in Matrix; B:out Matrix);

The body:
procedure Matrix_Transp_Proc(A:in Matrix; B: out Matrix) is

begin
if not( A’First(1)=B’First(2) and A’Last(1)=B’Last(2)) then

raise Constraint_Error ;

end if;
for I in A’Range(1) loop

for J in A’Range(2) loop
B(J,I) := A(I,J);

end loop;
end loop;

end Matrix_Transp_Proc;

The specification of the generic function is very similar:
generic

type Elem is private;
type Index is (<>);
type Matrix is array (Index range <>, Index range <>) of Elem;

with function "+"(A, B : Elem) return Elem is <>;
with function "*"(A, B : Elem) return Elem is <>;

function Matrix_Transp(A :in Matrix) return Matrix;

The body:
function Matrix_Transp(A:in Matrix) return Matrix is

C : Matrix(A’Range(2), A’Range(1));
begin

for I in A’Range(1) loop
for J in A’Range(2) loop

C(J,I) := A(I,J);

end loop;
end loop;

return C;
end Matrix_Transp;

The next program demonstrates the use of both solutions:
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with Matrix_Transp, Matrix_Transp_Proc, TEXT_IO;use TEXT_IO;
procedure Matr_transp_trial is

subtype Element is Integer range 0..1000;

subtype Index is Integer;
type Matr is array (Index range <>, Index range <>) of Element;

-- instantiation of the generic function and the procedure:
function Transp is new Matrix_Transp(Element,Index,Matr);

procedure Transp is new Matrix_Transp_Proc(Element,Index,Matr);

A : Matr(1..2,1..3) := ((1,2,7),(3,4,9));
C : Matr(1..3,1..2);

package Int_IO is new Integer_IO(Integer); use Int_IO;
procedure Put(A : Matr) is

begin
for I in A’First(1)..A’Last(1) loop

for J in A’First(2)..A’Last(2) loop
put(A(i,j));

end loop;
New_Line;

end loop;

end;

begin
Put("The original matrix:"); New_Line;
Put(A);

C:=Transp(A); -- the call of the function

Put("The transposed matrix:"); New_Line;
PUT(C);

Transp(A,C); -- the call of the procedure

Put("The transposed matrix:"); New_Line;
PUT(C);

end;

Solution 7.7. Exact solution is possible only if the domain and range of the
function are discrete. Thus a general solution can be written e.g. in Ada, as
follows.

The specification:
generic

type Domain is (<>);
type Values is (<>);

Zero: Values;
package Zero_Point_Generic is

type Func_Pointer is access function (D : Domain) return Values;

procedure Zero_Point (Low, High : in Domain; F : in Func_Pointer;
Found : out Boolean; Zero_P : out Domain);

end Zero_Point_Generic;

The body:
package body Zero_Point_Generic is

procedure Zero_Point (Low, High : in Domain;

F : in Func_Pointer;
Found : out Boolean;

Zero_P : out Domain) is
Element : Domain;
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begin
if Low>High then raise Constraint_Error; --these must specify an interval
end if;

Element := Low;
Found := F(Element)=Zero;

while Element < High and not Found loop
Element := Domain’Succ(Element);
Found := F(Element)=Zero;

end loop;
if Found then

Zero_P := Element;
end if;

end Zero_Point;

end Zero_Point_Generic;

A simple test, to demonstrate instantiation and call:
with Text_IO, Zero_Point_Generic; use Text_IO;

procedure Zero_Point_Test is
package Zero_Test is new Zero_Point_Generic (Integer, Integer, 0);
use Zero_Test;

package Int_IO is new Integer_IO(Integer);
use Int_IO;

function Test (X: Integer) return Integer is
begin

return X+1;

end Test;

Test_P: Func_Pointer := Test’access; -- pointer to function
Found: Boolean;

Zero_Place : Integer;
Low: Integer:= -2;
High : Integer := 5;

begin
Zero_Point (Low, High, Test_P, Found, Zero_Place);

Put(Found);
New_Line;
if Found then

Put("The zero-place of the test function ");
Put_Line("in the interval:");

Put(Low); Put(" "); Put(High);
New_Line;

Put(Zero_Place);
else

Put("The test function has not zero-place ");

Put_Line("in the interval:");
Put(Low); Put(" "); Put(High);

New_Line;
end if;

end Zero_Point_Test;

Solution 7.8. In the Ada programming language generic solutions can be given
using unconstrained array type as parameter.

The specification:
generic

type Element is private;

type Index is (<>);
type Matrix is array (Index range <>, Index range <>) of Element;

with function "+"(A, B : Element) return Element is <>;
with function "*"(A, B : Element) return Element is <>;

function Matrix_Product(A, B:in Matrix) return Matrix;
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The body:
function Matrix_Product(A, B:in Matrix) return Matrix is

L : Index := A’First(2);

C : Matrix(A’Range(1), B’Range(2));
begin
if A’Length(2) /= B’Length(1) then raise Constraint_Error;

-- not appropriate sizes of matrices
end if;

for I in A’ Range(1) loop
for J in B’ Range(2) loop

C(I,J) := A(I,L) * B(L,J);
for K in Index’ Succ(L)..A’ Last(2) loop

C(I,J) := C(I,J) + A(I,K) * B(K,J);

end loop;
end loop;

end loop;
return C;

end Matrix_Product;

The following procedure demonstrates the instantiation of the generic func-
tion:

with Matrix_Product, TEXT_IO;use TEXT_IO;
procedure Matr_trial is

subtype Element is Integer range 0..1000;
subtype Index is Integer;
type Matr is array (Index range <>, Index range <>) of Element;

function "*" is new Matrix_Product(Element,Index,Matr);

-- operator overloading is possible at instantiation
A : Matr(1..2,1..2):=((1,1),(1,1));

B : Matr(1..2,1..2):=((1,2),(3,4));
C : Matr(1..2,1..2); -- this will be the result

package Int_IO is new Integer_IO(Integer); use Int_IO;

procedure Put(A : Matr) is

begin
for I in A’First(1)..A’Last(1) loop

for J in A’First(2)..A’Last(2) loop

put(A(i,j));
end loop;

New_Line;
end loop;

end;

begin

Put("The first matrix:"); New_Line;
Put(A);

Put("The second matrix:"); New_Line;
Put(B);
C:=A*B;

Put("The product:"); New_Line;
Put(C);

end;

Operator overloading is not allowed at generic functions, if we would like to
create a generic ”*” function, we have to put it into a generic package, as in the
following Ada programs:

generic
type Elem is private;
type Index is (<>);

type Matrix is array (Index range <>, Index range <>) of Elem;
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with function "+"(A, B : Elem) return Elem is <>;
with function "*"(A, B : Elem) return Elem is <>;

package Matrix_Product2 is

function "*"(A, B : Matrix) return Matrix;
end Matrix_Product2;

The body:
package body Matrix_Product2 is
function "*"(A, B:in Matrix) return Matrix is -- the same body as above

L : Index := A’First(2);
C : Matrix(A’Range(1), B’Range(2));

begin
if A’First(2) /= B’First(1) or A’Last(2) /= B’Last (1) then

raise Constraint_Error;

end if;
-- we suppose that the ranges are the same in A and B

for I in A’ Range(1) loop
for J in B’ Range(2) loop

C(I,J) := A(I,L) * B(L,J);
for K in Index’Succ(L)..A’Last(2) loop

C(I,J) := C(I,J) + A(I,K) * B(K,J);

end loop;
end loop;

end loop;
return C;
end "*";

end Matrix_Product2;

Using this solution, we have to instantiate the package, and then the over-
loaded ”*” function for matrices will be available.

In the C++ solution we can use a template for our matrix class, operator
overloading is possible, the following code snippet gives the result:

template <class T>

class matrix{
public:

//constructors are needed, etc...
private:
// the representation should be private

int rows;
int cols;

T** m;
public:

matrix operator*(const matrix& b) {
// check if the dimensions match
if (cols == b.rows) {

matrix result(rows, b.cols);
for (int i = 0; i < rows; i++) {

for (int j = 0; j < b.cols; j++){
for (int k = 0; k < cols; k++) {

result.m[i][j] += m[i][k] * b.m[k][j];

}
}

}
return result;

}
else {

throw "Dimensions do not match"; }

};
//...

}
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Another possibility is in C++ the friend. In this case we have to write the
header of the function into the matrix class:

friend matrix operator*(const matrix& a,

const matrix& b) ;

The friend function must have two parameters, thus we have to modify the
function’s body too:

matrix operator*(const matrix& a, const matrix& b) {

if (a.cols != b.rows)

throw "Dimensions do not match";

matrix result(a.rows, b.cols);

for (int i = 0; i < a.rows; i++)

for (int j = 0; j < b.cols; j++)

for (int k = 0; k < a.cols; k++)

result.m[i][j] += a.m[i][k] * b.m[k][j];

return result;
}

Solution 7.9. The solution is in Ada, the result of the test gives also the com-
parison of the two possibilities.

with Text_IO;
with Ada.Calendar;

use Text_IO;
use Ada.Calendar;
procedure Fibonacci_Test is

package Nat_IO is new Integer_IO(Natural);
use Nat_IO;

package Fl_IO is new Float_IO(Float);
use Fl_IO;

N : Natural;
N1, N2 :Natural;

function Fibonacci_Recursive(N:Natural) return Natural is

begin
if N=0 or N=1 then

return N;

else
return

Fibonacci_Recursive(N-1)+Fibonacci_Recursive(N-2);
end if;

end Fibonacci_Recursive;

function Fibonacci_Iterative(N:Natural) return Natural is

Act_Fib : Natural:=0;
Prev : Natural:=1;

Next : Natural;
begin

for I in 0..N-1 loop

Next := Act_Fib + Prev;
Prev := Act_Fib;

Act_Fib := Next;
end loop;

return Act_Fib;
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end Fibonacci_Iterative;

C1, C2 : Time;

begin

Put_Line("Give the value of n:");
Get(N);
Put("The value of the ");

Put(N); Put_Line("th Fibonacci number:");

C1:=Clock;
N1:=Fibonacci_Iterative(N);

C2:=Clock;

Put(N1);

New_Line;
Put("The duration of the ");

Put_Line("iterative Fibonacci algorithm:");
Put(Float(C2 - C1));

New_Line;
Put("The value of the ");

Put(N); Put_Line("th Fibonacci number:");

C1:=Clock;
N2:=Fibonacci_Recursive(N);
C2:=Clock;

Put(N2);

New_Line;
Put("The duration of the ");

Put_Line("recursive Fibonacci algorithm:");
Put(Float(C2 - C1));

end Fibonacci_Test;

The result on the screen is:
Give the value of n:

40
The value of the 40th Fibonacci number:

102334155
The duration of the iterative Fibonacci algorithm:

1.28500E-05
The value of the 40th Fibonacci number:

102334155

The duration of the recursive Fibonacci algorithm:
3.73950E+00

Solution 7.10. The Ada solution is a generic procedure (or similarly a function).
We can prescribe the needed ”+” operation and Zero value.

A possible specification is the following:
generic

type Item is private;

type Index is (<>);
type Vector is array (Index range <>) of Item;
Zero:Item;

with function "+"(X, Y : Item) return Item is <> ;
procedure Sum(V:in Vector; X: out Item);

The body:
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procedure Sum(V:in Vector; X: out Item) is
begin

x:=Zero;

for I in V’Range loop
X := X + V(I);

end loop;
end Sum;

A simple example for the instantiation with the Rational type:
with Sum, Rational_Numbers, Text_IO;
use Text_IO, Rational_Numbers;

procedure Sum_Trial is
type Myvect is array(Integer range <>) of Rational;

procedure MySum is new Sum(Rational, Integer, Myvect, Zero);

V: Myvect(1..3):=(Rat(1,2),Rat(2),Rat(2,3));
Result:Rational;

begin
Put("The elements of the vector: ");
for I in V’Range loop

Put(V(I)); New_Line;
end loop;

MySum(V,Result);

Put("The sum of the elements: ");
Put(Result);

end Sum_Trial;

The C++ template cannot check the existence of the zero-element or the ”+”
operator, the template can be used only if beside the ”+” operation standard
conversions exist to the 0 value of the element-type.

A possible solution is:
#include <iostream>

using namespace std;

template <class T>

T sum(const T *v, const int size){
T s=0;

for (int i=0; i<size; i++){
s=s+v[i];

}
return s;

}

int main() {

int vect[4]={2,3,4,5};
float vect2[3]={2.3,3.1,2.5};
int sum1;

float sum2;
sum1=sum<int>(vect,4);

cout<<sum1<<"\n";
sum2=sum<float>(vect2,3);

cout<<sum2<<"\n";
}

Solution 7.11. The parameter to the factorial function is passed by reference but
is used as a pure in parameter. Within the function body the formal parameter is
used in the computation, so this will change also the value of the calling variable.
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This is an unintended side-effect of the function. As the involved variable is also
printed out together with the result of the function, the evaluation order of the
output stream operator is not defined. This is why we let the result display
twice, as the second line will definitely have incorrect values, the first time the
appearance of the unintended side-effect is implementation dependent.

Solution 7.12. Within the function body an uninitialized local variable is used
in the computation, so no deterministic behavior can be expected.

Solution 7.13. Integer parameters are immutable wrapper objects, and the arith-
metic multiplication is assisted by the so called autoboxing feature, which uses
the int value of these objects, executes the multiplication, and stores the result
in another new object. That is why after the multiplication within the called
method the new value is seen (as the formal parameter now has a new reference),
but as the caller still has the reference to the old object, which is left untouched
(because it is immutable), the old value is printed again after returning from the
multiply method.





Exeption handling

8

In the software development process it is vital that
the end-product is correct and reliable, satisfies the
customer’s requirements and does not have any
unexpected side effects. Many programming
languages have introduced exception handling and
correctness proving tools to achieve the above goal.
In this chapter, we present the means and
procedures of handling runtime errors.



T

he goal of exception handling is to deal with problems that make continuing
the normal program execution hard or even impossible. Such problems are
division by zero, nullpointer1 dereference, unsuccessful type cast, fault in

the operating system or hardware, or communication problem (the connection
breaks or the remote endpoint violates the protocol). Exception handling pro-
vides more or less elegant ways to handle these situations by providing language
elements that alter the control flow of the program.

8.1 Introdution

Already the very first high level programming language, that is, FORTRAN,
provided solutions to handling runtime errors, even if these were limited to
input and output errors. The first programming language to incorporate generic
exception handling elements was PL/I. It was followed by (amongst others) CLU,
Ada, C++, Eiffel, Delphi, Java and C#. Other languages have elements or library
functions that can be used to implement exception handling (for example the
goto2 statement and the setjmp and longjmp functions of the standard library in
C);3 still, these cannot be treated as exception handling as they were not created
for this purpose or their use is cumbersome.

8.1.1 Basi onepts

Even though exception handling varies from one language to the other, many of
them share the same concepts (sometimes with different names).

Exception is a runtime error that breaks the normal execution of the program.
Exception may be detected by hardware (or the underlying operating system)
or by software (the program itself or its runtime execution environment). When

1 NULL in C, nullptr (0 before C++11) in C++, null in Java, Void in Eiffel
2 See Section 3.8.
3 See Section 3.8.4.
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hardware detects an exceptional situation, it usually triggers an interrupt to
the operating system, which in turn sends a signal to the application. Examples
of the first type are, e.g. division by zero or reading from a file after its end.
Examples of the second type are, e.g. indexing out of bounds of an array. The
goal of exception handling is to correct these errors if possible, or to halt4 the
program with the least damage (by saving all data) if the error is not correctable.

Most languages provide ways to create user defined exceptions. To that
end, either already existing language elements (e.g. classes, objects) are used
or new language elements are introduced. In some languages the language itself
contains exceptions,5 while in other languages only the standard library provides
predefined exceptions.6 Exceptions may have a parameter when they are thrown
(if the exception is an object, then this parameter could be the attribute of the
object), while in other languages the exception cannot have a parameter.

Exceptions are usually thrown, but other languages use keywords such as
raise, signal or trigger . In most languages, the language definition describes
situations where the runtime environment throws exceptions7 (especially due
to a fault detected by hardware), but usually the programmer can also throw
an exception. Thrown exceptions are caught and handled by exception handler
language elements. There are many ways to finding the right exception handler
for the given exception.

If an exception is not handled at the current logical level of the program, it
can be propagated so that it is handled higher in the function call chain. This
is a very important utility to achieving that exceptions are handled at the right
logical level. For example, let us suppose that our program reads records of data
from a file. In the program the ”main program”8 opens the file, then passes
the file descriptor to the record-reading subprogram9 to read the actual data. If
the data in the file is invalid, then the exceptional situation is detected in the
subprogram, but this subprogram does not have all the information necessary
to handle the error (which in this case would be to print the filename and an
error message). In this example it is better to let the exception propagate, so
that the main program can handle it. In some languages the specification of the
subprograms (functions, methods, etc.) contains the set of exceptions that can be
thrown by the subprogram. Then either the compiler or the runtime execution
environment can check that the subprogram really does not throw a different
exception.

Exceptions break the normal execution of a program. However, to guarantee
that the program is running after handling the exception, it is best to keep
4 In this chapter, by halting we mean that the program halts due to an error.
5 For example CONSTRAINT ERROR in Ada95.
6 For example NullPointerException in Java.
7 For example ArrayIndexOutOfBoundsException in Java is thrown when the program

attempts to use an index that is less than zero or greater than or equal to the length
of the array.

8 Function, procedure, etc. based on the language, see 7.3.2.
9 See Section 7.7.
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the invariants of the components (functions, classes).10 The following levels of
exception safety[Abr10] can be provided by components:

• No exception safety: when exception is thrown, ”all bets are off”, there is
no guarantee for the program state;

• Basic: the invariants of the components are preserved (i.e. they can be
used after the exception was thrown) and no resources are leaked;

• Strong (or transactional): the operation has either completed successfully
or thrown an exception. In the latter case no state change happens (in-
cluding side effects);

• No throw: the component does not throw any exception;

In recent languages it is usually possible to always execute a block of code,
regardless of whether there was an exception or not. We call this the finally block.
This helps in recovering allocated resources even in exceptional situations.

In this chapter, we will not discuss exception handling in logical languages.
Exception handling in logical languages is described in Chapter 16, where the
basic concepts are introduced.

8.1.2 Why is exeption handling useful

If there is no elegant exception handling, the programmer must check for errors
after each ”dangerous” statement and handle the possible errors. Let us take a
look at the next code segment written in language C [KR89], which copies the
copy.c file line by line to the copy.c.bak file.

const int buflen = 512;

void copy(void) {

FILE* input = NULL;

FILE* output = NULL;

char* line = NULL;

line = (char*)calloc(1, buflen + 1); /* Allocate memory. */
input = fopen("copy.c", "r"); /* Open files. */
output = fopen("copy.c.bak", "w");

fgets(line, buflen, input); /* Read one line. */
while (!feof (input)) { /* Until we reach end of file. */

fputs(line, output); /* Write the line. */
fgets(line, buflen, input);

}

fclose(input); /* Close the files. */
fclose(output);

free(line); /* Free allocated memory. */
}

10 See Section 12.3.8.
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This code satisfies the requirement, but what happens if, for example, the
copy.c file cannot be opened? The value of the input pointer11 will be NULL
and at the first dereference the program will halt with ”Segmentation fault”12

(or its equivalent). This is not something what we consider reliable software.

In language C we can have multiple correct solutions for this requirement.
One is to check for errors after every ”dangerous” statement and handle the
errors there. Another solution is to jump to a common error handling code using
the goto statement. We could also use the setjmp and longjmp functions, but
these would greatly decrease code readability and understandability.

The first solution is as follows (the copy function returns an error code if one
of the steps have failed in the algorithm and the global errno variable will also
contain the error-specific value):

const int buflen = 512;

int copy(void) {

FILE* input = NULL; FILE* output = NULL;

char* line = NULL; char* read;

int written;

line = (char*)calloc(1, buflen + 1);

if (NULL == line)

return NO MEMORY ;

input = fopen("copy.c", "r");

if (NULL == input) {

free(line);

return CANNOT OPEN INPUT;

}

output = fopen("copy.c.bak", "w");

if (NULL == output) {

free(line);

fclose(input);

return CANNOT OPEN OUTPUT;

}

read = fgets(line, buflen, input);

if (NULL == read) {

free(line);

fclose(input);

fclose(output);

return READ ERROR;

}

11 See Section 5.6.
12 Segmentation fault is a well known error message of UNIX or UNIX-like operating systems

in this situation. On Windows it is equivalent to ”General Protection Fault”.
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while (!feof (input)) {

written = fputs(line, output);

if (written < 0) {

free(line);

fclose(input);

fclose(output);

return WRITE ERROR;

}

read = fgets(line, buflen, input);

if (NULL == read) {

free(line);

fclose(input);

fclose(output);

return READ ERROR;

}

}

fclose(input); fclose(output);

free(line); return OK;

}

In the code example above we can hardly see what the program really does
due to the error handling. Moreover, nearly each error handling block does the
same: frees the allocated resources and returns an error code. It would be much
better to handle the similar errors at the same place.

In C with the goto statement we can put the error handling in one place:

const int buflen=512;

int copy(void) {

FILE* input = NULL; FILE* output = NULL;

char* line = NULL; char* read;

int written;

int error;

line = (char*)calloc(1, buflen + 1);

if (NULL == line) {

error = NO MEMORY ;

goto err;

}

input = fopen("copy.c", "r");

if (NULL == input) {

error = CANNOT OPEN INPUT;

goto err;

}

...
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while (!feof (input)) {

written = fputs(line, output);

if (written < 0) {

error = WRITE ERROR;

goto err;

}

read = fgets(line, buflen, input);

if (NULL == read) {

error = READ ERROR;

goto err;

}

}

error = OK;

err:

if (NULL != input) fclose(input);

if (NULL != output) fclose(output);

if (NULL != line) free(line);

return error;

}

In comparison to the previous solution, the statements that restore the state
are at the same place now in the code, but we still need to check the return value
from each function, and that makes the code hard to read.

The root cause of the problems in the previous solutions is that we have to
add code to check for errors right after each ”dangerous” statement, because
the language does not provide a way to handle the errors at a different place.
Another problem is that the different functions report the errors in different
ways. Some return NULL, others some negative value. Although the C standard
library wors in this way, in some cases this method is insufficient.

Let’s see how we could implement this function in language C extended
with an imaginary exception handling. In this imaginary exception handling
exceptions thrown in the try block are handled in the following catch blocks.
The finally block after the catch is always executed, whether or not an ex-
ception occurs (this exception handling is analogous to the Java language, see
Section 8.3.6). In this imaginary extension the used library functions also throw
MemoryException and IOException on runtime errors:

int copy(void) {

FILE* input = NULL; FILE* output = NULL;

char* line = NULL;

int ret;
try {

line = (char*)calloc(1, buflen + 1);

input = fopen("copy.c", "r");

output = fopen("copy.c.bak", "w");
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fgets(line, buflen, input);

while (!feof (input)) {

fputs(line, output);

fgets(line, buflen, input);

}

}

catch (MemoryException e) { ret = NO MEMORY ; }

catch (IOException e) { ret = e.error code; }

finally {

if (NULL != line) free(line);

if (NULL != input) fclose(input);

if (NULL != output) fclose(output);

return ret;
}

}

It can be seen that the statements in the try block are exactly the same state-
ments as in our first example without error handling, so the code is as readable
as the first version, but in this case we handle the errors. If we do not want to
handle the errors here, we may propagate these exceptions. Without exception
handling this could be achieved in a more complicated way by returning error
codes, possibly through many function calls. Another advantage of this solution
is that the allocated resources are always freed, even if the code is extended
later, because the finally block always executes.

A third advantage of exception handling is that the return value of a sub-
program is differentiated from an error code. Consider the following C example:
the parameter string is parsed as an integer and its value increased by one is
returned.13 This example uses the atoi function from the C standard library:

int func(const char* s) {

return atoi(s) + 1; /* no error handling! */
}

This function works well as long as the parameter content is really an integer.
However, when the input cannot be parsed as an integer, the function cannot
report an error, because the atoi function cannot use the usual convention of the
C standard libraries, the -1 return value.14 Actually all integer values could be
valid return values, so the atoi function cannot report an error at all.

There are many ways to solve this problem. One way is to return a struct15

instead of the integer value, with one attribute holding the return value and the
other the error code. This is slightly inconvenient, because the function cannot
be executed directly in an expression that expects an integer value.

13 The possible integer overflow is ignored for this example.
14 -1 is a valid return value for the "-1" input.
15 See Section 6.3 as ”cartesian product type”.
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struct atoi result {

int value;

int error;

};

struct atoi result atoi2(const char* s);

int func(const char* s) {

struct atoi result result;
result = atoi2(s);

if (!result.error) return result.value + 1;

/* error handling */
}

Another solution is to pass the integer value by address16 as another pa-
rameter. This is also a little inconvenient as we need to create a pointer from
our integer value, and these kinds of side effects17 make understanding the
program harder. Another solution is to pass the error value in the parameter,
but understanding that code would be just as complicated.

int atoi3(char* s, int* i);

int func(const char* s) {

int i;
if (-1 != atoi3(s, &i)) return i + 1;

/* error handling */
}

Actually the strtol function in the C standard library implements a similar
solution: a pointer has to be passed by address to the function; in case of an
error the pointer will point to the start of the string.

There is a third solution for this problem, which involves a global variable18

to maintain the success state (there was an error or there was not) of the last
function call. However, this creates problems in multithreaded environment19

where different threads might write the same variable.

extern int atoi error;

int atoi4(const char* s);

int func(const char* s) {

int i;
i=atoi4(s);

if (!atoi error) return i+1;

/* error handling */
}

16 See Section 7.4.
17 See Section 7.3.7.
18 See Section 4.2.1.
19 See Chapter 13.



8.1 Introdution

•
375

Many functions in the C standard library use the common global errno

variable for more detailed error description. Apart from the problems in a mul-
tithreaded environment, there is an additional problem with this approach:
subsequent function calls will overwrite the error description in the common
global variable so that the original cause of the problem may get lost, unless
special care is taken.

If the atoi function threw an exception, these problems would not occur as
the return value would be well differentiated from the error.

In object-oriented languages20 the constructors21 are similar to the function
presented above, since they can only return the constructed object (or in case of
error, a null pointer or its equivalent) which in many cases is not sufficient for
error handling (there can be many kinds of errors in a complicated constructor).
Exception handling is useful in this case too.

8.1.3 The aspets of omparing exeption handling

In the following sections we will compare the exception handling mechanisms of
various languages. To that end, we first need to agree on the aspects on which
to base our comparison.

• What kind of language element is the exception? Is it possible to group ex-
ceptions? Is it possible to organize exceptions into hierarchies? Organizing
exceptions into groups or into a hierarchy is useful in order to decide what
exceptions are ”interesting” (should be handled on the current logical
level of the program) and what exceptions are not ”interesting” (should
be handled on a different level).

• To which language element is exception handling connected (statement,
block, subprogram, other)?

• After handling an exception, at which point does the normal execution of
the program continue - is it where the exception was thrown, is it after
the exception handler or is the block ”retried” (executed again) where the
exception was thrown?

• Are exceptions propagated? What happens with the unhandled excep-
tions? Can the exception handler throw an exception?

• Can the exception have a parameter? The type of the exception might
not have enough information to properly handle the error.

• Is there a way to have a piece of code that always executes, both in the
exceptional and in the normal situation (in other words, is there a finally
block)? This only makes sense if exception handling is connected to a
larger unit than a single statement.

20 See Chapter 10.
21 See Section 10.3.
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• Is it possible, and if so, is it mandatory to specify the possibly thrown
exceptions? It is important that a language forces the programmer even at
compile time to handle the exceptions, or else the exceptions are detected
only at runtime, during testing.22

• How are exceptions handled in a multithreaded environment? This ques-
tion only makes sense if the language supports multithreaded execution.

• If an exception is represented by an object, what is its scope and lifetime?

8.2 The beginnings of exeption handling

8.2.1 Exeption handling of a single statement: FORTRAN

FORTRAN [LV77], developed in the 1950s is considered to be the first high level
programming language. It was designed for numerical computations. FORTRAN
provided tools for handling runtime errors, though these dealt with errors during
input-output operations only. These operations can have an err parameter which
contains the label of the error handling statement:

program hello

open(file=’testfile’, err=100, unit=2)

write(*,40)

40 format(’Hello World!’)

goto 120

c
100 write(*, 110)

110 format(’Error!’)

120 end

If the above example is run and the testfile file is readable, the program will
print Hello World!. If the file is not readable, the program will print Error!.

As shown above, this is not ”real” exception handling; it only offers some
statements for elegant error handling.

8.2.2 Exeption handling of multiple statements: COBOL

COBOL [Bak74] was also developed during the 1950s. In contrast to FORTRAN,
COBOL was designed to write finance-related software. In the field of error
handling, COBOL was more advanced than FORTRAN. The language provides
two kinds of language elements for error handling: after some (especially arith-
metical) statements it is possible to specify a label where the program execution
continues after an error, and there is also a more generic way to handle input-
output errors.

22 Or even worse, by the user.
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The following example describes the first kind of error handling:

DIVIDE Num1 BY Num2 GIVING Num3 REMAINDER Num4

ON SIZE ERROR DISPLAY "Error".

The statement above divides Num1 by Num2 and the quotient is put into Num3.
If there is an error (e.g. either Num2 is 0, or the quotient or the remainder does not
fit into Num3 or Num4), then the program will print ”Error”. This is very similar to
the statement-level error handling seen in FORTRAN. However, there is a more
generic error handling solution for input-output errors. In the section containing
the procedures (PROCEDURE DIVISION), between the keywords DECLARATIVES

and END DECLARATIVES we can assign an error handler for each file used:

PROCEDURE DIVISION.

DECLARATIVES.

Error SECTION.

USE AFTER EXCEPTION PROCEDURE ON OwnFile.

ErrorHandling2.

DISPLAY "Error".

END DECLARATIVES.

This is substantially more advanced than the solution in FORTRAN, because
we do not have to specify the error handler for each input-output statement; but
rather it is enough to specify this at one place. So this way the programmer will
not forget to handle the errors in new code.

However, this is still not generic exception handling as it can only be used
for input-output and there is no way to use user defined exceptions.

8.2.3 Dynami exeption handling: PL/I

PL/I [GI90] was the first programming language which introduced generic ex-
ception handling in the 1960s. Thus this mechanism is rather rudimentary.

In PL/I the exceptions have a name (a label), so there is no way to group
them or give parameters to them. There are some predefined exceptions in
the language itself and the programmer can create new exceptions using the
CONDITION keyword. The ON statement is used to specify which statement to run
if the given exception is thrown after the ON statement is executed. Exceptions
can be thrown by the SIGNAL statement:

ON CONDITION(OWNEXCEPTION) PUT LIST(’A’);

SIGNAL CONDITION(OWNEXCEPTION);

When an exception is thrown, the currently applicable exception handler is
called, so the exception handling is connected to statements. An interesting
language feature is that for single statements exception handling can be enabled
(or disabled) for certain exceptions. Exception handling can be overridden and
with the REVERT statement we can rollback to the previous exception handler:
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P: PROC;

/* . . . */
ON ZERODIVIDE PUT LIST(’A’);

N=0;

X=X/N; /* prints ’A’. */
BEGIN

ON ZERODIVIDE PUT LIST(’B’);

X=X/N; /* prints ’B’. */
REVERT ZERODIVIDE;

X=X/N; /* prints ’A’. */
END;

ON ZERODIVIDE PUT LIST(’C’);

X=X/N; /* prints ’C’. */
(NOZERODIVIDE):

X=X/N; /* No exception thrown. */
END;

After the exception handler has finished, the execution continues with the
statement after the one that threw the exception, unless there was a GOTO

statement in the exception handler. Since the execution continues after the
statement that threw the exception, there is no exception propagation, and
therefore, the exceptions cannot be specified.

As mentioned before, when an exception is thrown, always the currently
applicable exception handler is executed and always the exception handler set
by the last ON statement is the applicable:

ON ZERODIVIDE PUT LIST(’A’);

N=0;

IF X = 10 THEN /* if X is 10, prints ’A’. */
GOTO LABEL1; /* otherwise prints ’B’. */

ON ZERODIVIDE PUT LIST(’B’);

LABEL1:

X=X/N;

8.3 Advaned exeption handling

8.3.1 Stati exeption handling: CLU

CLU [Lis81] was developed long after PL/I,23 so its exception handling is a lot
more advanced, though a little strange compared to contemporary languages.

In CLU the exceptions are not objects, but expressions, so they cannot be
grouped. The except clauses are used to handle exceptions. In these clauses

23 See Section 8.2.3.



8.3 Advaned exeption handling

•
379

those exception have to be specified that the programmer wants to catch, or
the others keyword can be used to catch all exceptions. There are two kinds
of exceptions in the language that can be thrown by the signal or exit

statements. The first kind of exceptions are connected to subprograms, while the
second kind is connected to statements. Exceptions thrown by signal return
from the subprogram to the caller. Exceptions thrown by exit have to be
handled in the same subprogram where they were thrown (there has to be an
exception handler is the same subprogram that handles the exception). In this
case the program continues after the exception handler. Unlike PL/I, in CLU
the compiler can decide which exception handler catches which exception.

If an exception is thrown from a subprogram that is not handled in the same
subprogram, then a failure exception is thrown, so unlike in newer languages,
exceptions in CLU do not propagate. The reason for this is that in this way the
programmer does not have to know the implementation of the subprogram (e.g.
what other subprograms are called and what exceptions are thrown) in order to
know what kind of exceptions can be thrown in there (see [Lis93]). Of course, the
exceptions that we want to propagate can be caught in the exception handler
and can be rethrown.

The exceptions thrown by signal have to be specified in the subprogram
header after signals keyword, except the predefined failure exception.

Because the exception is an expression, we can pass a parameter to the
exception, as shown below:

P1=proc() signals(OwnException(string))

signal OwnException("Trouble!")

end P1

P2=proc()

P1()

except

when OwnException(s:string)

% At this point the value of s is "Trouble!".
end

end P2

There is no language construct in CLU that is executed both in normal
and exceptional situations (i.e. there is no finally block). Since the exceptions
thrown by signal stop the execution of the subprogram, we cannot work around
to create such construct.

8.3.2 Exeption propagation: Ada

The first version of Ada ([DG80] and [Ada83]) was standardized in 1983. It was
then updated in 1995, when many new elements were added to the language.
The latest standard was accepted in 2012.
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Ada uses the exception language element to represent exceptions. There are
four predefined exceptions in the language:

• CONSTRAINT ERROR: thrown when a constraint, for example, the
range of a type is violated;

• PROGRAM ERROR: thrown when the execution structure of the pro-
gram is violated, for example, a function tries to return without a return
value;

• STORAGE ERROR: thrown when the program runs out of memory;
• TASKING ERROR: thrown due to task-related problems.

As a consequence, Ada does not provide a way to organize the exceptions into
hierarchies. Exceptions can be thrown by the raise 〈exception-name 〉 statement
or by using the Raise Exception subprogram from the Exception package.

Exception handling in Ada is connected to blocks. All blocks can throw
exceptions, which can be caught by when clauses after the exception keyword
at the end of the block. An exception handler without an explicit block can be
put after the body of a subprogram, body of a package, body of a task or an
accept block. In the when clauses of the exception handler, the types of the
handled exceptions (more than one can be used and the others clause can catch
all previously unhandled exceptions, just like in CLU) and an identifier can be
specified. The identifier is a variable of Exception Occurrence type and will get
the value of the thrown exception. The operations of this type can be used to
elicit information about the exception (e.g. its parameters). The execution does
not return to the block where the exception was thrown and the language does
not provide a tool to retry the block that threw the exception. For a complete
example see Section 8.5.3.

One of the interesting properties of Ada is that the declaration parts of
subprograms, blocks, packages and tasks are evaluated partly at runtime, mean-
ing the exceptions can be thrown from these parts too. In the first three cases
the exception is propagated the same way as the exception thrown from the
subprogram, block or package body. If the exception is thrown from the dec-
laration part of a task, then the task becomes complete24 and the predefined
TASKING ERROR is thrown from the activating point of the task.

If a block throws an exception and that block does not handle the exception,
the exception is propagated without change to the higher level (this is a new
feature compared to CLU). If the exception reaches the main program and that
does not handle the exception either, the program halts. If the exception is
thrown in a task and it is not handled anywhere, the task becomes complete (its
execution stops), but the exception does not propagate to an other task or to
the main program.

The exception handler can also throw an exception. This is useful, for exam-
ple, when we know that the caught CONSTRAINT ERROR signals an indexing

24 see Section 13.10.1.
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error. In such cases we can throw our own exception representing an indexing
error from the when CONSTRAINT ERROR clause. The caught exception can
be thrown again with a raise statement without a parameter. This makes sense
in the when others clause which is executed when an unexpected exception is
caught. In this case this clause can clean up as much as possible, and then
rethrow the exception.

While exceptions cannot have a parameter in Ada 83, later versions in-
troduced the Exception Occurrence type and its related subprograms. From
these subprograms the Raise Exception can be used to set a parameter in the
exception, which can then be queried in the exception handler.

There is no explicit finally in Ada, but with two nested blocks we can achieve
this (the exception handler of the outer block will have the code that has to run
always). Consider the following example:

procedure P is
occ:Exception Occurrence;
was exception:boolean:=false;
begin
−− Allocating resources

begin
−− Executing statements.
exception
when Exception1 | Exception2 =>

−− Expect and handle these exceptions.
when e:others =>

−− Rethrow the others. Save the exception,
−− then rethrow it after the resources are
−− freed.
Save Occurrence(occ,e);
was exception:=true;

end;
−− Freeing the resources. This would be the finally block in Java.
if was exception then

−− Rethrow the saved exception.
Reraise Occurrence(occ);

end if ;
end P;

It is not a very elegant solution though, as the programmer has to explicitly
save and rethrow the exception. Not even this workaround was available in
Ada 83.

In Ada it is not possible to specify which exceptions are thrown by a subpro-
gram. It means that if the programmer forgot to handle an exception, it will be
found only at runtime when the exception is thrown, but not caught, and the
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program halts. Since only the documentation can tell what kind of exceptions
can be thrown by a subprogram, the compiler cannot, this is a drawback.

8.3.3 Exeption lasses: C++

The development of language C++ [Str00] started in the early 80s, just like
that of Ada, and still continues to this date, the latest standard was accepted in
2011. The exception handling of the language improved significantly during its
development, partly due to influences from Ada25 and CLU.26

In C++ all variables can be thrown as an exception. It means that we can
define classes for the exceptions and can organize them into hierarchies. For
example, standard C++ libraries only throw exceptions that are descendants of
the std::exception class. The throw keyword can throw an exception. Since the
exception can be an object, it can carry parameters. If the exception is a simple
type, its value can be regarded as the exception parameter.

Exception handling is related to blocks in C++ too. An exception thrown in
a try block can be caught in the following catch block. Exception handling looks
like the following:

try {

// Exception can be thrown.
}

catch (type [name]) {

// Exception handling.
}

There can be more than one catch block for a try block, each can only catch
the exception of the specified type (bear in mind the automatic type conversions
in C++). If a name is specified in the catch block, this variable will get the value
of the caught exception. If . . . is specified instead of a type and name, then
this clause will match all exceptions:

try {

// All kind of exceptions can be thrown.
}

catch (. . .) {

// All exceptions caught.
}

After handling the exception the execution does not return to the block
where the exception was thrown from. This also means that the destructors of
the local objects specified in the try block are executed before the catch block.
As a consequence, the programmer has to be very careful before throwing an
exception from a destructor - when the destructor is called, an other exception

25 See Section 8.3.2.
26 See Section 8.3.1.



8.3 Advaned exeption handling

•
383

may be in ”thrown” state. In this case, the program halts as there can be only one
exception thrown at a time. The throw statement without parameters rethrows
the caught exception.

The unhandled exception is propagated to the caller function. If the main
function (the main program where the execution starts) does not handle the
exception either, the terminate function is called which by default calls the abort
function to halt the program. The terminate function can be overridden by
calling the set terminate function, but this (overridden) function still has to halt
the program (more precisely: it is not defined what happens when the function
returns).

Using POSIX threads, the unhandled exceptions thrown in a thread stop
only the given thread, not the whole program. Also, these exceptions do not
propagate to other threads. However, there are other libraries for C++ that
introduce multithreading, and they might handle the exceptions differently.

The language C++ does not provide an explicit tool for finally. It is not
enough to nest the blocks (just like in Ada), as there is no ”exception occurrence”
type, meaning we cannot save and rethrow the exception. The pattern used to
achieve finally is to put this code into the destructor of a local object. If the
function returns (either in normal or exceptional way), the local objects are
deleted and their destructors are called. This pattern is also known as ”resource
acquisition is initialization” [Str12]. Consider the following example:

class File {

FILE* f ;

public:
// For simplicity’s sake do not care about errors
File(const char* filename) { f = fopen(filename); };

˜File() { fclose(f ); };

};

void func()

{

File f ("something.txt");

try {

// Exception might be thrown
}

catch(const FileException& fe) {

// Handle one type of exception
}

} // File is always closed here!

As mentioned above, when an object is created on the stack (i.e. it is a local
variable of a function), the object is deleted as soon as the function finishes. Thus
if this object is thrown, the exception is deleted before it is caught. To avoid
this from happening, a temporary copy is made from the exception object (by
calling the copy constructor of its class) and this temporary copy is caught later
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in the catch block. The temporary object is deleted when the execution of the
program leaves the catch block. When the exception is caught by value instead of
reference, an additional copy is made from the temporary object (and the copy
constructor with the possible side effects is called again). If the exception object
was created with the new statement, the exception object is allocated on the
heap and does not get freed when the function returns or throws an exception.
Therefore the programmer has to explicitly delete this exception object in the
catch block.

In C++ functions can specify a set of exceptions that can be thrown from the
function: in the header of the function after the throw keyword between parenthe-
ses the thrown exceptions can be listed. If there is no throw specification, all types
of exception can be thrown from the function (due to C-compatibility). However,
if there is a throw specification, only types specified there can be thrown. If
a different exception is thrown, the unexpected function is called which halts
the program. This function can also be overridden by using the set unexpected
function, but even the overriding function has to halt the program, it cannot
return. It is possible to specify an empty set, in which case the function cannot
throw any exceptions. The compiler cannot check if the specified exceptions are
thrown or not. This feature was deprecated in the C++11 version of the C++
standard, the possibly thrown exceptions cannot be listed anymore; however,
the new noexpect keyword can be used instead of throw() to tell the compiler
that the function cannot throw any exceptions. The reason for this change is
that the exception specifications in function types are not handled consistently
in the language (e.g. they cannot be used in typedef constructs) and they also
add some runtime overhead which in most cases is unnecessary [Sut09].

8.3.4 Exeption handling and orretness proving: Eiffel

The language Eiffel [Mey91] was developed around the ”Design by Contract”
principle in the second half of the 1980s. This is one of the reasons why its
exception handling is drastically different from the contemporary languages.

Exceptions are not objects of the Eiffel language. Even though there is a
language element to catch exceptions (rescue clause), the only way to throw or
get the attributes of the exceptions, is to inherit from the EXCEPTIONS class.27

The reason for this is that according to the designers of the language, there is
no point in changing the state of the exceptions, and thus it is not necessary to
use objects as exceptions. Exceptions can be differentiated by exception code,
which can be queried by the exception and developer exception code (in the case
of programmer defined exceptions) methods inherited from the EXCEPTIONS
class. These two codes are integers, meaning exceptions might be grouped (e.g.
exceptions between 10 and 15 mark network errors); however the predefined
exceptions of the language cannot be grouped in this way.

27 Eiffel supports multiple inheritance, see Section 10.7.5.
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The philosophy of the exception handling in Eiffel is different from the
other languages discussed above: exception is thrown when the ”contract” is
violated between the subprogram and its caller, meaning exception handling is
connected to subprograms. The ”contract” is violated when one of the constraints
(precondition,28 loop invariant,29 etc.) is false. Exceptions are also thrown when
a Void valued variable is used in a way it should not be used, when the operating
system signals an error, when a subprogram fails or when using the raise method.

Exception handling is connected to subprograms in Eiffel. It is placed in
the rescue clause after the body of the subprogram. Its task is to retry the
execution (and fulfil the contract) or to restore the class invariant and signal to
the caller that the execution failed (this is called ”organized panic”). In this case
the subprogram fails, and an exception is thrown in the caller.

func: INTEGER is
do

−− Exception might be thrown here.
rescue

−− Exception has to be handled here.
end;

For a complete example see Section 8.5.4.
The interesting characteristic of the exception handling of Eiffel is that it

provides a way to restart the execution when there is an exception in the
subprogram (e.g. if the subprogram means to read a number from the user,
but gets something else instead, it can retry). The retry statement is used for
this purpose and the fact that when retrying, local variables are not initialized
again (this can be used to limit the number of retry attempts by keeping the
current number of retry attempts or retry state in a local variable). In Eiffel the
exception only ”disappears” when the subprogram is successfully executed. If the
rescue clause does not finish with a retry statement, there will be an exception
in the caller. The fulfillment of the postcondition30 of the subprogram is the task
of the subprogram and not the task of the rescue clause.

Propagation of the exceptions in Eiffel is more akin to CLU than to its
contemporary languages (C++, Ada). All classes have a default rescue method.
It is defined in the ANY class (all classes inherit from ANY ) and its body is
empty there. This method is called if there is an exception in a subprogram
without a rescue clause, meaning there is no unhandled exception in Eiffel. The
class of the subprogram can override the default rescue method (for example
to restore the class invariant). On the other hand, if the rescue clause cannot
execute the subprogram successfully, not even for second (or later) attempt,
it finishes, and an exception is thrown in the caller, for the execution of the
subprogram was unsuccessful. In this case a new exception with possibly a new

28 See Section 12.3.4.
29 See Section 12.3.10
30 See Section 12.3.5.
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code is thrown, but this keeps the code of the original exception. If an exception
is propagated in this way to the main program, and that does not handle the
exception either, the program halts, and prints the exceptions that have led to
this situation.

Exceptions in Eiffel can be thrown by the raise method inherited from the
EXCEPTIONS class. The exception code and a string can be passed, which will
later be printed when the program halts due to this exception. Apart from this,
a context can be passed to exception too, which can be used for parametrizing
the exception.

Since exception handling is connected to subprograms, not to blocks, we
cannot use the solution described in Ada to implement a finally. The C++
solution cannot be used either, as Eiffel has automatic garbage collection and
the programmer cannot write destructors. The finally block is usually used to
restore the class invariant: in Eiffel the rescue clause is used for this purpose. For
example, if the class invariant states that a certain file has to be closed after each
operation, this file has to be closed in both the subprogram and in the rescue
clause. It is useful to put these operations into the default rescue method, and
call it from the rescue clause and from the subprograms too.

In Eiffel exceptions are used for exceptional situations, do not occur during
normal execution, they cannot be specified with subprograms. Exceptions are
thrown when a constraint (e.g. a precondition) is violated, so good constraints
and invariants should be specified instead of exception specifications. These
constraints and invariants can be used to prove the correctness of the program.31

8.3.5 The finallyblok: Modula-3

Modula-3 [Nel91] was conceived as improvement on Modula-2 from the Pascal
family tree. Its exception handling is similar to that of Ada,32 but contains
elements borrowed from C++33 too.

Exceptions are represented by the EXCEPTION language elements (just like
in Ada), so they cannot be grouped. Exceptions can be thrown by the RAISE
statement. The interesting property of the Modula-3 language is that the EXIT
statement (used to break out from a loop) is handled as if an ExitException was
thrown and the loops have a predefined exception handler for this exception.
Similarly, the RETURN statement (used to return from a subprogram) throws
a ReturnException, its parameter is the return value. This exception is handled
by the predefined exception handler of the subprogram.

Exception handling is connected to TRY blocks, just like in C++. Exceptions
thrown in a TRY block can be caught in the following EXCEPT clauses. The
ELSE clause following the EXCEPT clauses can catch all previously uncaught
exceptions (just like in Ada). After the exception was handled, execution follows

31 For more details see Chapter 12.
32 See Section 8.3.2.
33 See Section 8.3.3.
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after the exception handler, there is no simple way to retry the execution.
Exception have to be either caught or specified to be thrown. If an unspecified
exception is thrown and not caught, the program halts, just like in C++. The
serious runtime errors cannot be caught.

Modula-3 supports multithreading. If an exception is thrown in a task and
is not handled, the whole program halts, in which sense it is different from Ada.
Exceptions can have only one parameter.

Modula-3 introduced the TRY–FINALLY block: the FINALLY block is al-
ways executed, regardless of whether there was an exception in the TRY block
or not. This is very useful, for example, if the programmer wants ensure that an
opened file is closed even if there was an exception during processing the file. A
TRY statement can have only an EXCEPT or FINALLY statement, not both
at the same time. Below is an example:

MODULE Main;
IMPORT IO;
EXCEPTION ToBeThrown;
EXCEPTION SomethingElse;
BEGIN

TRY
TRY

IO.Put("Hello!\n");
RAISE SomethingElse;

EXCEPT
ToBeThrown =>

IO.Put("Caught!\n");
ELSE

IO.Put("Something else\n");
END;

FINALLY
IO.Put("Always executed!\n");

END;
END Main.

8.3.6 Cheked exeptions: Java

Java [Nyek08] was developed in the 1990s and still continues to this date, the
latest standard was accepted in 2011. Much of the language was based on C++,34

but regarding exception handling, most of the elements were taken from Modula-
3 with some improvements.

In Java the exceptions are objects. All exception classes have to extend
(inherit from) the java.lang.Throwable class. Only those objects can be thrown
that are instances of a class extending Throwable. The Throwable class has

34 See Section 8.3.3
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two direct descendants, the Error and the Exception class. The descendants
of the first class are not checked exceptions, meaning they do not have to be
caught (the descendants of the Error should not be caught as for example
the program cannot handle the OutOfMemory exception). These exceptions
are similar to the runtime errors in Modula-3. From the descendants of the
Exception, the RunTimeException and its descendants are also unchecked ex-
ceptions. These are usually not fatal errors, but errors that can happen in too
many places, thus the programmer cannot be expected to always expect the
ArrayIndexOutOfBoundsException and similar exceptions. Figure 8.1. describes
this hierarchy.

Throwable

Error Exception

RuntimeExceptionunchecked
exceptions

unchecked
exceptions

checked
exceptions

checked
exceptions

Figure 8.1: Inheritance hierarchy of exceptions in Java

Of course, unchecked exceptions can be caught too, and if an unchecked
exception is not caught, the program halts (or if it happens in a thread, only
the thread halts, the exception does not propagate to other threads). The other
descendants of Exception and Throwable are all checked exceptions: if a method
specifies that it throws a checked exception, that exception has to be handled
in the calling method (or specified for the calling method to propagate that
exception). This is checked by the compiler, not in runtime. This is a very
powerful tool, which forces the programmer to handle cases when, for example,
an URL object is created and the input to the constructor may be wrong.
Exceptions can be thrown using the throw statement, just like in C++.

In Java (similarly to C++) exception handling is connected to blocks. Possi-
bly exception throwing statements have to be nested into a try block and a catch
block can catch the exceptions. The difference is that in Java it is mandatory
to specify a variable name that will hold the exception value. In Java (unlike in
C++) . . . cannot be written into the catch clause, but we can take advantage
of the exception hierarchy and a catch (Exception e) { clause can be used. Java
version 7 introduced the ability to catch multiple exception types with the same
catch clause:
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catch (NumberFormatException | SQLException ex) {

/* . . . */
}

Similarly to C++, the execution does not get back to the block that threw
the exception, there is no simple way to implement an Eiffel-like retry mechanism
(Java does not have a goto statement that might be used for a workaround in
C++).

All try blocks can be followed by a finally block (known from Modula-3) after
the catch blocks. The finally block is executed regardless of whether an exception
was thrown or not, caught or not. Java 7 introduced the try-with-resources
statement which provides an alternative way to handle resource allocation, using
the ”resource acquisition is initialization” pattern:

static String readFirstLine(String pathName) throws IOException {

try (BufferedReader reader =

new BufferedReader(new FileReader(pathName)))

{

return reader.readLine();

}

}

In the above example, the opened file will be closed always, even if the
readLine method throws an exception. This statement can only be used to handle
resources wrapped in objects that implement the AutoClosable interface.

8.3.7 The exeption handling of Delphi

Delphi [Lis00] was developed in the 1990s as an object-oriented expansion of
Turbo Pascal. Its exception handling is similar to its ”relative”, Modula-3.35

Like in Java,36 the exceptions in Delphi are objects, their classes are descen-
dants of the Exception class, so they can be grouped by the class hierarchy.
Exception handling is also connected to blocks. Exceptions thrown in try blocks
can be caught in the following except blocks. The except block handles all
exceptions in on clauses. In an on clause, similarly to C++ a type or a type and
an identifier can be specified (when there is an identifier specified, it will get the
value of the exception). At the end of the except block there can be an else clause,
which is executed when no on clause handles the exception (this is equivalent
with the on Exception clause). After the exception is handled, the execution
continues after the exception handler, and there is no Eiffel-like retry.37

The uncaught exception is thrown again in the caller subprogram, so the
exceptions are propagated. Exceptions can be thrown from exception handlers

35 See Section 8.3.5.
36 See Section 8.3.6.
37 See Section 8.3.4.
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and the currently handled exception can be rethrown by a parameter-less raise
statement. If an exception is not handled at all, the program halts. If there is
an unhandled exception in one thread of a multithreaded program, only this
specific thread halts, like in Java. Unlike Modula-3 and C++,38 in Delphi there
is no way to specify in the function header which exceptions are thrown by a
method.

A try block can have not only an except, but also a finally block; however,
only one of them at a time (like in Modula-3). This works similarly to Modula-3:
the finally block is executed regardless of whether an exception was thrown or
not, caught or not. The try–catch–finally construct of Java can be implemented
by two nested try blocks:

try
try

. . . { statements }
except

on e: Exception do
. . . { exception handling }

end
finally

. . . { this is always executed }
end

8.3.8 Nested exeptions: C#

C# [Sch02] was developed in the late 1990s as a kind of a response to Java.39

Subsequently its exception handling is very similar to both C++ and Java.
Similarly to Java, exceptions are objects in C# too. The classes of the excep-

tions have to inherit from the System.Exception class. A remarkable property
of this class is that it has an InnerException field which contains the exception
that led to the actual exception thrown (or null, if there was no such exception).
For example, if the static constructor of an object throws an exception and it is
not caught by the constructor, at the point where the constructor was called, a
System.TypeInitializationException exception is thrown, and its InnerException
field contains the original exception thrown by the constructor. This way an
arbitrary number of exceptions can be chained together.40 Two other useful
attributes of a C# exception are the StackTrace and TargetSite fields. The former
contains the call chain (in string) at the point when the constructor was thrown,
the latter points to the method that threw the exception.

Exceptions can be thrown by the throw statement and can be caught by using
try and catch blocks in the same way as in C++ or Java. C# also has a finally

38 See Section 8.3.3.
39 See Section 8.3.6.
40 This is similar to the getClause() method in Java exceptions.
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block which works the same way as its Java counterpart. In C# the compiler
emits an error if there is an unreachable catch clause, because a previous clause
matches a parent (or great-parent, etc.) class, just like in Java or C++.

Unlike in Java, there are no checked exceptions in C#. This was a conscious
choice based on experience with checked exceptions in Java programs [EH03]. It
turned out that in many cases the caller does not care about the exception type.
One of the strengths of exception handling is that the actual error handling can
be several layers above (in the function call chain) the place where the error
happens - however, with checked exceptions, all intermediate layers have to (at
least) specify all possible exceptions coming from the lowest layers. This leads
to a meaningless throws Exception definition in many methods.

8.3.9 Exeption handling with funtions: Common Lisp

The first version of the Lisp language was created in the 1950s and has been
developing ever since. Exception handling was introduced later, for example
Common Lisp [Ste90], standardized in 1994, has exception handling too.

Lisp is a functional language and works in the sense of ”everything is a
function”. Thus exception handling is implemented using two special functions
and there are no extra language elements. Still, it is worth checking this solution,
for the design is somewhat different from the solutions shown above.

In Lisp an exception is represented by an atom (an atom can be thrown or
caught). Exceptions cannot be grouped and one exception handler can catch one
kind of exceptions only. The exception atom will get the value of the exception
and it is returned by the exception handling catch function. If an exception is
not caught, it is propagated up through the call chain. If the main program does
not catch the exception either, the program halts.

Due to the peculiarities of the language syntax, exception handling has to
be written before the exception is thrown. A throw function inside the catch

function can throw the exception:

(catch ’faultfault

(print "All is well so far")

(throw ’fault "There is trouble!")

(print "Not executed."))

While interpreting the above function the Lisp interpreter will print the ”All
is well so far” string, but not the ”Not executed” string. The return value from
the catch function will be the ”There is trouble!” string. After the exception
handled, the execution continues after the catch and there is no simple way to
implement the retry from Eiffel.41

If an exception is thrown and is not caught in the function, the exception
is rethrown in the caller function, the exception is propagated. There is no

41 See Section 8.3.4.
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specialized exception handler in the language, the exception can be handled in
the function calls following the catch function. It’s not easy to decide whether
there was an exception at all, because we can only rely on the return value of
the catch function as a source of help:

(setq exception happened

(catch ’excexc

(if (equal i 1)

(throw ’exc "i=1")

nil)

(eval "OK")))

(if (equal exception happened "OK")

(print "All is well")

(progn

(print "Exception happened, with cause:")

(print exception happened)))

If there is no exception in the catch function, its return value will be
the return value of the last function (in the above example it is ”OK”). It
is unfortunate, because we have to introduce an unnecessary – to meat the
requirement – statement due to technical reasons.

8.3.10 Exeptions in onurrent environment: Erlang

The development of Erlang [CT09] was started in the late 1980s. Its background
lies in logical and functional languages and was developed to build highly reliable,
fault tolerant, soft realtime and concurrent systems. In this section, not only the
exception handling, but the general error handling of the language is presented.

Due to the highly concurrent nature of many Erlang programs, the basic
building block of a running Erlang system is usually a process, not an object (like
in object-oriented languages).42 In object-oriented programming languages, the
tasks are usually executed by objects calling each other’s methods; in Erlang it is
usually executed by processes sending messages to each other. Error handling is
also connected to processes: processes can be linked to each other or can monitor
each other. Another basic design feature of Erlang is to ”Let it crash!” meaning
if an execution fails, the executing process should crash and be restarted.

This design pattern is implemented using process links or monitors. If two
processes are linked to each other, and one of them terminates (finishes the
execution or crashes, for example), an exit signal is delivered to the other process
(a process can be linked to more than one other process). By default if the process
terminates with a reason other than normal (i.e. due to an error), the exit signal
terminates the other process too. However, this later process (usually called
supervisor) can choose to trap the exit signals (by setting the trap exit process

42 See Chapter 10.
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flag) and handle the situation, e.g. by restarting the exited process. Links are
always bidirectional. If it is not sufficient, monitors can be used. A process can
monitor other processes - if the monitored process terminates, the monitoring
process receives a message about the event and can act upon it. The monitor is
unidirectional. This design pattern is very useful e.g. for implementing network
servers: when one process(group) serving one client crashes, only those processes
crash, the rest of the server can continue to serve the other clients.

If we treat this inter-process error handling as exception handling, the ex-
ception is the content of the message sent when a process terminates (it is a
specially formatted tuple).43 This tuple contains the PID (process identifier) of
the crashed process and the reason why it terminates, which is an Erlang term.
These exceptions might be grouped by the exit reason; however in practice this is
not useful. This exception handling is obviously connected to processes. Unlike in
previous cases, exceptions are propagated between processes, since the exception
is a process termination. The terminated process can be restarted, but this is
fundamentally different from the retry in Eiffel,44 because the restarted process
will have different state.

Since having an exception implies process termination, there is no way to
have a finally block. However, the standard library of Erlang provides behaviors:
modules (in practice, processes) implementing the gen server45 or gen fsm46

behavior have to implement a terminate function. This is called when the imple-
menting process terminates, and this is the place to free the allocated resources.
This is not a language element, but a function of the standard library.

In addition, Erlang has an in-process (single-threaded) exception handling.
Exceptions in Erlang are runtime errors (e.g. division by zero) or generated
errors (by the exit or throw functions). The exceptions are classified based on
their origin, so the runtime errors are in the error class, the exceptions generated
by exit are in the exit class and the exceptions generated by throw are in
the throw class. Both the throw and the exit functions can have any terms
as parameters. Thus it is possible (but rarely used) to create further grouping of
exceptions. However, the exceptions can be trivially parametrized this way. The
exceptions are propagated through the call chain and if not handled, eventually
they terminate the process. An interesting side-effect is that the exit function
might not exit the current process, if the thrown exit class exception is handled.

Exceptions can be thrown from expressions, and the language does not pro-
vide ways to specify them. However, in library functions it is often documented
that an exception other than a runtime error can be thrown.

The language provides two constructs to handle these exceptions. Originally
only the catch expression could be used to catch exceptions and it had to be used
before the exception was thrown (example output from the Erlang interpreter):

43 See 15.3.1.
44 See Section 8.3.4.
45 The server part of a generic client-server relation.
46 A generic finite state machine process.
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1 > catch 1/0.
{’EXIT ’,{badarith,. . .
2> catch throw(x).
x
3> catch exit(problem).
{’EXIT ’,problem}

Erlang 5.4 introduced the try expression which is an exception handling more
familiar to programmers with a background in C++ or Java:

try <expression> [of
<pattern1> −> <body1>;
. . .]

catch
[<class>:]<exception−pattern1> −> <exceptionbody1>;
. . .

[after
<afterbody>]

end.

Exceptions thrown in the <expression> are caught. If there is no exception
thrown and the optional of section is specified, – based on the value of the
<expression> – the body with the matching pattern is executed (i.e. the pattern
which matches the value of the expression). Exceptions thrown from these bodies
are not caught by this try. Also if none of the patterns match, a try clause
exception is thrown which is not caught by this try. If there was an exception
thrown during evaluating the <expression>, the body of the matching exception
pattern is executed.47 If no patterns match, the exception is propagated outside
the try expression. Finally, if the optional after section is present, it is executed
after all bodies are executed, this is Erlang’s solution for the finally. Example:

f (X) −>
try g(X) of

5 = Return −>
io:format("Normal return: ˜p˜n", [Return]),
Return

catch
exit:1=Exit −>

io:format("Exit ˜p caught˜n", [Exit]);
error:Error −>

io:format("Error ˜p caught˜n", [Error ]);
throw:Throw −>

io:format("Throw ˜p caught˜n", [Throw])

47 The exception class is also part of the pattern, so it is possible to handle different classes
with the same body. If no class is specified, throw is used.
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after
io:format("Always executed˜n")

end.

g(1 ) −>
exit(1 );

g(2 ) −>
2/0 ; % a runtime error

g(3 ) −>
throw(3 );

g(4 ) −>
exit(4 );

g(X) −>
X.

• If f is called with 1, the exit is caught.
• If f is called with 2, the runtime error is caught.
• If f is called with 3, the thrown integer is caught.
• If f is called with 4, the exit is not caught, so the process terminates

(unless f is called inside a catch or try).
• If f is called with 5, no exception is thrown and the function returns 5.
• If f is called with 6, a try clause exception is thrown and not caught.

Unlike in C++ or Java, if there is an of section, not all exceptions thrown
from between the try and catch keyword are caught by this construct, which
might be confusing at first. It also shows that this try construct was invented to
replace the often used case catch . . . expressions:

f (X) −>
case catch g(X) of

5 = Return −>
io:format("Normal return: ˜p˜n", [Return]),
Return;

{’EXIT ’,ExitOrError} −>
io:format("Exit or error ˜p caught˜n", [ExitOrError ])

end.

This construct did not differentiate between normal return values and values
returned from throw,48 it was very hard to check the difference between exits
and runtime errors, and of course, there was no simple way to implement finally.
It is very similar to the exception handling of Lisp.49

48 Actually in the language specification throw is defined as non-local returns, i.e. more similar
to the return of C++ or Java than to the throw of the same languages - a false friend in
computer languages.

49 See Section 8.3.9.
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When an exception is not handled in the process, the process terminates. If
the process was linked to other processes or was monitored by other processes,
they get signals or messages about the fate of this process. This way the single-
process exception handling is connected to the inter-process exception handling.

8.3.11 New solutions: Perl

Perl [SP01] originates from the late 1980s. Although it does not have a specialized
exception handler, using the eval and die operators the programmers could
implement an exception handling that is similar to Lisp. The Error library
(package in Perl terminology) is using these operators to implement an exception
handling similar to that of C++50 and Java.51 Although this solution is not
strictly a language element, it has some unique ideas. In this section the Error

package ([Bar01] and [Sha02]) will be presented.
The classes of exception objects have to inherit from the Error class. Since

Perl supports multiple inheritance,52 this is not a strong drawback. The Error

class is part of the Error package too. As these exceptions are objects, they can
be organized by class hierarchy. The throw function can be used to throw the
exception. Exceptions can be parameterized by setting the fields of the objects.
Exceptions are not part of the language, hence the thrown exceptions cannot be
specified in function headers.

Exception handling is connected to blocks. Exception handling is imple-
mented by the try class-level function of the Error class and this function
is parameterized by blocks and clauses. For simplicity’s sake, we will name the
parameter of the try block as try block, the block after catch as catch block,
etc., even though they are not special blocks in the language.

use Error qw(:try);

@Error::Own::ISA = (Error);

sub handler {

my $e = shift;

my $do continue = shift;

print "I caught the exception again: $e"; #$

$$do continue=1;

}

try {

print "Let’s thrown an exception!";

throw Error::Simple("Trouble!");

}

50 See Section 8.3.3.
51 See Section 8.3.6
52 See Section 10.7.5.
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catch Error::Simple with {

my $e = shift;

my $do continue = shift;

print "I caught an exception: $e ";

$$do continue=1;

}

except {

return {

Error::Simple => /&handler%TAMOP% Error::Simple => &handler

};

}

otherwise {

my $e = shift;

print "I did not think about this: $e ";

}

finally {

print "Always executes.";

};

Only exceptions thrown in the try block can be caught. Exceptions can
be handled in several ways. In the catch block, we can catch instances of one
class, while in the except block the programmer can select an exception handler
during runtime.53 The first parameter of the catch function (and of the handler
function specified in expect) is the exception object. The otherwise block is
executed when no catch or expect block handles the exceptions (the same as the
catch(.. .) in C++). The first parameter of this function is also the exception
object. The finally block always executes, as in Java. None of the clauses are
mandatory, but only the catch and except blocks can be specified multiple
times. The order of the catch clauses are important: if more than one handler
can catch an exception, only the first one will execute.

After the exception has been handled, the execution continues after the try

block, unless the second parameter of catch block or the handler function in
expect54 is set to a value. In this case, the execution continues as the exception
was not handled at all, by trying the next catch or function in expect. This
means that the exception is not propagated to higher level, but on the same
level. This feature is not provided by any of the languages presented above.

If an exception is not handled, it is propagated and can be handled by
outer try blocks. If it is not handled, the program halts, unless the exception
is thrown in an eval operator. This is a side effect of exception handling being
implemented by die and eval operators. Of course, the exception handler can
throw an exception and the exception can be rethrown by its throw method.

53 A hash-reference with keys of exception classes and values of exception handler function
references can be returned from the except block.

54 In the above example it is the $do continue variable.
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8.3.12 Bak to the basis: Go

The development of the Go programming language [Tea09] began in 2007 at
Google for systems development with a great focus on concurrency, safety and
performance (both compiling and executing). The language actually does not
have general exception handling like Java55 or C++,56 but contains a more lim-
ited approach focusing on error handling. In Go, the functions can have multiple
return values which avoid the problems mentioned with the atoi function on
page 373.Go does not have constructors either. Nevertheless, runtime errors may
happen, and thus the language provides features to handle these errors.

With the defer statement the programmer can set up a function that will
be always called when the function returns on any branch. This has the exact
same purpose as the finally in e.g. Java: a code that ”cleans up” properly.

The panic function can be used to signal runtime error. This is similar to
throwing exceptions in other languages: the currently executing function returns,
and from the caller’s perspective the function is the same as the a call to
panic (i.e. the panic situation propagates). The panic function has one string
parameter. The ”panic” can be handled by calling the recover function: when
recover is called, the function returns normally. If the ”panic” is not handled,
this string is printed when the goroutine (thread in other languages) terminates.
If a goroutine terminates due to a panic, the whole program terminates, and
thus the ”exception” does not propagate to other threads.

func f() {

fmt.Println("f called")

panic("Let’s panic!")

}

func g() {

fmt.Println("g called")

f()

fmt.Println("g finished")

}

func main() {

defer func() {

fmt.Println("Panic handled")

cause := recover()

fmt.Println("Cause: ", cause)

}()

fmt.Println("calling g")

g()

fmt.Println("g returned")

}

55 See Section 8.3.6.
56 See Section 8.3.3.
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The above example prints this output:

calling g

g called

f called

Panic handled

Cause: Let’s panic!

Compare this with a similar Java code:

void f () throws PanicException {

System.out.println("f called");

throw new PanicException("Let’s panic!");

}

void g() throws PanicException {

System.out.println("g called");

f ();

System.out.println("g finished");

}

public void main() {

try {

System.out.println("calling g");

g();

System.out.println("g returned");

}

catch (PanicException e) {

System.out.println("Panic handled");

System.out.println("Cause: "+e.getMessage());

}

// There is no equivalent in Go for code here!
}

The big difference is that although the g method does not do anything with
the PanicException, it still has to specify in its definition in Java.

The above shown error handling is connected to subprograms, not to blocks
as in e.g. C++. The execution continues after the function call which handled
the exception (panic).57

One of the problems of the Go authors with exception handling is that it
encourages programmers to treat too many ordinary errors as exceptions. This
error handling is designed to handle runtime errors, not plain errors (for which
the multiple return values can be used). This is why the defer statement works
more like finally than catch.

57 in the above example the execution would continue in the function that called main
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8.4 Summary

Exception handling is a very useful programming tool, no wonder that the newer
languages all provide an implementation. The biggest advantage is that the
actual solution of the task is separated from the error handling. Thus it is easier
to understand and modify the program, and it does not cause a problem if the
error handling code is far (a couple of levels higher in the call chain) from the
originating place of the error. Another great advantage is that in object-oriented
languages the constructors cannot return an error code due to their nature;
rather by throwing an exception the caller does not only get notified that there
is an error, but also about the reason of the failure (it would be possible to use
an out parameter – see section 7.4. –, but that’s not too elegant).

Exception handling also has some drawbacks: it slightly spoils the structure
of the program, because in a way it works like the goto statement. Moreover, in
some languages (e.g. C++) it can be downright dangerous to throw an exception
when it should not be done and the compiler does not warn. Also it must be
borne in mind that exception handling comes with price: the compilers of some
languages (e.g. C++) have to generate additional code to handle exceptions
which would be unnecessary if we would chosen a different error handling mech-
anism.58 The checked exception idea, which seemed to be useful when Java
was designed59 turned out to be less than useful in big software. Some language
designers think that exception handling should be used only in really exceptional
situations (runtime errors), not for general error handling.

How the standard libraries of the languages use exceptions indicates how de-
sirable are exceptions from the language designers’ perspective. Java introduces
rich set of exceptions that are organized in a strict hierarchy and the programmer
has to use them, but it’s fairly simple. By contrast, the standard libraries of
C++ does not use exceptions thoroughly, partly due to the many used legacy
C functions, which use return codes anyway. Ada only contains 4 predefined
exceptions, while in Delphi a separate unit has to be used to enable exception
handling. In Eiffel the exceptions are mainly due to violated constraints which
are often used (e.g. Java’s IndexOutOfBoundsException would be the violation
of the precondition of the indexing method in Eiffel). In Erlang many of the
standard applications are using a supervisor hierarchy of linked processes to
achieve robustness.

Of all the languages described above Java and C# are may have the most
elaborate exception handling, which is not surprising, given that these languages
are fairly new, and their designer could look at other languages for ideas. For this
reason, new programming languages likely to contain fresh ideas and solutions,
as we could see in the Perl module.60

58 Of course, in this case we have to write that different error handling mechanism.
59 See Section 8.3.6.
60 See Section 8.3.11.
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8.5 Examples for exeption handling

8.5.1 C++

The example below implements a stack with two elements. The stack has two
operations, push puts a new element on top of the stack, while pop takes the top
element from the stack. Both methods throw an exception on error (pushing to
a full stack or popping from an empty stack). The classes of both exceptions are
children of the StackException class, as an example for grouping exceptions.

#include <iostream>

#include <string>

using namespace std;

class StackException {

protected:
string error;

public:
StackException(string error): error( error) {};

string toString(void) { return error; };

};

class FullStackException: public StackException {

public:
FullStackException(void): StackException("Stack is full!") {};

};

class EmptyStackException: public StackException {

public:
EmptyStackException(void): StackException("Stack is empty!"){};

};

class Stack {

int st[2], sp;

public:
Stack(void) { sp=0; };

void push(int i) throw (FullStackException) {

if (sp >= 2) throw FullStackException();

st[sp] = i;
sp++;

};

int pop(void) throw (EmptyStackException) {

if (sp <= 0) throw EmptyStackException();

sp–;

return st[sp];

};

};
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int main(void) {

Stack st;
try {

st.push(1); st.push(2);

st.push(3); // FullStackException is thrown
} catch(const StackException& se) {

cout « "The following problem happened:" « se.toString() « endl;
};

try {

st.pop(); st.pop();

st.pop(); // EmptyStackException is thrown
} catch(const StackException& se) {

cout « "The following problem happened:" « se.toString() « endl;
};

return 0;

}

8.5.2 Java

The following example implements the same task as the example in Section
8.5.1.: a stack with two elements. The stack has two operations, push puts a new
element on top of the stack, while pop takes the top element from the stack. Both
methods throw an exception on error (pushing to a full stack or popping from an
empty stack). The classes of both exceptions are children of the StackException
class, as an example for grouping exceptions. Note that in the C++ example
the program itself has to notice that there is an error (there is an if clause at
the start of the methods), whereas in Java, JVM61 notices that the state of the
stack is wrong and throws an exception.

class StackException extends Exception {

protected String error;

public StackException(String error) { error= error; }

public String toString() { return error; }

}

class FullStackException extends StackException {

public FullStackException() { super("Stack is full!"); }

}

class EmptyStackException extends StackException {

public EmptyStackException() { super("Stack is empty!"); }

}

61 Java Virtual machine: the program that executes the Java program.
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class Stack {

int[ ] st, sp;

public Stack() {

st=new int[2];

sp=0;

}

public void push(int i) throws FullStackException {

try {

sp++;

st[sp]=i;
} catch (ArrayIndexOutOfBoundsException e) {

sp–;

throw new FullStackException();

}

}

public int pop() throws EmptyStackException {

try {

sp–;

return st[sp];

} catch (ArrayIndexOutOfBoundsException e) {

sp++;

throw new EmptyStackException();

}

}

public static void main(String args[ ]) {

Stack st=new Stack();

try {

st.push(1);

st.push(2);

st.push(3); // FullStackException is thrown
} catch (StackException se) {

System.out.println("The following problem happened: "+se);

}

try {

st.pop();

st.pop();

st.pop(); // EmptyStackException is thrown
} catch (StackException se) {

System.out.println("The following problem happened: "+se);

}

}

}
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8.5.3 Ada

The following example implements the same task as the example in section
8.5.1.: a stack with two elements. The stack has two operations, push puts a new
element on top of the stack, while pop takes the top element from the stack. Both
methods throw an exception on error (pushing to a full stack or popping from an
empty stack). The classes of both exceptions are children of the StackException
class, as an example for grouping exceptions. Notice that similarly to the example
in Section 8.5.2., the runtime environment finds the errors.

package STACK E is
type Stack is limited private;
procedure Push(st: in out Stack; i: INTEGER);
procedure Pop(st: in out Stack; i: out INTEGER);
FullStackException: exception;
EmptyStackException: exception;

private
type Data is array(0 . .1 ) of INTEGER;
type Stack is record

sp: NATURAL := 0 ;
st: Data;

end record;
end STACK E ;

with Ada.Exceptions; use Ada.Exceptions;

package body STACK E is
procedure Push(st: in out Stack; i: INTEGER) is
begin

st.st(st.sp) := i;
st.sp := st.sp + 1 ;

exception
when CONSTRAINT ERROR => Raise Exception

(FullStackException’Identity, "Stack is full!");
end Push;

procedure Pop(st: in out Stack; i: out INTEGER) is
begin

st.sp := st.sp − 1 ;
i := st.st(st.sp);

exception
when CONSTRAINT ERROR => Raise Exception

(EmptyStackException’Identity, "Stack is empty!");
end Pop;

end STACK E ;
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with STACK E,TEXT IO, Ada.Exceptions;
use STACK E,TEXT IO, Ada.Exceptions;

procedure Stack Example is
st: Stack;
i: INTEGER;

begin
begin

Push(st, 1 ); Push(st, 2 );
Push(st, 3 ); −− FullStackException is thrown

exception
when e: FullStackException =>

Put("The following problem happened:");
Put Line(Exception Message(e));

end;
begin

Pop(st, i); Pop(st, i);
Pop(st, i); −− EmptyStackException is thrown

exception
when e: FullStackException | EmptyStackException =>

Put("The following problem happened:");
Put Line(Exception Message(e));

end;
end Stack Example;

8.5.4 Eiffel

The following example implements the same task as the example in Section
8.5.1.: a stack with two elements. The stack has two operations, push puts a new
element on top of the stack, while pop takes the top element from the stack. In
both methods the precondition checks for the errors.

class
STACK EXAMPLE

create
make

feature −− Initialization
st: ARRAY [INTEGER];
sp: INTEGER;
make is

do
!!st.make(0, 1 );
sp:=0 ;

end;
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push(i: integer) is
require

StackNotFull: sp < 2
do

st.put(i, sp);
sp := sp + 1 ;

end;
pop: INTEGER is

require
StackNotEmpty: sp > 0

do
sp := sp − 1 ;
Result := st.item(sp);

end;
end

class
EXAMPLE

create
make

feature −− Initialization
make is

local
st: STACK EXAMPLE ;
i: INTEGER;
was exception:BOOLEAN ;

do
!!st.make;
if not was exception then

st.push(1 ); st.push(2 );
io.put string("OK");
st.push(3 ); −− StackNotFull precondition is not satisfied here
io.put string("NOK");

else
i := st.pop; i := st.pop;
i := st.pop; −− StackNotEmpty precondition is not satisfied here

end;
rescue

if not was exception then
was exception := true;
retry;

end;
end;

end
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8.5.5 Erlang

The following example demonstrates the supervisor pattern in Erlang. The code
below starts two processes, a responder process which prints ”pong” for incoming
ping messages, and a supervisor process which restarts the responder in case it
crashes. There is intentionally an error in the responder process: when it receives
an unexpected message, the process terminates (the recursive call is missing).

−module(responder).

−export([start/0 ]).

responder() −>
receive

ping −>
io:format("pong\n"),
responder();

Unknown −>
skip

end.

do supervise(Responder) −>
register(responder, Responder),
M = erlang:monitor(process, Responder),
sup loop(M, Responder).

sup loop(M, Responder) −>
receive

{’DOWN ’, M, process, Responder, Reason} −>
io:format("Responder stopped with reason ’˜p’\n", [Reason]),
NewResponder = spawn(fun responder/0 ),
do supervise(NewResponder);
−>
sup loop(M, Responder)

end.

start() −>
Responder = spawn(fun responder/0 ),
spawn(fun() −> do supervise(Responder) end).

In order to make testing easier, the supervisor also registers the responder
process into the process registry.62 Example testing output from the Erlang shell:

62 By registering a process into the process registry, we can send messages to the process by
using its registered name instead of its PID. When the process is restarted, the PID is
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3> responder :start().
<0.44.0>

The processes are started (the returned pid is actually the pid of the super-
visor).

4> responder ! ping.
pong
ping
5> responder ! ping.
pong
ping

pong is printed for each ping (the ping printout is the evaluated value of the
sent message).

6> responder ! crash.
Responder stopped with reason ’normal’
crash
7> responder ! ping.
pong
ping

A ”wrong” message is sent to the responder, it terminated, but the supervisor
restarted it, as the next message is handled.

13> exit(whereis(responder), kill).
Responder crashed with reason ’killed’
true
14> responder ! ping, ok.
pong
ok

The responder process is stopped with an untrappable exit signal; yet, it
handles the next message. This example shows the resiliency achievable using
the supervisor pattern. The supervisor module and behaviour in the Erlang
standard library are more complicated with more features.

8.6 Exerises

Exercise 8.1. List some programming languages where exceptions are not ob-
jects!

Exercise 8.2. Why is it a good idea for the specification of a subprogram to
contain the kind of exceptions (types, classes, etc.) that can be thrown by the
subprogram?

changed, but since we register the same name, we can use the same name.
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Exercise 8.3. What is the purpose of the finally construct in Java?

Exercise 8.4. Complete the following C++ program:

#include <cstdlib>

#include <iostream>

#include <string>

#include <cerrno>

using namespace std;

class NotNumber {

string wrongInput;
friend ostream& operator«(ostream& os,

const NotNumber& nn);

public:
NotNumber(const string& s) : wrongInput(s) { };

};

ostream& operator«(ostream& os, const NotNumber& nn) {

return os « "Invalid input: " « nn.wrongInput;
}

long number(const string& s) throw (NotNumber) {

〈missing code 〉
}

int main(void) {

try {

cout « number("12") « endl;
cout « number("12345678901234567890") « endl;

} catch (const NotNumber& ns) {

cout « "Error happened: " « ns « endl;
}

try {

cout « number("-34") « endl;
cout « number("text") « endl;

} catch (const NotNumber& ns) {

cout « "Error happened: " « ns « endl;
}

return 0;

}

The number function has to be completed. The task of this function is to
create a number (of long type) from the parameter string. If the parameter
cannot be parsed as a decimal number, or does not fit the long type, NotNumber
exception should be thrown. Use the strtol function from the standard library!
The result should be the following:

12

Error happened: Invalid input: 12345678901234567890

-34
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Error happened: Invalid input: text

Exercise 8.5. Complete the following Java program:

class WrongDateException extends Exception {

String invalidInput;

public WrongDateException(String s) { invalidInput = s; }

public String toString() {

return "Invalid input: " + invalidInput;
}

}

public class MorningDate {

public static String morningOrAfternoon(String date)

throws WrongDateException {

〈missing code 〉
}

public static void main(String[ ] args) {

try {

System.out.println(

MorningDate.morningOrAfternoon("11:53"));

System.out.println(

MorningDate.morningOrAfternoon("11:wrong"));

} catch(WrongDateException e) {

System.out.println("Error happened: " + e);

}

try {

System.out.println(

MorningDate.morningOrAfternoon("13:42"));

System.out.println(

MorningDate.morningOrAfternoon("text"));

} catch(WrongDateException e) {

System.out.println("Error happened: " + e);

}

}

}

The morningOrAfternoon method should decide if the input refers to a
morning or an afternoon hour (i.e. before 12:00 or after) and should throw an
exception if the input is not a time. The expected output:

11:53 is in the morning

Error happened: Invalid input: 11:wrong

13:42 is in the afternoon

Error happened: Invalid input: text



8.6 Exerises

•
411

For this exercise it is not necessary to check if the ”minutes” are between 0
and 59.

Exercise 8.6. Complete the following Eiffel program:

class
MORNING

create
make

feature
is morning(time: STRING): BOOLEAN is

require
time is ok: format ok(time);

do
〈missing code 〉

end

feature
make is

local
second run: BOOLEAN ;

do
io.put boolean(is morning("11:23"));
io.put string("%N");
io.put boolean(is morning("23:11"));
io.put string("%N");
if not second run then

io.put boolean(is morning("szoveg"));
io.put string("%N");

end;
rescue

second run := true;
retry;

end;
end

The is morning method should decide if the input is a morning or an after-
noon date (i.e. before 12:00 or after). The precondition is that the parameter is
a time. The format ok method should take care of it - it part of the exercise to
implement it. For this exercise it is not necessary to check that the ”minutes”
are between 0 and 59.
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8.7 Useful tips

Tip 8.1. See Sections 8.2.3, 8.3.1, 8.3.2, 8.3.4, 8.3.5, 8.3.9 and 8.3.10.

Tip 8.2. See Section 8.1.1 on page 368.

Tip 8.3. See Section 8.1.1 on page 369.

Tip 8.4. The strtol function uses two ways to show error: the errno variable is
set to ERANGE (if the parsed number does not fit the long type), or the pointer
in the second parameter does point to something other than ′\0′ (if the entire
input string was not a number). Do check for both conditions. Do not forget to
reset the errno variable before using its value!

Tip 8.5. Split the input string on ":", then check that the input string was split
into exactly two parts. Check that both parts are integers. Check that the first
part (the ”hour”) is between 0 and 11 or 12 and 23 (inclusive).

Tip 8.6. In the format ok method split the input string on ’:’, then check that
the input string was split into exactly two parts. Check that both parts are
integers. Check that the first part (the ”hour”) is between 0 and 11 or 12 and
23 (inclusive). In the is morning only check that the ”hours” value is before 12.

8.8 Solutions

Solution 8.1. PL/I, CLU, Ada95, Eiffel, Modula-3, Common Lisp, Erlang

Solution 8.2. If the specification for a subprogram contains the list of exceptions
that can be thrown by the subprogram, it warns the user of the subprogram
that what kind of exceptions can be thrown and what should be handled. In
some languages this specification actually forces the programmer to handle these
exceptions (the ”checked exceptions” concept).

Solution 8.3. The finally block is always executed after the try block, regardless
of exceptions thrown. It is useful to avoid resource leaks: even though the garbage
collector frees allocated memory, it might be necessary to e.g. always close a
window in a function, whether there was an exception or not.

Solution 8.4. #include <cstdlib>

#include <iostream>
#include <string>

#include <cerrno>

using namespace std;

class NotNumber {

string wrongInput;
friend ostream& operator<<(ostream& os, const NotNumber& nn);

public:
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NotNumber(const string& s) : wrongInput(s) { };
};

ostream& operator<<(ostream& os, const NotNumber& nn) {
return os << "Invalid input: " << nn.wrongInput;

}

long number(const string& s) throw (NotNumber) {

long result;
char* endp;

errno = 0;

result=strtol(s.c_str(), &endp, 10);
if ((*endp != ’\0’) || (ERANGE == errno)) throw NotNumber(s);
return result;

}

int main(void) {
try {

cout << number("12") << endl;
cout << number("12345678901234567890") << endl;

} catch (const NotNumber& ns) { cout << "Error happened: " << ns << endl; }

try {
cout << number("-34") << endl;

cout << number("text") << endl;
}
catch (const NotNumber& ns) { cout << "Error happened: " << ns << endl; }

return 0;
}

Solution 8.5. class WrongDateException extends Exception {
String invalidInput;

public WrongDateException(String s) {
invalidInput = s;

}
public String toString() {

return "Invalid input: " + invalidInput;

}
}

public class MorningDate {
public static String morningOrAfternoon(String date)

throws WrongDateException {
String[] elements = date.split(":");

if (elements.length != 2) throw new WrongDateException(date);
try {

Integer.parseInt(elements[1]);
int hours=Integer.parseInt(elements[0]);
if (0 <= hours && hours <= 11) return date+" is in the morning";

else if (13 <= hours && hours <= 23) return date+
" is in the afternoon";

else throw new WrongDateException(date);
} catch (NumberFormatException e) {

throw new WrongDateException(date);

}
}

public static void main(String[] args) {

try {
System.out.println(MorningDate.morningOrAfternoon("11:53"));
System.out.println(MorningDate.morningOrAfternoon("11:wrong"));

} catch(WrongDateException e) {
System.out.println("Error happened: " + e);

}
try {

System.out.println(MorningDate.morningOrAfternoon("13:42"));
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System.out.println(MorningDate.morningOrAfternoon("text"));
} catch(WrongDateException e) {

System.out.println("Error happened: " + e);

}
}

}

Solution 8.6. note

description : "morning application root class"
date : "$Date$"

revision : "$Revision$"

class

MORNING

create
make

feature
is_morning(time: STRING): BOOLEAN

require

time_is_ok: format_ok(time);
local

dates: LIST[STRING]

hours : INTEGER;
do

dates := time.split(’:’);
hours := dates.at(1).to_integer;
Result := (hours < 12)

end;

feature
format_ok(time: STRING): BOOLEAN

local
dates: LIST[STRING];
hours : INTEGER;

do
dates := time.split(’:’);

if dates.count = 2 and dates.at(1).is_integer()
and dates.at(2).is_integer() then

hours := dates.at(1).to_integer;

Result := (0 <= hours) and (hours <= 23)
else

Result := false
end

end

feature

make
local

second_run: BOOLEAN;
do

io.put_boolean(is_morning("11:23"));

io.put_string("%N");
io.put_boolean(is_morning("23:11"));

io.put_string("%N");
if not second_run then

io.put_boolean(is_morning("szoveg"));
io.put_string("%N");

end;

rescue
second_run := true;

retry;
end;

end
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9

The method of data abstraction and the abstract
data types that follow from it play an important role
in modern programming methodology.1 This is why
it is crucial to examine what requirements the type
abstraction defines against the language, and how
these requirements are met. In this chapter we will
examine through what features the various
programming languages support data abstraction.
These features include subprograms, expressions,
type constructs, and many other features that are
discussed in detail in other chapters of the present
book. Thus this chapter will contain a lot of
referencing to other parts of the book.

1 See [Jac75], [Dij76] and [DDH72]
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very task can be solved in FORTRAN. If something cannot be solved in
FORTRAN, it can be solved in Assembly. If something cannot be solved
in Assembly, it cannot be solved at all. – The real programmer [Pos83]

This quote is funny, but true. Why are then other programming languages
needed? The answer is quite obvious – because most of the tasks are easier
to solve in other languages. This has two reasons. Firstly, there are languages
designed for solving particular tasks such as the SQL language for querying
relational databases. Second reason is the development of programming method-
ology. Of course, by disciplined programming nearly all programming paradigms
can be implemented in any general purpose programming language. However,
without language feature support these solutions usually require many mechan-
ical operations on the side of the programmer, and as we know, mechanical
operations are the primary sources of errors. Thus, to avoid this from happening,
we need programming languages which actively support the applied programming
methodologies.

9.1 Type onstruts and data abstration

Most programming languages offer a variety of features for the programmer to
construct new types from existing ones. Using these type construct features only
allow to produce types with fixed semantics. Chapter 6. examines in detail which
construct generates what type with what kind of properties from the compound
types. These ”pre-constructed” semantics, however, rarely meet all the demands.
The objects in the real world to be modeled in the programming language, are
rarely Cartesian products, vectors or sets.

What are these constructs then good for? They can help to model real world
objects. People are no Cartesian products, but making, for example, a telephone
book application, the relevant attributes of people for this application can be
properly described by a Cartesian product. That is, in practice, type constructs
are not used on their own, but for representing important new types.
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In Section 5.1. we have seen the formal definition of the type. According to
that definition, the representation of the type always happens by a sequence of
elemental values which – if examining the structure of the program deep enough
– is true. In practice, for type representation we use existing types, or new types
created with the type construction features of a given language. From the existing
types the desired new type is created in two steps. Firstly, an intermediate type,
with any of the type construction features, is defined. This type has the desired
representation structure, but its semantics – i.e. the operations – differ from that
of the desired type. Secondly, using the operations of the type construction and
of the original type, the type operations of the new type are implemented.

As an example, let us consider the rational number type. For its representa-
tion we may choose a Cartesian product with two integers. We use the Cartesian
product type construction of the chosen language, but the result type is not the
rational number type yet, just a new type which contains two integers. Likewise,
the operations are also not the usual operations of rational numbers, such as
addition, subtraction, multiplication and division, but the querying and setting
of the individual components only. Nevertheless, with its operations and integer
members, this new type is suitable for what the formerly available integer type
was not. That is, it supports the operations of the rational numbers.

9.2 Expetations for programming languages

As mentioned in the introduction, it is a legitimate expectation of any program-
mer that the given programming language actively supports the given program
design methodology. Next, we will list the areas where language support is
expected to make the job of the programmer more efficient and simple. Our list
will concern the following specific language features and syntactic limitations:

• Modularity for each type to be implemented in separate compilation units.
This ensures the reusability of types, and also efficient program develop-
ing, since single modules can be easily transferred to other programs, and
different units can be developed by different programmers without them
disturbing each others’ work.

• Encapsulation for handling the related type value set and its operations
together.

• Representation hiding, which ensures that the user of the given type only
uses the operations given by the specification. This limitation enables the
modification of the representation and also of the implementation without
propagating it up in the program hierarchy.

• Separation of the specification and the implementation into separate com-
pilation units. The other modules using the given type can simultaneously
be developed with a type specification independent of the actual imple-
mentation.
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• Managing of module dependencies. The compiler should manage the de-
pendencies between modules (one using the other etc.) automatically.

• Consistent usability. The user and built-in types are not to be handled
differently. Furthermore, types should be manageable in ways that are
close to ”real” life methods.

• Support of generalized program templates. The programmer should be
able to write programs in the most general way. Languages should give
the possibility to minimize repetitions, not only on the direct code level,
but also on a higher level to avoid the multiple implementations of the
same solution structures. This significantly increases the readability and
maintainability of the code.

9.3 Breaking down to modules

The complexity of any problem may reach a point, where the size of solving the
problem grows beyond control. To respond to the increase in problem complexity,
an isolated monolithic approach is no longer a viable solution; instead, we need a
software system with a more independent modular design of many subprograms,
and with good interconnections. These design units are called modules, and this
design approach is called modular design.

In programming languages meant for professional use support modularity.
In more modern languages, the basis for breaking down to modules is shifting
towards breaking down to types; that is, a module is implementing a type. As will
be shown below, modularity has an important role in representation hiding. As in
most of the languages the boundaries of the modules and of the various visibility
categories are usually the same, modules regulate the visibility of identifiers
defined within them. In the following section, we will examine the features of
modularity support in great detail.

9.3.1 Modular design

Applying modularity is also helpful in meeting some of the most typical require-
ments of object-oriented design, e.g. reusability, extensibility and compatibility.
This is what the so called modular design is based on. (The module is not a
programming language concept, but a unit of design.)

Criteria of modular design

Next, we will consider the main aspects of modular design.
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Modular deomposition

Modular decomposition means the breakdown of the problem to more simple
tasks which can be solved independently. This is how the complexity of the
problem can be decreased.

Usually this method is applied repeatedly, decompositioning also the sub-
tasks. This allows more people to work simultaneously on solving the main
problem. The method can be presented as a tree where the nodes represent
each decomposition step.

For example, the top-down method of program design is based on this method
too. Designers start from the abstract description of the problem, and apply
decomposition steps until they reach the level of description which may be
implemented on the given programming language.

Modular omposition

Modular composition means the application of already existing program units
as building blocks to create new programs. A software design method satisfies
this criterion if it supports the implementation of software elements which may
freely combine. Modular decomposition supports extensibility, while modular
composition assists reusability.

The declared goal is to reuse already existing standard elements during
programming. For example, for numerical algorithms there is a huge number
of program libraries available ready to be used.

A word of remark: these first two criteria are independent of each other, still
sometimes contradictory, as repeated decomposition steps may result in very
specialized modules which cannot be easily reused.

Modular intelligibility

This means that a module should be meaningful also on its own, and there should
be no other ”supporting” modules. This is significant for code maintainability.

Modular ontinuity

This comes from the notion of a continuous function: a ”minor” change in the
specification should mean only a ”minor” change in the program. This also
implies that these ”minor” changes should apply only for a few modules, not
for the whole structure of the program.

The extent of these ”minor” changes in the specification and in the code is
not precisely defined, yet the concept is clear.

A simple example: in source code numeric and textual literals should be
replaced by symbolic constants – in case of a change only the constant definition
must be updated.
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Modular protetion

The protection of the whole program must be ensured also in abnormal circum-
stances. The effect of an error should be confined only to one – or maximum a few
– module(s). The method of specifying for every input module the responsibility
to check data integrity is a good practice and fulfills modular protection.

Basis of modularity

To fulfill all the criteria above, certain principles are essential to bear in mind.

Language support of modules

Modular design can only be efficient if the modules fit the syntactical units of
the given programming (or design, or specification) language. This principle also
implies that modules, supported by the given programming language must be
compilable on their own.

This is a technical requirement, but if not met, the implementation of the
above listed criteria may get troublesome. For example, if a system is partitioned
into well separated subtasks (decomposition), they should also be managed as
separate syntactical and compilation units. On the other hand, if a module is not
a language unit, but is composed of more units, modular composition becomes
impossible.

Without proper programming language support, the best methods are only
like a ”bird without wings”. Programming language support can only be partly
substituted by programming style or workarounds.

Few interonnetions

Modules should communicate with as few other modules as possible.
Between modules various kinds of communications are possible: modules can

call services of other modules, can share their data structures, etc. This principle
is about limiting the number of such connections.

In a system consisting of n modules the number of interconnections should
be close to the minimal amount of n − 1, and should be much less than the
maximal possible n ∗ (n − 1)/2.

This actually originates from the principles of continuity and protection:
if there are too many interconnections, the effects of a tiny change or the
propagation of an error would affect too many modules.

Weak interonnetions

If there is communication between two modules, the minimum amount of infor-
mation should be transferred.
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This is also based on the principles of continuity and protection, as less
interconnections can transfer fewer changes and errors to the other modules.

Expliit interfaes

This principle states that if two modules communicate with each other, it should
be clearly signaled by at least one of them.

This concerns several criteria. Firstly, the criteria of composition and decom-
position are relevant as they both require the clear notion of all interconnections.
Secondly, the principle on continuity is vital as it is important to know exactly
from the interface which other program units could be affected by change.
Thirdly, modular intelligibility is also on important factor as interconnections
cannot be clearly detected without it.

Information hiding

No (internal) information can be accessed or used from a module, only those
pieces of information which are explicitly declared as public.

Applying this assumes the knowledge of all the modules only through their
official interface. This means that every module basically consists of two parts:
an interface and a private implementation which is not reachable from other
modules. A programming language must support this restriction. Of course, it
is possible to have the whole module in the interface part, but this should be
more the ”exception”, than the norm.

Hiding information is the basis for continuity. Changing the hidden, private
part of a module only, and keeping the interface unchanged will have absolutely
no effect on the other modules communicating with it.

Open and losed modules

The above rules are supported by the majority of ”traditional” programming
languages. Good module structure and information hiding can be implemented
in Modula or Ada. Reusability demands more support – thus, let us introduce
the following two definitions:

• A module is closed if it is reachable for other modules through a well
defined interface only, and can only be used in an unchanged form. The
implications are that a closed module is a separately compiled program
unit, which may be stored in a program library, and may be linked on
demand to the program.

• Open modules are extendable, meaning their services can be extended;
for example, new fields can be appended to their data structures, which
in turn lead to changes in their services.
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In the traditional approach, open and closed modules are clearly conflicting
requirements. ”Traditional” programming languages generally support closed
modules, and the implementation of abstract user data types (module, package,
etc.). As regards open module support, the hierarchical library structure of
Ada 95 is a good example (for a detailed discussion, see Section 9.3.2).

The so called object-oriented approach offers a new possibility: the starting
point here is the class – corresponding to the abstract data type –, and to create
new classes from already existing and closed classes, a new concept – namely,
inheritance is introduced.

Reusability

During software development very often similar (but not identical) program
elements must be implemented. For example, most of the programs use ordering,
searching, etc. Programmers would rather like to avoid implementing these again
and again, and hope for reusable modules. Most of the problems emerge due to
the fact the tasks are very similar, but not exactly the same. A module can be
reused only if it provides general enough services.

To implement generalized code is actually more expensive in the short term
(it requires more specific design and robust implementation) than implementing
a concrete solution. Investing into it is worth only for professional programmers
as they may later want to reuse the results for multiple programs.

What criteria must the module structure meet to support reusable code?
Variety of types

Modules must be implemented to work with various types. For example, by
using a module declaring a stack type, the program should be able to support a
stack of integers or strings. This requirement is usually supported by so called
generic or template language constructs, but can also be implemented with
inheritance.
Variety of data structures and algorithms

Attention must be paid to support all kinds of data structures a program
may require – e.g. a tree, a list, an array, a sequential file, etc. All of these can
be traversed sequentially, but of course, each with a different algorithm. A linear
search algorithm is general enough only if all of these types are handled properly.
One type – one module

Operations of only one type should be packaged into one module so that the
user of the module can better understand all the supported operations of a given
type.
Representation independence

Changes in the representation of a data type should cause no effects outside
the module. This can be achieved by using hidden representation and implemen-
tation.

A more general demand is that different representations of the same type
should be supported at the same time. For example, addition and multiplication
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of complex numbers are implemented more easily if using different representa-
tions. However, in traditional programming languages, it is not easy to meet this
demand. What needs to be remembered is that objects should be usable without
knowing their representation or implementation of their operations.

This requirement is also important for software extensibility. The problem can
be formulated so that when applying a certain operation, the specific algorithm
must be chosen according to the type. If this choice is implemented in the supplier
module, it must know all possible implementations – yet, this would lead to
oversized and unmanageable modules, and would not offer an easy way to handle
new type variants.

Consider, for example, a graphical system which manages lists of points, lines,
triangles, tetragons and circles. A list must contain elements of the same type;
thus, this in the original source code of the module, data type is traditionally
represented by a record with some variant part. Drawing, transforming etc. each
of these shapes require different algorithms. This is handled in traditional code
as a case statement with branches for all possibilities of the variant record.

Let us assume that we have purchased a program package which handles
these shapes. If it later turns out that, for example, for drawing traffic signs
we need hexagons, there are two options: we may contact the designer of the
original package, and ask for a modification, or we may implement the new shape
ourselves, with all the operations, including those which need no modification
of the original package. In our program most likely a big case statement will
handle the new shape. Both of these possibilities – changing the original source
code, or changing the user code – are tedious, hardly manageable and costly.

Real solutions for these kinds of problems are offered by the features of
object-oriented programming.

9.3.2 Language support for modules

After reviewing theory, we will now turn to evaluating programming language
support for implementing modular programming.

Low level programming languages

In the beginning, there was only one programming language, the machine code
based assembly. From assembly source code a special compiler, the assembler
created the executable (machine code) form. The task of the assembler was
relatively simple: to compile the assembly statements (so called mnemonics) and
compute address references. The goals of such address references could also be
symbols which were not defined in the same source file. This technique allowed
programmers to produce separate compiling units and to introduce an early im-
plementation of module composition. However, to produce the final executable,
an additional step was needed right after compilation: during linkage the still
unresolved references of separate compiled code units had to be computed.
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The source of the compilation unit had to be compiled only once with the
compiler, the newly created object code could be linked to different programs
many times. To help the storage of the compiled code units, they were packaged
in so called program libraries. This concept and methodology are valid for higher
level languages too, but usually all this is done hidden by the compiler.

The closest language to assembly is the C programming language [KR89]
designed especially for system programming. Thus, this language is still simple
and ”low level”, but manages compilation units much more efficiently. It uses
a precompiler which supports modular decomposition. Every compilation unit
consists of two source files: public declarations (as the interface of the module
is stored in so called header files), and actual implementations (they go in the
source file). Where the module is used, its header file gets included on the source
level (#include). As the same module may be included more than once through
different modules, to avoid multiple (re)declarations, the conditional compilation
feature of the precompiler must be used, like this:

#ifndef MODUL H /* Module identifier */
#define MODUL H
/* This part will be compiled only once */
. . . /* Interface declarations of the module come here */
#endif

A compilation unit can be successfully compiled if every referenced header
file is reachable for the compiler. Skipping the linkage stage must be signaled
with a special flag, however for executable code generation, listing already com-
piled units is sufficient. By using header files, the visibility of declarations gets
also adjustable at some level, though this feature is not supported by the C
programming language. The content of the header files are completely public, as
every module can use it by including it. The declarations of the implementing
module can (normally) not be accessed from the outside, so they can be labeled
as local and private to the module.

Proedural programming languages

One of the many high level programming languages FORTRAN, [LV77] has
introduced compilation units. FORTRAN programs are made of segments, one
of which can be the main segment, the others can be a function (FUNCTION ),
a subroutine (SUBROUTINE) or a block data (BLOCK DATA).

Identifiers (except for the segment name and the COMMON data fields) are
local to the segment. At the beginning of a segment, declarations are listed,
followed by the executable part. The evaluation of the declaration part is static,
assignment of the variables to memory is done in compile time. These segments
are the compilation units of the language. There is no language support to
describe interconnections between the segments, and in compile time there is
no way to check the validity of these connections.
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These restrictions were eliminated by the version FORTRAN 90 of the lan-
guage. A new compilation unit, the module (MODUL) allowed the definition
of an interface (INTERFACE) which helps to check cross-module connections
already during compile time.

module fn def

! This module defines the interface

interface fn

! The interface declares function signatures

function real fn(param1, param2) result(return value)

real param1, param2, return value

end function real fn

function double fn(param1, param2) result(return value)

double precision param1, param2, return value

end function double fn

end interface

end module

! A separate compilation unit contains two implementations
! with different signatures

function real fn(param1, param2) result(return value)

real param1, param2, return value

return value = param1*param2

end function real fn

function double fn(param1, param2) result(return value)

double precision param1, param2, return value

return value = param1*param2

end function double fn
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program main ! Main program module
use fn def ! Referencing the interface definition

real r1, r2, r3

double precision d1, d2, d3

data r1/2401.0/, r2/9.81245/

data d1/2401.0d0/, d2/9.81245d0/

! Using through interface the two different function implementations
r3 = fn(r1, r2)

d3 = fn(d1, d2)

write(*,’(1x,1p,e16.9,t25,d16.9)’) r3, d3

end program

Modularity is even more thoroughly supported by the Modula programming
languages, the development of which has reached its third generation already.
Originally Niklaus Wirth developed it by drawing on his experience with Pascal.
One of Modula-2’s most successful characteristic is the support for explicit
description for interfaces between modules. Modula-3 has practically fully in-
herited interface and module description [Nel91]. Modules are basic building
blocks in Modula-3. Modules are named collections of declarations, such as
constant-, type-, variable- and subroutine declarations. A module can make its
own declarations accessible for other – client – modules. This is described by
interfaces, but modules usually also have some hidden implementation parts.

Modules import the interfaces which they use, and export those which they
implement. By using interfaces, modules can be safely compiled separately. There
is no way for a reference to become invalid in an already compiled module.
Each module is visible to the outside through their interface(s) which helps our
program to become transparent without knowing all the details. This ensures a
much simpler maintainability and easier learning.

Compilation units of Modula-3 are modules and interfaces. A module is like a
block, except for the visibility of identifiers: entities are visible in a block if they
are declared in the given block, or in one of the containing blocks; by contrast, in
a unit only if they are declared in the given interface, or in one of the imported
or exported interfaces.

Modules export an interface to assign a body to procedures declared in
this exported interface. Modules or interfaces import an interface to make the
declared entities from these imported interfaces visible. Module definition looks
like this:

MODULE 〈identifier 〉 EXPORTS 〈list of exported interfaces 〉;
〈import statements 〉;
〈declarations 〉;

〈module body -- block 〉 〈identifier 〉;
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(* Simple example *)
MODULE Hello EXPORTS Main;(* Main: predefined, empty interface *)

FROM SIO IMPORT Put; (* import statement *)
BEGIN

Put("Hello world!"); (* body block *)
END Hello.

The program is a collection of modules and interfaces. It contains all the inter-
faces which are imported or exported by its modules or interfaces, and where all
the procedures, interfaces and modules are defined only once at the most. Exe-
cuting the program means executing the module bodies based on the following
rules:

• If a module (M) depends on another module (N), the body of N will be
executed prior to the body of M;

• M depends on N, if M uses at least one interface which is exported by N,
or if M depends on such a module which depends on N;

• M uses an interface I, if M imports or exports I, or if M uses such an
interface which imports (direct or indirect) I;

• in any other cases not covered by the above rules, the order of execution
is implementation dependent.

Modula-3 also supports generics. Given the nature of modularity, only a module,
or rather its interface part can be made generic. Generics can have parameters,
but only interfaces can be used for these parameters. These must be enumerated
in the GENERIC INTERFACE clause and also in the GENERIC MODULE
description.

Open modules support in Ada

The Ada language also evolved from Pascal for system programming purposes.
The most important aspect of its development was to guarantee program safety
and validity, so particular attention was paid to exploiting the benefits of the
modular approach.

One of the greatest strengths of Ada lies in the so-called packages where –
with the help of the specification and body part – the user interface and the
implementation of an abstract type can be clearly separated. So the implemen-
tation and all the clients using the services of the package can be compiled
independently, as long as the specifications stay unchanged. This may work for
smaller programs, but for implementing more complex tasks it could become
cumbersome.

Consider the case when two logically independent packages want to use a
private type together. Ada 83 supports two different methods to implement
this. Firstly, if the given common type used in both packages is not declared as
private, both packages may access it. But in this case, all packages using the given



9.3 Breaking down to modules

•
429

type will see the type representation which seriously violates data abstraction.
The other possible solution in Ada 83 is to implement the solution of the two
logically independent tasks in one common package where in the private part the
commonly used elements are declared. Abstraction is now not violated, but the
bigger size of the package will substantially increase the costs of compilation. It
is also not a good idea to place two logically independent programming elements
in one common package.

The other significant problem with the packages of Ada 83 arise as soon as
the services of an already existing abstract type are extended by adding new
operations. After extending the specification part, not only the whole package
must be recompiled, but also all of those applications which use the modified
package, even if they never use the newly added functionality.

To avoid such problems, Ada 95 [Nyek98] introduced the hierarchical library
structure and the notions of child package and child-subprograms. Features of a
child package involve the following:

• From the point of view of visibility, it can be public or private;

• Logically it is subordinate to the parent package and can therefore access
both its public and private parts;

• The name of the parent package is prefixed to the name of the child
package;

• Any package can have a generic child, but a generic package can have
only generic children.

In the remaining part of this section, we will discuss public child packages.
Let us start with an example. The task is to implement a package managing
complex numbers in a canonical form:

package Complex Number is
type Complex is private;
function Constructor(Real, I : Float) return Complex ;
function "+" (arg1, arg2 : Complex) return Complex ;
−− "-", "*" and "/" are likewise;
function Real Part(X : Complex) return Float;
function I Part(X : Complex) return Float;

private
. . .
end Complex Number ;

In a later stage, the task is extended – the handling of the trigonometrical
form of complex numbers must be supported. In Ada 83 the new operations must
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be inserted into the above package, whereas in Ada 95 the following solution is
applicable:

package Complex Number.Polar is
function Polar 2 Complex(R, Theta: Float) return Complex ;
function "abs" (arg: Complex) return Float;
function Arg(arg: Complex) return Float;

end Complex Number.Polar ;

From the point of view of visibility, the child package is treated as if its public
part was appended after the public part of its parent, and the private part after
the parent’s private part. This implies that the child package does not only see
the public part of its parent, but also the private part, meaning the package
body may also access the parent’s private part. Nevertheless, the newly declared
operations are no primitive operations of the type, as they are not declared in
the same package.

Thus, the private part of the child package connects to the private part of
its parent. In the public part of a public child package, the private parts of the
parent are hidden not to allow renaming, which could make the hidden parts
visible to everyone. This would lead to serious violation of data abstraction. (For
private child packages other visibility rules imply, as will be discussed later.)

Based on the previous example consider the following applications of visibility
rules in practice:

with Complex Number.Polar ;
−− Calling syntax here is:
−− Complex Number.Real Part(),
−− Complex Number.Polar.Arg()

with Complex Number.Polar ;
use Complex Number ;
−− Calling syntax here is:
−− Real Part(),
−− Polar.Arg()

with Complex Number.Polar ;
use Complex Number ;
use Complex Number.Polar ;
−− Calling syntax here is:
−− Real Part(),
−− Arg()

The body of the parent (using a with statement) can reach and use all of its
descendants. The child package can use all entities of its parent automatically
(without with or use). With with the child can also use all services of its
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(compiled) siblings. The private part and the body of the specification of the
child package can access the private part of the parent. Using with on a child
package implies with on its parent. After executing use on a package, the entities
of its children can be reached with the 〈parent name 〉.〈child name 〉 syntax.

All of these visibility rules should be implied recursively everywhere, so a
multilevel hierarchy of parent and child packages can be built where the private
part and the body of a child package can access the private part of all its parents,
but the parents cannot see the child’s private parts.

A package can, of course, have more children. With regard to our previous
example, the package of complex numbers is best implemented in three parts:
firstly, the base defines the private type and the four basic operations; secondly,
one child defines the canonical form and implements its operations; and finally,
another child defines the trigonometrical form and implements its special oper-
ations. This way as small portion of the code as possible must be recompiled if
needed, and the number of possible errors is also reduced.

Thus, using a public child package can make a private type visible in more
packages, and enables to extend a package without recompilation. This is another
alternative – in addition to the tagged type in Ada 95 – for using extension in
programming, since child packages can also have private parts, and implemented
types from the parent can be extended there.

With regard to the naming convention (〈parent name 〉.〈child name 〉), note
that this is not only a formal rule introduced by the designers of the language,
thus, it is also crucial to identify functionally coherent elements, which, however,
is not manifested so clearly in other object-oriented programming languages.

Developing more complex systems may require design decisions to break
down the task without letting the clients even notice the change. Additionally,
the package structure of Ada 83 has another weakness: partitioning a package
body is only possible with the help of subprograms (procedures and functions).
Although these subprograms were compilable as separate subunits (by specifying
the separate keyword), any changes of the external (outside of the subprograms)
declarations within the body caused the recompilation of all subunits.

As a solution for this problem, Ada 95 introduced the so called private child
packages. The private child package differs from public child packages in terms
of visibility. Hence, in the remaining part of this section we will focus on these
differences. A private child package can be declared at any point of the hierarchy,
using the private keyword at the beginning of its specification. Every part of
the private child package – including the public part of the specification – can
access the private part of the parent. A private child package is only seen from
that part of the hierarchy where the parent is the root; but it is not seen in
the public specification of its siblings, or from those packages which are not
ancestors of its parent. These rules ensure that private child packages cannot
violate data abstraction. As the private child packages themselves are not visible
either from the outside, or from the public parts of their public siblings, which
may eventually access them, it is impossible to make the private part visible.
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Consider the following implementation snippet of an operating system:

package OS is
type File Descriptor is private;

. . .
private

type File Descriptor is new Integer ;
end OS ;

package OS.Exceptions is
File Descriptor Error, File Name Error, Permission Error : exception;

end OS.Exceptions;

with OS.Exceptions;
package OS.File Manager is . . .

type File Mode is (Read Only, Write Only, Read Write);
function Open(File Name: String; Mode: File Mode)

return File Descriptor ;
procedure Close(File: in File Descriptor);

end OS.File Manager ;

procedure OS.Interpret(Command: String);

private package OS.Internals is . . .
end OS.Internals;

private package OS.Internals Debug is . . .
end OS.Internals Debug;

In the above example, the parent package contains the type declarations for
the system, and the three public children (two packages and one subprogram)
ensure the functional decomposition of the system. Consider the OS.Interpret()
procedure which is a child-subprogram of the OS package, so within its body
even the private part of the package is accessible. As regards the visibility of
the private packages, they are both children of the OS package, meaning they
are also visible in the body of all other children of OS . On the other hand,
all parts of the OS.Internals and OS.Internals Debug packages see the whole
specification of OS , that is, both the public and private part. This is, however,
safe, as the specification of these two private child packages are not visible from
the specification of any other package, meaning the only definition in the private
part of OS cannot become visible through them.
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Objet-oriented programming languages

Object-oriented languages address the problem of open and closed modules with
the help of inheritance. They are also used in other language constructs as
they support the implementation of information hiding and encapsulation, and
modularity too.

The package support of the Java language is a good example. Every package
defines a separate namespace which makes the names of all types within it
unique. This help avoid mixing up the types with the same name in different
packages.

A package is declared on the language level by compilation units. Compilation
units of a package contain the code of the package; that is, the declarations of
classes and interfaces, referred to as types.

The package structure of Java is hierarchical, meaning between the packages
subordinate relationships may exist. A package can have any number of sub-
packages. A subpackage is also a package – it only states to which package it
belongs. Therefore, a subpackage can also have subpackages, and the structure
of packages compares to a tree.

The subpackage has no stronger connection with the parent package above it
in the hierarchy as any other package. The goal is to define an organized structure
of packages and help programmers follow the development process. For example,
visibility is not better or worse for subpackages; it remains the same as for any
other package. However, with the help of packages, visibility can be adjusted
in a more subtle way: without explicitly setting visibility to private, protected
or public, a new visibility mode, the so called package protected takes effect.
Elements in this visibility mode are public within the same package, but private
from outside of the package.

At the beginning of every compilation unit, one can specify to which pack-
age the given compilation unit belongs to. Without explicitly declaring it, the
compilation unit will belong to an unnamed package.

After the package declarations, the import declarations follow. Import dec-
larations allow using the simple name instead of the extended name for public
types declared in other packages. Import declarations have an effect only on the
compilation unit they belong to. Thus, in the other compilation units of the
same package, the imported types must be referenced with full names, or they
must be imported there too.

Importing does not use import declarations from imported packages. Hence,
the types imported by imported packages cannot be referenced by simple names,
but only if they get explicitly imported. It follows that importing is not transitive.
Importing does not concern the subpackages of the imported package, meaning
they cannot be referenced by a simple name. Referencing by a simple name is
possible after an extra import only.
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To implement a package only the compilation units must be made, and in
each unit, it must be declared to which package it belongs. This is followed by
the import and type declarations in every compilation unit.

As an example, to illustrate all the above mentioned, consider a package
called fruit.apple, which consists of two compilation units, namely Jonatan.java
and Starking.java:

// Jonatan.java

package fruit.apple; // Compilation unit of a package
public class Jonatan { // Type from the package

public Jonatan(){ System.out.println("I am Jonatan!"); }

};

// Starking.java

package fruit.apple; // Compilation unit of the same package
public class Starking { // Type from the same package

public Starking() { System.out.println("I am Starking!"); }

};

The following test program demonstrates the use of the import methods:

// Test.java Test program within an unnamed package
import fruit.apple.*; // On-demand import
import fruit.apple.Starking; // Single-type import

public class Test {

public static void main(String[ ] args) {

Object j1, j2;

j1 = new Jonatan();

j2 = new Starking();

}

}

Funtional programming languages

As a reminder, functional programming languages are characterized by the fol-
lowing features: there are no variables (only so called bindings), no assign-
ments, object values cannot be changed during program execution (this is called
transparency), and instead of the regular sequence, branches and loops it uses
function composition, pattern matching and recursion. These features make such
languages easy to analyze. Functional programming languages are regarded as
declarative, as opposed to those of the third generation, so called imperative
programming languages.
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Next, we will study modularity support in the ML language. Here the basic
elements of modules are signatures and structures. Signatures specify structures.
In terms of their roles, they correspond to interfaces, types of a class or pack-
age specifications in other languages. With regard to structures implementing
signatures, they correspond to implementations, classes or packages.

The signature is the description or specification of a program module or
structure. A structure can contain any type of declarations: type constructors,
exceptions, bindings of objects to symbolic names, and also substructures and
shares of substructures explicitly aiding modularization. The signature is the
element-wise specification for the declarations of a structure. A structure fits
in with or implements a signature if it contains all the exact, or more generic
declarations specified by the given signature.

Consider the following simple example where a’ is a type variable. By using
it we can make this specification of the queue polymorphic regarding its element
type:

signature QUEUE =

sig

type a’ queue

exception Empty

val empty : a’ queue

val insert : a’ * a’ queue -> a’ queue

val remove : a’ queue -> a’ * a’ queue

end

An existing signature can be reused in two ways to define new signatures: by
embedding and by specialization. Consider the following examples demonstrating
the two methods:

signature QUEUE WITH TEST =

sig

include QUEUE

val is empty : a’ queue -> bool

end

signature QUEUE AS LISTS =

QUEUE where type a’ queue = a’ list * a’ list

Embedding is used to expand a signature, whereas specialization compares
to implementation as it specifies the representations of the abstract types. The
two signatures are equivalent if their specifications are pair wise type-equivalent.

The structure is a program unit consisting of declarations. Consider the
following polymorphic implementation of the above QUEUE signature (the reason
for the double list representation is that in ML the built in list type, in terms of
its operations, functions more like a stack):
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structure Queue =

struct

type a’ queue = a’ list * a’ list

exception Empty

val empty = (nil, nil)

fun insert (x, (h,t)) = (x::h,t)

fun remove (nil,nil) = raise Empty

| remove (h,nil) = remove (nil, rev h)

| remove (h, x::t) = (x, (h,t))

end

9.4 Enapsulation

The essence of data abstracting program design is that types are not only some
sets of elements, but they are used together with their operations as one unit.
This unity is expressed as the notion of encapsulation.

The principle of encapsulation is closely related to representation hiding.
Only those subprograms are entitled to access the inner structure of a type
which are implementing the operations of the type, in other words, which are
part of the encapsulation. For every other subprogram the type is opaque.

In object-oriented languages the role of encapsulation is especially important
since during inheritance the derived type inherits the primitive operations of
the ancestor type, that is, those operations which are encapsulated with that
type. In the Java or C++ languages these operations are defined in the class
namespace, but for example in Ada 95 these operations are introduced after the
type declaration, and contain the given type in their signature.

9.5 Representation hiding

One of the most important element of data abstraction is representation hiding.
Representation hiding guarantees that the levels of the program architecture can
be modified independently of each other. Modification of the implementation on
a lower level will not propagate upwards in the structure since higher levels are
only affected by the type specification.

For the support of representation hiding, the programming language – usually
through its syntactic features – prevents the users of the type from accessing its
representation. Since the representation of the type is hidden, it is called opaque.
In data abstracting program design, of course, all types must be opaque. It goes
without saying that, after all, every type is represented by a sequence of bits
if digging deep enough into the structure of the program. Hence, this notion is
usually used for types where the user of the type has no access to structures at
a higher level than the sequence of bits.
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9.5.1 Opaque type in C

Not every language has features to implement opaque types. In the C language,
for example, there is no such feature. The following example is a code snippet
of the implementation of a complex number in C:

/* complex.h */ . . .

typedef struct complex struct {

double re;

double im;

} Complex;

extern Complex init(double re, double im);

/* complex.c */ . . .

public Complex init(double re, double im) {

Complex z;

z.re = re;

z.im = im;

return z;

}

In the above solution the representation is accessible for the user of the
type. By declaring a complex number z, the reference z.re is syntactically
correct. This also means that if later, instead of the canonical form of the
complex numbers, the trigonometrical representation is used, the former properly
functioning programs will possibly not work since the Complex type will not have
the re field anymore. As there is no language support for this, the programmer
must be disciplined not to abuse this possibility.

Another representation, which seemingly solves this problem, is as follows:

/* complex.h */ . . .

struct complex struct;
typedef struct complex struct* Complex;

#define COMPLEX ERROR NULL
extern Complex init(double re, double im);
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/* complex.c */ . . .

struct complex struct {

double re, im;

};

Complex init(double re, double im) {

Complex z = malloc(sizeof(struct complex struct));

if (z != NULL) {

z->re = re; z->im = im;

}

return z;

}

In the above solution the programmer cannot access the re or im components.
The representation is not hidden, now it is not the complex struct structure,
but a pointer type to it. And this remains ”visible”, that is, the usual pointer
operations can be applied to it. In some respects the result is even worse,
than in the former version, since now the programmer also has to destroy the
complex number objects, as creating a Complex object causes dynamic memory
allocation. On the other hand, pointer types support the ==, +, - operators,
but their meaning is far from the expected complex number operators equality,
addition and subtraction. Likewise, the functioning of the assignment operation
also differs from the expected. If used incorrectly, this difference may lead to
errors which are hard to find (the compiler cannot offer any help).

9.5.2 Private view of Ada types

In the Ada language the complete hiding of the representation is possible. The
specification part of the package, which defines the type, contains the description
of the representation. Importantly, though, it is separated from the declaration of
the public identifiers; it is located in the private part (after the private keyword)
of the specification. The content of the private part can logically ”not be seen”;
that is, the user of the type cannot reference anything from there.

package Complex Numbers is
type Complex is private;
function NewComplex(RE : Float; IM : Float := 0.0 )

return Complex ;
. . .

private
type Complex is record

RE : Float := 0.0 ;
IM : Float := 0.0 ;

end record;
end Complex Numbers;
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package body Complex Numbers is
function NewComplex(RE : Float; IM : Float := 0.0 )

return Complex is
begin

Return Complex ’(RE,IM );
end New;
. . .

begin
end Complex ;

9.5.3 CLU abstrat data types

The CLU language emphasizes support for data abstraction, and thus it offers
good features also for representation hiding too. The following example is a code
snippet from the implementing module of the complex type:

complex = cluster is newcomplex, re, im . . .

rep = struct[ re : real, im : real ]

newcomplex = proc (r: real, i: real) returns ( complex )

return ( up(rep$ (re: r, im: i)) )

end newcomplex

re = proc ( c : cvt ) returns ( real )

return ( rep$get r( c ) )

end re

im = proc ( c : complex ) returns ( real )

return ( rep$get i( down(c) ) )

end im

. . .

The representation is defined by the rep type. Representation hiding by
separating the concrete (rep) and the abstract (complex) types is so strong that
the language requires the usage of explicit type conversion between them. Unlike
in Ada, where the representation is a hidden internal structure of the type, here
it is a truly different type which happens to meet the given type specification
complying to the notion defined in Section 5.1.

In the above example, it is shown that the type conversion between abstract
and concrete types can be done in two ways: by using the automatically created
up and down operations which make the conversion from concrete to abstract,
or vice versa. These conversions are used in the newcomplex constructor and in
the implementation of the im operation.

Most of the operations during their function first convert the abstract typed
parameters to concrete types, perform the operation and convert the result
back to abstract type, so that a simplified notion is introduced. If within the
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signature of the operation the cvt keyword appears, it signals that the above
conversation must be done automatically. For example, in the parameter list of
the re operation, the actual parameter must be of the abstract type, while the
formal parameter must be a concrete type.

9.5.4 Visibility levels

To support representation hiding, languages often introduce levels for the visi-
bility of the components of compound types which levels determine who exactly
can access the given component. There are languages, such as in C, Pascal or
Modula-2, where no such restrictions exist.

In Ada 83, the previously introduced two levels of visibility are used. The
specification of the type is public, thus every user module can access it; however,
the representation and the implementation are hidden, and may be accessed only
in the implementation module of the type.

In object-oriented languages, the following three visibility levels are typically
distinguished:

• public – the given component is visible for everyone;
• protected – the given component is visible only for the descendants (only

in languages supporting inheritance);
• private – this is the completely hidden part of the representation, its

components can only be used in the implementation of the operations

These three levels of visibility are used in, for example, Ada 95 or C++. Java
uses an additional level for the containing package of a class.

In some languages (such as Eiffel) visibility is regulated in a more sophis-
ticated way, that is the type implementation prescribes which classes and de-
scendants of the classes can access the given component. Visibility levels are
discussed in more detail in Chapter 10.

9.6 Separation of speifiation and implementation

In those languages which support the ”one module – one type” principle, usually
type specification can be described in a compilation unit separate from the
implementation. This separation serves three purposes:

• It enables the modules to be developed independently from each other;
• It supports the unobserved modification of representation and implemen-

tation;
• All the information needed to use the type is separately available, mean-

ing, the implementation can be delivered in a compiled state too.
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The full hiding of the representation is (unfortunately) impossible. For the user
module it is unnecessary – and even inadvisable – to know representation details,
whereas the compiler must know how much memory has to be allocated to the
object of the given type. Thus, if the specification and the implementation are in
two separate units, the compiler must be able to determine the required amount
of memory allocation from the specification part.

C and C++ header files

In the C/C++ languages the specification must be physically copied into every
compilation unit which wishes to use the given type. Thus, a real separation of
the specification and the implementation is not possible here, at least not on the
level of the language.

To enable the copying of the specification, it must be stored in a separate,
special source file – the header file – which is included by a so called precompiler
in an appropriate compilation unit. If a type specification is given multiple times,
it causes an error; thus, it is best avoided by the programmer.

The header file must contain the specification of the operation and also of
the representation which will be fully accessible since it is copied into the user
module source code. In the C++ language the usage of the visibility classes can
prevent access to the inner structure of the representation, but since the header
file and the implementation module of the type have no connection – defined by
the language – modifying the header file can grant access to the inner details of
the type without even changing the source code of the implementation.

Mapping to pointers

To solve the problem we may alternatively create a situation in which the
abstract type is always represented by a pointer which points to the actual
representation byte sequence. In cases like this, allocation can be exactly deter-
mined at the location of the usage, without revealing anything from the actual
representation. However, due to the newly introduced indirection and to dynamic
memory management, the usage is made more complex now. This solution has
been shown in the C language in Section 9.5.1, and it is also shown in the
following Modula-2 example:

DEFINITION MODULE Complex Numbers;

TYPE Complex ;

PROCEDURE NewComplex(R, I : REAL): Complex ;
PROCEDURE Add(Z1, Z2 : Complex);

. . .
END Complex Numbers.
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IMPLEMENTATION MODULE Complex Numbers;

CONST GUARD = 12345

TYPE Complex = POINTER TO ComplexStr ;
TYPE ComplexStr = RECORD

R: REAL;
I : REAL;
G: CARDINAL;

END;

PROCEDURE NewComplex(R, I : REAL): Complex
VAR Z : Complex ;
BEGIN

NEW (Z );
IF Z#NIL THEN

Z^.R := R; Z^.I := I ; Z^.G := GUARD;
END;
RETURN Z ;

END;

PROCEDURE Add(Z1, Z2 : Complex);
BEGIN

IF (Z1#NIL) AND (Z2#NIL) AND
(Z1^.G = GUARD) AND (Z2^.G = GUARD) THEN
Z1^.R := Z1^.R + Z2^.R;
Z1^.I := Z1^.I + Z2^.I ;

END;
END Add;

. . .
BEGIN
END Complex Numbers.

This solution essentially mimics the functioning of languages which work with
object references – such as Java, Eiffel, or CLU. However, without automatic
constructors and destructors, reference counting and garbage collecting memory
management, it is much harder and more dangerous to use. The advantage of
this solution is that it enables the modification of the actual representation –
that of the pointed data structure – without the need to recompile the user
program parts of the module.
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Visibility areas

Ada has chosen a totally different approach than the ones presented above.
Here the specification and the representation are held in one compilation unit,
meaning the representation is physically not hidden. However, with its syntac-
tical features, the language ensures that this information cannot be utilized by
the developer of other program units using the type. The compiler can exactly
determine the memory needs of the given type. Seemingly this solution does
not differ at all from the header files of the C and C++ languages, but as the
language handles the specification and implementation parts of a package as one
unit, changing any of these requires the recompilation of the package.

Languages not supporting physial separation

In languages (such as Eiffel) the physical separation – in separate source files
– is not possible, meaning the allocation problem will not occur. However, the
development tool supports multilevel ”views” of the code, and thus the irrelevant
details regarding the usage can be hidden.

The Java language lacks this feature – in fact, it merges the specification and
the implementation. The structure of the Java bytecode reveals the interface
of the given class, the public methods can be selected, and the inheritance
information can be recovered, so it is possible to deliver the implementation
also in compiled state.

9.7 Management of module dependeny

The highest level building blocks of the programs are the modules. The func-
tioning of the program is an interaction of these modules. Every module requires
services, and based on them implements new services. Thus, there is a kind of
dependency between the modules since, for example, changing one module may
require the recompilation of its dependent modules etc.

Some of the programming languages (such as C or C++) require the program-
mer to handle these dependencies, and manage every compilation unit separately.
This is why there are special tools (such as make) which server this purpose
specifically. Since, however, the language does not offer any kind of support,
these solutions are not perfect, e.g. something may be recompiled too many
times, or the necessity of recompilation may not be recognized etc.

Thus, in other languages, the compiler is responsible for the management
of these dependencies. For example in the Ada language the with statement
must specify on which other compilation units the given module depends. This
guarantees that before the compilation of the module the specification parts of
all those modules are compiled (if necessary) on which the given module depends.
For more details, refer to Chapter 9.3.
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9.8 Consistent usage

Perhaps one of the most important requirements against a programming lan-
guage is that it must not distinguish between built-in and user defined types
in their usage. Compound types (arrays, records, etc.) and variables must be
defined, and as with built-in types, the expressions must be built from them etc.

Further implication of the unified usage is that the new type must fit in with
the logic of the language. If, for example, in a given language there is a convention
for a type to be read by the Read operation, it is important that for the user
type the programmer must be able to define a Read operation, meaning the
overloading of the Read identifier must be supported by the given programming
language.2 Overloading an identifier means that at a given point of the program
source, the identifier may have multiple definitions in effect. In this case, on the
basis of the referencing environment, the compiler decides which of the multiple
possible interpretation will be applied for the given identifier. Overloading is
found in almost all of the programming languages since, for example, the +
operator in the 3+4 and in the 3.13+4.2 expressions denote separate operations.
In cases like this, on the basis of the type of the parameters (operands), the
compiler determines which interpretation of the given identifier will be chosen.
This is called static linking (for more on overloading, refer to Section 7.6.). For
the present purposes, the most important question is if this can be caused by the
programmer. That is, if it is possible for an identifier defined by the programmer
to have multiple valid definitions at some point in the program source, from
which the compiler may choose the actual instance to be executed based on the
type of the arguments.

The features in the block structured languages are not considered overloading
if variable names overlap e.g. if there is an x variable defined within block A,
and there is another variable with the same name defined in the embedded
block B; in this case, x from B will mask the x from A, which may be referenced
only by qualified name (A.x). The features in object-oriented languages are not
considered overloading either, if the derived class changes the definition of an
operation declared within the ancestor class. This is called overriding, and the
actual definition corresponding to the reference is chosen not in compile time
– statically –, but in runtime – dynamically. This behavior is called dynamic
linking (for more details, see Chapter 10).

A special case of overloading is the operator overloading (see Chapter 7.6.1)
which occurs when the operators of the language (+, −, ∗, /, =, <, >, sizeof ,
new etc.) are overloaded. This has a great significance in using the user types
naturally. For example, if a matrix type is defined, for addition the +, for
multiplication the ∗ infix operators must be used; furthermore, the element of

2 Overloading is not always necessary since in object-oriented languages each class typically
defines a separate name space. Thus, the Read operation can be defined in every class
without the use of overloading.
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matrix A from row i and column j should be accessible in the form A[i,j],
because this is how it is dealt with in mathematics. The question arising is if the
language supports changing the arity or precedence of the operator or not. In
most of the cases, this is not possible. There are languages, such as Java which
generally support overloading, but not operator overloading.

In the languages supporting operator overloading, it is a crucial question if
the assignment is defined as a statement or as an operator. If the assignment
is an operator (such as in C++), its overloading is allowed; however, if it is a
statement (such as in Ada) it is not allowed, of course.

Another question concerning operators is if it is possible to define additional
to the existing ones, that is, if there are ”free operators”. Eiffel, for example,
supports the definition of new unary prefix an binary infix operators.

9.9 Generalized program shemes

The goal of the programmer is to develop and maintain programs as quickly
and efficiently as possible. In terms of efficiency, general types and subprograms
should be developed to be reused in the actual and in future programming tasks
on the widest possible scale. Programming methodology teaches solutions which
are applicable widely. This intention is also reflected in the various programming
languages. This section will introduce language features which serve the purpose
of reusability. Some of these features are so common and ordinary that we do
not even expect them to belong to this category. These will not be discussed in
detail, but appear only for the sake of completeness in the bellow summary.

Subprograms

Some details of the program code – used multiple times at different locations,
decreasing the unnecessary repetitions of the code and increasing maintainability
– must be developed in the form of subprograms. Essentially all programming
languages support subprograms.

Parametrization of subprograms

The most important parameters of a subprogram are referenced by formal names
when calling the subprogram. This way the subprogram can be used on a
wider scale, and by choosing the right parameters it becomes more portable.
It may be surprising to categorize parametrizable subprograms as a separate
group, but not every programming language supports the parametrization of
subprograms. Assembly languages or BASIC support subprogram calling, but
communication between the caller and callee subprogram must be implemented
by hand, e.g. through global variables. For further details about subprograms
and their parametrization, see Chapter 7.
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Parametrization of types

Parametrizing the types make them more general and widely usable. Such
parametrized types are, for example, the unconstrained discriminant records in
Ada, or the unconstrained array types (see sections 6.4.3. and 6.6.4.). Since the
same result can be achieved by dynamic memory management and explicit type
construction methods, this solution is supported by relatively few languages.

Subprograms as parameters

Subprograms can receive other subprograms as parameters, so for example a
programming thesis put in general terms can be implemented on a wider scale
for a variety of purposes.

A common solution is the usage of pointer types (see Section 5.6.), but some
programming languages – e.g. Ada 83, BASIC – do not support this feature. In
object-oriented languages, dynamic linking and special, so called function objects
can be used for the same purpose (see Chapter 10).

In the dBase, Clipper and FoxPro languages, similar can be achieved by
using macros. These languages, utilizing their interpreted nature, allow textual
variables to be executed as program code, thus, for example, by passing the
name of a subprogram, the appropriate macro may call the code.

Types as parameters

Programming theses, basic data structures and data types use abstract concepts
also for their definitions, and put only the most necessary restrictions to them.
As a result, not only one, but many types can typically fulfill these constraints.
The implementation of the theses, data structures and types must be specified
once, and may be used with all types that fulfill the requirements.

To satisfy these needs there are different possibilities. In the C language, for
example, there is no such feature on the language level, but similar effects – to
a limited extent – can be achieved by using the macros of the precompiler.

In object-oriented languages, this effect could be achieved theoretically by
using only inheritance and polymorphism since the necessary common behavior
may be merged into one abstract class – or interface – which will then be the
common ancestor of all the classes fulfilling the requirements. The only problem
with this solution is that the combination of all the possible requirements must
be known in advance – already at the design time of the basic class hierarchy.

Consequently, languages supporting type parameters introduce some kind of
separate construction. In these the types can be specified as formal parameters
which can be used like any other type within the structure. When passing an
actual value to this formal parameter, a variant of the structure will be created
for the given types, called the instantiation of the structure.
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In the C++ language, type parameters are supported by templates. A tem-
plate is similar to a macro substitution where the compiler substitutes all oc-
currences of the formal parameter with the actual type. Certain minimal syntax
checking is performed by the compiler, and the formal parameter is marked to
denote a type. Thus, important properties of the parameter type (such as certain
operations) needed by the subprogram or type to be implemented, cannot be
specified as a requirement. When developing a template, the compiler cannot
verify if the operations on the parameters exist, and it cannot avoid instantia-
tion with an inappropriate type. Errors caused by this will emerge only at the
instantiation. However, an advantage of the language is that the instantiation of
the template happens completely automatically.

In the Eiffel programming language the template is called generic, and as
throughout the whole language, a strong object-oriented approach prevails here
too. The formal parameters of the generic can be classes, additional behavior re-
quirements may be specified by naming the expected ancestor class of the actual
parameter. This solution is better than that of the C++ since the operations
used within the generic must be the operations of the given ancestor, and thus
correctness can be verified when developing the generic. A disadvantage of the
solution is that the required common behavior must be known in advance to
define an appropriate common ancestor. However, by now most of the problems
can be solved by applying inheritance and polymorphism.

In the Ada 95 language, the parametrization of the templates is much broader
and more flexible than in the previously mentioned Eiffel. Here on the one hand,
an Eiffel-like ancestor type can be specified, but the actual parameter may also
be required to be of a given type class (e.g. discrete, enumeration, any type).
An additional operation may be specified too and thus, a mandatory common
ancestor can be avoided. The operations specified by the programmer enable an
even more flexible usage of the template. For example, if a template using an
order relation is instantiated with integer numbers, an order relation different
than the usual one, such as the partial order relation of divisibility, can be
specified. All things considered, however, Ada lacks the flexibility of C++, which
is ensured by the automatic instantiation.

Notice that in the case of parametrizing with types in C++, the notion ”type”
is used more from the viewpoint of the programming language (see 5.1.). That
is, here only the type value set (that is the set of the representing elemental
value sequences) matters, whereas in Ada and the Eiffel the type is handled as
a unit of type values and their operations. For more on templates, see Chapter
11.

Higher level strutures as parameters

The above outlined solutions do not cover all the possible requirements. There
may be problems which should be parametrized with more complex, higher level
structures. In Ada 95, for example, a template can have another template as a
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parameter, or to be more precise, the actual parameter may be required to be a
package or subprogram created by instantiating a given template.

Additionally, there may arise the need for parametrizing by an array of
types where the number of types to be passed as a parameters is determined
at instantiation, but all the passed types are of the same type class.

What requirements the programmers will face in the future is far from clear
yet, but it is very likely that the programming languages and methodologies will
respond to the needs of the market.

9.10 Summary

Let us summarize again which questions should be answered when examining
what data abstraction support a programming language offers:

• Does the language support representation hiding?
The examples of languages have shown that some languages support very
complex visibility management (e.g. Java, Eiffel or C++), yet others have
no features to hide the internal structure of the types (e.g. C, Pascal or
FORTRAN).

• If the language does not support representation hiding, which features can
be utilized to achieve similar effects?
In the C and Modula-2 languages, if the data type is hidden behind a
pointer, the advantages of representation hiding are partly maintained
since the representation of the type may be modified without recompiling
the user modules. There are languages (e.g. the BASIC language) where
this is not possible, though.

• For representation hiding what features are supported?
For hiding the internal structure of the data type, a large number of
variants and features are available in the different languages. It is com-
mon for the identifiers declared within the type to be categorized into
visibility classes which determine the modules which can reference the
given identifier. The Ada 83 language only distinguishes two visibility
classes: the public class, which is accessible for everyone, and the hidden
private class which can be used only by the implementing module of the
type. Ada 95, C++ and many other object-oriented languages support the
classic three-class model where the previous two categories are extended
by a third, protected visibility class, the identifiers of which are accessible
within the implementing module of the type, and also in the modules
implementing the derived types. Java introduces four classes, defining a
separate category for the types of the same package. The other extreme
is represented by Eiffel where for each identifier the accessing classes can
be individually controlled.
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• Does the language support modularization?
In the BASIC or Pascal languages, the ”one program – one module”
principle is applied, meaning every program is essentially one compilation
unit. This limitation prevents two or more developers to work on a pro-
gram. Thus, most of the programming languages – aimed at professional
use – support some form of modularity. As a basis for modularization,
data abstraction methodology uses breakdown on types. Thus, languages
which support this feature – such as CLU – usually follow the ”one type
– one module” principle.

• What features are available for separating specification and implementa-
tion?
In languages such as Java or Eiffel, this separation is only logical. In
Eiffel, in particular due to the flexibility of the visibility classes, the outer
interface of the type may change from user to user. In the Modula-2
and Ada languages, the specification and implementation parts are also
separated physically, into two separate compilation units. In the CLU
language the abstract type – specification – and the concrete type –
implementation – fall under different type categories.

• How does the language treat the dependencies between modules?
Some languages do not handle dependencies at all. Such are, for exam-
ple, the C and C++, where dependencies are described by a separately
introduced language with its own interpreter (make). In the Ada and
Modula-2 languages, dependencies are also strongly supported. They are
defined with the features of the language and the compiler also handles
them.

• Is there a difference between built-in and user defined types?
The equivalent usage of user and built-in types is the most important
sign of supporting data abstraction methodology. For a consistent use,
manifold features are used. Such usage depends on the nature of the
language on the one hand, and on its conventions, on the other.

• Can user types be used in type constructions or in the representation of
newer types?
Most of the languages support type constructions, except for those lan-
guages which do not support the creation of user types (such as BASIC),
and certain script languages. In Perl, for example, the hash tables can
only contain scalar values and strings.

• Can user types be passed as parameters?
To represent user types, usually some kind of type construction is used.
In some languages – such as ALGOL 60 – composite types cannot be
passed to subprograms as parameters, and neither can user types using
such representation. These kind of languages are rare; in most languages
user types can freely be passed as parameters.
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• Is there overloading in the language?
One of the basic requirements of consistent usability is to name the same
kind of operations with the same name. In the Ada language, for example,
a type can usually be read from a text file with the Get operation.
Consistent usability requires that user types define Get operations which
will need the overloading of the Get identifier. Nevertheless, in object-
oriented languages (such as Java) classes often define separate name
spaces, meaning their methods will not overload methods of other classes
with the same name. In this way, the principle of consistent usability is
not violated. In the C programming language, overloading of identifiers
is not possible, meaning the same operations of different types must be
named differently.

• Is operator overloading allowed?
Operator overloading is a special case of overloading which can of course
add much to consistent usability since mathematical formulas may be
inserted into program source directly, which in turn make them clearer
and more readable. Despite this, there are languages (e.g. Java), which
support overloading, but do not support operator overloading.

• Can a new operator be defined in the language?
Additionally to the above mentioned, the Eiffel language also enables the
definition of new prefix or infix operators for the types. However, this
possibility is very rare.

• Can procedure subprograms be made in the language?
The simplest kind of subprograms is the procedure which is supported
nearly in all languages. The C language is a special case where all sub-
programs were originally functions, but the return value could be omitted.

• Can function subprograms be made in the language?
Most of the programming languages support function subprograms, but
the BASIC language is an exception as it only supports procedural sub-
routine calls.

• Can objects be passed as parameters to the subprograms?
In most of the cases, the answer to this question is yes, but there are
exceptions such as the BASIC or assembly languages.

• Can parametrized types by defined?
Parametrized types are not supported in many programming languages.
In object-oriented languages a similar effect can be achieved, if properly
parametrized constructors and dynamic memory management is used. We
have seen examples of unconstrained types in Ada where the value of the
parameter given at the instantiation of the object influences the size and
the internal structure of the object.

• Can subprograms be passed as parameters to subprograms?
In most of the languages passing subprograms as parameters is possible.
The common solution is the passing of a pointer as parameter referencing
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the subprogram. An exception to this is, for example, the Ada 83 language
where no such pointers may be defined, or the BASIC language. In object-
oriented languages, the so called function objects and dynamic binding
can be used to achieve similar effects.

• Is there a way to use types as parameters?
In many languages, including the modern ones, this is not possible. Nev-
ertheless, many languages offer completely different solutions, such as the
templates of C++, Eiffel or Ada. It is worth considering what features
can be used to specify the formal parameter types what regulations can
be made, and how flexible these regulations can be.

9.11 Exerises

Exercise 9.1. Implement the rational number type in multiple languages. Make
sure that the implementation should fit in with the type system of the language.
Compare the solutions.

Exercise 9.2. Implement the stack data type in multiple languages. What is the
difference in the use between the procedural and object based approach of the
language tools?

9.12 Useful tips

Tip 9.1. In this chapter we have introduced and examined the realization of
the complex number type in some programming languages, such as the Ada
solution with a package managing complex numbers in a canonical form (9.3.2)
and the C code (9.5.1) when opaque types have been discussed. Analog to these
implementations, the rational number type can be easily represented by two
integer numbers, the numerator and the denominator, where the represented
rational number is computed as the division of the numerator by the denomina-
tor. By this definition it is clear, that the denominator must be never zero (this
condition should be always asserted to be true as part of the type invariant), and
there are endless possible representation of the same rational number. For the
representation parts getter functions should be implemented, and a constructor
should be given accepting the numerator and the denominator. For a minimal set
of the standard mathematical operators (such as addition, subtraction, division,
multiplication, comparison of equality and ordering) an internal normal form
can be used, where the numerator and denominator have the smallest possible
values to represent the given rational number.

Tip 9.2. The stack is a Last-In-First-Out (LIFO) data structure, where the last
element added to the structure must be the first one to be removed. This is
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equivalent to the requirement that the push and pop operations (for adding
and removing an element) occur only at one end of the representing sequential
collection, referred to as the top of the stack. A stack may be implemented to
have a bounded capacity. If the stack is full, it cannot accept any new entities
to be pushed. If the stack is empty, a try to remove any items will fail. The
representing data structure should support sequential access for the push and
pop operations and the storage of an arbitrary type, so a generic approach should
be followed.

9.13 Solutions

Solution 9.1. In Ada user defined types can be encapsulated into a package.
The specification can be the following:

package Rational_Numbers is
-- a rational number has a numerator and a denominator
type Rational is private;

Zero_Denominator : exception;
Zero : constant Rational;

-- creates a new rational number
function Rat(Num: Integer:=0; Den : Integer:=1) return Rational;

-- Numerator of the rational number

function Numer(R : Rational) return Integer;

-- Denominator of the rational number
function Denom (R : Rational) return Integer;
-- operations:

-- addition
function "+"(A,B : Rational) return Rational;

-- subtraction: minuend - subtrahend = difference.
function "-"(Minuend,Subtrahend : Rational) return Rational;
-- multiplication

function "*"(A,B : Rational) return Rational;
-- division: dividend/divisor=quotient

function "/"(Dividend, Divisor : Rational) return Rational;
-- comparisons:

-- less
function "<"(A,B : Rational) return Boolean;
-- less or equal

function "<="(A,B : Rational) return Boolean;
-- greater

function ">"(A,B : Rational) return Boolean;
-- greater or equal
function ">="(A,B : Rational) return Boolean;

procedure GET(Number : out Rational);
procedure PUT(Number : in Rational);

private

-- the representation
type Rational is record

Numerator : Integer;

Denominator : Integer;
end record;

Zero : constant Rational := (0,1);

end Rational_Numbers;
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The body is the following:
with Text_IO; use Text_IO;
package body Rational_Numbers is

package Int_IO is new Integer_IO(Integer); use Int_IO;

-- normal form

function Norm(Inp : Rational) return Rational is
Outp : Rational;

Divisor : Integer:= 2;
Sign : Integer;

begin
if Inp.Denominator=0 then raise Zero_Denominator ;
end if;

Outp:=Inp;
if (Outp.Denominator*Outp.Numerator < 0) then Sign := -1;

else Sign := 1;
end if;

Outp.Denominator:=abs(Outp.Denominator);
Outp.Numerator:= abs(Outp.Numerator);

while (Divisor <= Outp.Numerator) and

(Divisor <= Outp.Denominator) loop
if (Outp.Numerator mod Divisor =0) and

(Outp.Denominator mod Divisor = 0) then

Outp.Numerator:=Outp.Numerator/Divisor;
Outp.Denominator:=Outp.Denominator/Divisor;

else Divisor := Divisor +1;
end if;

end loop;

Outp.Numerator:=Outp.Numerator*Sign;
return Outp;

end Norm;

procedure Common_Denominator(A,B : in out Rational) is
C,D : Rational;
begin

A:=Norm(A);
B:=Norm(B);

C.Denominator:=A.Denominator*B.Denominator;
D.Denominator:=C.Denominator;

C.Numerator:=A.Numerator*B.Denominator;
D.Numerator:=B.Numerator*A.Denominator;
A := C;

B := D;
end Common_Denominator;

function Rat(Num: Integer:=0; Den : Integer:=1) return Rational is
New_Rat : Rational := (num, den);

begin
return New_Rat;

end;

-- Numerator of the rational number
function Numer(R : Rational) return Integer is
begin

return R.Numerator;
end Numer;

-- Denominator of the rational number
function Denom (R : Rational) return Integer is

begin
return R.Denominator;

end Denom;
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-- operations:
-- addition

function "+"(A,B : Rational) return Rational is
C,D : Rational;

begin
C := A;
D := B;

Common_Denominator(C,D);
C.Numerator:=C.Numerator+D.Numerator;

return Norm(C);
end "+";

-- subtraction: minuend - subtrahend = difference.
function "-"(Minuend,Subtrahend : Rational) return Rational is

C,D : Rational;
begin

C := Minuend;
D := Subtrahend;

Common_Denominator(C,D);
C.Numerator:=C.Numerator-D.Numerator;
return Norm(C);

end "-";

-- multiplication
function "*"(A,B : Rational) return Rational is

C : Rational;

begin
C.Numerator:=A.Numerator*B.Numerator;

C.Denominator := A.Denominator*B.Denominator;
return Norm(C);

end "*";

-- division: dividend/divisor=quotient
function "/"(Dividend, Divisor : Rational) return Rational is

quotient : Rational;
begin

quotient.Numerator:=

Dividend.Numerator*Divisor.Denominator;
quotient.Denominator :=

Dividend.Denominator*Divisor.Numerator;
return Norm(quotient);

end "/";

-- less

function "<"(A,B : Rational) return Boolean is
C,D : Rational;

begin
C := A;
D := B;

Common_Denominator(C,D);
return C.Numerator < D.Numerator;

end "<";
-- less or equal

function "<="(A,B : Rational) return Boolean is
C,D : Rational;

begin

C := A;
D := B;

Common_Denominator(C,D);
return C.Numerator <= D.Numerator;

end "<=";

-- greater
function ">"(A,B : Rational) return Boolean is
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C,D : Rational;
begin

C := A;

D := B;
Common_Denominator(C,D);

return C.Numerator > D.Numerator;
end ">";
-- greater or equal

function ">="(A,B : Rational) return Boolean is
C,D : Rational;

begin
C := A;

D := B;
Common_Denominator(C,D);
return C.Numerator >= D.Numerator;

end ">=";

procedure Get(Number : out Rational) is
OK : Boolean:= False;

begin
Put("Give the numerator:");
Get(Number.Numerator);

New_Line;
while not OK loop

Put_Line("Give the denominator, it is not 0!:");
Get(Number.Denominator);
if Number.Denominator =0 then

Put_Line("PLease give it once more, it s not 0!");
ELSE

OK:= True;
end if;

end loop;
end Get;

procedure Put(Number : in Rational) is
begin

New_Line;
Put("The numerator:");

Put(Number.Numerator);

New_Line;
Put("The denominator:");

Put(Number.Denominator);
New_Line;

end put;

end Rational_Numbers;

A small trial:
with Text_IO, Rational_Numbers;
use Text_IO, Rational_Numbers;

procedure Rational_Trial is
R1, R2, R3: Rational;

begin
R1:=Rat(3);

R2:= Rat(8,4);
Put(R1);
Put(R1+R2);

R3:= R1*R2;
Put(R3);

Get(R3);
-- etc.

end Rational_Trial;
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In C++ user defined types can be written encapsulated in a class. A possible
solution:

#include <iostream>

using namespace std;
class Rational {

public:
Rational(int n = 0, int d = 1) {

numerator = n;
denominator = d;

}

void operator = (Rational c) {
numerator = c.numerator;

denominator = c.denominator;
}

//norm transforms its parameter to normal, simplified form

Rational norm(Rational Inp){
Rational Outp;

int Divisor = 2;
int Sign;

if(Inp.denominator==0) throw "Zero denominator";
Outp=Inp;
if (Outp.denominator*Outp.numerator < 0) Sign=-1;

else Sign=1;
if (Outp.denominator<0) Outp.denominator=-Outp.denominator;

if (Outp.numerator<0)
Outp.numerator=-Outp.numerator;

while ((Divisor <= Outp.numerator) &&

(Divisor <= Outp.denominator)) {
while ((Outp.numerator%Divisor==0) &&

(Outp.denominator%Divisor==0)) {
Outp.denominator=Outp.denominator/Divisor;

Outp.numerator=Outp.numerator/Divisor;
}

Divisor++;

}
Outp.numerator=Outp.numerator*Sign;

if (Outp.numerator==0) Outp.denominator=1;
return Outp;

}

void Common_Denominator(Rational& r1, Rational& r2) {

Rational r11, r21;
r11= norm(r1);

r21=norm(r2);
r11.denominator=r1.denominator*r2.denominator;
r21.denominator=r11.denominator;

r11.numerator=r1.numerator*r2.denominator;
r21.numerator=r2.numerator*r1.denominator;

r1=r11;
r2=r21;

}

// addition of rational numbers

Rational operator + ( Rational r2 ){
Rational r1;

r1.numerator = numerator;
r1.denominator = denominator;
r1 = norm(r1);

r2 = norm(r2);
Common_Denominator(r1,r2);

r1.numerator = r1.numerator + r2.numerator;
return norm(r1);

}



9.13 Solutions

•
457

// subtraction
Rational operator-(Rational r2 ){

Rational r1;

r1.numerator = numerator;
r1.denominator = denominator;

r1 = norm(r1);
r2 = norm(r2);
Common_Denominator(r1,r2);

r1.numerator = r1.numerator - r2.numerator;
return norm(r1);

}

// multiplication
Rational operator*(Rational r2 ){

Rational r1;

r1.numerator = numerator*r2.numerator;
r1.denominator = denominator*r2.denominator;

return norm(r1);
}

//division
Rational operator/(Rational r2 ){

Rational r1;
r1.numerator = numerator*r2.denominator;

r1.denominator = denominator*r2.numerator;
return norm(r1);

} // etc.

// the << operator can only be given using the friend construct:

friend ostream & operator<<(ostream& out, Rational& number);

private:
int numerator;
int denominator;

}; // end class Rational

ostream & operator<<(ostream& out, Rational& number){
out << number.numerator << ’/’ << number.denominator;
return out;

}

int main() {
Rational a(2,6),b(8,12);

cout <<"the a:"<< a<<"\n";
cout <<"the b:"<< b<<"\n";
Rational c;

// c is initialized to zero
cout<<"the c:"<<c<<"\n";

c = a + b;
cout<<"the sum of a and b:"<<c<<"\n" ;
c = a - b;

cout<<"a - b = "<<c<<"\n" ;
c = a*b;

cout<<"a * b = "<<c<<"\n" ;
c = a/b;

cout<<"a / b = "<<c<<"\n" ;

return 0;

}

Solution 9.2. In the programming language Ada the package construct can serve
both for encapsulation of user-defined data types with hidden details of repre-
sentation of the type value set and the implementation of the operations of the
type and for creating standalone objects. In this latter case, if we use the generic
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possibility of the language and write templates for these objects, the result is
very close to the concept of ”class” in the object oriented languages. We give a
possible solution for both, and the main program demonstrates the differences
in instantiation and use.

generic
Max_Size: Integer;

type Elem_Type is private;
package Gstackt is

Empty, Full : exception;

type Stack_Type is private;
procedure Push( S : in out Stack_Type; Elem : in Elem_Type );

procedure Pop ( S : in out Stack_Type; Elem : out Elem_Type );
function Is_Empty( S : in Stack_Type ) return Boolean;
function Is_Full ( S : in Stack_Type ) return Boolean;

private

subtype Index is Integer range 1..Max_Size+1;
type Elements_Array is array ( Index ) of Elem_Type;

type Stack_Type is
record

Elements : Elements_Array ;

First_Free : Index := 1;
end record;

end Gstackt;

package body Gstackt is
procedure Push( S : in out Stack_Type; Elem : in Elem_Type ) is

begin
if S.First_Free < Index’LAST then

S.Elements(S.First_Free):=Elem;
S.First_Free := Index’Succ( S.First_Free);

else

raise Full;
end if;

end Push;
procedure Pop ( S : in out Stack_Type; Elem : out Elem_Type ) is
begin

if S.First_Free > Index’First then
S.First_Free := Index’Pred( S.First_Free);

Elem := S.Elements(S.First_Free);
else

raise Empty;
end if;

end Pop;

function Is_Empty ( S : in Stack_Type ) return Boolean is
begin

return(S.First_Free=Index’FIRST);
end Is_Empty;
function Is_Full ( S : in Stack_Type ) return Boolean is

begin
return(S.First_Free=Index’Last);

end Is_Full;
end Gstackt;

--this package will be a template for objects

generic
Max_Size: Integer;

type Elem_Type is private;
package Gstobj is

Empty, Full : exception;

procedure Push( Elem : in Elem_Type );
function Pop return Elem_Type ;

function Is_Empty return Boolean;
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function Is_Full return Boolean;
end Gstobj;

package body Gstobj is

--the representation is also hidden in the package body
subtype Index is Integer range 1..Max_Size+1;
type Elements_Array is array ( Index ) of Elem_Type;

Elements : Elements_Array;
First_Free : Index := 1;

procedure Push( Elem : in Elem_Type ) is
begin

if First_Free < Index’Last then
Elements(First_Free):=Elem;
First_Free := Index’Succ( First_Free);

else
raise Full;

end if;
end Push;
function Pop return Elem_Type is

begin
if First_Free > Index’First then

First_Free := Index’Pred( First_Free);
return Elements(First_Free);

else
raise Empty;

end if;

end Pop;
function Is_Empty return Boolean is

begin
return(First_Free=Index’First);

end Is_Empty;

function Is_Full return Boolean is
begin

return(First_Free=Index’Last);
end Is_Full;

end Gstobj;

with Gstobj,Gstackt, Text_IO; use Text_IO;
procedure Gstdemo is

--instantation:
package st1 is new Gstobj(10,Integer); --this is a new stack object
package st2 is new Gstobj(20, Float); --this is also a new stack object

package Intst is new Gstackt(5,Integer); use Intst;

My_stack:stack_type; --this is an object of the type from the package

st1el,stel : Integer;
st2el : Float;

begin
--small examples for possibilities of the use:

if not st1.Is_Full then
st1.Push(5);

end if;

st1el:=st1.Pop;
st2.Push(5.0);

st2el:=st2.Pop;
Push(My_Stack,2);

Pop(My_Stack,stel);
exception
when st1.Empty=>Put_Line("st1 empty");

when st1.Full=>Put_Line("st1 full");
when Full=>Put_Line("My_Stack is full");

when Empty=>Put_Line("My_Stack empty");
when st2.Empty=>Put_Line("st2 empty");

when st2.Full=>Put_Line("st2 full");
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end Gstdemo;

A possible C++ solution will also be a template, it is a good practice to write
its own exceptions too:

#ifndef STACK_EXCEPTIONS_HPP_INCLUDED
#define STACK_EXCEPTIONS_HPP_INCLUDED

#include <exception>
class Stack_Exception : public std::exception {

public:
const char* what() const throw() { return "Stack error"; }

};

class Empty_Stack : public Stack_Exception {
public:

const char* what() const throw() { return "Stack is empty!"; }
};
class Full_Stack : public Stack_Exception {

public:
const char* what() const throw() { return "Stack is full!"; }

};
#endif // STACK_EXCEPTIONS_HPP_INCLUDED

A solution for the Stack template can be:
#ifndef Stack_H
#define Stack_H

#include <iostream>
#include <string>

#include "solution_stack_exceptions.hpp" //the previous exceptions
template<typename T>

class Stack {
private:

unsigned int length;
unsigned int head;
T* arr;

public:
Stack(unsigned int length);

~Stack();
void push(const T& new_elem);
T pop();

T& top() const;
bool isEmpty() const;

void print() const;
//prints the stack to the screen

};
// The implementations of the operations:
// Constructor, the size of the Stack will be the value of the parameter

template<typename T>
Stack<T>::Stack(unsigned int length) {

this->length = length;
this->head = 0;
this->arr = new T[length];

}
//destructor, deletes the dynamically used memory

template<typename T>
Stack<T>::~Stack() {

delete [] this->arr;
}
// new_elem will be put to the top of the stack

template<typename T>
void Stack<T>::push(const T& new_elem) {

if(head != length) {
arr[head++] = new_elem;

} else {
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// a greater array is needed!!
T* arr2 = new T[this->length*2];
for(unsigned i=0; i<this->length; i++)

arr2[i] = arr[i];
this->length *= 2;

delete [] arr;
arr = arr2;
arr[head++] = new_elem;

}
}

// returns the element on the top of the stack if it exists
template<typename T>

T& Stack<T>::top() const {
if(isEmpty()) {

throw Empty_Stack();

} else {
return this->arr[head-1];

}
}

//deletes the top element from the stack if it exists
template<typename T>
T Stack<T>::pop() {

if(isEmpty()) {
throw Empty_Stack();

} else {
head--;
return arr[head];

}
}

template<typename T>
bool Stack<T>::isEmpty() const {

return head == 0;
}
template<typename T>

void Stack<T>::print() const {
std::cout << "content: ";

for(unsigned i = 0; i < head; i++) {
std::cout << arr[i] << " ";

}

std::cout << "\n";
}

#endif // Stack_H

An example for the instantiation and the use of the stack type:
#include <cstdlib>

#include <iostream>
#include <string>

#include "solution_stack.hpp"
using namespace std;
int main() {

try {
Stack<int> v(1);

v.push(3); v.push(2); v.push(1);
v.print(); // the values will be printed to the screen

cout << "top(): " << v.top() << endl;
cout << "pop(): " << v.pop() << endl;
v.print();

cout << "Empty? " << (v.isEmpty() ? "yes" : "no") << "\n";
//the answer will be ’no’

//etc.
} catch(const exception& e) {

cout << "Error! " << e.what();

}
return 0;
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}





Objet-oriented

programming

10

In object-oriented programming we encapsulate the
data and the functions that work on the data. The
different parts of the class have different scopes.
One of the most important attributes of
object-oriented programming is that the classes can
be settled to a hierarchy due to inheritance.
Inheritance makes that the subclasses of a class
contain the member variables and methods of the
superclass. The implementation of inheritance in
different programming languages raises a lots of
interesting questions.
In this chapter we will discuss the theory of
object-oriented programming and it’s
implementation in different languages.



W

e try to model reality with our programs, and if we look at the history
of Computer Science we can find plenty of solutions to make this
process easier.

The object-oriented paradigm is a method to model reality (see [Mey00],
[Ang97] and [Bud91]) through view the existing elements of the world as objects.
Every object is represented by its inner state (with their content, with their
variables) and methods. Thus we can say, that object-oriented programming is an
approach of programming, and there are system design methodologies based on
this approach. These methodologies are about the full development process, they
have solutions about the feasibility studies, analysis, design, implementation, and
they also give alternatives for testing and maintenance.

Special object models have special attributes to make it possible to behave as
the real world object that they mimic. During the analysis process we consider
the system as a collection of collaborating objects. During design and imple-
mentation processes we create these objects. According to the object-oriented
approach we can understand the mechanisms of the real world by getting the
model closer to reality. By deeper understanding we can build a clearer and more
flexible program.

We call a program object-oriented if it is a sum of collaborating objects,
where every object has its own responsibility.

10.1 The lass and the objet

People notice the things of reality, simplify them, distinguish them, and also
organize them. The final goal is to make it possible to discover and understand
the complex movements of the world. To achieve this we do modeling. For mod-
eling we use fundamental processes (algorithms) such as abstraction, distinction,
classification, generalization, or even reduction, partition and connection.
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Abstraction is a way to narrow the world to deal only with the parts that are
needed for solving the problem. This means that we forget about the currently
irrelevant parts of the world, and we highlight the essentials.

What we consider as an object? In object-oriented programming the objects
are independent units of the reality that we want to model. Each object can be
defined by its inner state and its responses to the possible messages sent to the
object. This ”respond” can mean that the inner state of the object changes, or
the objects execute some ”operations”, tell some value to the outer world, send
a message to other objects, instantiate, remove, copy, move other objects, etc.

By the selection of the objects attributes that are important to us, we can
classify them, we can put them under some categories, by putting the objects
with the similar attributes to the same categories or classes, and the objects with
different attributes will be put to other classes. The method of classification is
done by generalization and specialization. We look for permanent similarities or
differences to put them into tighter or wider categories or classes.

Classification is part of our natural way of thinking. We put objects with
the same type of attributes (variables), and with the same behavior descrip-
tion(methods) to the same class. The classes of objects hold the attributes of
their objects. Every object is an instance of a class, and it has all the specialties
of its class, it takes the specifications of the class for its data and its methods as
well.

We can say that an object holds information, and can execute tasks by
requests. This means that every object is a sum of data and methods. Methods
can fulfill the object specific functions or can describe the behavior of the object.

Every object always has an inner state, which is described by the actual
values of its data. After calling a method the state of the object can be changed.
Objects know and remember their inner state, and they start to execute their
methods from an initial state, and they can enter to an other state. The execution
of the following methods starts from the final state of the previous method.

It is important to identify the objects. In real life everything can be identified.
It is possible to have two objects with the exactly same inner state, but it does
not mean that they are identical.

All these notions mean the static attributes of objects. The dynamic model
describes the temporal behavior of the system. (By this, we mean the influences
of the objects, the events of the system, their chronological order, the schedule of
actions and methods, the states and the changes of the states.) In the dynamic
model, it is obvious that we investigate the connections of objects and the
environmental impacts on them. Objects are not alone, they are connected to
each other.

The connected objects communicate with each other. During communication
they send messages. These messages are usually represented by functions that
can be called from the outside of the object. We indicate the methods by the
identifier of the called object, and we can also pass arguments to the methods.
Obj.message(parameters) If we expect some kind of response from the object
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that we can receive through the passed arguments or by a return value of the
method.

The most suitable feature to describe classes is the abstract data types . (More
in Chapter 9). We have to describe the possible set of values of the objects, and
we have to determine the set of available methods with their abstract definition.
This way we give a type specification, which ignores the representation, and
only determines the services of the object towards the world. We hide the
representation and the corresponding implementation of the methods.

10.1.1 Classes and objets in different languages

Let’s see how we can create and use some classes and objects in some program-
ming languages.

SIMULA 67

The innovation and central concept of SIMULA 67 is the object which has its
own variables and activities by its class declaration. Class declaration is a pattern
and objects which fit this pattern belong to the same class.

Class Rectangle(RectangleName, Width, Height);! Class with 3 parameters;
Text RectangleName; Real Width, Height; ! Specification of parameters;

Begin
Real Area, Circumference; ! Attributes;

Procedure Refresh; ! Method;
Begin

Area := Width * Height;
Circumference := 2*(Width + Height);

End of Refresh;

Procedure WriteOut; ! Method;
Begin

OutText(" I am a Rectangle "); OutText(RectangleName); OutImage;
OutText(" Width: "); OutFix(Width,2,6 );
OutText(" Height: "); OutFix(Height,2,6 );
OutText(" Area: "); OutFix(Area,2,7 );
OutText(" Circumference: "); OutFix(Circumference,2,6 ); OutImage

end of WriteOut;

Refresh; ! Life cycle of Rectangle
OutText(“Rectangle was created”); OutImage;
WriteOut;

End of Rectangle;
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The instance of the Rectangle class can be created with the new Rectangle(
"Small", 2, 3 ) statement, it has the methods: Refresh and WriteOut.

Smalltalk

In Smalltalk everything is an object even classes. At first sight this means
that classes have variables and methods. This consistency of Smalltalk makes it
possible for classes to instantiate their objects through the own methods of the
class.

In terminology of Smalltalk methods are procedures which execute due to
the received messages. We can create a new class by the following steps:

Object subclass: #Account

instanceVariableNames: ’balance’

classVariableNames: ’’

poolDictionaries: ’’

category: nil !

The Account will have one variable called balance. We can define methods
like this:

!Account class methodsFor: ’instance creation’!

new

|r|

r := super new.

r init.

^r

!!

!Account methodsFor: ’instance initialization’!

init

balance := 0

!!

The new method is a method of the class, a constructor, which instantiate
a new object. The init method belongs to the objects of Account and sets an
initial value of the variables of Account objects.

An instance of the class can be created with the Account new statement.
We should mention that due to the idea that everything is an object, the

control statements are also objects. Let’s see how we can write a fixed loop in
Smalltalk. It was implemented as a method of the Number class with the following
syntax:

〈lower boundary 〉 to: 〈upper boundary 〉 do:

[:〈loop variable 〉 | 〈statements of loop〉]
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For example:

a := Array new: 10.

1 to: 10 do: [ :i | a at: i put: 0 ]

According to Smalltalk we send the to: do: messages to 1 where the 10 after
to: is the upper boundary of the loop and the block after do: is executed.

C++

We can declare a new class in C++ like this:

class Rectangle {

int x, y;

public:
void setup(int, int);

int area() { return (x * y); }

};

The Rectangle class has two hidden variables x and y. The class has two public
methods the setup and the one that calculates the area. We have declared the
area calculation method in the definition of the class, and we can define the
setup method outside of the class definition in the following way:

void Rectangle::setup(int x1, int y1) {

x = x1; y = y1;

}

We can instantiate a Rectangle as a static or a dynamic variable:

Rectangle house; // statically allocated instance.
house.setup(5,3);

int houseArea = house.area(); // houseArea = 15

Rectangle* yard = new Rectangle; // Dynamically allocated variable
yard->setup(20,17);

int yardArea = yard->area(); // yardArea = 340

Objet Pasal

In Object Pascal [Can00] we can make a new class with the class keyword:1

1 To be compatible with earlier Turbo Pascal versions they have left the object version as well.
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type
TDate = class

private
Year, Month, Day: Integer ;

public
procedure Setup(y,m,d: Integer);
function LeapYear : Boolean;
. . .

end;

Objects are instantiated dynamically,2 after the variable declaration we have
to call the constructor of the class (See at: 10.3) to allocate and initialize the
required memory partition (Create). After using the object the programmer has
to free the memory (Free).

var
ADay: TDate;

begin
ADay := TDate.Create(. . .); // Instantiation.
ADay.Setup(2003, 4, 6 ); // Usage.
ADay.Free; // Free the memory.

end;

Class types have data fields, methods, and properties (property). A property
is a name which can reach the data fields of the object by given reading and
writing methods.

property Month: Integer
read Month write Month Write;

If the property is in a statement, then it can get a value by the data or
method after the read directive. If it is in the left hand side of the statement
it will pass its value to the variable or method which was given after the write
directive. In the example above the objects of TDate class has a Month property
which gives back the Month field when it is read, and calls the Month Write
method on write.

Eiffel

It is hard to call Eiffel [Mey91] object-oriented, it would be better to call Class-
oriented. You cannot instantiate an object independently from a class, and classes
cannot behave as objects. In Eiffel, every class is a compilation unit.

As a type a class defines a set of objects and their behavior, that can exist
during the execution of the system. It is even true backwards: every object that
can exist, is an instance of one of the classes of this system.

2 In spite of Turbo Pascal.
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In Eiffel we only have one modularization feature, which is the class. In this
case, building a system means that we analyze what type of objects the system
will need for its work, and we write a class for each one of them. Sometimes we
only need a class for one purpose: to collect some methods. In this case, that
class does not need to have any attributes. A class in Eiffel looks like this:

class COMPLEX
feature

realV, imagV : REAL
feature

setup(r, i : REAL) is
do

realV := r ;
imagV := i

end; . . . . .
end −− class COMPLEX

The COMPLEX class has two attributes (realV and imagV ) and one method
(setup). To create a new object we have to declare a variable. (For example:
z : COMPLEX .) After declaration we have to allocate memory for the object
with the !! operator or with thecreate command. The environment frees the
memory automatically.

Java

Java [Nyek08] is a highly object-oriented language, which means every Java
program is a set of related objects and classes. The execution of the program is
nothing else than calling the methods of objects and classes.

Writing a program means to define one or more new classes. Writing the
control-flow of the program is nothing else, than writing, overriding, and calling
methods. (Or defining the suitable event handler.)

The smallest independent unit of the language is the class. Class is the model
of logically coupled objects which has the same type. This model is wholly defined
unit, and it appears to be unified. It is described by data field definitions and
method declarations. During the execution the program instantiates the classes
and by this it creates objects. In Java objects are handled dynamically, every
variable is a reference of an object. The next example shows the definition of a
new class [Nyek08] with two data fields and one method.
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public class Employee {

public String name;

public int salary;

public void raiseSalary(int incrementValue) {

salary += incrementValue;

}

}

The following code defines an Employee type local variable, instantiates a
new object, sets the name and salary of the object, and raises the employee’s
salary as well.

Employee e;

e = new Employee();

e.name = "John Doe";

e.salary = 50000;

a.raiseSalary(6300);

C#

In C#, we can see the impact of C++, Java and Visual Basic combined with
new features. The syntax of C# classes is close to the syntax of C++ classes, as
we can see in the following example made after the [Csref03] page:

using System;

class Person {

private string name ="N/A";

private int age = 0;

public string Name {

get { return name; }

set { name = value; }

}

public int Age {

get { return age; }

set { age = value; }

}

public override string ToString() {

return "Name = " + Name + ", Age = " + Age;

}

. . . .

}

C# classes can hold member variables, methods and properties (property).
These attributes do not have special keywords like in Visual Basic or in Object
Pascal. In the first example, we can use the Age and Name properties of the
Person class by get and set accessors. A set accessor of a property has a
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special value variable which holds the value given by the user in the assignment
statement. In the ToString method the get accessor is called automatically.

Person somebody = new Person();

. . .

somebody.Name = "Kate";

somebody.Age = 99;

Console.WriteLine("Personal data:", somebody);

Through the accessors we can write cleaner code, with more readable code
syntax even with the proper handling of the hidden variables. (It is much more
straightforward than the traditional get/set methods.) For example if we want
to increase with one the age of the somebody object we can simply write:

somebody.Age += 1;

If we had written separate methods for setting and getting the age variable
of the object, than our code would look like this:

somebody.setAge(somebody.getAge() + 1);

Ada

Ada 95 is an extension of an existing language. Since one of the most important
criteria was to remain compatible with Ada 83, we can declare classes and
traditional complex data types too. For this the programming structure of Ada 95
is not strictly object-oriented (See: [Ada95]). In Ada 95, the designers have not
introduced a whole new concept to define classes but they have improved the
concept of the existing record. Thus the classes (which are special records) hold
only the attributes, the methods of the class can be defined outside in a special
way. As a result, we cannot talk about traditional classes in case of Ada.

If we want to encapsulate the attributes and methods of a class we can
put the record (which holds the attributes) and the methods (which handle the
attributes) to the same package.
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package Person Type is
type Person is tagged private;
procedure Write Name (P : in out Person; Name : String );
procedure Write Address (P : in out Person; Address : String );
procedure Write Age (P : in out Person; Age : Integer );
function Name (P : Person ) return String;
function Address (P : Person ) return String;
function Age (P : Person ) return Integer ;
procedure Show (P : in Person );

private
type Person is tagged record

Name : String (1 . . 30 );
Address : String (1 . . 30 );
Age : Integer ;

end record;
end Person Type;

The representation of Person type is hidden. We have specified methods to
set and get Name, Address and Age, and also the Show method. The body of
the methods should be given in the body of the package.

Python

Python’s class and object concept is in the half way between C++ and Modula-
3. Every class is implemented as a Python dictionary. It has a mapping to its
variables and methods. Objects can be used through references. Multiple names
can point to the same object, which is considered as aliasing. Since Python has
reference semantics, if an object is changed through a name, then every name
would point to the same changed object.

Every object has a dict object, which holds the names (methods and
variables as well) that were defined in the class. It means that when we say
foo.bar = 42 then a bar attribute will be looked up in the dictionary of the
object, and it will be set to the specified value. We can add new attributes to
an object in run time, and we can also remove an attribute (with the delattr
method) from an already instantiated object. This solution also means that we
cannot have an object which has a variable and a method with the same name.

Methods of an object are also objects. They can be referenced, stored in a
variable, or assigned to an other reference. However, variables just can come to
life when we access them, but methods must exists when we first invoke them.
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class Foo(object):

num = 42;

def f(self):

return ’num is: ’+num;

f = Foo();

print f.num; # Prints 42

f.num=0

print f.f(); # Prints num is 0

f.other num=24; # Valid call

print f.other num; # Prints 24

print f.g(); # Invalid call of method g,

# because it does not exist

Sala

Scala is a functional programming language, or a multi-paradigm language which
has first-class functions, and also class definitions. Scala was designed to run on
JVM thus it is highly compatible with Java. Although Scala is often mentioned
as a Function extension of Java it has a totally different class and object concept.

First, we can make new objects without any class definition. We can just
simply introduce its name and values. When we make a new instance (which
should be done with the new operator, and by the name of the object) from that
object, it is initialized, and fully functional.

object Complex {

var real : Double = 3.0

var imag : Double = 0.0

def length : Double => Math.sqrt(real * real + imag * imag)

}

object Test {

def main() {

Complex.imag = 4.0

println(Complex.length())

}

}

In the example, we have introduced Complex as a new object; it has a type,
which we do not know, and it has an instance: Complex itself. If we run this
code, this will print 5.0 as an output. But we can also introduce Complex as a
class.
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class Complex {

var real : Double = 0.0

var imag : Double = 0.0

def length : Double => Math.sqrt(real * real + imag * imag)

}

object Test {

def main() {

var c1 = new Complex()

var c2 = new Complex()

c2.imag = 4.0

println(c1.length()) //3.0

println(c2.length()) //5.0

}

}

Now we have a class which describes a complex number and we also have
two separate instances (c1 and c2). The main difference is that in the first case
we could not make any new instance of the class, and in the second case we had
to call new to instantiate a Complex object.

10.2 Notations and diagrams

It is important to have a common notation. Previously, we have met the concept
of class, object, data members, methods and state. We say that we view class
as the sum of data and methods, and objects are instances of classes with
momentary state. Now we try to show these concepts with diagrams.

10.2.1 Class diagram
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Figure 10.1: Class diagram

The class diagram holds the name of the class, the data used to instantiate
the objects, and the methods.

Data are the representation of the state. Methods stand for the messages.
Every method can be followed by an argument list.

10.2.2 Objet diagram

Figure 10.2: Object diagram

An object diagram holds the name of the class that we have instantiated this
momentary state.

10.2.3 The representation of instantiation

Figure 10.3: The instantiation

Figure 10.3. shows the instantiation of an object. If we instantiate more than
one object we have to show the number of instances (Like on Figure 10.4.)

Figure 10.4: Instantiation of multiple objects

10.3 Construting and destruting objets

The typical life cycle of objects: they are ”born”, they ”live” and they ”die”.
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When we create abstract data types it is important for the system to set the
type invariant of the concrete object, which means it should set an initial state
that fulfills the type invariant. This is the function of the constructor of the
object. This is when the initialization of the data members happens, and this is
when we execute the necessary routines of the initialization.3 The constructors
of public classes are usually public as well, to let the program that uses the
class to access the constructor. Sometimes we would like to ensure that only one
instance of the class can exist at the same time, then we have to create a hidden
constructor [Gam95].

Some of the languages have the paradigm of destructor too, which is called
when the programmer or the system terminates an object. It’s duty is to release
the resources of the object: such as free the allocated memory cells, release files,
close sockets, etc.

The different programming languages have different solutions for constructors
and destructors.

C++

In C++, the constructor and the class have the same name. We can define
multiple constructors for the same class due to the method overload capabilities.

class Complex {

double re, im;

public:
Complex() { re = 0; im = 0; }

Complex(double a, double b) { re = a; re = b; }

};

Complex z1;

Complex z2(1, 1);

The fields (re and im) of z1 object are 0, while the fields (re and im) of z2
are 1.

Freeing of object is done by the destructor. The name of the destructor is
the name of the class with a ∼ (tilde) prefix.

In C++ the destructor is called automatically when we leave the scope of a
static object or when we free the memory of a dynamic object. We cannot give
any parameter to a destructor, to make automation possible.4

3 It is the typical duty of constructor to bind the virtual methods of object to the actual
methods in the Virtual Method Table (VMT) to tell what to call in the case of dynamic
binding. See Section 10.7.2.

4 The rules of constructing and destructing objects are far beyond the capabilities of this book.
If you want to know more about this read Bjarne Stroustrup’s book about C++ [Str00].
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Objet Pasal

In Object Pascal, we can create multiple constructors for a class with any kind
of names and parameters. When we declare one, we have to use the constructor
keyword. The name of constructor of TObject class (which is the super class of
every class) is Create. It is usually a convention to use this name.

In Object Pascal, we have to call the constructor prior to the use of an object.
Let’s amend our previously mentioned Date class with a constructor. (More
on: 10.1.1)

type
TDate = class

private
Year, Month, Day: Integer ;

public
constructor Create(y, m, d : Integer);
. . .

end;
constructor TDate.Create(y, m, d : Integer);
. . .

If an object allocates resources then we have to free those resources in case we
don’t need them anymore. The Destroy virtual method is the default destructor,
it is strongly advised to redefine this method to fulfill our requirements.

With the Free method we can avoid the method call on empty references,
because Free calls Destroy only on existing objects.

procedure TObject.Free;
begin

if Self <> nil then
Destroy;

end;

We have to set a variable that pointed to the destroyed object to nil manually.

Java

In Java, the name of the constructor is the name of the class (just like in C++).
A constructor can have multiple parameters, and cannot have a return value. It
is automatically called on the creation of the object. The variables of the super
class can be initialized by calling the constructor of the direct ancestor class, or
by calling any constructor of the derived class. If we don’t write any of them,
then it will call the parameterless constructor of the ancestor. If a constructor
calls the ancestor or any of its own constructors, this call must be the very first
line of the constructor. We cannot access any of the instance variables before
calling the constructor.
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If a class does not have a constructor, then the compiler will generate the
following:

class AClass extends BClass {

AClass() {

super();

}

}

A use of the above:

AClass var = new AClass();

There is no such thing as destructor in Java. The allocated memory will
be freed automatically. The Garbage Collector which checks and collects the
unnecessary objects of the program and frees them on a timely basis runs
concurrently with the Java Interpreter. We cannot define a destructor but we
can define a finalize() method in every class. Unfortunately we cannot know or
control when the finalize() method should run, we only know that it will run
prior to the reusing the memory cells of the object.

The class level version of finalize() method is classFinalize() which is a class
method. It is called before the class is deleted by the Garbage Collector.

Eiffel

In Eiffel, we can declare a constructor with the creation clause.

class COMPLEX
creation

assignment
feature

real, imaginary : REAL
feature

assignment(r, i : REAL) is
do

real := r ; imaginary := i
end;

end −− class COMPLEX

Due to the following statement a new object will be constructed and assigned
to z with an initial value:

z : COMPLEX ;
!!z.assignment(1,0 );

In Eiffel, there is no explicit destructor (just like in Java). When an object is not
referenced by the program, then an automatic garbage collector will destroy it.
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Ada

In Ada, there are two predefined tagged types – the Controlled and the Limited Controlled
– which have a method called Initialize. In the subclasses of these types we can
override the Initialize method to tell what to execute when we create the object.
In these classes, the Finalize method will be called before freeing the memory
cells of the object.

Python

Python generates an empty constructor for every class that allows us to create
an empty instance of that class. This constructor can be changed if we define the

init (self ) method. This method can also be changed to require parameters.

class Complex(object):

def setup(self, real, imag):

self.r = real

self.i = imag

x = Complex()

This class can be created and it will hold no value on creation time.

class Complex(object):

def init (self):

self.r = 1

self.i = 2

x = Complex()

In this example X holds 1 and 2 in its variables.

class Complex(object):

def init (self, real, imag):

self.r = real

self.i = imag

x = Complex(3.0, 2.0)

If we define an initialization method that requires parameters we can set up
an object in construction time.

Sala

We should not care about object destruction in Scala, it is done automatically,
but we have to care about instance creation. This is done by the new operator,
and the name of the class. (Just like in Java.) In Scala we can have multiple
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constructors, but these constructors are just syntactic sugars, they have to call
the default constructor first.

Constructor declaration is special in Scala. The default constructor is defined
by the name of the class, and other constructors are defined by this keyword.

class Complex(val real : Double, val imag : Double) {

var re : Double = real

var im : Double = imag

def this() = this(0.0, 0.0)

def length : Double => Math.sqrt(re * re + imag * imag)

}

object Test {

def main() {

var c1 = new Complex(3.0, 4.0)

var c2 = new Complex()

println(c1.length())

println(c2.length())

c2.re = 3.0

c2.im = 4.0

println(c2.length())

}

}

In the above example, Complex is defined with a constructor that requires
two Double arguments. This is the default constructor of the class. We do not
have to write a constructor body, because the effects of the constructor impact
the whole class. Parameters of a constructor are available in all methods (we
could call re and imag in the length method although re is a variable of the
object, and imag is a parameter of the constructor) if they are immutable values.
This causes that the above example code would print: 5.0 (as the length of c1),
0.0 (as the length of c2), and 3.0 because the setting of c2.im does not take
into account in the calculation of length.

The second constructor of Complex is a parameter-less constructor that calls
the default constructor of the class with (0.0, 0.0) parameters. We could have
executed other commands in this constructor, and then we should have written
the body of the constructor between curly braces. (We can introduce blocks with
curly braces.)
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class Complex(val real : Double, val imag : Double) {

var re : Double = real

var im : Double = imag

def this() = {

this(0.0, 0.0)

this.re = 1.0

this.im = 2.0 * this.re

}

def length : Double => Math.sqrt(re * re + imag * imag)

}

10.3.1 Instantiation and the onept of Self (this)

If we look at the definition of class and object we can see that the representation
of an object in the memory is nothing else than the representation of a data
structure. The class is a type definition pattern. We represent data and methods.
During instantiation the object is created – with all of its data members – and
it is waiting for instructions to execute statements. We connect the methods to
the class and do not copy them to every object. This means in the description of
the object that there are no methods, only in the description of the class. Every
object knows what class it belongs to and it chooses the right methods by this
information.

It is wise to ask: If we have multiple objects of the same class how do we
know to which object should we apply the method? The method will use the
data of which object? The programming languages have a solution for it. They
have a specific reference to the actual calling object. This is the Self (in some
languages this or Current) ”argument”. The Self variable clearly references the
object that the function must use. That also means that if the method wants to
send a message to itself it has to use the Self.Message(Arg) form. (We do not
have to write it all out, in plenty of languages it is the default behavior.)

Python’s philosophy is a little bit turned. It requires an explicit variable that
will be the reference to Self. This is traditionally named as self but we can
name it any way it will point to the actual object. This parameter is invisible
when we call a method.

class Complex:

def setup(self, real, imag):

self.r = real

self.i = imag

x = Complex()

x.setup(3.0, -4.5)

As we can see in this example the method was defined with three parameters
but it was called with only two values. The third one will be explicitly passed
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and it will be the object instance which was the base object of this method
invocation.

10.4 Enapsulation

In a class the data used to describe the functionality and the methods that work
on those data are strictly held together to have a better model of reality.

The encapsulation means that we consider the data structure and the meth-
ods over the data structure as one unit, and we hide them from the outer world.
The state and the behavior of the object (the how) is a private matter of the
object. The inner world of the object is untouchable. The object protects its
data and does not allow anybody to do work with them only through the own
methods of the object. The implementation of the methods is also hidden from
the other objects of the System.

This approach – as we have earlier mentioned – is a return to the abstract
data structures. The approach of data abstraction means that we do not describe
the task but we use the available simple features and concepts to build more
complex features and concepts until the model of the whole domain of the
original problem becomes available for us. Then we solve the problem as we
have observed it in reality. This approach fits the object-oriented concept. As
we have seen in Chapter 9 the specification gives the (outer)description of the
task, and the important attributes (the value-set of the type) to model the
problem and the essential behavior (methods). The second layer is the computer
representation and the inner behavior (implementation). This kind of description
is not restricted to cover some objects of the reality, but should be done with
everything with the same attributes. The sum of these similar objects with
heir behavior description is called type or class. We can set pre– and post–
conditions to the behavior schemes (methods) and we can say that object-
oriented programming with the feature of encapsulation fulfills every aspects
of abstract data types. (See Chapter 12.) A lot of object-oriented programming
languages implement encapsulation with the extension of the concept of structure
or record (struct, record) thus introduce the class type (class). There can be data
members in a class type just like in the previous records and there also can be
methods. This path was followed by the designers of C++ or Object Pascal.

In the programming languages, which were designed to be ”fully” object-
oriented – just like Smalltalk, Java and Eiffel –, the concept of union type and
variant record was omitted (See Chapter 6.) because class type and inheritance
were sufficient.

In Ada the support of encapsulation was only possible to implement indi-
rectly. They have expanded the record concept of Ada 83, but these records only
held the attributes of the class (without the methods). Thus encapsulation was
only implementable through tagged record and with collecting the methods to
a module (package).
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10.5 Data hiding, interfaes

The concept of encapsulation also means that the object hides its inner repre-
sentation to avoid of ”being corrupted” by other objects (and inner mistakes
cannot spread through the System). To make it possible to communicate with
the world and keep the object as a closed unit we have to set some sort of filter
to make only those parts visible which cannot cause any harm but they make
possible to use the object. This filter is called interface.

This means encapsulation can be done with the following rules:

• An object only responses to a previously defined set of messages
• An object can only be touched through its interface.
• An object should have as small interface as possible.

The requirement of this methodology is to make data only accessible through
methods. Some of the languages make it possible to reach data directly – we
should not use this feature.

The definition of the interface is the responsibility of the programmer. This
can be done by explicitly setting some of the methods to be accessible (in special
cases even data members can be set accessible). These methods and data are
public. The hidden members of the class are private. The private members of the
object can only be accessed by the object, these are invisible, inaccessible for
other parts of the System. In an ideal case, when some data are public this only
means it can be read but cannot be written. This is the priority of the methods
of the object. (This was implemented in Eiffel.)

In object-oriented programming languages, it is possible to separate public
and private methods (mostly with the public and private keywords.) The rules
of visibility is checked in compilation time and the breaking of such rule leads
to a compile-time error.

In some programming languages beside private and public visibility they have
defined different visibility levels. We will talk more about them in the exposition
of protected data hiding mode.

Data hiding solutions of Smalltalk

In Smalltalk, the inner variables of the object can only be seen directly by the
object’s methods. By this, Smalltalk hides the representation from the client. A
client can only manipulate an object by sending a message which means that the
changing of representation does not have to lead to the changing of the client.
Objects with the same class cannot reach directly the members of each other –
this is called object-level visibility.

Every method is always visible, so we can only propose not to call those
methods directly which were marked to be private.
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Every data is completely hidden and we cannot change them. If we want to
reach a data we have to implement a method to read and write it. (The name of
these functions can be the same as the name of the data member.) For example:

Object subclass NewClass

instanceVariableNames: ’anInt’

classVariableNames:’’

poolDictionaries:’’

. . .

anInt

^anInt.

. . .

anInt : a

anInt:=a.

Aess ontrol in C++

In the class definition of C++ the members after the keyword public: are
publicly accessible, and the members after private: are hidden towards the
clients of the class. C++ has a class-level visibility rule, which means that objects
of the same class can reach directly the private parts of each other. In case of
class types the private visibility is the default.5 The definition of public and
private parts can be done in any order. This means that the following definitions
are equivalent:

5 In case of record types (struct the default visibility is public for every method

and data.)
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class A {

int i;
public:

void set i(int n) { i = n; };

int get i() { return i; };

};

class A1 {

private:
int i;

public:
void set i(int n) { i = n; };

int get i() { return i; };

};

class A2 {

public:
void set i(int n) { i = n; };

int get i() { return i; };

private:
int i;

};

It is recommended [Str00] to make all the data private or protected. (See Section
10.7.1).

Data hiding of Objet Pasal

In Object Pascal, we mark the inner parts of the object with the keyword private,
but they are only invisible for parts of the System that were defined outside of the
compilation unit (the source file). We can only fulfill the data hiding concept if
we implement every class to a separate file, or we use the keywords strict private.

As usual, the public keyword means that it can be accessed by anybody.
The default visibility is published. The published fields and methods are

available in run time, but also available at design time. Every component of
Delphi has a published interface, which are used by different Delphi tools, such
as Object Inspector. Every field of a class which is not marked with other keyword
the published will be prevalent.

The language makes it possible to define data fields public but it is better
(as it is advised by Marco Cantù [Can00]) to use properties instead (see Section
10.1.1).

Aessibility ategories of Java

In Java, we can use public and private keywords to mark public and private
parts of the class.
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The default visibility – when we do not set any visibility – is the so called
”package-private” visibility which means that the member of the class can be
accessed from the classes with the same package [Nyek08].

In Java, there is class-level visibility, which means that objects of the same
class can access the private members of each other.

Seletive visibility of Eiffel

The designers of Eiffel have implemented a rarely used technique: the selective
visibility. This means that every attribute of a class (feature) can be set a
visibility property that tells which classes can access it. In Eiffel, there is object-
level visibility, which means that if we want other object of the class to reach a
member of an object of their own class we have to explicitly set this property.

We can set our visibility properties by listing the name of all classes which
should reach the feature after the feature keyword. We can use two special
keyword here: one is the default – which means we can omit it – ANY (available
for everybody), and the other is NONE (not available outside the object.)

class C
feature {ANY }

x : T ; −− every class can see it.
feature {C}

y: U ; −− instances of class C can see it
feature {NONE}

z : V ; −− only this object can access it
end −− class C

10.5.1 Friend methods and lasses

Encapsulation determines a very important attribute (private members of the
class can only be reached through the public methods of the class). We can
only communicate with the object through the public interface. That is the way
object-oriented approach lays down the visibility settings and data protection
disciplines.

In C++, they have made a compromise that – because it was unavoidable
even if it does not fit to object-oriented concept – it is possible to let instances
of another class to access the private members of an object. This made the
implementation of the acquaintance relations possible.

These procedures or methods are called friend procedures or methods. These
methods are not messages to the object, which means they will not get the object
through self we have to pass the actual object as an argument to them. A class
can declare a whole class as a friend. In this case the methods of the friend class
can reach the private members of the other class.

We can use the following declaration solution to declare friend relation:
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• Procedure: friend procedureName(argumentList);

(Every procedure with the given name can access private members.)
• To another method: friend ClassName.methodName(argumentList);

• To an other class: friend ClassName;

C++ example

In C++ [Str00] it is possible to redefine the operators. This means we can declare
a Complex class and redefine the basic arithmetic operators.

We require from the class to add two complex numbers, or to add a real
number to a complex number regardless the order of the numbers.

If a and b are instances of the class Complex , and we say a + b then the +

method of a will be called with a b parameter. A similar result will be received
in the case of a + 2.5 , but the argument will be 2.5 . It is hard to interpret
the 2.5 + a expression, because 2.5 is of type double and its + operator cannot
be called with a Complex as argument. A possible solution to use the friend
keyword for the + operator:

class Complex {

double re, im;

public:
Complex(double r = 0, double i = 0) { re = r; im = i; };

Complex operator+(Complex p);

Complex operator+(double p);

friend Complex operator+(double, Complex);

};

Complex Complex::operator+(Complex p){ . . . };

Complex Complex::operator+(double p) { // The class method
Complex temp;

temp.re = re + p; temp.im = im;

return (temp);

};

Complex operator+(double p1, Complex p2) { // The friend function
Complex temp;

temp.re = p1+p2.re; temp.im = p2.im;

return(temp);

}

int main() {

Complex c1,c2;

c1 = c2 + 2.5; // The class method.
c2 = 2.5 + c1; // The friend function.
return 0;

}
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10.5.2 The private notation of Python

In Python, the language designers have decided to make every part of the class
public. This means that we cannot make any method or variable private, however
it is a common notation in the Python community to start every private part with
one underscore ( ). This is a very weak implementation of the private concept
but this is quite popular in the community. This implementation makes easy to
implement debuggers, and development environments still can be set to warn
programmers when they access a private part outside from the object.

class Foo(object):

def init (self, bar):

self. bar=bar;

self. check bar();

def validate(self) #This method is considered public

return true;

def check bar() #This method is considered private

return hasattr(self, bar);

f = Foo(new Bar());

f.validate();

f. check bar(); #Both method calls are considered valid.

10.5.3 Visibility Rules of Sala

Scala has a very fine tune visibility rule set. The default visibility in Scala is
”public”, however there is no public keyword in the language. It is only an
implementation detail, which have come with the JVM platform, but we have
to mention: to make mutable and immutable fields on JVM platform Scala had
to apply some tricks: immutable value fields (defined with the val keyword)
will be hidden under a ”private” (more on this later) field, and a public reader
function will be provided for the member methods and the outer words. Mutable
variables (those which are defined with the var keyword) are handled similarly
but a writer method is generated as well.

Beside these Scala provides us with plenty of opportunities. We have the
”standard Java visibilities” but in an other way. As we have mentioned if we do
not mark the class, field or method with any keyword then it is considered as
public. If we mark a member with private it will be visible for the instance
and other instances of the same type (just like in Java.) If we mark the member
as protected then the instance and the descendants of the instance and other
objects with the same type (or derived type) can access it.
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A class can also be ”package-protected” which means it can be extended by
classes inside the same package (equally for public, protected and private classes
of the package) but cannot be extended by classes from other package.

But Scala also has private[’X’] and protected[’X’] visibilities where we
can give the scope of the visibility (These are called scoped private and scoped
protected). The scope of the visibility can be a package, a class and an instance.
What does it mean? Consider the following hierarchy:

package Pk1 {

class Cl1 {

val field : Int

def method = { println(field) }

}

class Cl2 extends Cl1

}

package pk2 {

class Cl3

class Cl4 extends Pk1.Cl1

}

In this hierarchy we have two packages (Pk1 and Pk2), and four classes (Pk1.Cl1,
Pk1.Cl2, Pk2.Cl3, Pk2.Cl4). Pk1.Cl1 has two members: a field (field) and a
method (method). Both Pk1.Cl2 and Pk2.Cl4 are derived from Pk1.Cl1.

What scoped visibility rules could have been applied to them, and what
would that mean? The rule private[Pk1] before class Cl1 would mean that
this class is private in this package, and it cannot be referenced from outside of
the package this rule is so strict that we cannot even derive a class from it (like
Cl2) if it is not set to be private in the package (We could not even define Cl4

this way because it is in an other package.)
If we write private[Pk1] in front of the members of Cl1 it means that the

instances of Cl1 and Cl2 can access them but Cl2 would not inherit them.
The rule private[Cl1] in front of field or method would result a private

member which is accessible for other instances of Cl1. (This is just like common
private.)

The rule private[this] in front of members of Cl1 would mean that they
are visible only for the instance, and other Cl1 instances could not access them.
(This is how the constructor values are stored.)

private[this] could be also be written in front of a class (like Cl1) which
would bound it to the enclosing package. (The same package-private rule that
we have seen in case of private[Pk1].)
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We can write protected[Pk1] in front of class members of Cl1 which means
they behave as protected variables in the package and as private variables outside
the package. (Instances of a class in the same package as Cl1 which is not in an
inheritance hierarchy with Cl1 – there is not any in this example – could not
access the protected members.)

protected[Cl1] and protected[this] in front of any member variables will
mean the same as a simple protected rule.

10.6 Class data, lass method

We have considered that the class is a declarative matter, and objects are
concrete instances of those. We work with the concrete objects and not with
the classes. If we need a concrete object, then we instantiate one, and we com-
municate through the interface by sending messages to the object to reach a
specific goal.

It is clear that the object holds the data, and the temporary values of the
variables declare the concrete state of the object. Thus we call these data as
member variables or instance variables. The methods affect on a specific instance
and we can call these methods by a Object.Method(Argument list) message
call and that is why we call these methods instance methods.

The function of the class is to define the type and the procedure to instantiate
them, to allocate the memory for the instance variables and to pass the reference
through the Self parameter to tell the methods what object to use.

In some programming language – like in Smalltalk – the designers of the
language stated that everything is an object and that means classes are objects
as well and can have an inner state (attributes) and methods.

It is also true that every object is an instance of a class. It raises the question:
what is the class of these class objects? In Smalltalk every class has a generated
”metaclass” which has only one possible instance which is the class. We can put
the question what is the class of these special metaclasses? These metaclasses
are the instances of a special class which was predefined for only this purpose
and is called Metaclass.

A class as an object might have an inner state which is called class data.
These variables hold data of the class and they are not necessarily changed by
the state changing of instances. They are allocated during the allocation of the
class and they are freed with the freeing of the class. In some languages – like
C++, Java or C# – these class variables are called static and are marked with
the keyword static. These data are accessible by the methods of instances.
There is always only one instance of a class variable which is shared among the
instances of the class. (For example a class can count its instances in a class
variable.)

There can be special methods which do not affect the data of the object
but on the data of the class. These methods are the class methods. Of course
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a class method cannot use the data of an instance because a class method does
not know anything about the instances. There is no Self (this) argument in
the case of a class method because it has no use to bind a class method to a
concrete instance. A class method can be called without any existing instance of
the class. For example the retirement age can be a class variable of the Employee
class which means it can be changed without any existing instance.

Class methods regularly can be called through the name of the class, i.e.:
ClassName.MethodName(Arguments) or ClassName::MethodName(Arguments),
but usually we can access them through the instances. If we do not mark the
class when we call the class method then the method of the actual class will be
called.

The class variables get their values only once at the initialization time of the
class, in order of their appearance.

Smalltalk

As we can see in example 10.1.1 when we introduce a new class:

instanceVariableNames:...

and the

classVariableNames:...

closes are strictly following each other, there we can set the name of the class
and instance variables of the class.

We can define class and instance methods.6 The system differentiates them
by the class keyword written after the class name.

〈classname 〉 class methods

〈methodname_1〉 〈methodbody_1〉
〈methodname_2〉 〈methodbody_2〉
...

〈classname 〉 methods

〈methodname_1〉 〈methodbody_1〉
〈methodname_2〉 〈methodbody_2〉
...

Every object is instantiated by a message sent to the class.

C++, Java, C#

In C++, Java and C# class methods and variables are declared with the static
keyword. They can be used as usual.

The following example shows the declaration and use of class methods and
variables in C++ [Str00]. The Date class – and not the instances – has and sets

6 In the Smalltalk development environment there is a separated menu to introduce them.
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default Date attribute. We can use this during the instantiation of the objects
as a default value:

class Date {

int year, month, day;

static Date default date;

public:
Date(int yy=0, int mm=0, int dd=0);

//. . .
static void set default(int,int,int);

};

Date::Date(int yy, int mm, int dd) {

// If we call the default constructor then we set the
// default date value to the new object.
year = yy ? yy : default date.year;

month = mm ? mm : default date.month;

day = dd ? dd : default date.day;

};

void Date::set default(int y, int m, int d) {

//Changing the values of the static variable.
Date::default date = Date(y, m, d);

}

// Defining the static variables.
Date Date::default date(2003, 3, 16);

Objet Pasal

In Object Pascal if we want to use a method as a class method we can mark it
in the definition of the class with the class keyword [Can00]:

type
A = class

procedure B;
class function ObjNum :Integer ;

end;

Here the B is an instance method, and ObjNum is a method of class A. It is
good to know that there is no keyword (currently) to create class variables. We
can simulate this behavior if we declare a hidden variable in the implementation
part of definition unit which will be only present once and can be accessed by
all the methods of the object and the class methods. This variable can have a
default value:
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implementation
var

ObjNo : Integer = 0 ;
class function A.ObjNum :Integer ;
begin

Result := ObjNo;
end;

In the body of ObjNum class method we use the ObjNo hidden variable.

Python

Class is an object in Python. It can have member methods and variables. If we
start a member at least with two underscore ( ) and finish it with at most one
underscore (so like foo or bar ) then it will be considered as a class variable
that will be textually replaced to classname foo (or classname bar ) where
classname is the name of the class in which we have defined the variable.

There is not any special place in the class body where we should define
our class members, every member which was defined this way inside the class
definition will be considered as a class member.

class Foo(object):

bar = 42;

print Foo bar ; # Prints 42 to the screen.

Sala

There is no such concept in Scala like class method or class data. Instead, sin-
gletons can be created with the object keyword. These objects are instantiated
by definition and they can not be instantiated any more. These singletons can
replace the static functionalities of other object-oriented languages.

object ThisIsASingleton {

val quasiClassValue = 1

var quasiClassVariable:Int

def quasiClassMethod(x:Int) = 2 * x

}

object Test {

def main() {

ThisIsASingleton.quasiClassVariable=2

println(ThisIsASingleton.quasiClassValue) //1

println(ThisIsASingleton.quasiClassVariable) //2

println(ThisIsASingleton.quasiClassMethod(3)) //6

}

}
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10.6.1 Class diagrams

In case of class diagrams we note if a variable is a class variable or a method is
a class method, which can be done with a C character (which is an abbreviation
of class) printed in front of these attributes. The + sign means the public the -

sign means the hidden visibility. (See on Figure 10.5.)

Figure 10.5: Class variables and class methods

We call instance variables as data members or variables and instance methods
as methods and we will only note class variables and class methods.

10.7 Inheritane

In the object-oriented approach – as we have seen – we describe the world with
classes. For example we differentiate living things from lifeless objects. The next
logical step is to introduce sub-classes into classes – like we can group living
creatures as the animal taxonomy: if we come across a new animal we can
describe it by deciding if it is a mollusc, an arthropod, a vertebrate, etc. If
we find it is an arthropod we decide whether it is a crustacean, an insect or an
arachnid. If it is an insect we examine if it is winged or apterous. Winged insects
have a lot of subclasses like: butterflies, flies, bugs, etc.

Every subcategory can have a great number of subcategories which can have
more subcategories. Every level is much more specific, than the level above it,
but it is also true that we can introduce an attribute in one level, and this will be
held by the subclasses below it. This means if we have discovered that a creature
is a butterfly, then we do not have to tell that it is an arthropod, it is obvious
because butterflies are anthropoids.

In the case above we can describe what the attributes of a class are, and
what are its sub-classes ([Mey00], [Ada95] and [Bor89]).

When we introduce derived classes we always reckon the attributes of the
super class. We also use the term: the derived class inherits the attributes of the
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super class. It is possible that the super class is a derived class, thus some of its
attributes were inherited. This means we can describe the derived classes simpler
because we do not have to note all inherited attributes, we can just reuse the
already defined classes.

Then the new derived class (or subclass) is the heir of the super class, and
the base class is the parent class. So we imagine inheritance as a subclass forming
operation. The classes can be organized into an inheritance hierarchy.

Thus the Student class is a subclass of the Person class then the instances
of Student are instances of Person. That means if we declare a variable with
the type Student we can handle it as a Person typed object. This is not true
backwards: a Person does not have to be a Student. This feature that a variable
can be handled as an instance of more than one class is called polymorphism.
(See Section 10.7.2. )

This means we need modules which are open and closed at the same time.
They are closed, because they alone describe a class with their well-defined
methods, but they are also open which makes it possible to derive specialized
classes from them, this way we do not have to describe everything again just
use them. The closed modules which were described with interfaces allow new
modules to use them easily and build their services upon them. If we can use
them as open modules we can inherit from them.

Specialization is usually reached by introducing new features to the class. For
example we can inherit Human from Creature, then we can extend the attributes
of Creature with intelligence or nativeLangue, but at the same time we shrink
the group of possible instances to the type set of Human. The type set of Human
will be a subset of the type Creature.

We should make it possible to introduce new methods in subclasses, that
would not fit the super class. A typical example for this is the ring of algebra
which was introduced by adding one more possible operation to group. A group
has one operation (let’s say the +) with some attributes and ring built over this
group will have this operation also with the same attributes, but would also have
a new operation (like *) with new attributes [Mey00].

When we introduce new subtypes we should make change possible. It means
that some methods should be possible to be redefined: their implementation
or their specification can be changed. For example the class of Shape can have
a paint method, which is used to paint a general shape to the screen. It is
a logical to expect that a subclass of Shape like Circle or Polygon the paint
method should paint a circle or a polygon to the screen. Dynamic binding (or
dynamic dispatch) is responsible for linking – in run time – the actual type of
the variable to the corresponding implementation. The substitution of methods
cannot be optional as we will see later. This approach is called specialization
inheritance or specification inheritance [SV01].

An existing class can be used to define new classes to reuse existing code.
This is possible if in the implementation of the derived class the use of the
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parent class is hidden. This is called reuse inheritance [SV01], or implementation
inheritance [Mey00]. In design it is better to use a hidden inner instance.

Inheritance can be single or multiple. At single inheritance the derived class
can only have exactly one direct super class, in the case of multiple inheritance,
at least two direct super classes. The derived class always inherits all the methods
and attributes of the super class. Multiple inheritance can be problematic when
two direct parent classes have one attribute or method with the same name,
because it will lead to ambiguity in the derived class – see Section 10.7.5.

Inheritane in SIMULA 67

SIMULA 67 was the first language that made it possible to use the features of
inheritance. If we prefix a class definition (or a block) with an existing class name
then we can get the attributes and methods of the prefixing class (the parent
class). These could be extended or redefined. This means single inheritance.

For example we have a Point class, where we define the points with their
coordinates, and we can print or shift them. A derived class of this can be
defined as Colored Point to also hold and print color information.

Class Point(X, Y ); Real X,Y ; ! coordinates;
Begin

Procedure Print;
Begin

OutText("Point: ");
OutFix(x, 1, 4 ); OutText(","); OutFix(y, 1, 4 );

End of Print;
Procedure Shift(Dx, Dy); ! Dx, Dy values of shifting;
Real Dx,Dy;
Begin

X := X + Dx ; Y := Y + Dy;
End of Shift;
Print; ! The life cycle of a point;
OutText(" instantiated"); OutImage

End of Point;

Point Class Colored Point(C); Character C ;
! We use Point to declare Colored Point. ;
! We declare one more attribute. The life cycle changes. ;

Begin
! The life cycle of Colored Point follows the life cycle of Point: ;
OutText("Color "); OutChar(C); OutImage

End of Colored Point;
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Ref (Colored Point) A;
Ref (Point) C ;
C :− New Point(5, 6 );
A :− New Colored Point(3, 4, ’G’);

After the previous statements the followings would appear on the screen:

Point: 5.0, 6.0 instantiated

Point: 3.0, 4.0 instantiated

Color G

In the implementation of inheritance there is a special opportunity for the
use of the inner keyword. The position of this in the program code defines when
to call the code of the derived class. In every derived class first the code of the
super class will be executed and in the end of that block or, when an inner will
be reached only then would the code of the derived class executed.

With the use of the prefixes we can build a prefix chain. If C1, C2, . . . , Cn

are classes and C1 does not have a prefix, and the prefix of Ck is Ck − 1 (where
k = 2, . . . , n) then C1, C2, . . . , Ck−1 classes are the prefix chain of Ck. No class
can appear in its own prefix chain.

Figure 10.6: Prefix chain in SIMULA 67

Inheritane in Smalltalk

In Smalltalk inheritance was implemented by sending the subclass: message
to the parent class (as we have seen in Section 10.1.1). In the following example
the Bird class is a derived class of Animal [Sma91].

Object subclass: #Animal

instanceVariableNames:

’name ability behavior maxSpeed color ’

classVariableNames: ’’

poolDictionaries: ’’ !

...

Animal subclass: #Bird

instanceVariableNames: ’flying ’

classVariableNames: ’’

poolDictionaries: ’’ !
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Inheritane example of C++

We introduce the width and height attributes to the Shape class and methods to
set them, and derive the Triangle and Rectangle classes.

class Shape {

protected:
int width, height;

public:
void set values(int a, int b) { width = a; height = b; }

};

class Rectangle: public Shape {

public:
int area() { return (width * height); }

};

class Triangle: public Shape {

public:
int area() { return (width * height / 2); }

};

The Triangle and Rectangle classes have the attributes and methods of Shape.
The area method is new in both of them, and it is defined differently. This also
raises a design question we will cover later in Sections 10.7.2 and 10.7.4. C++
also allows multiple inheritance. For example if we add the EqualSided class,
then we can derive Square from this and the Rectangle classes:

class EqualSided {

public:
bool e;

};

class Square : public EqualSided, public Rectangle {

Square() { e = true; };

};

Inheritane in Objet Pasal

Object Pascal supports single inheritance, and interfaces are used to implement
multiple inheritance. The syntax is represented in the following example.

type
TAnimal = class
public

function eat : string;
private

kind : string;
end;
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TDog = class (TAnimal) { the heir of TAnimal . }
public

function bark : string;
end;

var
Dog1 : TDog;

begin
{ . . . }
writeln(Dog1.eat);
writeln(Dog1.bark);
{ . . . }

end.

TDog is derived from TAnimal, and introduces the bark method.

Inheritane in Eiffel

In Eiffel, the inheritance relations can be defined after the inherit keyword. A
derived class can access all the data and methods of the super class, and it can
also change them during the inheritance process. After the inherit key word we
have to list the classes that we want to be derived from, and we have to set in the
redefine clause the attributes that we want to change. The features that were not
mentioned in any redefine class will be inherited without a simple change. The
language is capable of multiple inheritance which will be discussed in Section
10.7.5.

class POLYGON inherit
SHAPE

feature
print is

do
io.putstring ("I am a polygon");

end;
end
class SQUARE inherit

POLYGON
redefine print
end

feature
print is

do
io.putstring ("I am a square");
io.new line;

end;
end
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Inheritane in Java

In Java, there is a single inheritance. The extends keyword shows us that it was
designed as the main feature for sub-type relationships. The following Boss class
is derived from the Employee class from Section 10.1.1:

public class Boss extends Employee {

final int MAXEMPLOYEE = 20;

Employee[ ] employees = new Employee[MAXBEOSZT];

int numOfEmployees = 0;

public void newEmployee(Employee e) {

employees[numOfEmployees++] = e;

}

}

In Java, we can declare a class which cannot have any subclasses. For this
we have to use the final keyword.

In Java, the feature of multiple inheritance is implemented by interfaces. (See
Section 10.7.6.)

Inheritane in C#

In C#, inheritance – ”officially”, and in syntax is similar to C++ – works like
Java: There can be a single inheritance between classes, and we need interfaces
for multiple inheritance. We can forbid the forthcoming derivation by the sealed
keyword.

class SuperClass { . . . }

class Derived: SuperClass { . . . }

Inheritane in Ada

In Ada the tagged records can have derivatives. We can derive a new class from
the class in Section 10.1.1. in the following way:

with Person Type; use Person Type;
package Student Type is

type Student is new Person with
record

Average Credit : Float;
Level : Integer ;

end record;
procedure Show (P : in Student );

end Student Type;
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In the example the Student class was extended with two new attributes to
the Person class. It also inherits the Person type methods to set and get name,
address and age, and redefines the Show method.

We can instantiate objects the following way:

P1 : Person;
S1 : Student;
Gabriel : Person;
Gabe : Student;

begin
Write Name(Gabriel,"Gabriel");
Write Address(Gabriel,"Budapest" );
Write Age(Gabriel,35 );

Write Name(Gabe,"Gabe");
Write Address(Gabe,"Pomaz" );
Write Age(Gabe,20 );
Gabe.Average Credit:=4.5 ;
Gabe.Level:=3 ;

Show(Gabriel);
Show(Gabe);

P1 := Person(Gabe);
S1 := (Gabriel with 3.05, 2 );

end;

The hidden parts can only be reached through the setter methods, and the
public parts can be set directly. The Show(Gabriel); will call the method of
Person, and the Show(Gabe) will call the redefined method of Student. In Ada
we can only set a derived value to a super class by indicating of conversion, and
in case of P1 := Person(Gabe) the average and level attributes of Gabe will be
lost.

It is an interesting solution that in the conversion of the super type to
a derived type (S1 := (Gabriel with 3.05, 2 )) we can set the two new values
directly, and this way we can ”extend” the object.

Inheritane in Python

Python also provides inheritance in its Object implementation. We can simply
derive a class from a base class if we give the name of the base class in parentheses
after the class’s name. If we derive a class from an other class, then we will get
a new dictionary that allows us to register new names (names of methods and
member variables), and we will have a reference to the dictionary of the base
class, which holds the definitions of the parent class.
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The reference to the super class can be checked from the outside. This is
usually done by the isinstance() method. This method can check whether the
object is an instance of the given type or an instance of a derived class of the
given class.

class Person(object):

def init (self, name):

self.name = name;

class Teacher(object):

def init (self, name, course):

Person. init (self, name);

self.course = course;

def add mark to student(self, student, mark);

student.add mark(self.course, mark);

class Student(object):

def init (self, name):

self.marks = {};

super(Student, self). init (names);

def add mark(self, course, mark):

self.marks[course]=mark

s = Student(’Peter’);

t = Teacher(’Mr. Johnson’, ’Mathemathics’);

print s.name; # Prints Peter

print t.name; # Prints Mr. Johnson

t.add mark to student(s, 5);

print isinstance(s, Person); # Prints true

print isinstance(s, Student); # Prints true

print isinstance(s, Teacher); # Prints false

Inheritane in Sala

Scala supports single inheritance, and is really similar to Java. It uses the
keyword extends to derive a class from an other. It also uses extends when
it only inherits from a trait, and it uses with keyword when it lists other traits
in the inheritance list. It is possible to forbid further inheritance from a class,
and we can also make it compulsory to extend one.

package pack {

class BaseClass {

val field : Int

def method = { println(field) }

}

class DerivedClass extends BaseClass

}
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Of course we have to call the constructor of the parent class if it had not got
a parameter less constructor.

package pack {

class BaseClass (val field:Int) {

val field : Int

def method = { println(field) }

}

class ParameterLessDerivedClass

extends BaseClass(0) // Some integer value

class ParameteredDerivedClass(val theValue:Int)

extends BaseClass(theValue)

}

10.7.1 Data hiding and inheritane

Beside the (public) and (private) data hiding solution there is a third one
in many object-oriented programming languages, which provides accessibility
through inheritance. This data hiding solution is the protected mode. In pro-
tected mode the attributes are so unreachable for the world as they were private
and they are accessible for the derived classes as they were public.

outer world the object the heir

public accessible accessible accessible
protected not accessible accessible accessible
private not accessible accessible not directly accessible

Table 10.1: The three different visibility modes

We have put together the effect of the three data hiding solution in Table 10.1.
On Class diagrams these are marked as on Figure 10.7. The # sign shows the
protected (only visible for derived classes) attributes and methods.

Figure 10.7: Public, protected and private data and method
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In an inheritance hierarchy the data hiding principles work in the same way, a
descendant class cannot see the private parts of a parent class. More precisely: A
derived class technically inherits all the methods and variables of the parent class
but cannot access them directly: they are inherited invisibly or transparently.7

All other members and methods will be accessible directly.
Suppose that class A has a public m method, and a private i member variable,

and m uses variable i. If the class B is derived from A then B will have m, which
can use i, but B (or the new methods of B) cannot access or see i directly. The
private members will be inherited as well, but they won’t be seen. This is shown
on Figure 10.8:

Figure 10.8: Inheritance with data hiding

A lot of programming languages allow to change the data hiding level of the
inherited members: if a class inherit a protected variable, it can change it to be
public, and from then it will be public for everyone.

Different kinds of inheritane

When we declare inheritance in some programming languages – like in C++
– we can modify the inheritance modes. This way we can override the inheri-
tance modes of the base class, or we can brake some inconveniences of multiple
inheritance.

If we use hidden (private) inheritance mode, we can inherit implementation,
and we can hide (even from derived classes) that we have inherited from an
other class. The public inheritance mode – which is the default in most of the
programming languages – helps to implement specification inheritance.

Inheritane modes of C++

In C++ we have three inheritance (visibility) mode: private, public, protected,
and private is the default. These inheritance modes will modify the visibilities.

7 In the case of some languages the rules of private data can differ. For example in Object
Pascal these are only true in case of different Units
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Data hiding Inheritance mode Visibility mode in
in base class or visibility mode derived class

private public cannot be accessed directly
protected public protected

public public public

private private cannot be accessed directly
protected private private

public private private

private protected cannot be accessed directly
protected protected protected

public protected protected

Table 10.2: Inheritance modes of C++, and visibilities.

We can see that private members will stay private and won’t be accessible
directly from the derived class. In the case of public inheritance the heir class
will keep the specified visibilities. In private inheritance all the methods and
variables of base class will be private in the derived class, which means it will
be hidden during the next inheritance. In case of protected inheritance we only
hide inheritance information from the outer world, and the derived classes can
use the inherited members.

Inheritane modes in Eiffel

In Eiffel, the derived class can change the visibilities of the base class freely. It
can publish a method which was only visible inside of the class and vice-versa.
This can be done with the New exports inheritance clause. The default is the
following: if a derived class does not change something, then it is to be handled
that way.

class FIXED STACK [T ]
inherit

STACK [T ]
−− . . .

ARRAY [T ]
rename

put as put array,
element as array element

export
{NONE} all;

end
end

The FIXED STACK will inherit its behavior from class STACK , and we
do not have to change the visibility. The implementation comes from ARRAY
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class, and later we do not want to make possible to handle the objects of the
FIXED STACK through array methods, so we hide all the inherited attributes
of ARRAY .

10.7.2 Polymorphism and dynami dispathing

In case of specification inheritance we can speak about substitutability. Sub-
stitutability means that the instances of a super class can always be replaced
(substituted) with the instances of a its derived class. This also means that the
derived classes can fulfill the roles of the super class, and can mimic its behavior,
and sometimes we cannot differentiate them from each other.

This is trivial, because the derived class holds all the methods and variables
of the super class, and can always reach them. This also means that in every
case when the super class stands as a formal parameter the instance of the
derived class can be an actual parameter. Substitution lies on the is-a relationship
between the base and the derived class. This also shows that there is a type
narrowing, a specialization relationship that points from the base class to the
derived class, and there is a generalization relationship that points backwards.

As we have seen the specification inheritance is a way of sub-typing. This
means that if Circle was derived from Shape, then every instance of Circle
is an instance of Shape. But if we take a variable called circleInst which is
an instance of Circle, then we can get a shapeInst variable with Shape type,
and assign the circleInst variable to shapeInst variable. (This means that the
shapeInst := circleInst assignment is valid.)
But an instance of Shape does not have to be an instance of Circle. This means
that the circleInst := shapeInst assignment does not have to be valid, and that
is why it is forbidden. This relationship shows some problem in the traditional
type systems, because the circleInst is a Circle, and the shapeInst was declared
Shape, which means that the shapeInst := circleInst should lead to type mix-up.

A solution for the problem is to take every variable as a typeless object,
and we allow every assignment.8 A better and more common solution for this
is to introduce the concept of static type and dynamic type. The static type of
a variable is the class that was used to declare the variable. The dynamic type
of the variable – which shows the actual type of the object associated to it in
run time – can be the static type, or any derived type of the static type. In the
example above the static type of shapeInst is Shape, and the dynamic type is
Circle. That is why we represent objects – in pure object-oriented languages –
as implicit references.
The possibility that a variable can reference instances of more than one class is
called polymorphism of variables.

There are different kinds of polymorphism, see Chapter 11. In object-oriented
programming the polymorphism is only subtype polymorphism.

8 Smalltalk have chosen this solution.
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It is possible to change implementation or specification of some methods
during polymorphism. As we have mentioned earlier if we have a paint method
over the class Shape which is used to paint a general shape to the screen, then
we can change this method in the derived Circle or Rectangle class to paint a
circle or a rectangle.

Consider the following case: we override the paint method in class Circle,
which was derived from Shape, and executed a shapeInst := circleInst assign-
ment. After this we call the paint method on shapeInst object. Which method
should be executed? Should we execute the paint method of Shape (the static
type), or should we execute the paint method of Circle, which is the current
dynamic type?
Of course we expect to execute the more specific method, which (in this case)
means to execute the paint method of Circle. Dynamic dispatching (or dynamic
binding) makes it possible to execute the methods of the dynamic type. Dynamic
dispatching is a run time event. Several programming languages call the methods
that can be dynamically dispatched as virtual methods.

We find the same problem in case of the shift method of Shape. If we
implement the shift method in Shape, as a sequence of hide, move, paint, and
we override the paint and hide methods in Circle9 to fit the concept of circle
painting. What should happen when we call the move method on the circleInst
object?

The method will call the hide method, but which one? Should it call the
method from Shape, or from Circle? Dynamic binding makes it possible to call
the method of the dynamic type (the hide from Circle). Then it will call move
from Shape, and after that the paint from Circle (because of dynamic binding
again).

Redefining methods in derived lasses

Let’s take a look at how we can redefine methods in the derived classes. Should
we force any limitations, if we want to keep the power of substitution?

It is important to differentiate between overloading a method name and
overriding a virtual method. The overloading means (see Chapter 7, Section 7.6)
that at one point of the program we have more definition for the same method
name. Usually we have to make the overloaded methods distinguishable on
call – it is simple if we have different number of parameters. We will see that
distinguishing by the type of the parameters is not so trivial in some cases.

Stati and dynami redefine

In several programming languages – like Pascal or C++ – the methods of objects
are statically bounded. This means if we find an object.message() statement in

9 The move only changes the coordinates of the shape.
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the source code then it can be replaced by a pointer to method called message
and is defined in the class which is specified by the static type of the object. For
example in the case of shapeInst.paint the paint from Shape will be called and
in the case of circleInst.paint the method from Circle will be called.
Static redefining does not support the dynamic dispatching of subtype polymor-
phism which is a very important part of object-oriented programming. In case of
dynamic dispatching the method that should be called de facto will be chosen in
run time, when the dynamic type of the object will be indubitable. If a variable
can hold a reference to any derived class then it is not determinable in compile
time which method to call. That is why every programming language supports
some form of dynamic dispatching.

It is usual that for languages that were designed to be object-oriented – like
Java, Eiffel, Smalltalk, etc – this is the default behavior. Other object-oriented
languages support dynamic dispatching by marking some methods as ”virtual”,
and the calls of virtual methods will be dispatched dynamically. When we define
a new class the reference of the virtual methods will be registered in the Virtual
Method Table (or VMT). When we call a virtual method the program will chose
the appropriate method by the dynamic type of the object from the suitable
Virtual Method Table in run time.

Methods of subtypes

Inheritance makes it possible to derive classes from existing classes, – for exam-
ple, Circle ⊆ Shape. But this is not only about the type values, but the behavior
of the subtype instances. This means that we can only change methods that way
safely if the substitution of instances of derived classes is possible for instances of
base class [Bru02]. We should be able to handle a list of Shapes by the methods
of Shape, when the concrete objects are instances of Circle, Rectangle, etc. too.
A method is described by its signature (the type of its parameter and the type
of its result), and the pre- and postconditions.
Let

fss = proc(Shape) returns (Shape)
fks = proc(Circle) returns (Shape)
fsk = proc(Shape) returns (Circle)
fkk = proc(Circle) returns (Circle)

be any methods and we should examine which method can be replaced by which
one. (What redefinitions are possible in the derived classes?)

fcs ⊆ fss ? fsc ⊆ fss ?
fcc ⊆ fss ? fss ⊆ fcs ?

A method is marked as A → B if it gets type A as parameter, and returns
type B. If A′ → B′ methods are subtypes of A → B methods (formally: A′ →
B′ ⊆ A → B ) Then we should be able to use any elements of the first method
type in every context where we used any elements of the second method type.
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Suppose we have a f method which is typed A → B. If we want to substitute
f ′ : A′ → B′ for f , then f ′ should take A as parameter and should return B as
result. The domain of f ′ is A′ this means we can only apply f ′ if A is a subtype
of A′ (A ⊆ A′) so a : A is a A′ and f ′(a) is correctly typed.
On the other hand: the result of f ′ has the type of B′, but we should be able to
handle it as an instance of B, which is only possible if B′ ⊆ B is true.
Summary: A′ → B′ ⊆ A → B is only possible if A ⊆ A′ and B′ ⊆ B.

This means that in case of redefining methods the result type can be the
same (novariant), or more specialized which is called covariant or monotone (see
Section 11.3), but the type of the parameter can be the same (novariant), or
more general, which is called contravariant or anti-monotone. So in the previous
example:

• the fsc ⊆ fss – result can be more specific
• the fss ⊆ fcs – parameter can be more general

The same rules stand for the preconditions and postconditions of the methods:
the postcondition can be the same (novariant), or more specific (covariant), and
the precondition can stay the same (novariant) or can be weakened (contravari-
ant), see Chapter 12. Most of the programming languages require signature
identity in case of overriding, thus the method call can be checked in compile
time.

It can happen that the derived class has to override a method with a covariant
parameter. For example we should derive the Skier class from Sportsman, and
derive two more classes from Skier : Skier boy and Skier girl. State that we have
introduced a roommate method to Skier which takes another Skier as parameter.

Figure 10.9: Class hierarchy of Skiers

How can we override the roommate method in Skier girl class? Is there a
solution for covariant overriding? (To make it accept only Skier girl as param-
eter.) Is there only a novariant override? (It will take any Skier as parameter.)
Or is there a contravariant overriding? (We can override it to take Sportsman.)
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Polymorphism and dynami dispathing in C++

In C++, the compiler will only allow dynamic dispatching in case of methods
marked with the virtual keyword. The instances of derived classes can be as-
signed to an object of the base class, but we should mind not to work with
objects, but with references, otherwise the assignment result will be truncated,
and the dynamically dispatched methods will be statically bounded. Dynamic
dispatching works correctly only in case of references.

For example we should introduce the foo method to Rectangle, which should
return 0 . Then we should derive the ColoredRectangle class, which should hold
color as an integer, and we should override the foo method to return color . Then
we instantiate a Rectangle and ColoredRectangle object. Polymorphism seems to
be allowed, and it looks possible to assign the derived object to the base object,
but it will be truncated, and the foo method would be statically bound to the
object. The real polymorphism and dynamic dispatching will only be possible if
we reference the addresses of the objects, as in the example below:

class Rectangle {

protected:
int width, height;

public:
Rectangle(int w, int h) {

width = w; height = h;

};

virtual int foo() { return (0); }

};

class ColoredRectangle: public Rectangle {

int color;

public:
ColoredRectangle(int w,int h,int c):Rectangle(w,h),color(c){};

virtual int foo() { return (color); }

};

void main() {

Rectangle r(2,3);

ColoredRectangle cr(3,4,5);

r = cr; // Truncated
cout « r.foo(); // Rectangle::foo()

Rectangle* r1 = &r;

Rectangle* r2 = &cr;

cout « r1->foo(); // Rectangle::foo()

cout « r2->foo(); // ColoredRectangle::foo()

}
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The heir can only redefine the virtual methods ”safely”: the type of the
parameters cannot be changed, the type of the result can be covariant. To change
the type of the parameters we can use overloading. In the previous Skier example
the derived Skier girl wants to change the type of the parameter of roommate to
Skier girl (in a covariant way). It can be done, but the new roommate method
will be an overloading not an overriding of the inherited method.

class Skier {

public:
. . .

virtual void roommate(Skier * s){

cout « "Skier with a Skier roommate\n";

};

};

class Skier girl : public Skier {

public:
. . .

virtual void roommate (Skier girl *g) { // Overloaded
cout « "Skier_girl with a girl roommate\n";

};

};

class Skier boy : public Skier {

. . .

};

void main(){

Skier *s;

Skier girl *g;

Skier boy *b;

g = new Skier girl;
s = g;

s->roommate (b); // The Skier::roommate is called.
g->roommate (g); // The overloaded Skier girl::roommate is called.
s->roommate (g); // The Skier::roommate is called.

}

We should note that if we do not override the inherited roommate method
then at the call g->roommate(b) some compiler will not recognize that it should
call the Skier::roommate method but it would fail with a compile time error.
In case we introduce the redefined version of the inherited method then the
compilers can understand the method call.

There is one exception when C++ does not call the method of the dynamic
type. If we call a method from the constructor, and that method is marked
as virtual then that method will be called every time, when we instantiate any
objects through that specific constructor. It is irrelevant whether the descendant
class has overridden the method or not.
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The logic behind this is class invariant. The function of constructor is to set up
class invariant correctly, if a class is defined with a function call in its constructor,
then it is considered as the execution of that method is necessary for setting the
correct class invariant. We cannot replace it.

class Foo {

public:
Foo() {

method();

}

virtual void method(){

cout « "Method of original class\n";

}

};

class Bar : public Foo {

public:
Bar() {

method()

}

virtual void method () {

cout « "Method of derived class\n";

};

};

void main() {

Foo f = new Foo(); // Prints “Method of original class”
f.method(); // Prints “Method of original class”
Bar b = new Bar(); // Prints “Method of original class

// Method of derived class“
b.method(); // Prints “Method of derived class”

}

In the example we can see that when we have constructed b then we have
printed two messages, the message of the base class, and the message of the
descendant. This is because both constructors have called method and the con-
structor of the base class has run first. In this case method was called as it had
not been overridden at all. In the second case when the constructor of Bar was
executed, then it has printed the message of class Bar .

The features of Objet Pasal

In Object Pascal the variables are references of objects. Polymorphism means
that a base class typed variable can reference a derived instance. The methods are
statically bounded by default – as in the case of C++. For dynamic dispatching
we have to introduce the method with the virtual keyword and then the method
will be virtual. (For example: procedure foo; virtual.) If we want to override it
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in the derived class then we have to use the override keyword. (For example:
procedure foo; override.)

It is possible to overload method names, and we have to use the overload
keyword for this. (For example: procedure foo(a:string); overload.) In case of
overloading we can use methods with different parameter types. If we introduce
an overload with the same signature, the new method will hide the inherited
one. It is possible to hide virtual methods with overloading. In this case we need
the keyword reintroduce (e.g. procedure foo; reintroduce; overload [Can00].)

Polymorphism and dynami dispathing of Java

In Java, the variables hold the references of objects, so their polymorphism is
default, and we do not need a keyword to support dynamic dispatching. If we
introduce a method with the same signature in the derived class then overriding
will take place and the method will be dynamically dispatched.10

In the following example [Nyek08] we will introduce bonus method to the
Employee class. The Boss class is derived from Employee and the bonus method
is overridden.

public class Employee {

. . .

int numberOfLanguages;

public int bonus() { return numberOfLanguages * 50; }

public int salaryWithBonus()

{ return salary() + bonus(); }

}

public class Boss extends Employee {

. . .

//@Override could be written in front of the method
//to avoid overload by mistake
public int bonus()

{ return super.bonus() + numberOfEmployees * 100; }

}

It will call the method by the dynamic type of the variable by default:

Employee e = new Boss("John Doe");

int b = e.bonus(); // bonus method of class Boss.
int sb = e.salaryWithBonus(); // method of class Employee.

10 In Java 1.5 @Override annotation was introduced to make it possible to avoid overloading
with a mistake in method signature.
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Polymorphism and dynami dispathing in C#

In C#, – just as in Java – objects can be handled through their references,
but methods – just as in C++ – can be statically and dynamically bound. For
dynamically bound methods we have to use the keyword virtual.

public virtual void foo() {. . .}

For overriding – just as in Object Pascal – we have to use the override keyword:

public override void foo() {. . .}

We do not need any keyword for overloading. The compiler chooses the
”closest” method by the parameters. (For more information, see [Csref03].) The
derived class can hide the inherited method with the new keyword – this is
similar to reintroduce in Object Pascal. So the new public virtual void foo()

method hides the inherited foo() method.

Polymorphism and dynami dispath in Eiffel

Eiffel was designed in a fully object-oriented approach, thus the variables are
references by default and the call of the actual methods can only happen dynam-
ically. The derived class has to give in the inheritance clause (with the keyword
redefine) the methods which wants to override.

class POLYGON inherit
SHAPE

redefine F end

Pre- and postconditions can only be redefined in a ”safe” way, thus preconditions
can only be weakened and post conditions can only be strengthened (see Chap-
ter 12.). The type invariant can only be narrowed to show that the type values of
the derived class are between the type values of the base class [Mey91]. The lan-
guage also supports covariant parameter change, which can cause interesting run
time errors. For example, suppose that in the POLYGON class the redefinition
of the method F calls the method G which is introduced in POLYGON class
and is not available in an other derived class (like CIRCLE) of class SHAPE.

class SHAPE
feature
F(S :SHAPE) is do

io.putstring ("F in SHAPE");
end

end
class POLYGON inherit

SHAPE
redefine F end
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feature
F(S :SHAPE) is do

io.putstring ("F in POLYGON");
S.G; −− Call the new G method of the parameter.

end
G is do

io.putstring("G new in POLYGON")
end

end
class CIRCLE inherit

SHAPE −− Does not redefine F. . . .
end

In this case if we assign an instance of POLYGON to a SHAPE reference,
and we do not call the F method with a parameter that fits the dynamic type,
then the compiler will not remark this and it will only turn out in run time that
the parameter is not suitable.

o1, o2 : SHAPE ;
make is
do

!POLYGON ! o1 −− Assigns a POLYGON object to o1 .
!CIRCLE ! o2 −− Assigns a CIRCLE object too2 .
o1.F(o2 ); −− Run time error.

Polymorphism and dynami dispath in Python

The case of Python is very simple since we have a dictionary object that holds
names and definitions. If a method calls another method, then the name of the
called method will be looked up in the dictionary of the instance. If no definition
can be found then it will search in the dictionary of the class. If the class does
not hold the definition then the search will continue in the dictionary of the first
base class, etc.

In Python, we can have more than one base classes. That also means, we can
have more than one base class that has introduced a method that we have not
overridden. Which method will be called then? The rule in Python is mainly
depth-first, left-to-right. It will look for the method in the class, if the execution
environment cannot find any methods with the given name in the dictionary of
the class, then it will take the first class from the list of its base classes and will
look for the method in it. (If the method is not registered in the class, it will
search in its base classes.) If the (recursive) search of a base class does not give
any result, then the execution environment will look for the method in the next
base class.

This easy algorithm had one problem: in a diamond inheritance situation the
common base class could be processed multiple times, and the general method
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of the base class could be resolved before the specialized method of descendant
class. Consider this example:

class A(object):

def f(self):

print ’A’;

class B(A):

def f(self):

print ’B’;

class C(A):

pass

class D(C,B):

pass

In the above example D has inherited two f() methods. In the precedence
order of D C has a superior precedence than B. This means that method f() will
be searched in C first than in B. This was a problem, that is why Python uses
here the C3 linearization which respects the local precedences of the objects and
the monotonicity of resolving. This means that a base class cannot be resolved
prior to any of its specialized classes. In the above example D would resolve in C

then in B and only after that would resolve a name in A.
You cannot always respect these rules in a situation where two classes define

conflicting preference orders, this algorithm fails. Consider this example:

class X(object):

pass

class Y(object):

pass

class A(X,Y):

pass

class B(Y,X):

pass

class C(A,B):

pass

In this example C should resolve in X then in Y according to A, but it should
resolve in Y and only after it in X according to B. In situations like this Python
raises an exception to warn the programmer it is impossible to derive from those
two classes. (In earlier versions of Python it only has chosen an ad hoc ordering.)

Polymorphism and dynami dispath in Sala

Scala has the keyword override which is used to override a method. We have
to mark every methods with override if we want to redefine them. Overriding a
method without the keyword, or marking a newly defined method with override
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(which does not override any methods of any base classes) will both result in a
compile error.

Dynamic dispatching takes place just like in case of Java. (If our Scala code
is executed on JVM it is done exactly like in Java.)

Calling the methods of the base lass

During implementation we might have to call the methods of the base class, or
to extend a method in a child class by using the original method.

In single-inheritance languages there is usually a keyword to reach base class.
For example in Object Pascal we can use the inherited keyword in a method

or in a constructor to reach the method with the same name in the base class,
and we can execute any statement before or after it [Can00].

type TParent = class . . .
procedure f (. . .); virtual; . . .

end;
type THeir = class(TParent) . . . .

procedure f (. . .); override; . . .
end;
procedure THeir.f (. . .);
begin

inherited f (. . .); { Here we call f method of TParent f . }
. . .

end;

In Java (and in Smalltalk), we have the keyword super to call the base class,
as we have seen in the example in Section 10.7.2 when Boss class has overridden
the inherited bonus method of Employee:

public int bonus() {

return super.bonus() + numberOfEmployees * 100;

}

In C#, we can use the base keyword to reach a method of base class [Csref03]:

public class A {

public virtual void Print() { . . . }

}

class B: A {

public override void Print() {

// Calls the Print method of base class:
base.Print(); . . . .

}

}

In some languages we can use the name of the base class to reach its methods.
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In C++ we can use the :: scope operator to reach one of the base classes:
ParentClass::Method(parameter list); This is also used to solve the conflicts of
multiple inheritance. (See Section 10.7.5.)

In Python, we can call the method of the base class by calling the method
on the name of the base class, and passing the parameter self to the method.

class Foo:

def print(self)

print "Foo’s print";

class Bar(Foo):

def print(self)

print "Bar’s print ";

Foo.print(self);

b = Bar();

b.print(); # Prints "Bar’s print Foo’s print"

In Scala the methods of the parent class are available through super keyword.
This reference will point to the base class just as in java. We cannot call the
constructor of our base class (like super() in Java) since this call is considered
to be strongly bound to the hierarchical object creation, and the constructor of
the base class was called by the definition of the class. However we can inherit
multiple implementation from more than one trait and in this case we can
choose between implementations with square brackets. (If we want to specify
that we want to reach parent A than we can say super[A].)

It was a design concept of Eiffel that we should not have any references to the
super class outside of the inheritance clause. That is why the language support
a special type of multiple inheritance the repeated inheritance.

Figure 10.10: Repeated inheritance

If we want to use the feature f that was inherited from the base class and
also want to redefine it then we have to reinherit it: In one branch we rename it
(let’s say to old f ) to be able to use it, and on the other branch we override it
(where we can use the renamed old version):11

11 The mean of the select statement see at 10.7.5.
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class Ds
inherit D

rename f as old f
end;
inherit D

redefine f
select f

end
feature

f is
do

. . .
old f ;
. . .

end
end

Calling the methods

The derived classes can introduce new methods that were pointless in the base
class, and can use them to extend the set of possible operations. For example we
can introduce bark method in class Dog which was derived from Animal. The
polymorphism and dynamic dispatching puts the question: how should we call
these new methods?

Imagine, that we have a pet variable which is an Animal, and we have assigned
an instance of a derived class (like Dog) to this variable. If we have introduced an
eat method to Animal that we might have overridden in the actual dynamic type
of pet it is absolutely natural to allow the call of pet.eat which will be dynamical
dispatched – as the language makes it possible – to the corresponding method.
But if we have introduced bark method in Dog, should we allow to call pet.bark?

Most of the programming languages – like Eiffel, C++, Java, Object Pascal,
etc. – chooses the method to call by the static type of the variable, which leads
to a compile time error in the case above. This decision makes the programming
languages safer, because if they had used entirely dynamic dispatching (like in
Smalltalk or Dylan, etc.) it could have led to some interesting run time errors.
For example in case of some mistake the dynamic type of pet would not be Dog,
but for example Cat which of course does not have a bark method, it could have
led to a run time error.

10.7.3 Abstrat lass

When we design a program, and we design the class hierarchies, the most
important task is to make the appropriate type specifications. This layer is
independent of implementation. The representation of the type values, and the
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implementation of behavior will come in the next step. Polymorphism and dy-
namic dispatching make it possible to design abstract classes and handle them
uniformly to make it possible to segregate a general code from actual implemen-
tation.

An abstract class can contain methods that have no implementation and they
are only specified and abstract classes can also have implemented methods as
well. The inverse of this statement is true as well: if we have a class that contains
at least one abstract method, then that class is abstract.

Usually an abstract class cannot have an instance. The variables with the
type of an abstract class can reference objects of a derived class of that class.
For example in a general Shape class we cannot provide a corresponding im-
plementation of the area method, but we can provide easily an implementation
for Circle, Rectangle, Polygon, Triangle, etc. It is useful to introduce the area
method in the base class because we want to use this in every derived classes,
and this way we can make it possible to handle the list of Shapes uniformly.

Most of the object-oriented programming languages make it possible to in-
troduce abstract classes. There are languages – like Java, C# or Eiffel – that
make it possible to declare a class abstract without a single abstract method,
and there are languages – like C++ – that require at least one real abstract
method to make the class abstract. In languages that provide mechanisms to
forbid further inheritance12 they forbid to use these two features together. This
behavior is a trivial consequence of the fact that an abstract class must have a
derived class, and a class which is closed for further inheritance cannot have any
derived classes.

We can build the hierarchy of abstract classes, the derived classes can have ab-
stract methods, they might introduce new abstract methods, or they can add the
implementation of an inherited abstract method, but they will remain abstract
classes as long as they have at least one method without an implementation.

Abstrat lasses in programming languages

SIMULA 67 � Smalltalk

It is interesting to note that in SIMULA 67 – which can be considered as the
first language that supports object-oriented programming – it was possible to
make a method without an implementation.
In Smalltalk, – which was the first language that was designed to be pure object-
oriented – it was not possible.

12 For example: In Java a class can be final, in C# a class can be sealed, in Eiffel a class can
be frozen
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C++

In C++ abstract classes are not marked with any keyword if they have any
abstract methods – which is marked with a = 0 instead of the body of the virtual
method13 – then the class is considered as an abstract class, and it cannot have
any instances. For example in the Shape class method area should be abstract,
what we can achieve with the

virtual int area() = 0;

specification, which is equal to the following empty implementation:

virtual int area() { return (0); };

Objet Pasal

In Object Pascal, we have to mark the abstract method with virtual and abstract.
For example:

function foo: string; virtual; abstract;

The implementation should be marked with override as in case of other
virtual methods. The class can have abstract methods, but the class will not be
considered as an abstract class, we can instantiate it and it will raise a run time
error if we call an unimplemented method [Can00].

Java

In Java, we have to use abstract if we want to introduce an abstract class or
method. The general rules are applied here [Nyek08]. For example we can declare
the abstract Shape class with the specification of the abstract area method, and
we can easily give the implementation in the actual derived class:

public abstract class Shape { . . .

public abstract double area();

}

public class Rectangle extends Shape { . . .

//@Override annotation can be used since Java 1.5
public double area() { return width * height; }

}

13 Abstract methods in C++ are called as pure virtual methods.
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C#

In C#, we have to use the keyword abstract to introduce an abstract class or
method. The implementation – over against Java, like in Object Pascal – have
to be marked with the keyword override [Csref03].

abstract class Shape {. . .

public abstract int area(); . . .

}

abstract class Convex : Shape {. . .

public void foo() {. . .}

}

class Rectangle : Convex {. . .

public override int area() {

return Width * Height;
}. . .

}

In the Shape abstract class we introduce the area abstract method. In the Convex
class we introduce the new foo method but we do not give the implementation
of the abstract area method, so Convex will stay abstract. The Rectangle imple-
ments the area method, there are no other abstract methods left, so Rectangle
does not have to be marked with the keyword abstract, however, it could be.

Eiffel

In Eiffel, we can mark abstract methods with the keyword deferred in the first
line of the class and in the place of the method body.

deferred class SHAPE . . .
feature . . .

print is
deferred

end . . . .
end

The implementation of the abstract method does not mean overriding, so it
does not have to be marked in the inheritance clause.

class CIRCLE inherit
SHAPE

feature . . .
print is

do
io.putstring ("I am a CIRCLE!");

end; . . .
end
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It is possible to make an already implemented method to be abstract. It
can be done with the keyword undefine in the inheritance clause. This means
that we change an implemented method to be deferred. This method retains the
whole signature of the method with its preconditions and postconditions, it will
only remove the body of the method. The undefine clause is useful in case of
multiple inheritance (See Section 10.7.5.) which explains why it is so common in
the standard library of the language. For example:

deferred class CHAIN [G]
inherit

CURSOR STRUCTURE [G]
undefine

prune all . . . .

It is a very important feature of Eiffel that it makes possible to add a type
invariant to a deferred class, and to set pre- and postconditions to deferred meth-
ods thus makes it possible to build very type safe class hierarchies. For example,
most of the methods of the LIST class are abstract, but the type invariant, the
post and preconditions make it possible to communicate its semantics:

deferred class LIST [G]. . .
feature . . . .

forth is −− Moves cursor forward with one positions
require
not after

deferred
ensure

index = old index + 1
end

invariant
non negative count:count >= 0
offleft by at most one:index >= 0
offright by at most one: index <= count + 1
end

Python

There is no language feature in Python to implement abstract classes. Python
has a module, which is called abc (abc stands for Abstract Base Class), and it
has the ABCMeta class which can be the ”base class” of our abstract classes.
If we set ABCMeta as the meta class of our class, then we can create ”abstract
methods”, by marking them with @abstractmethod. If we derive a class from an
abstract class, all the abstract parts of that class must be overridden.
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Abstract methods of our Abstract Base Class can have an implementation.
The overriding of these methods can call the implementation of the abstract
class, but this does not happen automatically.

We can register classes to an abstract class, to make it a ”virtual-subclass”
of our abstract class. This means that if we call isinstance() on the class and on
the abstract class, then the Execution Environment will return true. However
methods in the abstract class will not be available in the virtual abstract class.

If we want to change this behavior then we have to redefine subclasshook
method of our Abstract Base Class. subclasshook method can return three
values: True which means that this class is a subclass of the Abstract Base
Class, False which means the opposite, and NotImplemented which means that
the given class is not a sufficient class, the class check can go on as usual. We
can make interface checks in this method.

We can also define abstract properties with the @abstractproperty notation.

class Foo(object):

def f(self):

return 0;

class MyAbstract(type):

metaclass = ABCMeta

@abstractmethod

def f(self):

return 1;

@classmethod

def subclasshook (cls, C):

if cls is MyAbstract:

if any("f" in B. dict for B in C. mro ):

return True

return NotImplemented

MyAbstract.register(Foo)

class MyDirect(MyAbstract):

def f(self):

return 2;

In this example, we have Foo which is a quite common Python class derived
from object. We also have MyAbstract which is an Abstract Base Class, it has
ABCMeta as his meta class. It has made f() to an abstract method which means
we have to override it in every subclasses. In MyDirect which is a direct subclass
of MyAbstract we have implemented f() as it is required. We have defined
subclasshook to check whether any subclasses of MyAbstract (which can
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be done by virtual or direct sub-classing) has f() defined in the class or in any
base classes of the class. ( mro is the Method Resolution Order list.)

Sala

Scala has the keyword abstract to make a class abstract. If a class is abstract
it can have methods without body. We do not have to mark these methods
with the keyword abstract, they are automatically considered to be abstract.
If our concrete class inherits from an abstract class then it has to provide
an implementation for the unimplemented methods, or the class should be
marked with abstract. We have to use the keyword override when we give
the implementation of abstract methods.

10.7.4 Common anestor

Some programming languages – like Smalltalk, Java, C#, Eiffel, etc. – apply
the idea that every class has a common abstract ancestor. This class has all the
common attributes of the classes like bitwise comparison, copying, etc. Other
languages – like SIMULA 67, C++ or Ada – do not introduce common ancestor
thus make it possible to build new independent class hierarchy trees.

The other benefit of common ancestor is substitutability. We say that every
derived class can replace the base class, which can be a used at parametrization.
We can declare methods with the common ancestor as a formal parameter and
when we call the method the formal parameter can be assigned to instances of
any derived class.

In the languages that have a common ancestor14 we cannot introduce any
class without deriving it from the common ancestor. If we do not derive it from
any classes the compiler will set the common ancestor to its base class.

It is interesting that in Object Pascal, we have both. Both the object and
class keyword can mark a class, and the language solves this problem differently.
The object class was introduced in Turbo Pascal 5.5 and Object Pascal took this
idea. The keyword class was introduced in Object Pascal. The objects of Turbo
Pascal do not have a common ancestor thus the object type variables of Object
Pascal do not have a common ancestor. However every class that was introduced
with the class keyword has a common ancestor called TObject.

Python did not have any common ancestor in its early history, but later the
designers of the language have introduced object which can be the ancestor of
all classes. For this, there are two types of class creations in Python. The first
one is called old-style class creation when we just simply define a class and the
other one when we derive our new class from object. (This is called new-style
class creation.) We even get a new-style class, if we derive our class from a class
which has object as one of its base class. The aim of the language implementers

14 The common ancestor is usually called Object or TObject.
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was to create a unified object model with full meta model. (Old-style classes are
removed from Python 3.0.)

In Scala the common ancestor is called Any, which is closer to the philosophy
of functional programming languages. Any has two direct subclasses AnyRef
which is the ancestor of every var (variable) in the language, and AnyVal which
is the ancestor of immutable values. Even Unit is a descendant of Any (through
AnyVal) which is a special value object that is returned by methods with side-
effects (usually the void methods in other strongly typed languages).

10.7.5 Multiple inheritane

We talk about multiple inheritance if a class has more than one direct base
classes. In the simplest way it means that a class can be considered as a spe-
cialization of two (or more) independent classes. In his book [Mey00] Bertrand
Meyer lists several natural causes why a class could have more than one base
classes. For example, the COMPANY PLANE can inherit the attributes of a
PLANE so a pilot can handle it, and it can also inherit the attributes of
COMPANY PROPERTY , so the accountant of the company can handle it.
Based on similar considerations they have introduced several possibilities to the
standard library, like: the objects of the derived classes of NUMERIC have the +,
−, *, /, etc. operations. The objects of the derived classes of COMPARABLE
have operations like <, >, etc. Both of these classes are used to derive the
INTEGER and REAL classes.

An other important feature of multiple inheritance can be observed when we
use it to combine specification and implementation inheritance. One of the base
classes gives the behavior, and the other – which is preferred to be hidden – gives
the representation. For example the class FIXED STACK inherits its behavior
from the abstract STACK and its representation from ARRAY . Bertrand Meyer
calls this form of multiple inheritance as ”marriage of convenience” [Mey00]. In
his witty example the child of the impoverished noble family (the abstract class)
marries the child of the rich commoners (the representation), and they both
reach what they want: title (functionality) and wealth (implementation).

There are several solutions for multiple inheritance in C++:

• For multiple specification inheritance a class can have more public base
classes, like:
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class A { //. . .
public:

virtual void foo() { cout « "foo in A\n"; };

};

class B { //. . .
public:

virtual void bar() = 0;

};

class C : public A, public B { //. . .
public:

// Override A::foo() method.
void foo() { cout « "foo in C\n"; };

// Implements a B::bar() method.
void bar() { cout « "bar in C\n"; };

};

The derived class inherits the member variables and methods of the
base classes, it can override, implement or can leave them unchanged.
Polymorphism and dynamic dispatching makes it possible to reach the
methods of the base classes through the references of the base classes:

int main() {

A* a1;

B* b1;

C c;

a1=&c;

b1=&c;

// Calls the method of the dynamic type:
a1->foo();

b1->bar();

return 0;

}

Through ancestors we can reach only the methods they have inherited
to us. For example we cannot write a1->bar() because class A does not
have a bar method.

• For the specification and implementation inheritance we have to set for
the specification inheritance the base class public, and for the implemen-
tation inheritance the base class private or protected. It is interesting
that the default inheritance mode is the private. For example class C will
inherit specification form class A and implementation from class B:
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class C : public A, B { //. . .
public:

void foo() { cout « "foo in C\n"; };

void bar() { cout « "bar in C\n"; };

};

Here polymorphism and dynamic dispatching only works through A ref-
erences. The class C has published the bar method but it is not a subtype
of B, it cannot be referenced through B.

• It is possible to have multiple implementation inheritance. In this case
the derived class can make public any methods it has inherited from the
base classes (the public and protected parts of the base classes) but the
other inherited methods will not be available for the users of the class,
and we cannot reference the class through a variable of a base class.

class C : A, B { //. . .
public:

// Override A::foo() method.
void foo(){cout«"\n foo in C \n";};

// Publish the bar method which was inherited from B
B::bar;

};

If we have a c instance of class C and call c.foo() then we call the
overridden method. If we call c.bar() we call the bar method of B class.

In Eiffel, the default inheritance is specification inheritance but – as we have
seen in Section 10.7.1 – the selective visibility makes implementation inheritance
possible, when we hide every inherited attribute from the users of the class.

Handling name onflits

The possibility of multiple inheritance raises some interesting questions: even
totally different classes can have methods with the exact same signature – which
one should be inherited in the derived class? Renaming can mean a good solution
for this if we want to differentiate the methods but we can also ”join” them and
give a common body that fulfills the requirements of all base classes.

Renaming

In Eiffel, the derived class simply renames the inherited method in the inheri-
tance clause. This will not change the inherited method just introduces a new
name to the class. This can be used to resolve name conflicts:
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class A
feature
foo . . . .

end;

class B
feature
foo . . . .

end;

class C
inherit

A
rename foo as aFoo
end;

B;
feature . . . .

end;

The C class inherits a foo method from A and from B. It can rename any of
them – for example the foo of A to aFoo – which makes differentiation possible
between them. In the example above, the foo feature in C will mean the feature
of B.

In Eiffel, it is not possible to override names so we have to rename methods
with the same name and different signature.

According to Bertrand Meyer it is a good way to introduce new name con-
ventions in the derived class [Mey00]. For example, we can inherit WINDOW
from TREE and RECTANGLE and rename the methods to fit the notions of
WINDOW .

C++ does not allow renaming.

Join

It is possible, in case of multiple inheritance, that we want to merge more
methods with the same name and signature.

For example, in C++ if a class inherits a virtual void foo() method from
multiple base classes and redefines it, then through polymorphism and dynamic
dispatching that method would be called from any references of the base classes:
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class A{

public:
virtual void foo() { cout « "foo in A\n"; };

};

class B{

public:
virtual void foo() { cout « "foo in B\n"; };

};

class C: public A, public B {

public:
virtual void foo(){ cout « "foo in C\n"; };

};

The overridden foo method of C replaces all the inherited foo methods, and
there would be no name conflict. In case of any references this foo method would
be called: C c; B* b1= $&$c; in this case b1->foo() would be the same as
c.foo(). We have a different solution if we want to choose a method from one
of the base classes:

class C: public A, public B {

public:
B::foo();

};

This solution breaks subtyping: C is not a subtype of A and B. Because if
we have a code like this: C c; B* b1= $&$c; then we will get the same result
in case of b1->foo() and c.foo(), but in case of A* a1 = \c; a1->foo() we will
(and we can only) reach the foo method of A.

It is possible that the derived class inherits methods with the same name
but with different signature [Str00]. In this case, using declaration can help to
choose corresponding method:

class A{

public:
virtual int foo(int) {. . .};

};

class B{

public:
virtual double foo(double) {. . .};

};

class C: public A, public B {

public:
using A::foo;

using B::foo;

virtual void foo(){. . .};

};
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In this case C would have two overloaded foo methods.

In Eiffel, we can join features with the same name, if they have the same
signature and both of them are deferred. This is the point where the keyword
undefine becomes handy:15 we can make features that have already been defined
to become abstract again. We can redefine the functions to get signature identity,
or to get identical names. The joined methods will have their preconditions
connected with an or operation, and the post conditions are connected with an
and operation. The derived class can keep the feature deferred or can define it.
Bertrand Meyer said: ”We can kill more abstract birds with one stone” [Mey00].

class D
inherit A

rename bar as foo
undefine foo

end;
inherit B

rename baz as foo
undefine foo

end;
feature

foo : T is
. . .

end −− class D

Join can be important in case of already deferred methods when we want to
merge different abstractions. In this case we do not have to undefine anything.
For example the CHAIN class – which represents the list of sequential structures
in the standard library – inherits from two abstract classes which both have a
deferred item feature, which returns the item at the actual position of the cursor:

deferred class CHAIN [T ] inherit
BIDIRECTIONAL[T ] . . .
−− It has an item deferred routine in the iteration hierarchy which
−− is the value of the actual element.
ACTIVE [T ] . . .
−− It has an item deferred routine in the access hierarchy which is
−− the element under the cursor position.

. . .
end

The CHAIN class inherits both item features which would lead to a name
conflict that can be resolved with renaming but now it is advised to be joined.

15 See Section 10.7.3
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Handling of diamond inheritane

A special case of multiple inheritance is repeated inheritance, when a class can
reach a base class through different paths in the inheritance graph. In this case
the class will inherit the same attributes more than once. How many instances
should an object of a class have from these attributes and how should it reach
them? This is the problem of ”diamond inheritance”.

If in the base class A we have an attr a attribute and a foo method, than all of
the derived classes of A should inherit them. If A has two derived classes: B and
C then these both are going to contain attr a and foo, and they can introduce
new member variables like attr b and attr c and new methods like bar and buz.
If we derive a D class from B and C , it will have attr b and attr c properties
and bar and buz methods for sure, but how many attr a and foo should it have?
How should it reach them? How should it differentiate them?

Figure 10.11: Problems of multiple inheritance

There are different solutions for this problem in the different languages. To
analyze this problem we should examine the two typical languages that support
multiple inheritance: C++ and Eiffel. We should examine separately what they
do with multiple inherited methods and member variables.
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Multiple inheritane of member variables

In C++, the default solution is that every member should appear as many
times it was inherited and you can reach them through the name of the base
class (like: C::attr a). It can happen that there is no sense in multiplying the
inherited attributes. For example, we have the Person class with name and
placeOfBirth attributes and we have derived Student and Teacher classes from
it. Imagine we have to derive the Tutor class which represent a Student who has
Teacher responsibilities as well. There is no use of having name and placeOfBirth
attributes multiple time in the object. In this case in C++, the base classes can
decide to use a ”virtual ancestor” which makes it possible for the common derived
classes to only inherit the attributes of the ”virtual ancestor” once [Str00].

It is possible that we inherit member variables from the common ancestor
that we want to have only once and some that we want to have multiple times.
For example it is possible that tuition fee and salary should be sent to different
accounts. There is no solution for this in C++. In Eiffel the default solution is
to have all attributes inherited once, and the developer can rename any of them.
Renaming also means the multiplication of the inherited attribute [Mey91].

Multiple inheritane of methods

In case of diamond inheritance, the unchanged virtual methods of the common
ancestor are inherited once by the common descendant. It is different if any
of the derived classes redefine the inherited method. In this case the common
descendant will inherit more of this method which is only resolvable in C++ if
the derived class overrides the inherited method. In Eiffel we can even rename
and redefine the method.

The implementation of polymorphism and dynamic dispatching raises a new
question: Let there be a method foo, inherited from A class (See Figure 10.11).
Suppose that B and C redefine it. We derive a class D and we do not introduce
a new implementation in class D for method foo. We assign a D type instance
to an A typed a1 variable. If we call foo on reference a1 which method should
be called? The method from B or the method from C? The current problem is
not the lack of implementation but the overwhelm of implementations. To solve
this problem Eiffel introduced the select keyword in the inheritance clause.

class A
feature

foo : T is . . .
end −− class A
class B

inherit A redefine foo end
feature

foo : T is . . .
end −− class B
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class C
inherit A redefine foo end
feature

foo : T is . . .
end −− class C
class D

inherit B rename foo as bFoo select bFoo end;
inherit C rename foo as cFoo end

end −− class D

In case of multiple inherited method we have to note in the inheritance clause
with the keyword select which one to use when the instance is referenced through
the base class. Most of the programming languages do not tend to solve the
problems of multiple inheritance and do not allow to use it. Some experts advise
not to use it at all. Some others think that most of the problems are resolvable
if in case of specification inheritance we only inherit from abstract classes and
we only implement representation and implementation from only one base class.
This approach led to introduce interfaces as a feature of the language.

Multiple inheritane of Python

In Python the problems of multiple inheritance is solved by name resolution. If
any method is requested (from outside or from an other method, where it does
not count whether the method is defined in the object, in the class or in any base
classes of the class) its name is resolved by the same algorithm. First it checks
whether the method or variable was defined in the object, than in the class. If
not, then it takes the first base class of the class. It the first super class (or
its base classes) does not define the requested name, then the algorithm checks
the next super class (and its base classes). This is a depth-first, left-to-right
algorithm. In case of diamond inheritance Python uses C3 linearization which
was described in Section 10.7.2.

Multiple inheritane of Sala

Scala only support single inheritance. But every class can extend multiple traits.
A trait is something like interfaces in Java. A trait holds method declarations
and fields. (Until Scala 2.7 these fields could be overridden in the derived classes,
but field overriding results in compile time error now.) The methods can have a
default implementation. This way a Scala class can inherit two or more imple-
mentation of a class. In this case that implementation will be available which
belongs to the trait that was listed later in the class specification.

trait FirstTrait {

abstract def greet() { println("Hello World!") }

}
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trait SecondTrait {

abstract override def greet() {

println("Hello You!")

}

}

class Greeter extends FirstTrait with SecondTrait

In this example Greeter class has a greet method (which is Unit). If we
call on a Greeter object the greet method it will print "Hello You!" since
Greeter will inherit the greet method from FirstTrait – it was the trait

that was listed first, then it will be overridden with the default implementation
of SecondTrait because this was listed later.

It would be impossible to list them in SecondTrait and FirstTrait order,
because SecondTrait states that it overrides a method called greet but
Greeter does not have any. The second problem is FirstTrait states that it
will define a new method which is called greet but Greeter will already have a
greet method inherited from SecondTrait (if we have resolved the compilation
problem of SecondTrait.)

A common solution to the problem is to have a common base trait that is the
ancestor of both traits. This base trait should declare the common methods
thus would make abstract override definition of methods valid. This could
make both FirstTrait with SecondTrait and SecondTrait with FirstTrait

to compile.

trait CommonBaseTrait {

def greet()

}

trait FirstTrait extends CommonBaseTrait {

abstract override def greet() {

println("Hello World!")

}

}

trait SecondTrait extends CommonBaseTrait {

abstract override def greet() {

println("Hello You!")

}

}

class Greeter extends FirstTrait with SecondTrait

class CommonGreeter extends SecondTrait with FirstTrait

In this example, objects of the class Greeter would greet with Hello You!

and instances of CommonGreeter would greet with Hello World! since then
FirstTrait would override the method introduced by SecondTrait.
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Mixins of Ruby

Ruby is a dynamically-typed object-oriented programming language which was
designed to focus on the user (the programmer) and not the executor (the
computer). It has all the common object-oriented features, but Ruby also has
Mixins as a solution for multiple inheritance.

Ruby has modules. A Ruby module is like a Ruby class. It holds method and
constant declarations, it can have module and instance methods. Modules can be
embedded into classes which will automatically ”inherit” the methods from the
module. It is not the classical inheritance however, it is hard to distinguish from
it. All the ”type-check” features of the language (like kind of and instance of)
behave the same way. The main difference is that it can be done dynamically.

module Flying

def fly

puts "I am flying"

end

end

class Eagle

include Flying

end

class Seagull

include Flying

end

def showUsage

johnTheEagle = Eagle.new

jonathanLivingstone = Seagull.new

johnTheEagle.fly

jonathanLivingstone.fly

end

showUsage

The above code prints two lines of: I am flying. Both the Seagull and Eagle

classes have the same fly method inherited from a common ancestor.

module WoodWork

def pickWorms

puts "knock, knock, yum-yum"

end

end

class CommonBird

# Common bird stuff

end

class Eagle < CommonBird

end
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class Woodpecker < CommonBird

def learnWoodWork

self.class.send(:include, WoodWork)

end

end

def noWoodWork

e = Eagle.new

w = Woodpecker.new

# All of the following lines are runtime errors

e.pickWorms

w.pickWorms

end

def loadingWoodWork

a = Woodpecker.new

b = Woodpecker.new

# this line is a runtime error:

# a.pickWorms

b.learnWoodWork

# this will work:

b.pickWorms

# now this works also:

a.pickWorms

# now it works with new instances also:

c = Woodpecker.new

c.pickWorms

end

noWoodWork

loadingWoodWork

In the above example there is not much difference between an Eagle and a
Woodpecker except that a Woodpecker can learn to pick worms from a piece of
wood. A common Woodpecker cannot do it by default, but after learnWoodWork
method was called on any instances all the instances have the pickWormsmethod.
But it can be more special:

module WoodWork

def pickWorms

puts "knock, knock, yum-yum"

end

end

class Woodpecker

def learnWoodWork

class « self; include WoodWork; end;

end

end
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def loadingWoodWork

a = Woodpecker.new

b = Woodpecker.new

# this line is a runtime error:

# a.pickWorms

b.learnWoodWork

# this will work:

b.pickWorms

# this still not works:

# a.pickWorms

# and it is neither applied for new instances:

# c = Woodpecker.new

# c.pickWorms

end

loadingWoodWork

In the above example only b will have the pickWorm method. Neither previ-
ously or later instantiated objects will have this method, but they can include
the module as well. This dynamism can only be done by modules in Ruby. It is
also possible to include multiple modules. If two modules have defined the same
method than the method of the later included module will be accessible.

module LandLife

def breath

puts "I breath with lungs"

end

end

module WaterLife

def breath

puts "I breath with gills"

end

end

class Amphibian

include LandLife

include WaterLife

def superBreath

super.breath

end

end

def testing

a = Amphibian.new

a.breath

a.superBreath

end

testing
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The above code will print: I breath with gills and I breath with lungs.
The ”inherited” method (breath) will print the first one, but we can access
the other method definition with the superBreath method which calls the
super.breath method. This shows that Ruby handles multiple method like
ancestors and a method which is included later is like an overriding in a subclass.
This module handling makes Ruby very flexible.

10.7.6 Interfaes

The interface is a special abstract class. There are no instance variables in it,
and the methods are only declared not defined. (Sometimes interfaces can hold
class constants.) The interface – as its name suggests – describes the concept
of the interaction border of the object. This is a new abstraction level in the
program: we can ignore the concrete implementation and we can focus to the
design concept. (And it also increases changeability.)

The real usage of the interface is through its implementation. A class imple-
ments an interface if it gives a definition to all if its methods. This makes the
abstract concept of the interface to a concrete class. The variables with the type
of the interface can hold references to any implementers.

Interfaces can inherit between each other. Interfaces can be ordered to an
inheritance hierarchy as well. Even multiple inheritance (See Section 10.7.5.) is
quite straightforward because every method body is missing and there are no
member variables. A class can implement any number of interfaces. If there is
a function which can be separated into two separate responsibilities than it is
a good design if we separate the methods of the responsibilities, put them into
separate abstract classes and then inherit and implement both of them in a class.

Protools in Objetive-C

Objective-C is an extension of C following the concepts of Smalltalk [PW91]. In
the language we have single inheritance and protocols.

A protocol is a collection of abstract methods. If a class adopts a protocol
then it implements all of its methods. If a class implements all of the methods
in a protocol we say it conforms to a protocol. A protocol can be considered as
an abstract class without member variables.

For example we can define a protocol that describes that it can be saved or
loaded:

@protocol Archivable
-read: (FILE*) f ;

-write: (FILE*) f ;

@end

We can express that the Shape class adopts this protocol the following way:
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@interface Shape: Object
<Archivable>

Similarly we can prepare the reference counter protocol:

@protocol ReferenceCounter
- increase;

- decrease;

- (unsigned) references;

@end

One class can adopt multiple protocols:

@interface Shape: Object
<Archivable, ReferenceCounter>

This way we have introduced multiple inheritance. In Objective-C this can
be only done with protocols.

Multiple inheritance is allowed between protocols, and a class which adopts
a protocol from an inheritance hierarchy means that it conforms to all of the
base protocols of the protocol.

Interfae in Java

In Java, interface means a new reference type which is a place to declare abstract
methods and constant values.

An interface is always abstract, we do not have to note it, but we have to
declare the interface public or it will only be visible in the package.

We can declare an interface in the following way [Nyek08]:

public interface Drawable {

public void draw();

}

public interface Sortable {

public boolean lessThan(Sortable s);

public boolean equalsTo(Sortable s);

}

There is inheritance between interfaces, which is called extending in Java.
We could extend the Drawable interface the following way:

public interface ColorDrawable extends Drawable {

public int Color = 2;

public int whatColor();

}
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The ColorDrawable interface has COLOR constant and two declared methods
(draw and whatColor ).
There is multiple inheritance between interfaces.

public interface ColorSortable extends ColorDrawable, Sortable {

int SIZE = 1;

}

A class can inherit from an interface with the implement keyword when all
the inherited methods should be defined:

class Shape implements ColorDrawable {

public void draw() { . . . }

public int whatColor() { . . . }

}

The standard library of Java contains several interfaces. They are very im-
portant for graphical contents and concurrent programming. Even the java.util
package has lots of interfaces in Collection Framework [Nyek08].

Objet Pasal

Interfaces in Object Pascal are collections of abstract methods and attributes.
Every interface must have a unique identifier. Every interface is a descendant
of IUnknown interface by default, but we can define any interface hierarchy.
The methods of IUnknown are: QueryInterface, AddRef and Release which
are implemented in System unit in TInterfacedObject class. It is advisable to
derive our interface implementer classes from this class.

For example ([Can00]) we can introduce the ISortable and the IDrawable
interfaces (it is a convention to start every interface name with I ):

type
ISortable = interface

[. . .]
function LessThan(a : ISortable): Boolean; virtual;
function Equals(a : ISortable): Boolean; virtual;

end;
IDrawable = interface

[. . .]
procedure Draw; virtual;

end;

We set the identifier between the [. . .] tags and also specify the LessThan, Equals,
Draw methods:

We can introduce the class TShape by deriving the TInterfacedObject and
with the implementation of IDrawable interface:
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type
TShape = class (TInterfacedObject, IDrawable)
public
procedure Draw; virtual;
. . .

end;

A class can implement more than one interfaces.16

type
TSortableShape = class (TInterfacedObject, IDrawable, ISortable)
public
procedure Draw; virtual;
function LessThan(a : ISortable): Boolean; virtual;
function Equals(a : ISortable): Boolean; virtual;
. . .

end;

The implementer class can be abstract. In this case we have to mark the
abstract methods with the abstract keyword.

C#

The interface solutions of C# are similar to Java, but we cannot define constants
in an interface. Interfaces can hold property declarations, indexers and event
listeners [Csref03]. Multiple inheritance is allowed between interfaces.

interface IAinterface {

void MethA1();

void MethA2();

}

interface IBinterface {

void MethB1();

int X { // Property.
get;
set;

}

}

interface IA Binterface: IAinterface, IBinterface {

void f ();

void g();

}

16 If they have similar method names we can rename them [Del99].
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Interfaces can be implemented by records and classes, which should be noted
in the inheritance clause. If the implementer class declares a base class we have
to write it in the first place.

class AClass: BaseClass, IAinterface, IBinterface {

private int myX;

// Implementation of methods . . .
public int X { // Implementation of property.

get { return myX; }

set { myX = value; }

}

}

Interfaces in C# define an interface to help the developer to handle objects
uniformly by their behavioral similarities.

Traits in Sala

The first and most important difference of traits in Scala to interface of Java
is that a trait can hold default implementation of methods. (This feature will
be available in Java 8.) The other important difference is that a Scala trait can
extend a class. Usually if your class extends a base class and has a trait, than
it is added to the class declaration with the with keyword. But if a class does
not extend any classes than the trait should be a extended with extend. (Other
traits still can be added with with keyword.)

A trait can also have a constructor, but cannot have any construction pa-
rameter. This means if a trait extends a class that class must have a parameter-
less constructor. If we define a class with multiple traits than our class will
execute the constructors left-to-right. The constructor of the derived class will
be executed after the constructor of the base class and traits.

trait FirstTrait {

println("Constructor of FirstTrait")

}

trait SecondTrait {

println("Constructor of SecondTrait")

}

trait ThirdTrait {

println("Constructor of ThirdTrait")

}

class Extender extends FirstTrait with SecondTrait, ThirdTrait

Instantiation of Extender would print: "Constructor of FirstTrait",
"Constructor of SecondTrait", "Constructor of ThirdTrait". After these
constructors would be the constructor of Extender executed.
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Traits are excellent features in Scala to change between distinguish between
class or type hierarchy and behavioral similarities. We do not have to make a
common ancestor (class) for two independent types which share a functionality,
and we do not have to duplicate the same behavior.

10.7.7 Nested lasses, inner lasses

Some programming languages allow to introduce classes inside other classes, and
we call them nested classes.

In the following example ([Nyek08]) the class List has a nested class called
Element which is invisible for the outside world, only the methods of List can
use them:

public class List{
private Element first;
private static class Element {

Object data;

Element previous, next;
Element (Object data, Element previous, Elem next){

this.data = data;

this.previous = previous;

this.next = next;
}

}

public void insert (Object data) { . . . }

public void delete (Object data) { . . . }

private void delete (Element element) { . . . }

private Element search (Object data) { . . . }

}

In Java, we differentiate inner classes from nested classes. We call every class
that was defined inside another class as nested class, but a nested class can be
static and non-static. A non-static nested class is often called as inner class.

10.8 Working with lasses and objets

It is not a priority of this book to give any programming, architectural or design
advices but it can start lots of interesting thoughts what to do with the different
language features. If we just start using language features, inheritance, module
system, etc. than our application might fit to the logic of the language but will
not be easily maintainable.

These principles and patterns are quite universal, and help to understand
how and why use all the earlier mentioned features. This is not an almighty list
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of object-oriented programming, because this book is not about that, but it can
guide reader to the fields of common object-oriented mistakes and solutions.

10.8.1 The Roman Priniple

The first thing to consider is so natural for every experienced programmer that
they do not even consider it as a true principle, it is just part of the common
knowledge. As Saint Ambrose said in the early medieval: ”When in Rome, do
as the Romans do”! This means that if we decide to work in a programming
language than we have to accept the rules of that language. It is important
because other (experienced) programmers would expect that from us, and they
would provide us a code that fulfills the common concepts.

What does this cover? For example if we write our code in Python we should
start a member name with one underscore ( ) if we want to show the other
developers that it was considered as private. In a language where we do not have
any data hiding solution such a common rule is very important. If we ever see a
code that directly manipulates variables with one leading underscore or directly
calls methods like this on a variable than we can assume that code has more
serious issues.

We should never mess up the concept of copy constructor in C++ and clone()

in Java. It is quite obvious for (former) C++ developers to define copy construc-
tors since nothing forbids it in Java to define a constructor that gets a previously
instantiated object as a construction parameter. However in C++ a copy con-
structor is called automatically when we use assignment to a freshly defined vari-
able (for example: SomeClass newVariable = previouslyDefinedInstance;). But
it is only called if we assign an object and not just a pointer to an object.
Every case in C++ when we do not use concrete objects but pointers to one it
clearly shows the possibility of a polymorphic instance. (For example a code like
this: SomeClass newVariable = *pointerToInstance; is a potential truncation of
types.) But in Java it has no sign in code that we could make anything wrong
since there everything is a pointer.

(Consider this code: SuperClass sc = new SuperClass(subClassInstance); here
we convert a sub class instance into a super class instance, and we can have
different method implementations and also invalid inner state.)

We can write code that is totally correct in the level of the type system,
and cannot be found with static code analysis, but can behave erroneously in
runtime. However clone() is a polymorphic solution for this problem.

This list could be endless. The most important thing about it we should
consider is: it is not enough to know that a language has the same keywords
that can even mean the same thing, we should also learn the logic and the
hidden rules of the language to write maintainable code.



548

•
Objet-oriented programming

10.8.2 Testing doubles

It has came to light that the classical software development is not responsible
enough. There is a huge gap between the idea of the client and the tools of
the programmer which make it really hard involve the client to the procedure
of software manufacture. This procedure is even more strange for the client if
the solution will be written in an object-oriented programming language. The
process of making a complex object-oriented software starts with architectural
designs, object diagrams that help abstractions, than abstract classes and sepa-
ration interfaces are defined and implemented. At this point month have passed,
millions of lines of code has been written and nothing works yet.

To make this process more human friendly a lots of solution has been made:
eXtreme Programming, Rapid Application Development, etc. All of them are
based on testing that makes it possible to frequently change the code and the
design without mistakenly alter an already well written behavior. These solutions
make prototyping possible which is an easy way to get fast client feedback. To
get any benefit of testing we have to run our tests frequently, in an ideal case in
every code change. That is where testing doubles came handy.

The term ”test double” comes from Gerard Meszaros, who used it in xUnit
Test Patterns - Refactoring Test Code, when could not find any name to a not
real object in testing that was not taken already by any concept. He has borrowed
it from Hollywood stunts. These doubles are – just like in Hollywood – to replace
expensive objects in dangerous situations. How can an object be expensive? An
object might need lots of memory to work. It might take lots of CPU time in
its methods. Construction and destruction objects like these could take many
resources. Why is a testing harness dangerous? In tests we directly create special
cases (beside average use cases) where we know the system can fail. We separate
every test case from each other which means we should build up the test system,
and then we should tear it down.

In dynamic languages to make test doubles is not challenging. But it is in
strongly typed languages. Why? What does a test double do? In short: nothing.
Well of course, it does something: it replaces the original object. They could be
categorized but these categories are not strict. Martin Fowler has the following
categories:

• The most simple test double is dummy object. Dummy objects just sit
there in parameter lists, and can accept method calls, but do not change
anything in the workflow. They are like Null Objects – not null references
– or placeholders.

• Fake object is an object that has some working implementation but this
is not enough for a production code. For example it can be any hardwired
data source instead a complicated – user friendly – implementation.

• Fowler calls stubs every object that has fixed answers in its methods.
These are typically done with method overriding where every method is
a one line long return value, or a simple empty implementation.
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• An object that records every method call on it – time, order, parameter –
is called spy. These can be very useful to test behavior of two collaborating
objects.

• And finally he presents mocks, which have a preprogrammed protocol
(method call order, required parameters, etc) and fail the test case as soon
as one point of the protocol is missed. These are also used for behavior
testing.

All of these features are only possible to use if we can have polymorphism,
dynamic dispatching, etc. In languages (like C++) where we can only override
methods that were marked for this they are quite hard to be used easily. In C++
we cannot extend all the classes, but only those that have a virtual destructor.
If they do not have virtual destructors than in destruction only the destructor
of the dynamic type will be called and we can have resource leak, we can violate
type invariant, etc.

10.8.3 SOLID objet hierarhy

SOLID as an object-oriented principle was first introduced by Robert C. Martin.
This is an acronym that stands for five principles that – according to Martin –
should be applied for all object-oriented software system. These are to make our
system, flexible, maintainable and understandable. (And they also help to make
it testable.)

Single Responsibility Priniple

Single Responsibility Principle stats that every class should have only one re-
sponsibility and that responsibility should be entirely served by that class. This
is not so easy to achieve as we think, since we usually represent real life things
with classes which could lead to a very complex entity.

If we imagine a car, which could be represented with a Car class. If they
only holds data of a car (like in a car sale system) it will be fine. If they take
part in a driving simulation, than a single class can be few. Think about it: in a
simulation we want to control the engine the steering, we want to set properties
of the tyres and so on. This could lead us, to take the Car apart.

If we separate the different functions of the car into BreakPedal , GasPedal ,
Engine, SteeringWheel, Tyre, WindScreen, etc. than what would be a car? Can
we remove Car class entirely? No, because it will be still needed to collect
all of these objects into a single entity. It can be a Mediator which helps the
parts to work together. When the GasPedal is pushed, it tells the Engine to
accelerate through the Car and so on. The Car class should only have this
mediator responsibility and nothing else.

Now we can think that such a complex thing as a car obviously can lead
to such complicated architectures. But we can take simpler things, like a glass.
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What responsibilities should a class that represents a glass have? It can hold
information as capacity, content, color, etc. What can we do with it? We can
fill it up. We can empty it. We can ask how much liquid does it contain. (Is it
half-empty or half-full?)

But a glass can appear in a different context. A Glass class can represent a
3D model of a glass, and in this case it also has reflection, clarity, shadow, etc. If
this 3D model also has to work in a physical context (falling, breaking, moving,
etc) than it is getting more and more complex.

To identify whether our object has a single responsibility or more Martin
advices to examine why should we change our object? If it should change for
only one purpose than our class has a single responsibility otherwise not. If we
have a set of functions that uses only a set of member variables, than this set
could be a class. If we have more separate sets, than we might have more classes,
and so on.

Open/Closed Priniple

As Bertrand Meyer wrote in Object-Oriented Software Construction ”software
entities should be open for extension, but closed for modification”. This sounds
impossible but it is not. This principle only suggest us to make our system
modular.

How can we make an object based system modular? We have to use ab-
straction and the power of polymorphism and dynamic dispatching. If all the
”modules” of our system is accessed through a well defined interface than they
can be replaced without touching the code that works with them.

For such a flexible implementation we have to ensure that the objects that are
separated from the system are not instantiated directly else we cannot replace
the ”modules” freely. Every object creation should be made dynamical as well.
This is achievable if we use the Abstract Factory design pattern.

Our code is initialized with an instance of any derived class of the Abstract
Factory and we request all of our objects through that factory instance. This
ensures the opportunity to build up our system with the correct ”modules”.

This shows us that every part of the system that is open should be totally
separated from the working code. The instances of the ”module” should come
from an abstract class. We should handle the instances uniformly through their
common interface. We should not make any type-checking differentiation the
closed part of the system should be totally free from any information of the
underlying implementation.

Every logic of the application that has to behave differently in case of different
instances should be moved to the open parts of the system. Every lines of code
that is inside the closed section of the code should keep behavior. Open/Closed
Principle requires the closed part to be constant. Open parts of the system can
expect some behavior of the closed part (like method invocation order) which
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is a dangerous invisible dependency of the system that can result mysterious
failures of the system.

Dynamic languages such as Ruby can solve these problems easily. Ruby has a
built in module system which is useful to fully customize class features according
to requirements, but it also has ”duck typing”. This funny name refers to James
Whitcomb Riley who said ”When I see a bird that walks like a duck and swims
like a duck and quacks like a duck, I call that bird a duck.” In Ruby we can
replace objects with each other in a context if both of the objects has all the
methods that are used by the context with the same signature.

Strongly typed languages has to use inheritance for the same purpose, and
they can only have contravariant parameters, and covariant return values. In
C++ we have strong features to keep our system closed: we can only override
methods that are marked virtual. In C# we can always overload methods – even
non virtuals – but they would only take effect if they are referenced through
their dynamic type. This closed behavior can be forced by such features as a
closed class or method (like final classes and methods in Java, etc.)

Liskov Substitution Priniple

The L in SOLID stands for Liskov Substitution Principle which was introduced
by Barbra Liskov. She has laid down that any instance of a class should be
freely replaced with any instances of any subclass of the class without altering
any property of the system. It is not strictly defined what those properties are.
It can be static correctness, correctness, result, etc.

Strongly typed languages usually provide us with static correctness. Every
instance of a derived class has the same public interface as the base class had.
Eiffel makes an exception since in Eiffel we can inherit from a class without
inheriting its interface.

What else should we require? For example we can request that every overrid-
den method should accept similar parameters and should return similar value.
This is the most common application of this principle.

We can also make limitations to side effects of a method invocation. If we state
that we cannot alter the side effects of any methods, than we force programmers
to only extend classes or only implement abstract methods. This solutions helps
to build a flat object hierarchy which makes our system more flexible.

Interfae Segregation Priniple

Interface Segregation Principle comes from Robert C. Martin who has designed
a software for Xerox and realized that it became more and more expensive to
change the system. In that architecture they had a central class that has played
several roles between the well defined and separated modules of the system.
However every time when a module needed to send a new type of message to
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another this method call had to be driven through the central class. Every time
when the central class was changed the whole system needed to be recompiled.

This phenomenon came from the static linking of C++ source files: once one
of the included sources were changed every source that was built on them – or
just simply used them – needed to be recompiled to be able to link to the new
content. Totally unrelated classes that had nothing to do with the source of the
change needed to be recompiled, relinked, etc. which took a lots of time. This
expensiveness made them to concentrate to the system design, and they have
discovered the problem:

The problem was that the central class was included directly to every source
file. Every class had full access to every method that was no way close to their
responsibilities. The problem of the physical linking led them to realize the
problem of logical linking. The interface of the central object could be cut to
different roles that could be declared by different (pure virtual) classes. These
classes should be included by the underlying modules. In this case the changes
of the central class would only affect the classes that are logically involved in
the change.

Beside linking Interface Segregation Principle has other advantages as well.
If we design our system considering this principle than we get a more natural
solution. Imagine that we are clients of a bank and we can handle our accounts
through a website. The server which holds this website holds the access point of
the director of the bank. A director can do totally different things than a client.
It is possible that the same physical thing holds independent roles but we feel it
better if they are accessed through different interfaces. If we would see that we
can touch all the account in that bank through our interface we would not feel
our money safe in that institute however all the clients can promise that they
will be trustworthy we would prefer banks with higher security.

This is the case of large interfaces if a class has access to unrelated methods
of an object our system can easily become fragile. Even if we do not separate
the implementers to different classes we can always slice the interface to make
our system less sensitive to changes.

Dependeny Inversion Priniple

Dependency Inversion Principle is a mixture of Dependency Injection Principle
and Inversion of Control. This is a little ”marketing” to get SOLID as acronym.

Dependency Injection means that composite objects that do not represent
the state of an object only grants access to some functionality should not be
instantiated by the enclosing class but they should be included from outside.
This injection is better to perform in creation time to ensure validity of type
invariant.

These injected objects should not be referenced directly by the enclosing
object only their (abstract) super type should be used by. This limitation gives
us inversion of control.
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Dependency Injection gives us modularity. If outer logic is not forced by the
class but injected by its builder or context than our class will become more
reusable. Imagine a calculation where the calculator should get input data,
execute the logic and report every errors and results to the user. This class can
get an InformationPresenter class as an outer dependency. This dependency
should have a showError(String) and a showMessage(String) method. Behind
this method everything can happen. If the InformationPresenter is a wrapper of
command line messaging (writes to standard error and standard output) than we
simply write messages to command line. If it is a wrapper of a complex network-
based logging system than we will log our messages through a network. All the
logic of message visualization is separated from the logic of our calculation.

Inversion of Control makes it possible to physically separate our application-
logic from other logic. In the previous example if we would not have a com-
mon ancestor of the two different InformationPresenter classes than depen-
dency injection would still be useful. We could have two variables (for example
logPresenter and simplePresenter) we could centralize our information sowing
logic to methods that checks whether we have logging or printing logic (for
example which variable is not null) and use that to visualize information. Inver-
sion of Control separates these two implementation from our calculation. When
we directly use logging and change anything in log handling it means that our
calculation class should be recompiled. If we have a common base type that is
used to access information visualization objects than we can change the concrete
classes freely if we do not change the base class.

We can represent dependencies as a directed graph where a class depends
on an other class if it is directly using it (extending a class is a direct usage)
with an abstract class we can flip direction. (That is why it is called inversion
of control.)

This principle helps to build loosely coupled systems which is much more
maintainable than hardwired ones.

10.8.4 The Law of Demeter

Karl Lieberherr and Ian Holland has first mentioned the Law of Demeter which
was named after their object-oriented research project. (Demeter was the goddess
of harvest in ancient Greek.) In this principle they have suggested that every
method of every object should only talk to their friends and should never talk to
strangers. This means that it is restricted which objects methods can they call.
The Law of Demeter states that every method can freely invoke:

• methods of its own object
• methods of the direct composite objects of its own object
• methods of object that was created by the method
• methods of object that was given as input parameter to the method
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To be honest the Law of Demeter only forbids to call any method on a return
value. Why is it so bad? First of all it hard wires your software’s architecture.
If you have many calls like a.getB().getC().getD().getE().doSomething()

than you always have to ensure that every a like objects have to have a B that
has a C which has a D that has access to a E that can doSomething(). If we
ever want to change D and from that it might not have E available than and
returns null in case of getE() was called than we introduce run time mistakes
in parts of system that are not a single bit related to D.

In a software system it is quite natural that objects has and provides in-
formation about their context. But this information should not be used like
in the above example. Every object should work with its own context because
it was designed that way. We have to build a system that sounds reasonable
for any developer and not just to developers who has lots of knowledge of the
architecture. This – of course – means that we have to use reasonable names for
our classes, instances, methods and variables, and also means that the authority
of the class should be possible to detect from its name.

Imagine the following line of code inside a class that is called Teacher :
getClass(0).getStudent(0).getFather().getCar().start()

First of all this line is way too long. Secondly why should a teacher of a
Student be able to start the car of the father of the Student? We can say that
references of the system is reasonable. A Teacher have access to the Classes that
she teaches in. A Class knows the Students that attends to it. A Student knows
his parents. An Adult can have a Car . All these references sounds reasonable
but we do not feel appropriate if a random teacher of our child just starts our
car. If all these references sound reasonable we do not have any reason to get
rid any of them. This means that a system which holds the possibility to write
such a statements is not bad from the beginning. We just should not write such
a line ever.

The problem is that it is usually not so clear who has right for what. Can
an MP3 player class send message to the pause button or only the pause button
can send message to the class to stop music? If we avoid these chain message
calling than we end up with a question: We have to provide some paths from
one object to another how can we do that?

The first answer is: we should have instant access to that object from the
first one. That means that a Teacher can know the Students directly not just
the Classes. But should a Teacher have direct access to all parents who has a
child that attends to any classes of the teacher? No but sometimes a teacher has
to send some messages to the parents (like ”Your child has behavioral disorder.”
or ”Little Jenny has won the school programming competition.”) but it is quite
natural to do it through the child. It is more likely that the teacher gives a letter
to the student that tells the information to the parents than she walks right up
to the office of the mother to inform her.

If we follow the second rule that means new methods will appear on the
interface of the Student some methods that helps teacher-parent communication.
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The good side of this is that we can limit the rights of the Teacher class, but the
bad side is that the interface of the student will grow. Well for this the Interface
Segregation Principle gives a good solution.

The Law of Demeter also helps to find out responsibilities. If a Teacher has
direct access to the Car of a parent when the whole system fits the Law of
Demeter than it must have a reason. First they might share the car (the teacher
of the child can also be a parent of the child), or the teacher is a driving teacher
that teaches on the car of the family (maybe for financial reasons). The most
important part of that is it helps to discover correlations and relations of the
system.

10.9 Summary

In this chapter we have seen the disciplines of object-oriented programming and
their implementations in some languages.

Object-oriented programming is the sum of communicating objects which are
described with well-defined properties and responsibilities.

Objects are to model separated parts of the world. Objects are collected into
classes by their properties. We have seen the implementation of the concept of
class and object in different programming languages. We have seen the object and
class diagrams which are common notations for these concepts. These diagrams
help us to represent the connections and relationships of objects and classes
without the concrete implementation solutions and language features.

Data members and methods are encapsulated together in a class. It is advised
to forbid the direct access of the data members by other objects the inner state
should only be manipulated by the methods of the class. This is supported by
different data hiding solutions.

Classes can have members and methods that are not connected to instances
of the class. These are the part of the class and they are assigned when the class
is declared. These are called class variables and class methods.

The most important feature of object-oriented programming is that we can
build class hierarchies by inheritance. During inheritance we can extend the base
class with new variables and methods, and we can also redefine methods. In some
programming languages we can even change the data hiding properties as well.

Inheritance calls for life substitution. Substitution means that the instances
of the derived class can replace the instances of the base class. Polymorphism
and dynamic dispatching makes substitution possible.

If we derive classes from abstract classes (or interfaces) we can implement
the abstract methods differently. This solution simplifies program design and
supports changeability.

Some languages support multiple inheritance which means that a class can
have more than one direct base classes. Multiple inheritance has benefits and
drawbacks. Most of these disadvantages can be avoided by using interfaces.
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Object-oriented programming is the most popular paradigm nowadays. The
main reason is that it supports code reuse, and by clear class hierarchies the
development of reusable programs.

10.10 Exerises

Exercise 10.1. Describe the rules and suggestions for encapsulation!

Exercise 10.2. Give some problems where the use of the friend class is an ad-
vantage!

Exercise 10.3. Give problems from everyday life which illustrate inheritance!

Exercise 10.4. What are the advantages of a common ancestor in a language?

Exercise 10.5. Describe dynamic binding through an example!

Exercise 10.6. Compare the support of polymorphism in C++, Eiffel and Java!

Exercise 10.7. Compare the multiple inheritance in C++ with the possibilities
of interfaces in Java!

Exercise 10.8. Compare the constructors and destructors of various program-
ming languages!

Exercise 10.9. Compare the multiple inheritance in C++ and in Eiffel!

10.11 Useful tips

Tip 10.1. See encapsulation in Section 10.4.

Tip 10.2. See friend in Section 10.5.1.

Tip 10.3. Read useful information about inheritance in Section 10.7.

Tip 10.4. You can read about common ancestor in Section 10.7.4.

Tip 10.5. For information about polymorphism and dynamic binding see Section
10.7.2.

Tip 10.6. About multiple inheritance see Section 10.7.5.

Tip 10.7. Constructors and destructors are described thoroughly on page 477.
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10.12 Solutions

Solution 10.1. The data and the methods that operate on the data should be
placed in the same ”module”. This rule led to the idea of class. A class is a
collection of data and methods over the data. Encapsulation helps to form and
maintain type invariants. (Data hiding helps to ensure invariants.)

What data and method should be closed together into the same type? There
is no straight answer. We can say that what logically belongs together should
be handled together. But there comes the problem of names. Why should a Dog
know its kennel, or certificates of the kennel? A Dog should be an entity of the
world which knows its state (isHungry(), etc.) its services (cache(Object), etc.).
But a class which is called DogRegistry should hold all these information and
should not care about whether the dog is currently hungry or not.

This means that we can decide what to encapsulate from the name of the
class? No, it is not true. If we program an animal recording system we might
want to record differently Dogs and Cats and Horses. Of course int this system
we wont talk about actual animals, but their breed, owner, price, etc. In this case
we will always have a DogRegistry, CatRegistry, etc. but it is not important to
always write down this class is a registry (especially if they are all subclasses of
an abstract Registry class). Noting registry all the time would lead to a cluttering
code.

If we have a system where we have to have both information (breed of a
dog and state of a dog) should we have all of them in the same Dog class? It is
quite likely that the answer is no. These two things are two totally independent
responsibilities, and should be separated. Some time we need them together,
for this we should provide some connections between them and a way to find
connected objects.

Should a Dog have a reference to its Registry and should a Registry have a
reference to the actual animal? This would mean there is a ring in the object
dependencies which is quite malicious. Than who should reference the other? The
one which should have right to change information in the other. If we do want to
have a changeOwner method on Dog than the puppy should know its registry.
If we want a giveInjection method into the Registry than it should reach Dog
directly. But it is also a valid answer to have a special linking class that provides
some functionality, like an inject(String) method that gives the injection to the
dog, and registers its name to the registry. This class can be the link between
the two object, and all methods that can belong to both responsibilities should
be in this class.

From this short example we can see that data can be separated by the
methods, and methods should be kept with data. These two things are so strongly
related that they have to be handled together for a coherent system. This is
encapsulation.
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Solution 10.2. The concept of friend class is a shortcut in C++ to solve similar
issues like the selective visibility in Eiffel. The main difference is that Eiffel can
select between inner variables and classes one-by-one, but C++ can only declare
a class as a friend, and in this case every variable of that class is visible for the
other class.

This shortcut is rarely needed, in the most cases it could be solved by some
standard object-oriented pattern. It can be very useful for testing. If the unit
tests of the class are collected into an other class (a test-class) and that test-class
is a friend of the class than we can check inner state without exporting it to the
public interface.

Other very useful feature to set I/O streams as friend, to write a language
friendly I/O functionality.

Solution 10.3. Think about Uniform Vehicle Code where we can read about rules
that apply to every vehicle on the road. But vehicles have special casts like cars
and trucks. We have general rules for every vehicle like: they have to travel on
a specific side of the road, they cannot cross the barrage line. We have special
rules for trucks like they cannot go faster than 80 km/h even on highways. This
classification is a perfect example of generalization and specialization.

Solution 10.4. Common ancestor makes possible to form general methods. In the
early versions of Java they did not need parametric polymorphism to implement
Collections. They could extend the List class (where we can store objects in a
specific order) without defining what they expect from that object. When we
want to do the same thing with everything regardless their services than we can
make use of the common ancestor.

Solution 10.5. Imagine a little game made for small children. You can implement
a general Animal class where you can define a general action what to do on mouse
click. Like getName() + " says " + getSound(). In the different subclasses we
only have to override the getName() and getSound() methods to get a working
implementation for mouse click.

abstract class Animal {
public void onClick() {

System.out.println(getName()+" says "+getSound());
}

protected abstract String getName();
protected abstract String getSound();

}

class Cat extends Animal {
protected String getName() {

return "Cat";
}

protected String getSound() {
return "meow-meow";

}

}
class Dog extends Animal {

protected String getName() {
return "Dog";

}
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protected String getSound() {
return "woof-woof";

}

}
public static void main(String[] args) {

Animal[] animals = new Animal[] {new Cat(), new Dog()};
for(Animal animal : animals) {

animal.onClick();

}
}

This code prints: "Cat says meow-meow" and "Dog says woof-woof".

Solution 10.6. If we compare polymorphism of Java, C++ and Eiffel we can find
that the polymorphism of Java is the most simple and common. If a class is a
subclass of an other than we can reference it through a variable of the super
class. (If the class implements an interface we can reference an instance through
a variable with the type of the interface.)

In C++, we have the same behavior through pointers but it gets interesting
when we assign an instance of the derived class to the variable of an ancestor
class In this case type truncation happens and we lose all the new variables of
the derived class, and we cannot access the methods of the subclass. If we call a
method that was defined in the super class than no dynamic binding will happen.

In Eiffel, we can only reference our objects through pointers so we do not
have to fear from type truncation like in the case of C++. But Eiffel gives
the opportunity to delete a method from the interface of the class. This means
that we can reference a sub-type instance with a super-type variable and call a
method which is not available on the specific instance.

Solution 10.7. C++ has multiple inheritance in case of implemented methods.
It means it can inherit implementation form multiple classes. In case it inherits
a method from multiple ancestors it has to give an implementation for that
method. The implementation can be a simple call for one of his ancestors. In
C++ it can also inherit variables twice. It is really important to realize these
situations otherwise our class can grow enormous and we can have methods that
seem to work together but always operate on different variable.

In Java we can only inherit method declarations from interfaces which has
to defined or marked as abstract.

Solution 10.8. Usually languages do not have such a straight forward destructor
like C++ has. In C++ when a variable gets out of scope than it is destructed.
We can specify how to do that. In languages like Java and C# we can define a
method that will be called before the object is destructed but contrary to C++
we cannot know when will it be.

Most of the object oriented languages have a special method that has the
same name as the class which has to be called to instantiate an object. There
are languages like Python where we have a special method ( init ()) which is
the constructor of the class. Eiffel gives the opportunity to declare any methods
as a constructor.
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Solution 10.9. If we compare the inheritance of C++ and Eiffel, we should start
with C++ because it is simpler. C++ supports multiple inheritance. C++ has
public, protected and private inheritance. In case of public inheritance we inherit
the full interface of the class and we can access the protected and public parts of
the ancestor. We inherit both interface and implementation. Private inheritance
means that we inherit public and protected members as private members. This
is also called implementation inheritance. If we use protected inheritance then
we inherit all public and protected parts as protected member. This means that
our derived classes can reach them but the outer world does not know about
this inheritance.

Eiffel has all the possibilities. It can inherit from a class but can delete
methods from its interface. It can inherit only implementation or implementation
and interface together. Eiffel has very complex possibilities that even supports
covariant polymorphism in method parameters.





Type parameters11

Type parameters make it possible to write generic,
flexible and reusable program components. This
chapter introduces the idea of type parameters and
polymorphism. A small overview is provided to the
theory of polymorphism, by giving a possible
classification of its types. The most prevalent
properties of the defined kinds of polymorphism and
the way how programming languages implement
them are also discussed in the chapter.
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uring software development it is common to write solutions as generic as
possible to develop components usable in a wide variety of programs.
This is especially important in case of library development. In Section

7.1, it is shown that — even by using subprograms — this goal can be achieved in
some cases, if good parameters are chosen. However, the method’s applicability
is limited by the fact that types cannot be passed as parameters to functions.
Hence, it is not possible to write one subprogram which can work on two distinct,
but similar types.

Type parameters are the solution to this problem.
A subprogram which has type parameters is called polymorphic. A polymorphic
subprogram can handle various types of the same argument, and can be used
in various type environments. Moreover, it is also possible to map different
implementations for different type parameters. Polymorphic subprograms are
sometimes called templates.

The benefit of using type parameters is that we can use the same solution
for problems using two different, but sufficiently similar types. This approach
results in higher reusability, so the usage of type parameters facilitates writing
succinct and more exhaustively tested libraries, as well as solving whole families
of problems, while keeping the effort of the programmer much lower than writing
distinct solutions for the problems.

11.1 Control abstration

When implementing an algorithm, it should work on several distinct types. For
example, to implement a sorting on arrays, the only fact we have to assume is
that there exists a function which can compare two elements of the array.

void qsort(void *base, size t nmemb, size t size,

int (*compar)(const void *, const void *));
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This is the signature of the implementation of the quicksort algorithm in the
standard C library appeared in the C90 standard [C90]. The parameter base is
an array of an unknown type, nmemb is the number of elements in the array,
size is the size of one element in bytes and compare is a function to compare
two elements of the array. Unfortunately, using function pointers is not always
enough to solve the problem, furthermore, using void * is error prone and not
desirable in recent implementations.

Type parameters of subprograms can be seen as a kind of control abstraction.
That is, instead of writing subprograms specialized for different types, it is
sufficient to write one general solution for all of them. It is still possible to write
distinct subprograms for distinct base types, but it is a more graceful solution
to use type parameters and parametrize the function by the element type of the
array. The following function in Java gives an example.

public class Sorting {

public static <T extends Comparable> void sort(T a[ ]) {

for(int i=a.length-1; i>0; –i) {

for(int j=0; j<i; ++j) {

if(a[j].compareTo(a[j+1]) > 0) {

T tmp = a[j];// swapping a[j] and a[j+1]

a[j] = a[j+1];

a[j+1] = tmp;

}

}

}

}

}

The sort generic function is an implementation of the bubble sort algo-
rithm. It is parametrized by the type variable T introduced by the notation
<T extends Comparable>. Moreover, this means the parameter here must im-
plement the interface Comparable. In this example, the interface Comparable
can be defined as follows, but please note that this definition and the definition
of the function sort will be refined later in this chapter.

public interface Comparable {

int compareTo(Object o1);

}

That is the reason why we can use the method compareTo in the if statement.
On the one hand, the definition of the generic ensures that T implements the
interface Comparable, so it has a compareTo method, hence we can use it. On
the other hand, whenever we use this generic function, the compiler checks that
the T really implements Comparable.
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The usage of this generic function does not differ from using a regular func-
tion, type parameters are deduced and checked against the requirements given
in the template definition.

Integer a[ ] = {1,2,5,4,3,6};

Sorting.sort(a);

In C++, polymorphic functions are called template functions, and can be
introduced by the keyword template. See the following function as an exam-
ple [Str00].

template <class T>

void sort(vector<T>& v)

{

const size t n = v.size();

for (int gap = n/2; 0 < gap; gap /= 2) {

for (int i = gap; i < n; i++) {

for (int j = i-gap; 0 <= j; j -= gap) {

if (v[j + gap] < v[j]) {

T temp = v[j]; // swapping v[j] and v[j + gap]

v[j] = v[j + gap];

v[j + gap] = temp;

}

}

}

}

}

This example implements the Shell sort [Knu87] for arbitrary type T . This type
can be anything which has an assignment operator (because of T temp = v[j]),
copy constructor (v[j] = v[j + gap]) and the < comparison operator. So the
variable T can be replaced by, for instance, int or string. These operations are
not specified yet, and their concrete meaning is not important at this point.
Every type satisfying the mentioned requirements can be used without writing
the function sort for each of them. Note that, unlike Java, these constraints of
the type parameter are not specified in the signature.

Using the template function is as simple as in Java:

vector<int> v;

. . .

sort(v);

In functional languages, type parameters are rather natural and can be used
without any special construct. For instance, in Haskell, type names must begin
with an uppercase letter, so any type name in a type signature beginning with
lowercase letter is a type parameter, just like a in the following example.
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isort :: Ord a => [a] -> [a]

isort [ ] = [ ]

isort (a:x) = insert a (isort x)

insert :: Ord a => a -> [a] -> [a]

insert e [ ] = [e]

insert e (x:xs)

| e <= x = e:x:xs

| otherwise = x:insert e xs

In this example, there are two polymorphic functions defined. The function
isort is an insertion sort, which uses the function insert to insert an element
(e) to the right place into the ordered list (x:xs). In the function insert the
operator <= is used to compare two elements, so there must be an instance of the
type class Ord for the type a. Note that, like in Java, the constraints are explicitly
written in the signature, but unlike imperative languages the type checker can
infer the type of the function as well as the constraints in most of the cases.

In the aforementioned languages polymorphic subprograms worked just like
regular subprograms, without the need of instantiating them. However, some
languages, like Ada, require explicit instantiation.

generic
type Element is private;
type Index is (<>);
type Vector is array (Index range <>) of Element;
with function "<" (X, Y : Element ) return Boolean is <>;

procedure Sort (V : in out Vector );

Here, the specification of the procedure starts with the keyword generic to
mark that this is a generic procedure, and after that come four parameters. A
polymorphic subprogram can have multiple type parameters. However, in Ada
the type parameters Element and Index are not enough, and the concrete type
of the array is a parameter which is needed as well (i.e. Vector). This is because
in Ada two arrays of the same index and element type are not necessarily the
same, due to the nominative type equivalence.

The keyword private in the type specification of Element means that we
have no assumptions about its concrete type (except, that it has assignment
and equality comparison). Index must be discrete type, which fact is denoted
by (<>). The type Vector is an array of type Element, where the array is
indexed by an interval of the type Index. The line beginning with the phrase
with function "<" means that we need an operation to compare the elements of
the array.

To use a generic subprogram in Ada we must instantiate it first (see Sec-
tion 11.6), where the formal parameters of the generic are substituted with actual
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generic parameters. In the example, an array type Int Vector is created first, and
then the subprogram Sort is instantiated with the name Int Sort.

type Int Vector is array (Integer range <>) of Integer ;
procedure Int Sort is new Sort(Integer, Integer, Int Vector, "<");

After this the procedure Int Sort can be used to sort an array of type
Int Sort. For example, if we have a variable named A of type Int Vector , we
can simply write the following.

Int Sort(A);

11.2 Data abstration

It is possible to give type parameters not only to subprograms, but even to types.
Is is often desired to create generic, parametrized types as well. A common
attribute is the possibility of formulating them without the exact knowledge
of the actual type parameters. So the type is abstract, and the corresponding
concrete type turns out only during instantiation – when we substitute formal
parameters with concrete types. To demonstrate this, we will show how to
implement the stack data type in various languages. The generic stack data
structure will be implemented over an abstract type, and after instantiation it
becomes a concrete stack of the given concrete type (see Section 11.6). The first
example is in Java. In Java, parametric types are generic classes:
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public class Stack <T> {

private static class Node {

Node(T data, Node next) {

this.data = data;

this.next = next;
}

Node next = null;
T data = null;

}

private Node top = null;

public void push(T t) {

top = new Node(t, top);

}

public T top() {

return top.data;

}

public void pop() {

top = top.next;
}

public boolean isEmpty() {

return top==null;
}

}

Like the generic function, the term <T> introduces the type parameter, but
here without restriction and it is situated after the class name. So, <T> can be
any type (more precisely, T must extend Object, so it cannot be a primitive
type), and it parametrizes not only one function, but the whole class. More
than one parameter can be expressed as well, separating them by commas. The
stack in this case is implemented using a linked list, one element of the list is
represented by the nested class Node.

In C++, a similar solution can be given:
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template<class T, int max>

class Stack {

T data[max]; // The elements of the array are instantiated
int size; // using the default constructor.

public:
Stack() : size(0) {}

void push(const T& e) {

// Copy constructor is used to put the element into the array.
if (size < max) { data[size++] = e; }

else { throw std::logic error("Stack overflow"); }

}

T pop() { . . . }

const T & top() const { . . . }

bool isEmpty() const { . . . }

bool isFull() const { . . . }

};

In C++, parametric types called template classes. Template classes are in-
troduced by the keyword template like template functions, and they basically
look like a regular class. This class has two template parameters, the type of
the elements of the stack, and the maximal size of the stack. The second one
is, however, not a type, but a value. The implementation relies on the default
constructor and copy constructor of the type T, however, this restriction is not
expressed in the template.

Parameter of a template can be a type (class or struct or even a primitive
type), values of some types, and templates. Types and values can be used inside
the template definition just like a regular type or a value. It is even possible to
pass a function (as a value of a function type) as template parameter.

The specification of the stack in Ada can be written as:

generic
type Element is private;
Max : Integer ;

package Stacks is
type Stack is limited private;
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procedure Push (V : in out Stack; X : in Element );
−− Putting an element to the top of the stack.

procedure Pop ( V : in out Stack; E : out Element );
−− Deleting the topmost element from the stack.

function Top (V : Stack) return Element;
−− Returns the value of the topmost element.

function Is Empty (V : Stack ) return Boolean;
−− Returns whether the stack is empty.

function Is Full (V : Stack ) return Boolean;
−− Returns whether the stack is full

Empty, Full : exception;
−− Exceptions are used in situations, when somebody tries to
−− read the top of an empty list, or tries to put an element to
−− a full list.

private
type Elements is array (1 . .Max) of Element;

type Stack is
record

Data : Elements;
Size : Natural := 0 ;

end record;

end Stacks;

Like in C++, the type is parametrized by the type of the values stored in
the stack and the maximal size of the stack.1 However, this examples defines a
package, which contains the type stack. The stack type is opaque, as it is specified
as limited private, which means we prohibited the assignment and equality check
on the type Stack (see Section 6.3.2). The two exceptions are used to report when
the user of the stack tries to access an element of an empty stack, or tries to
put an element of a full stack (see Section 8). The only operations we can use
are the subprograms defined in the public part of the package. The private part
of the package contains the representation of the type Stack, but this part can
only be used within the package. The representation is simple, the array Data
holds the elements of the stack, and the index of the topmost element is stored
in the field Size.

The corresponding package body contains an abstract implementation of
the operation. Abstract, because the concrete type of the element is unknown,
moreover, the type Elements is unknown, because the type of its elements are
unknown.

1 In Ada, a neat solution would be to use discriminated record and parametrize the type Stack
by its size. Using generics instead is for demonstrational purposes.
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package body Stacks is
procedure Push (V : in out Stack; X : in Element) is
begin

if V.Size < Max then
V.Size := V.Size + 1 ;
V.Data(V.Size) := X ;

else
raise Full;

−− Trying to put an element to a full stack.
end if ;

end Push;
procedure Pop (V : in out Stack; E : out Element) is . . .
function Top (V : Stack) return Element is . . .
function Is Empty (V : Stack) return Boolean is . . .
function Is Full (V : Stack) return Boolean is . . .

end Stacks;

Finally, in functional languages using type parameters in types is natural.
Most functional languages use the concept of algebraic data types (see Sec-
tion 15.4.2), which can be parametrized as easily as functions.

data List a = Nil | Cons a (List a)

This examples shows how to define a linked list in the language Haskell.
Here List is a type constructor — applying it to a type yields a type. From type
Int it creates a list of integers. A value of type List can be created by the two
given data constructors: Nil and Cons. Nil is nullary and represents an empty
list, while Cons has two: a value to be put into the front the list and the rest
of the list. Type constructors are one form of type polymorphism in functional
languages. In some languages, like Haskell, type constructors are even allowed
to have parameters which are type constructors.

data Strange a = Strange (a Int)

It is easy to see that in this example, the parameter of the type Strange

must be a type constructor, as it is applied to a type (namely Int).
Interestingly, just a special branch of functional languages (called dependently

typed languages) allows the use of values as type parameters. These languages
(ATS, Agda, Epigram) are most frequently used in proof assistants, and give an
approach for proof-carrying code.

11.3 Polymorphism

Polymorphism is a rather general idea, so it is more convenient to find a classi-
fication of polymorphism and then discuss the properties of the classes one by
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one. A lot of classifications have been developed, but this chapter covers only
one created by Luca Cardelli and Peter Wegner [CW85]. In this classification,
there are two major kinds of polymorphism, universal and ad-hoc polymorphism.
There will be two subclasses of these major kinds as well. This classification can
be seen on Figure 11.1.

Figure 11.1: A possible classification of kinds of polymorphisms

Universally polymorphic program units usually work on an infinite number of
types, where the elements share some common structures. For example, a func-
tion, which calculates the maximal element of a set should work on every type
which has the comparison operator (<). The common structure, which restricts
the set of acceptable types is the very existence of this operator. Therefore, this
operator can work on potentially infinite number of types.

Why can we say that this function works on infinite number of types? The
answer is that this function works not only on the types already defined, but for
all the types defined in the future which has the necessary comparison operator.
After defining the type Person, and defining the operator < to compare persons
by age, we can surely use our parametric function with this type. It is easy to
see that it is possible to define any number of new types, and the parametric
function will work for all of them. The reason for this is the body of the function
does not need to assume anything about the representation of the type, it is
enough to know that there exists an operator < for that type.

The name ‘universal’ comes from the fact that that a universally polymorphic
unit creates the same code for different type parameters, so there is a universal
realization, which can be used for any type (with suitable structure). In contrast,
ad-hoc polymorphism works on a finite number of types. For example, take a
printer function. It is obvious that different types should be printed in different
ways – for integer types, converting the number to a string should be enough,
but for a record it is reasonably to apply some formatting:

Name: John Smith,

Date of birth: 1990,

Place of birth: Anytown
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So, it can be seen that we cannot share the same code for the two functions,
and it is desired to give different implementations to different types. Because it
is only possible to write an implementation for finite number of different types,
we cannot state here that the function can work on an infinite number of types.
In contrast to universal polymorphism, there is no common structure in the
applicable types here, but these types are unrelated in most of the cases. There
are distinct implementations for distinct types, which means it needs much more
effort to implement, compared to universal polymorphism. But, there are also
advantages, the programs specialized for the types are usually more effective
than the abstract implementations.

The rest of the chapter is dedicated to discuss these kinds of polymorphism,
but at first, let us summarize polymorphism support in certain languages. Para-
metric polymorphism is supported in most of the functional languages and some
form of parametric polymorphism is supported in most of the modern languages
(see Section 11.3.1). Inclusion polymorphism is a peculiar feature of object-
oriented languages. Overloading and coercing is widely adopted and supported
by most of the modern programming languages.

11.3.1 Parametri polymorphism

Parametric polymorphism is the most complete form of polymorphism. For
example, the maximum search in the set mentioned earlier is parametrically poly-
morphic. Parametrically polymorphic program units work for all the types that
can be matched to the type parameter. When applying, the types of polymorphic
arguments (polymorphic argument can be anything which can be polymorphic
in the body of the program unit, i.e. function parameters, types) are determined
by the actual values of the type arguments. In the example above, polymorphic
argument is the set, whose maximum is searched for. Its actual type depends on
the type parameter, as it tells us the type of the elements set.

Depending on the language, type parameters can be implicit or explicit.
It is called implicit, when the programmer does not have to provide the type
parameters when the program unit is used. When the programmer must provide
all the type parameters, then it is explicit. Usually, functional languages utilize
implicit parameters, and non-functional languages mostly prefer explicit param-
eters. However, it is more and more common to have type inference (and hence
implicit parameters) for generic functions and methods. To support parametric
polymorphism, the language needs some kind of unified representation of types
(e.g. using pointers for all the types), which can affect the performance in some
cases.

Now, some example for parametric polymorphism is provided. For the sake
of simplicity, we use list or array here instead of set. Its simplest implementation
can probably be given in a functional language, such as in Haskell:
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maximum :: Ord a => [a] -> a

maximum [x] = x

maximum (x:xs)

| x < m = m

| otherwise = x

where

m = maximum xs

This function works for every list, where the element type of the list is
an instance of the Ord typeclass. The variable a in the type signature is a
type variable, and it can be substituted by any type which implements the
class Ord. The body of the function contains two cases, the first case is when the
list has exactly one element, then it is the maximal element of the list. If the
list contains more than one element, then the function checks whether the first
element of the list is greater than the maximum of the rest of the list, if so, the
first element is the maximum. The function calls itself recursively to calculate the
maximum of the rest of the list. The following Ada generic subprogram provides
the same functionality for arrays:

generic
type Element is private;
type Index is(<>);
type Vector is array (Index range <>) of Elem;
with function "<" (Left, Right: Element) return Boolean is <>;

function Maximum(V : Vector) return Element;
function Maximum(V : Vector) return Element is

Max : Element := V (V ’First);
begin

for I in V ’Range loop
if Max < V (I ) then

Max := V (I );
end if ;

end loop;
return Max ;

end;

with Text Io, Maximum; use Text Io;
procedure Maximum Demo is

type Int Vector is array (Integer range <>) of Integer ;
function Int Maximum is new Maximum(Integer, Integer, Int Vector);
A: Int Vector(1 . .5 ) := (2, 8, 9, 23, 5 );

begin
Put("The maximal element of the vector is " &

Integer ’Image(Int Maximum(A)));
end Maximum demo;
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This subprogram has three type parameters (Element, Index and Vector). To
calculate the maximum of the array, we need the operation <. We also provided
an example for the usage of the generic. It can be seen that we do not use the
generic function Maximum directly, but we created a generic instance called
Int Maximum (see Section 11.6), which works on integers. The instantiation
must be done for every actual case in Ada, the polymorphism is just a ”syntactic
sugar”: we provide the body of the function only once, but it must be instantiated
for every type.

In Java [Java13] — similar to Ada — the declaration can restrict the type
parameters allowing only the types which have comparison, requirements like
this are given by interfaces.

public class Max {

public static <Element extends Comparable<Element> > Element
max (Collection<Element> xs) {

Iterator<Element> xi = xs.iterator();

Element m = xi.next();

while (xi.hasNext()) { // loop while there is more elements
Element x = xi.next(); // next element
if (m.compareTo(x) < 0) { // comparing elements

m = x;

}

}

return m;

}

}

Like in C++, there is no need to pass actual type parameters to the function
max (see Section 11.6).

LinkedList<AType> list = new LinkedList<AType>();

// . . .
AType listMax = Max.max(list); // nem Max.max<AType>(list);

If the max function is called for the instantiated list, which implements the
interface Comparable, we get a compiler error.

We have seen that the example written in functional language was simpler
than the others. The reason for this is that modern functional languages contain
parametric polymorphism by design, and it is not just a ”syntactic sugar”, like
in Ada or in C++.

11.3.2 Inlusion polymorphism

In object-oriented languages it is common to have an object which belongs to
more than one type. For instance, salmon, cod and tuna are fish, so a salmon not
only belongs to the group of salmons, but the group of fish. A common property
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of fish is the ability of swimming. If we define a swim operation, it should work
on all fish, regardless of the actual fish type. An actual fish therefore can belong
to more than one groups, it can be fish and salmon at the same time. So, tuna,
cod and salmon are subtypes of fish, and the swim operation works on all of
them. We call this subtype polymorphism or inclusion polymorphism.

Subtype polymorphism is similar to parametric polymorphism, but they
differ enough both in theory and practice to discuss them separately. The key
difference between them is that in case if parametric polymorphism, the program
unit itself is polymorphic, while in case of subtype polymorphism, the objects
used by the program unit are polymorphic. What makes this possible? In fact,
in case of subtype polymorphism, an object is considered to belong to more
than one class. These classes are subtypes of a common ancestor, so they have
a common behavior. The abstract implementation of the program unit relies on
these common methods. This is the polymorphism adopted by object oriented
languages, where the subtype hierarchy is given by the inheritance hierarchy –
as detailed in Chapter 10.2

Subtype polymorphism (like parametric polymorphism) is effective to solve
general problems. In a given class hierarchy, it is common to define an abstract
base class which contains the common methods and properties of the classes. This
class contains abstract methods, so it cannot be instantiated. Its descendants
must override all the ancestor’s abstract methods, so the descendants can be
instantiated. This way, the ancestor defines an abstract interface to handle the
descendants (see Chapter 10.7.4). To implement the generic methods we can use
the features provided by the common interface.

In C++, dynamic binding is provided by virtual functions, while interfaces
are provided by pure virtual classes:

#include <iostream>

#include <algorithm> // for each
#include <vector>

#include <functional> // mem fun
struct Shape {

virtual void draw() = 0; // virtual in all of the descendants
};

struct Circle : public Shape {

void draw() { cout « "circle drawn."; };

};

struct Square : public Shape {

void draw(){ cout « "square drawn."; };

};

2 This is prevalent in current object-oriented languages, however, it causes serious problems
in the type system of these languages. There are numerous languages – mostly for research
purposes – which separate these two hierarchies, showing that it increases the safety of the
language by reducing the possibilities of typing errors. For the sake of brevity, this book
does not discuss this topic, more about this topic can be found in [Bru02].
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void drawAll(vector<Shape*> shapes) {

for each(shapes.begin(),shapes.end(),mem fun(&Shape::draw));

}

int main() {

Shape* s1 = new Circle;

Shape* s2 = new Square;

s1->draw(); // call Circle::draw
s2->draw(); // call Square::draw
vector<Shape*> shapes;

shapes.push back(s1);

shapes.push back(s2);

drawAll(shapes);

}

In this example, the draw method of the Shape class is pure virtual, so the
method is late bound (e.g. it is looked up at run-time rather than compile-time).
Purity is expressed by the value 0 , which also makes the class abstract and
uninstantiable, but it can still be used as a type (a pointer to class Shape)
in variable declarations. As the class cannot be instantiated, this pointer can
only point to some descendant. These descendants override the method draw,
so always the correct method will be invoked. In the example, the variables s1
and k2 , the methods of the classes Square and Draw are invoked, respectively.
This fact is exploited by the method drawAll which gets a vector of shapes as
parameter, and draws these shapes. The function for each is a standard template
library function [SL95], and iterates over the vector (the first iterator points to
the first element, the second points to the element following the last element
of the vector), and calls the function Shape::draw() on all of them, with the
help of the STL function mem fun. The example also demonstrates how well
object-oriented and generic code complement each other.

In most of the object-oriented languages, such as Java, C#, Smalltalk, Eiffel,
etc., the member functions are virtual by default, and always invoked according
to the dynamic type.

A common use of subtype polymorphism is the implementation of container
types. If there is a common ancestor class in the language (such as Object in Java
or ANY in Eiffel), the implementation of the container can be built upon this
class. As all other classes inherit this class, an arbitrary object can be put into
the container. The drawbacks of this approach is that it usually cannot handle
primitive types (In C#, despite using this approach, primitives can be used),
and this approach cannot be applied if the languages do not have a common
ancestor (like in C++).

In Eiffel, base class of all of the containers is the CONTAINER[G] generic
class which defines the basic methods of containers, such as has and empty.

The language is designed to separate three different viewpoints, such as
accessing, storing and iterating.
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Accessing is the way the user of the container can access the elements stored
in the container. In case of a stack or a queue, it is possible to access only one
element, and there is no way to modify which element is the one accessed. In
contrast an array or hash table, there should be an index or a key, which is used
to access an element.

Storing is the way how containers are stored, how many elements they have,
whether it is possible to change the number of elements. Most of the containers
are finite, but there can be found infinite containers (e.g. sequence of prime num-
bers). Finite structures can be bounded or unbounded. For instance, ARRAY [G]
which is the class for array of type G is bounded, and LINKED LIST [G], the
implementations of the data type linked list is unbounded.

Iteration is responsible for the traversal of the collection, if it is possible to
construct a traversal which reaches every element exactly once, in a predefined
order. For instance, some collections can be sequentially traversed in one or two
ways, moreover, tree data structures have pre-, post and inorder traversal.

The standard library of the language Eiffel provide one (and only one) class
hierarchy for each of the aforementioned aspects. The root of the hierarchy of the
accessing is the class COLLECTION , class BOX is the base for storage, and the
iteration is provided by the descendants of the class TRAVERSAL. Both of these
three classes are inherited from the class CONTAINER. The implementation of
a new special collection – such as the class LINKED LIST [G] – can be done
by choosing a suitable class for all of the aspects above and by combining them
using multiple inheritance. This way, we get a class which is characterized by its
accessing, storage and iteration.3

deferred class SHAPE
feature
print it

deferred
end

end
class CIRCLE
inherit

SHAPE
feature

print it
do
io.putstring ("I AM A CIRCLE");
io.new line

end
end

3 This ultimately means multiple inheritance of the class CONTAINER.
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class POLYGON
inherit

SHAPE
feature

print it
do
io.putstring ("I AM A POLYGON");
io.new line

end
end
class SQUARE
inherit

POLYGON
redefine print it
end

feature
print it
do
io.putstring ("I AM A RECTANGLE");
io.new line;

end;
end

class TEST
creation

make
feature
t: LINKED LIST [SHAPE ]
o1, o2, o3 : SHAPE
make
local i:INTEGER
do
!SQUARE ! o1 −− Creating the objects.
!CIRCLE ! o2
!POLYGON ! o3
!!t.make −− Creating the linked list
fill −− Filling variable t
from −− Traversal of t

t.start
until
t.off

loop
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t.item.print it
t.forth

end
end
fill
do
t.put front(o1 )
t.put front(o2 )
t.put front(o3 )

end
end

In the example above, the class LINKED LIST [G] is instantiated with the
class SHAPE (which is abstract, as it is marked as deferred). The classes
CIRCLE and POLYGON are descendants of the this class, and the feature
print it is already defined here. The class SQUARE inherits the class POLYGON
and overrides the feature print it. The variables o1 , o2 and o3 are of type
SHAPE and created by calling the appropriate constructor (!SQUARE ! o1 ,
!CIRCLE ! o2 , !POLYGON ! o3 ), we assign them objects of type SQUARE,
CIRCLE and POLYGON , respectively. The list of shapes, namely t is then
filled by these objects, and we traverse the list with a loop. In the loop, the
elements are printed out by calling the t.item.print it, where the actual feature
is chosen by the dynamic type of the current (item) element of the list.

11.3.3 Overloading polymorphism

In the introduction of the chapter, the example given for ad-hoc polymorphism
(in Section 11.3) was actually an example of overloading polymorphism. The
overloading polymorphism is in fact just a useful syntactic sugar : the same name
can be used on subprograms working on different types, and the context (i.e. the
types of the actual parameters of the subprogram) determines which subprogram
is used. (Overloading subprograms has already been discussed in Section 7.6.)

One way to resolve overloading is to assign a distinct name for all the
subprograms during preprocessing, and in the place of call, the overloaded name
is replaced with the respective new one. This is exactly the case in CLU, if the
program contains overloaded operators.

Comparing the ideas of the overloading polymorphism with the Ada generic

or the C++ template, we can ask the question: Why have they not been catego-
rized as overloading polymorphism? The answer is (which was already seen when
ad-hoc polymorphism was discussed) that in case of ad-hoc polymorphic program
units, distinct implementations are used for distinct types. In case of generic
or C++ template, an abstract, universal implementation is given, which should
work on all the types, hence it is a kind of universal polymorphism (most precisely
parametric polymorphism as we have seen). Unfortunately, the compiler creates
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more than one actual solutions, because there is no uniform representation of
the types in Ada and C++ (see Section 11.3.1). So overloading polymorphism
provides an abstract interface, without an abstract implementation, so it is only a
limited form of polymorphism (with coercion polymorphism, see Section 11.3.4).

In Java, users can override only methods, but not operators. However, the
built-in operators are overloaded. For instance, the operator + can be used on
numbers as well as on strings:

2.0 + 2.0 // addition for doubles
"2.0" + "2.0" // string concatenation

In the standard library of C++, the sort() function uses the comparison
operator < overloaded for the given type:

class Person { /*. . .*/ };

bool operator< (Person e1, Person e2)

{

return e1.age() < e2.age();

}

int main()

{

vector<Person> friends;

std::sort(friends.begin(), friends.end()); // uses <(Person,Person)

}

Overloading polymorphism can be found in functional languages, as well.
To achieve this, abstract interfaces are provided by typeclasses. For details, see
Section 15.4.

11.3.4 Coerion polymorphism

Let us assume that we have defined the multiplication for real numbers. In this
case, it would be useful to use the very same function for integers. Theoretically
this cannot be a problem, as integers can be converted to reals without loss of
precision,4 this is what is called coercion polymorphism, if the operation is called
with parameters of inappropriate types, the languages converts the parameters
to the types required by the called operation.

Similar to the case of parametric and inclusion polymorphism, it is diffi-
cult to distinguish the overloading and the coercion polymorphism. However,
overloading is actually a syntactic abbreviation, while coercion polymorphism
is a semantical operation: the actual parameters are converted to the right
4 In practice, however, the situation is more problematic. In Java, a long (long integer) is

converted to float (single precision floating point number), but the first one is stored on 8
bytes, while the second is stored on 4 bytes, so this conversion must result some loss of data.
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types, which are requested by the formal parameters. During this conversion the
representation of the data is usually changed. If this conversion does not happen,
a type error will be raised. Such a conversion happens in language C [Str00]:

double max(double x, double y)

{

return (x > y) ? x : y;

}

int main()

{

return max(42 * 42, 40.5 * 43);

}

Coercion polymorphism in C++ can work on user-defined types as well, if a
constructor, which can be used for conversion, or a conversion operator is written.
In C++ all constructors with one parameter are implicitly type converters unless
declared ”explicit” using the explicit keyword.

Another important example of coercion polymorphism can be found in C++.
If we have a class Derived derived from the class Base, then value of type
Derived* can be assigned to a variable of type Base*. In the background, the
compiler automatically converts the pointer from Derived* to Base*.

In Java, coercion occurs also at method calls. Let us have a class Base which
is a base of class Derived, let us also assume that there is a C class which has a
the method with signature m(Base). This method can be invoked by any object
of type Base or its descendants. In the following code fragment, the compiler
uses implicit type cast to the variable derived and converts it to the type Base,
as the signature of the invoked method prescribed it [Rog01].

C c = new C();

Derived derived = new Derived();

c.m(derived);

Type cast can be done in two different manners. The first one is the static
type cast, where the conversion operator is placed between the function and its
parameter. The other case is when the parameters are checked dynamically at
runtime.

We have mentioned earlier that the boundary between overriding and coer-
cion polymorphism is obscured in some cases. Let us see an example for this
[CW85].

3 + 4
3.0 + 4
3 + 4.0
3.0 + 4.0
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Assuming that there is a + operation, which works for all the combinations
appeared in the example above. Which polymorphism we have used to achieve
this?

1. It is possible that the function is overloaded for these four different cases.
2. It is also possible, that there are only two overloaded alternatives for the

function, one for integers and one for reals. When one of the arguments
is integer and the other is real, the integer argument is converted to real,
and the alternative with real parameters are called.

3. The third case is, when there is only one alternative, which has real
parameters, and every integer parameter is converted to real.

Each of these case has its own advantages and disadvantages. It depends on the
langauge, which polymorphism is realized, this question can only be answered for
an actual language, with the knowledge of the actual definition of the language.

11.3.5 Implementation of polymorphism in monomorphi languages

Only a small variety of languages supports parametric polymorphism by their
nature. These languages are usually from the ML language family, or simi-
larly pure functional languages (Haskell, Clean) [CW85]. Subtype (inclusion)
polymorphism can usually be found in object-oriented languages, like Eiffel,
Java, C++, C# (see Chapter 10). These are the languages implementing some
form of universal polymorphism, and their type system is called polymorphic.
In contrast, monomorphic type systems allow only one behavior for an object.
In case of parametric polymorphism, polymorphic program units have different
behavior, i.e. they work for different types. In case of subtyping polymorphism,
the objects themselves have different behavior, as it was seen in the fish example.
Monomorphic systems do not allow such obviously diverse behavior, however,
there are some exceptions in special cases. If a type system does not allow any
form of polymorphism, it is called strictly monomorphic.

One advantage of strict monomorphism is that type errors can be found
easily, at compile-time. But, the expressive power of these languages are heavily
limited, as they do not allow the behavior of the objects to depend on the context.
Therefore, monomorphic systems concede some limited polymorphism in some
cases. These languages are called mostly monomorphic, which means that the
language is basically monomorphic, but there are some cases where some level of
polymorphism is allowed. Such a language is Pascal and C. Below, we list some
of the polymorphic behavior of these languages:

• Overloading The same name can be used for distinct subprograms. For
example, it is possible to define the operator + for matrices.

• Coercion For example, integer argument can be passed, where real is
expected.
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• Subtyping If a subtype is created from a type (for example, restricting
the set of values of the type, see Section 5.8.1, elements of the subtype
automatically belongs to the base type as well. So the subtype can be
used everywhere where the base type is used.

• Value sharing A characteristic example is the nil constant, which can be
used as a pointer to arbitrary type.

These are independent methods to lighten the monomorphism. Of course,
even all the four cases can be found in the same language. These languages are
not strictly monomorphic.

Let us see, how these exceptions fit into the aforementioned classification of
polymorphism. In the first three cases, it is obvious which kind of polymorphism
it belongs to, however these subtyping do not implement the whole variety
of polymorphism discussed earlier. A subtype can be created by restricting
the set of values of a type, or by extending a type by new features. These
exceptions cover only the first kind of subtyping. The fourth case is a special
case of parametric polymorphism. For the first sight, we could say that nil is an
overloaded constant, but this is not the case: the constant nil can be used as a
pointer for any type, even for types which we have not been defined yet. So, it
must work on infinite number of types. Moreover, the representation of nil is the
same, regardless of its type, which is uncommon in overloading. A very similar
case is the class NONE of the language Eiffel, which descend from all the types
(defined or not yet defined). The role of the value Void of type NONE is very
similar to nil.

A careful reader can notice, that even if Ada (and C++) implement para-
metric polymorphism, they are not listed amongst the languages having para-
metrically polymorphic type system. The reason for this is that in these lan-
guages, parametric polymorphism is an exception, while in polymorphic lan-
guages, these are basic structures of the language. Another reason is the already
mentioned syntactical polymorphism: Ada generics and templates are actually
just syntactical abbreviations to define program units with very similar body,
and specialized code is created for every type they instantiate (because their
semantics are macro substitution). This ultimately means that it is an ad-hoc
polymorphism, so this polymorphism cannot be parametric polymorphism, as
parametric polymorphism must be universal rather than ad-hoc.

11.4 Generi ontrat model

When using a polymorphic subprogram or type, a lot of requirements must be
met. One must make sure that the actual parameters used during instantiation
(or in case of functional languages the inferred types) qualify for the formal pa-
rameters. The method of agreeing the actual and formal parameters is discussed
using the so called generic contract model [Nyek98].
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Checking the legality of the declaration and body of polymorphic construc-
tions (templates for short, that is polymorphic functions, abstract data types
and packages) can be done during the compilation of the template. This makes
possible to detect errors early, and illegal operations can be detected during the
compilation of the template. Hence, during the instantiation, we can be sure
that the template is legal of its own.

Figure 11.2: The Generic Contract Model

Why is the name generic contract model? Because the specification of the
template implicitly writes a contract between the body of the template and the
instantiation (see Figure 11.2). If the body of the template is legal, then it ob-
serves the implicit contract given by the specification. Thus, if the instantiation
observes the same contract, the instance will be legal. This method makes it
possible to detach the check of the template and its instantiation. Moreover,
changing the template body without changing the contract (assuming that it is
still legal) does not affect its instances.

When one of the parties violates the contract it is possible that problems
emerge only at the time of instantiation, or even at runtime. To find the typing
errors as soon as possible, it is clearly needed that all demands concerning to
the instantiator should appear in the contract. For instance, such a demand can
be the type class of the actual type parameter, restricting the usable types to
a well-defined set. This means it is safe to use the operations of the specified
type class, because if the actual type does not have the desired operation, the
instantiator violates the contract, of which legality can be checked at compile
time.

From the languages shown so far, it is clearly discoverable that some lan-
guages take generic contract model seriously, while others not. For example the
checking of Java and Ada relies on contracts, however, C++ does not.
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Using the contract model makes checking easy as well. The compiler assumes
the ”worst possible” case while checking the body of the template with respect
to the specification. This is because if there is an operation used on a type in
the body, but the operation is not enforced by the contract, then it is possible
to instantiate the template with an actual type parameter which observes the
contract, but does not have that operation. Hence, the independence of the
template and the instantiation is not enforced. Then again, when checking the
validity of the instantiation, the compiler should assume the ”best possible” about
the instantiation, that is, during the instantiation the actual parameter qualifies
all the requirements of the contract. This is to ensure that checking the validity of
the instantiation and the body can be done independently. Moreover, it is not a
problem when the compiler is not familiar with the body during the instantiation
of a template, because the specification is enough to do the validity checking.

In Java, when T extends Comparable, where T is a template parameter of
a method, then this indicates to the body of the template that the methods of
Comparable can be used, and it also indicates to the instantiator that this tem-
plate can be instantiated only if the actual parameter implements Comparable.

In functional languages, generic contract model holds as well: when defining
a function, all the information needed to restrict the type parameter can be
given. This can be seen in Section 11.1: the type parameter a of both functions
are restricted to be an instance of the type class Ord. This way, the compiler
knows about the < operator of that type. In reverse, the compiler ensures that
we cannot use the function when the type is not an instance of that type class.5

There are some languages where template instantiation does not work ac-
cording to the generic contract model. In these languages, an improper template
instantiation can cause a lot of inconvenience. For example, in C++ instantiating
the Stack class template seen on page 568,if actual of the type parameter T
does not have default constructor can result a compiler error in the default
constructor of the class Stack, when the concrete call to the missing method
occurs. This behavior can be most troublesome, when using a template class
from the standard library. In case of misuse the compiler detects the error in the
header of the standard library, resulting a rather cryptic error message. On the
other hand this approach has some advantages as well.

The template vector requires its type parameter to have copy constructor.
Failing to do so causes compiler errors in some of the member functions of the
template, if we use them. The following code creates a vector of output streams.

int main() {

std::vector<std::ostream> v;

v.push back(std::cout);

}

5 In purely functional languages, the compiler is usually able to infer the types of functions,
so in simple cases it is not necessary to write signatures for functions. Moreover, some
languages, including Haskell, can also infer the type constraints for the type variables.



11.5 Generi parameters

•
587

The type ostream has a base class ios base, which is the base class for the
entire stream library in C++. This class has a private copy constructor (How
would it be possible to copy an open stream?), and this causes a compiler error
when compiling some internal part of the template vector . It is also worth
mentioning that if we do not use the member function push back, the error
does not appear. The reason for this will be discussed in Section 11.6.3

11.5 Generi parameters

Generic parameters can be of four different kinds: they can be objects, sub-
programs, types (and type classes) and modules. Different languages support
different kinds of generic parameters. For example, Ada supports6 all of the
kinds, while Java only supports types as generic parameter. The rest of this
section discusses the possibilities of these four kinds of parameters, the syntax
of their specification and their implementation according to the generic contract
model.

11.5.1 Type and type lass

The most prevalent kind of generic parameter is the type parameter . The simplest
case is when any type can be the type parameter. For instance, the function
length takes a list as a parameter and returns the length of that list. The result
does not depend on the elements of the list, moreover the elements of the list
can be of any type. In the functional language Haskell (and Clean) the signature
of the function can be as follows:

length :: [a] -> Int

A more difficult case is when we want to use an operation of the actual
parameter in the generic body. According to the generic contract model we
need to indicate this in the specification of the generic, so we need to give a
restriction for the formal type parameter. In object-oriented languages a natural
formalization of this restriction is to restrict the type parameter to subclasses
of a class or an interface. Please recall the signature of the example in Java on
page 564:

public class Sorting {

public static <T extends Comparable> void sort(T a[ ]) {

. . .

}

}

6 Since Ada 95, it has been possible to create a pointer to a subprogram, so subprograms can
be passed as regular parameters, while it is still possible to pass a subprogram as a generic
parameter.
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In the generic method sort of the class, the template specification of the
generic parameters T tells us that the actual parameter of T must implement
the interface Comparable. It means in the implementation of the generic, it is
safe to refer to a method of the superclass as the contract guarantees that it
exists. During instantiation, the compiler verifies whether the actual parameter
matches the given restrictions.

The case of Eiffel is similar, to create a generic class SET with a type pa-
rameter G, where this parameter is restricted to be subclass of COMPARABLE
can be defined as follows.

class
SET [K −> COMPARABLE ]
. . .

end

In C# as well:

public interface IComparable<in T>

{

public int CompareTo(T other);

}

public class Set<T> where T : IComparable<T>

{

. . .

}

The type parameter of the generic class Set is restricted to implement the
interface IComparable.7 A careful reader will notice that the type parameter T
used the type parameter T in its own contract (e.g. in IComparable<T>). This
recursive generic specification (so called F–bounded quantification or recursively
bounded quantification) can be also used in Java and Eiffel, but is not available
in Ada.

Eiffel and C# allows to restrict type parameters with certain constructors.
In Eiffel this means a type parameter can be restricted to have a creation feature
called make:

class SET [K −> COMPARABLE create make end]

Similarly in C# it is possible to use a Constructor constraint to express that the
type should have a default constructor:

public class Set<T> where T : new()

{}

7 The meaning of the keyword ‘in’ used in the definition of the type parameter T will be
detailed in Section 11.7, and does not play any role here. It is used, because this is exactly
the way how it appears in System package in C#.
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It is also possible to give more than one restrictions to a type parameter.
There is no multiple inheritance in Java and C#, so at most one of the con-
straints can be a class, but any number of interfaces can be given. In Java these
restrictions are separated by ampersand and by comma in C# and Eiffel.

If a generic has more than one type parameter, they can constraint each
other, however, only Eiffel allows to restrict a type parameter to itself (e.g.
class C [G −> G]), but even in Eiffel it does not make much sense as it is the
same as G −> ANY . Java and C# are more restrictive and does not allow to
use cyclic constraints like:

public class C<U,V > where U : V where V : U
{}

Please note that the following code is not a cyclic constraint and is allowed in
C#.

public class C<U,V > where U : V where V : IComparable<U>

{}

In Ada, it is possible to restrict a type parameter to a certain typeclass,
such as to discrete types. This means, in the body of the generic, you can use
the attributes specific to that typeclass, because the generic contract model
ensures that the actual will have that attribute. The same happens when passing
an array type. In the example on page 566,the generic parameters Index and
Vector are good examples for that case. Here, Index is a discrete type, so in the
implementation we can use the attributes ’Pred and ’Succ of this type.

In functional languages, similar result can be achieved by restricting a type to
a certain typeclass.8 To restrict type parameters by enforcing them to implement
a certain typeclass has already been shown on page 565.Type classes are abstract
interfaces and it is possible to create an implementation of the type class for any
type.

A very similar idea in C++ is concept. In C++ there is no way to restrict
a template parameter, hence misusing them can lead to cryptic error messages
as we have seen on page 587.To overcome this problem C++ uses concepts. A
concept is a set of requirements for a type, and it is used in the current and past
C++ standards for documentational purposes. For instance, one of the simplest
concept is DefaultConstructible, which means that the type should have a default
constructor.

It is proposed to include concepts in C++0x [Sie05], but unfortunately it is
finally left out. The idea is to create a formal description of the restrictions, for
example the DefaultConstructible concept can be formulated as:

auto concept DefaultConstructible<typename T> {

T::T();

};

8 Typeclass has a bit different meaning in a functional language, see Section 15.4
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This concept definition means that the type T meets the requirements of the
DefaultConstructible concept if there exists a parameterless constructor for type
T . The keyword auto tells the compiler that, every type which has a default
constructor is automatically meets the requirements of the DefaultConstructible
concept (similarly to structural type systems).

We can use concepts to revise our example from Section 11.2. To ensure that
the type T has the used comparison operator, we can enforce that the parameter
T should meet the requirements of the LessThanComparable concept.

template<std::LessThanComparable T, int max>

class Stack
{

. . .

};

Using concept, however, does not mean that the generic contract model, as
the body of the template is not checked. It is that every function used in the body
of the template is ensured by the concepts required in the template specification.
It is basically a way to make an error message much less cryptic.

In some cases it is necessary to express properties which are not syntactical,
but rather something behavioral. Such a concept in C++ is the concept of
ForwardIterator.9 Such concept does not contain syntactical restrictions, but
cannot be automatically mapped. If the programmer knows that a type fulfills
the requirements of a concept, it can be mapped explicitly. For example:

concept ForwardIterator<typename T>: InputIterator<T> {

};

concept map ForwardIterator<MyIterator> {};

Concept maps can also be used to adapt a class to a concept, by explicitly
giving a mapping from the requirements of the concepts. For example, we know
that pointer types fulfill the requirements of ForwardIterators, but to be a
ForwardIterator, one must fulfill the requirements of InputIterator. To be an
InputIterator the type must contain a type named value type, among the opera-
tors increment, decrement and dereference (++, – and *). To map pointer types
to the concept of ForwardIterator, we can explicitly give the type value type:

template<typename T>

concept map ForwardIterator<T*> {

typedef T value type;

};

9 ForwardIterator is an InputIterator, but it guarantees that copies of the iterator remains
valid after the iterator is incremented. So an iterator which can be used in multipass
algorithms. For example, an istream iterator is not a ForwardIterator.
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11.5.2 Template

In C++, a quite unique feature is the possibility of passing a template as
template parameter. This can be done by passing its signature instead of the
keyword template in the template definition.

template<template <typename> class F, typename T>

class C
{

typedef F<T> applied;

};

Similarly, in Haskell, type constructors can have type constructor parameters
as seen on page 571.

11.5.3 Subprogram

In Ada, it is possible to pass a subprogram as a generic parameter. It plays an
important role to specify operations on a type parameter, just like in Section 11.1.
In that example, we needed the operator < to sort an array, so to ensure that
two values of the specified type can be compared, we introduced a function
parameter to be used as a comparison function. Moreover, in Ada 83 the only
way to pass a subprogram was to use generics. The following example contains
the specification of a generic function Integrate, which calculates the numerical
integral of the function F . (You can compare this solution with the example
from Section 7.3.1 on page 278,where a similar function can be found, but in
Pascal.)

generic
with function F(X : Float) return Float;

function Integral(Lower Bound, Upper Bound, Step: Float) return Float;

In Ada 95, it is possible to parametrize a subprogram with subprograms by
using pointers to functions, similar to a lot of other languages. More details can
be found in Section 7.3 (on page 278).

11.5.4 Objet

It is possible to pass values and variables as generic parameters. This way, it is
possible to create abstract data types or operations, which can work on types
of various length. In Section 11.2 and 11.2, two implementations of the data
structure Stack was shown, where the maximal size of the Stack was passed as
generic parameter.
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The following code shows the way how to pass a value and a variable as
generic parameter in Ada.

with Text IO; use Text IO;
procedure Obj P Mod is

generic
E : in Integer ;
V : in out Integer ;

procedure G;
procedure G is
begin

V := E * V ; −− E := E * V invalid, E is not an lvalue
end G;
X : Integer := 6 ;
procedure P is new G(X, X); −− same as G(6, X)

begin
X := X+1 ;
P;
Put Line(Integer ’Image(X)); −− X equals to 42

end;

The parameter E is an input value (shown by the keyword in), so we use
its value. It means it is invalid to use E in the left hand side of an assignment.
On the other hand the in out keywords in the specification of the parameter V
means that its value can be modified in the body of the generic.

11.5.5 Module

It is common that a generic extends the services of another generic, or it simply
just depends on the abstraction of another generic. A comfortable way to do this
is to encapsulate the generic type and the operations over it (see Section 10.4)
and pass it as a whole to the generic. In object-oriented languages (Java, C#,
C++, Eiffel), it is a very natural way, because the tool of encapsulation is class,
and these languages accept (and most of the accept only) classes as generic
parameters.

In Ada 95 it is possible to do something similar. The basic construct of encap-
sulation in Ada is the package, so the desired effect can be done by parametrize
generics by packages. Let us see an example for this!

generic
type Elem is digits <>;
type Index is (<>);
type Matrix is array (Index range <>, Index range <>) of Elem;

package Matrix Arithmetics is
function "*" ( A, B: Matrix ) return Matrix ;
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...

end Matrix Arithmetics;
package body Matrix Arithmetics is . . .

type Real is digits 5 ;
type Matrix is array (Integer range <>, Integer range <>) of Real;
package Real MA is new Matrix Arithmetics(Real,Integer,Matrix);

The package Matrix Arithmetics is a basic generic to implement matrix op-
erations, such as addition, multiplication, etc. To write a more complex package
which implements more complex operations (like inverting matrices) it is possible
to write the following.

generic
type Elem is digits <>;
type Index is (<>);
type Matrix is array (Index range <>, Index range <>) of Elem;
with function "*" ( A, B: Matrix ) return Matrix is <>;
. . .

package Advanced Matrix Operations is
function Invert ( M : Matrix ) return Matrix ;

. . .

The example shows us that all generic parameters of the used package and
all the operations used are introduced as parameters of the new package. It is
a rather elaborated generic definition and it can be cumbersome. Moreover, it
does not form a semantic unit, which means at instantiation we do not need
to use the operations of the package Matrix Arithmetics, but it is possible
to pass a quite different operation for the parameter * instead of multiplica-
tion. It is obvious that the use of this * operator in the body of the pack-
age Advanced Matrix Operations leads to undesired results. Using packages as
generic parameters are the cure to this problem.

generic
with package Arithmetics is new Matrix Arithmetics (<>);

package Advanced Matrix Operations is
function Invert ( M : Arithmetics.Matrix ) return Arithmetics.Matrix ;

. . .

In this example, the specification of the formal package parameter contains
the name of a generic package – the actual parameter must be an instance of
this generic package.

The name of the formal package parameter (Arithmetics here) is a package,
and not a generic. We can refer to its components, such as to Arithmetics."*", as
well as to the formal parameters of the generic package (e.g. Arithmetics.Matrix).
It is also possible to refer the without qualifying then with the package name:
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generic
with package Arithmetics is new Matrix Arithmetics (<>);
use Arithmetics;

package Advanced Matrix Operations is
function Invert ( M : Matrix ) return Matrix ;

. . .

The notation (<>) in the specification of the formal package parameter
means that any package can be passed to the formal parameter which is an
instance of the generic prior to it.10

11.6 Instantiation

Prior to the use of a generic, we must know what actual parameters are substi-
tuted to the formal parameters . This substitution is called instantiation.

In pure functional languages (ML, Clean, Haskell, Miranda, etc.), it is not
required to specify the actual type generic parameters while calling a polymor-
phic function, because the type inference system can determine them based on
the context. In these languages, the term instantiation refers to the instantiation
of type classes to specific types (see Section 15.4.1).

In some languages, it is required to instantiate the generic before use, without
this the generic is unusable.

In instantiation, we mean the process where the compiler creates the nec-
essary declarations and definitions needed to use the generic, by parameter
substitution.

The compiler takes the identifiers in generic parameters and associates con-
crete declarations to them. This process is called name binding. The obtained
function and classes are called specializations.

Instantiation can be classified in various ways. One possible point of view
is when the compiler does the instantiation: at the actual usage of the generic
(called on-demand instantiation) or when the programmer explicitly instructs
the compiler to do so (called explicit instantiation).

According to another classification, the compiler can be lazy or eager . In case
of a composite generic (e.g. a generic class) a lazy compiler does not generate
code for every part of the generic, just the parts of the generic which is necessary
to compile the code. An eager compiler generates code for the whole generic,
regardless of their usage.

The third question is how the substitution of parameters are done during
the instantiation – whether it is necessary for the programmer to provide all the
parameters of the generic, or the compiler is able to infer them.

10 It is possible give some restriction instead of (<>).
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11.6.1 Expliit instantiation

In Ada, instances must be declared explicitly and it is only possible to refer to
these explicitly declared instances. It was shown before in this chapter in Sec-
tion 11.1. It is also possible to instantiate a template explicitly in C++, however,
this possibility is mostly used only to check the restrictions of templates [MS00].

11.6.2 On-demand instantiation

In C++, the compiler instantiates a template only when it is really necessary.
For example:

Link<int> *pointer; // There is no need to instantiate Link here.
Link<int> intlink; // Here, the instantiation is unavoidable.

Declaring a pointer (e.g. the variable pointer), the type which the pointer
refers to (Link<int> in our case) can be incomplete, hence during the declaration
of the variable pointer the template Link is not instantiated. The first place
where the definition of the template is needed is called point of instantiation. In
the example above, this is the declaration of the variable intlink.

In Eiffel, instantiation works in a similar manner.
In Java, the type erasure process of the compiler transforms generics into raw

types, so technically there is no generic instantiation. The reason for this is that
in Java, generics are used to perform the runtime type checks at compile-time,
and no specialized code is generated when using generics.

11.6.3 Lazy instantiation

In C++, instantiation is lazy, the compiler does not produce the whole template
instance if it is not necessary.

template <class T> class List {

int size() const;
void sort(); // operator < is used here
. . .

};

class NoComp
{ /* no operator < is defined for this class */ };

void f (List<NoComp>& ln, List<string>& ls)

{

std::cout « ln.size();

std::cout « ls.size();

ls.sort();

}

The compiler creates the function List<NoComp>::size, List<string>::size and
List<string>::sort, because only these are referenced in function f . The function
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List<NoComp>::sort is, however, not created, because the function f does not
refer to it. This is fortunate, because the function List<NoComp>::sort is invalid,
as there is no operator < defined on the class NoComp, which is used in the sort.
Note that generic contract model is violated here, during the instantiation of
the template List with the class NoComp, the compiler does not check whether
the actual parameter meets all the requirements the body of the template raises.
The requirements are check only, when the actual function is called, that is,
when the actual function is instantiated. The approach of C++ is to enable
the instantiation of a template with a type which does not conform to the
requirements, while no function is used which needs the unmet requirement.

Weak and strong typing

C++ provides weak typing in a strongly typed language [Eck00], as the template
does not demand its parameters to have an exact type. Instead, C++ requires
the members used by the template to be available in the types given as actual
template parameters. This way, templates are more flexible. In Python and
Smalltalk, a method call is weakly typed, so there is no need for templates.
On the other hand, Ada, Java and C# can explicitly restrict their template
parameters, so in these languages strong typing is applied. The benefit of this
is that according to the generic contract model, errors in the template emerge
early, in the compilation of the template, and not just at the first use of them.

11.6.4 Generi parameter mathing

Matching generic arguments is much like matching parameters of subprograms
(see Chapter 7). The most common way is to match by position, but some
languages (including Ada) allows to match by name. In some languages, like
Ada and C++, we can provide default values for parameters as well.

The language Ada uses explicit instantiation, meaning that during the in-
stantiation of the generic, a new package or subprogram is created, with the
passed actuals. After that, the newly created program unit can be used.

Some other languages do not requires explicit instantiation, but is enough to
provide the type parameters at the place of use. In C++, it is only necessary to
provide the parameters for class template which does not have default values.
Parameters of function templates are inferred by the compiler (if it is possible).

template <class T>

void swap(T& t1, T& t2) { /* . . . */ }

int main() {

int i = 5, j = 7;

swap(i, j); // calling swap<int>
}
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However, the programmer should be careful, as the compiler does not take
type conversions into account. Here is an example to demonstrate this:

template<class T> T max(T,T);

void f () {//. . .
max(3.14, 1.59); // ok: max<double>(3.14, 1.59)

max(3.14, 8); // error: max<?>(double, int) does not exists
}

In such cases, it is still possible to explicitly provide the type parameter, so
the previous example can be rewritten:

max<double>(3.14, 8); // max<double>(3.14, double(8))

In Java, the situation is similar, but the compiler tries to find the common
super type for the arguments. In the example below, the type B and C are sub-
type of type A, so the common super type of B and C is A which conforms to the
declared bound. These bounds (namely ? super T ) are detailed in Section 11.7.

public class Gen {

public static <T extends Comparable<? super T> > T
max(T t1, T t2) {

return t1.compareTo(t2)>0?t1:t2;

}

public static class A implements Comparable<A> {

public int compareTo(A a) { return 0; }

}

public static class B extends A {}

public static class C extends A {}

public static void main(String args[ ]) {

System.out.println(max(2,3));

//System.out.println(max(2,3.14)); // does not work
System.out.println(max(new B(), new C()));

}

}

11.6.5 Speialization

An advantage of using C++ template is that the compiler does not generate
code for unused parts, because of the lazy and on-demand instantiation. In some
cases the generated code can be reduced even more.

template <class T>

class Vector {};
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Vector<int> v1;

Vector<bool> v2;

Vector<AClass> v3;

Vector<A*> v4;

Vector<B*> v5;

In this example, 6 classes are created. To avoid the creation of all 6 classes,
it is possible, to provide different specializations for different type parameters.
Using inline functions and inheritance it is possible to create one class handle
all the types Vector<T*> [Str00].

template<>

class Vector<void*> {

void** p;

void* operator[ ](int i); /* . . . */
};

template<class T>

class Vector<T*> : private Vector<void*> {

typedef Vector<void*> Base;

Vector():Base() {}

explicit Vector(int i): Base(i) {}

T*& operator[ ](int i) {

return reinterpret cast<T*&>(Base::operator[ ](i));

}

};

With this solution, the compiler reuses the instance Vector<void*> and reuses
the generated code.

Specialization is also useful to provide specialized code for certain types. In
this case, the specialized version covers the general solution, so when instanti-
ating a template for a type which has a specialization, the compiler does not
compile the original template, just the specialized one.

A common specialization in C++, is the specialization of the template vector
to bool. A boolean variable can be true or false, so it contains exactly one bit
of information. However, technically it is not possible to store it on less than
one byte of space. The generic implementation therefore uses at least one byte
of space for every boolean. With the use of template specialization, it is possible
to give an implementation which stores eight booleans on one byte of memory.

In C++, specialization and weak typing makes it possible to execute pro-
grams at compile-time (called metaprogramming) [Unr94]. The idea is quite
simple, conditional operations can be rewritten to specializations, and loops can
be rewritten to recursive instantiation. To calculate the factorial of n at compile
type, we can write the following in C++11:
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template<int N>

struct Fact
{

static constexpr long value = N * Fact<N-1>::value;

};

template<>

struct Fact<0>

{

static constexpr long value = 1L;

};

The static field value in the struct Fact<N> provides the factorial of the
template parameter N . The calculation is done by calculating the factorial of
N-1 and multiplying it by N . To stop the recursion, the template is specialized
for N = 0, and the value 1 is provided for that case.

11.6.6 Type erasure

In C++, the compiler creates distinct codes for distinct type parameters. The
problem with it is that the template cannot be compiled without its definition, so
the whole template must be in a header file, with its implementation. This means
that the implementation cannot be hidden (hence violating the encapsulation).
It also results that all the translation units using our template contains the code
generated from the template.

In Java, generics can be compiled and used just like any other Java classes.
To achieve this Java employs a procedure called type erasure [BOSW98]. During
type erasure, type parameters are substituted by their bounds, and the compiler
generates code for that instance. To preserve type safety and polymorphism
necessary type casts and bridge methods are inserted. Type erasure also ensures
compatibility with old Java code without generic support. In practice, this results
quite a strange behavior, see the following Java and C++ classes:

public class A <T> {

public static int value;

}

template<typename T>

class A {

static int value;

}

In case of C++, instances for distinct type parameters are distinct types.
This means that A<int>::value and A<long>::value are two different variables,
and assigning a value to one of them does not change the other. However, in
Java, the opposite is true. Because of the type erasure, both A<Integer> and
A<Double> is implemented in the same class file. To refer to the field, the raw
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type (the name of the generic without arguments) must be used. It is not possible
to use the generic parameters in static fields and methods. It is also impossible
to implement the same generic interface with two distinct type parameters:

public class B implements Comparable<A>, Comparable<String> {

// error: Comparable cannot be inherited with different arguments
}

The main disadvantage of using type erasure is, however, the lack of informa-
tion about the type parameter at runtime. This means it is impossible to retrieve
the generic arguments using reflection (just the raw type), and also means that
it is not possible to use type parameters with the operator new:

public class C <T> {

public T instantiate() {

return new T(); // T is needed at runtime.
} }

A frequently used workaround is to explicitly pass the Class object repre-
senting the type parameter to the function:

public class C <T> {

public T instantiate(Class<T> klass) {

return klass.newInstance();

} }

The C# compiler generates CIL (Common Intermediate Language [CLI12]),
which provides generics at virtual machine level, so there is no type erasure, and
information of the generic arguments are available at runtime. It is also possible
to instantiate type parameters using the operator new. Generics in C# can be
compiled just like any other classes, but without the drawbacks of type erasure.

11.7 Generis and inheritane

Generics are useful to create new types. When A is a subtype of B, and T<A> is a
subtype of T<B> then T is covariant in its type parameters. If T<B> is a subtype
of T<A>, then it is called contravariant, otherwise it is called invariant. In some
cases covariant subtyping allows insecure language constructs, by creating a
security leak in the type system of the languages. A well known example is the
array type in Java. Array is covariant, so String[ ] is a subtype of Object[ ].
Using this fact, the following example creates a type error, which cannot be
detected by the compiler at compile time, but causes a run-time exception:

Object[ ] t = new String[1];

t[0] = new Object();
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In Java, Stack is a subtype of Vector , but there is no subtype relation
between the types LinkedList<Vector> and LinkedList<Stack>. On the other
hand, Stack<A> is a subtype of Vector<A> and Stack<Integer> is a subtype of
Vector<Integer>. So this subtyping is invariant.

There is no covariant subtyping in C++ [Str00]:

class Shape { /* */ };

class Circle : public Shape { /* */ };

class Triangle : public Shape { /* */ };

void f (set<Shape*>& s) {

s.insert(new Triangle());

}

void g(set<Circle*>& s) {

f (s);// Error: no conversion from set<Circle*>& to set<Shape*>&

}

However, it is useful sometimes to allow some form of covariant and con-
travariant subtyping in parameter and return types. Please recall the method
sort written in Java. It is possible to introduce a type parameter in the interface
Comparable.

public interface Comparable<T> {

int compareTo(T other);

}

A naive solution to rewrite the generic method sort to utilize the generic
parameter of Comparable is the following:

public class Sorting {

public static <T extends Comparable<T> > void sort(T a[ ]) {

. . .

}

}

However, this requires T to implement the interface comparable, but in this
case it is enough to have a superclass which implements the interface. The right
solution is to write:

public static <T extends Comparable<? super T» void sort(T a[ ]). . .

It means that, T implements the Comparable interface, where the type parameter
of the Comparable is some supertype of T , and we used the character ? to
express this (called wildcard). With wildcards it is possible to express co- and
contravariancy.

To compare covariancy in arrays and covariancy in generics take the following
examples. In case of type List<? super T>, we know that the elements of the
list is a supertype of T , so it is safe to add an element of type T to the list. The
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other case is the type List<? extends T>, than it is safe to assign an element of
the list to a variable of type T , because we know that the elements of the list
are subtypes of the type T . This second case is how arrays work. So it is always
safe to get the elements of an array, but special care is needed when modifying
them. To add elements to a list and also retrieve elements, the type parameter
must be invariant: List<T>.

In C# co- and contravariant parameters can be specified directly in the
generic declaration. In the following example, U is covariant, V is contravariant
and W is invariant. To keep the safety of the type system, covariant type
parameters can only be used in arguments, contravariant parameters can only
be used in return types.

public class C<in U,out V, W > {. . .}

In Eiffel, polymorphism and inheritance are closely related, but because of
the lack of method overriding an interesting situation arise.

class A[G] feature
f (x : G) is . . . end

end

class B inherit
A[INTEGER]

end

class C inherit
A[REAL]

end

The class A is polymorphic, and it has exactly one method called F . Classes
B and C inherits the instances of class A for INTEGER and REAL. If there is
a class D which inherits both B and C , it will have two conflicting declarations
of the method f . To resolve such situations, the clause select can be used in (see
Section 10.7.5).

class D
inherit
B

rename f as bf
end
C

rename f as cf
select cf

end
. . .

end
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11.8 Summary

In the previous chapter we saw how the introduction of the idea of polymor-
phism creates an effective way of abstraction: it gives the theoretical foundations
for control and data abstraction. This chapter introduced one of the possible
classifications of the kinds of polymorphism, and we get universal and ad-hoc
polymorphism. Universal polymorphism is further divided into parametric and
inclusion, while ad-hoc polymorphism is divided into overriding and coercion.

Different languages provide different tools to achieve polymorphism. Purely
functional and object-oriented languages fully support parametric and inclusion
polymorphism, respectively. The languages Ada and C++ provide syntactical
parametric polymorphism. We have also seen that mostly monomorphic lan-
guages can also give tools to provide any kind of polymorphism in a certain
extent, and it is also discussed that strictly monomorphic languages provide less
expressive power.

The generic contract model is introduced to make the body of the generics
and the instantiation of the generic independent. The generic contract model
also makes the way of modular software development easier.

We saw that the use of polymorphism increases the reliability and reusability
of the source code, which makes is extremely useful for library development.

This chapter focused on how type parametricity is implemented in modern
languages, what can be a type parameter, and how instantiation works on
different languages. The most important differences of the implementation in
distinct languages are presented as well.

The chapter also covered the interaction of type parameters with other
language features such as subtyping. Most importantly, the benefits and risks of
co- and contravariant type parameters are shown, and then it is detailed, how
the arisen problems are handled in the most popular object-oriented languages.

11.9 Examples

This section provides three almost complete implementations of a linked list in
three different languages. Throughout the implementations, we tried to follow
the coding conventions and standards of the languages, however, we tried to keep
the solutions simple, even at the expense of completeness or breaking the coding
conventions. For the sake of readability, some error handling is left out (in Java
and C#), similarly, our list does not have Allocator template parameter or any
removal.

11.9.1 C++

template <typename T>
class list

{
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private:
struct node
{

T value;
node * prev;

node * next;
};
node * _first;

node * _last;

public:
list(): _first(0), _last(0) {}

list(const list<T>& other): _first(0), _last(0)
{

for(node *it = other._first; it; it=it->next)

push_back(it->value);
}

template<typename InputIterator>

list(InputIterator first, InputIterator last)
{

for(;first != last; ++first)

push_back(*first);
}

list<T> &
operator = (const list<T> & rhs)

{
if(&rhs != this)

list<T>(rhs).swap(*this);

return *this;
}

void push_back(const T& t)
{

if(!_last)
_first = _last = new node {t, 0, 0 };

else

{
node * tmp = new node { t, _last, 0 };

_last -> next = tmp;
_last = tmp;

}
}

void push_front(const T& t)
{

if(!_first)
_first = _last = new node {t, 0, 0 };

else

{
node * tmp = new node { t, 0, _first };

_first -> prev = tmp;
_first = tmp;

}
}

void pop_front()
{

node * tmp = _first;
_first = _first -> next;
delete tmp;

if(_first)
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_first -> prev = 0;
else

_last = 0;

}

void pop_back()
{

node * tmp = _last;

_last = _last -> prev;
delete tmp;

if(_last)

_last -> next = 0;
else

_first = 0;

}

void swap(list<T> &other)
{

std::swap(_first, other._first);
std::swap(_last, other._last);

}

const T& back() const

{
return _last->value;

}

const T& front() const

{
return _first->value;

}

T& back()

{
return _last->value;

}

T& front()

{
return _first->value;

}

class iterator
{
public:

iterator(node * ptr): _ptr(ptr) {}

int operator != (const iterator &rhs)
{

return _ptr - rhs._ptr;

}

iterator& operator ++ ()
{

_ptr = _ptr -> next;
return *this;

}

T & operator * () const

{
return _ptr -> value;

}

private:
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node * _ptr;
};

iterator begin()
{

return _first;
}

iterator end()
{

return 0;
}

};

11.9.2 Java

import java.util.AbstractSequentialList;

import java.util.Collection;
import java.util.List;

import java.util.ListIterator;

public class LList<E> extends AbstractSequentialList<E> implements List<E> {
private static class Node<E> {

E value;
Node<E> prev;

Node<E> next;

public Node(E value, Node<E> prev, Node<E> next) {

this.value = value;
this.prev = prev;

this.next = next;
}

}

private Node<E> first=null, last=null;

private int size=0;

public LList() {
}

public LList(Collection<? extends E> coll) {
for(E e : coll) {

addAfter(last, e);
}

}

private Node<E> getNode(int index) {

Node<E> next = first;
for(int i=0; i<index; ++i)

next = next.next;
return next;

}

private Node<E> addAfter(Node<E> before, E e) {

Node<E> node;
if(before == null) {

node = new Node<E>(e, null, first);

if(first != null)

first.prev = node;
if(last == null)

last = node;
first = node;
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} else {

node = new Node<>(e, before, before.next);

if(before.next == null)
last = node;

else

before.next.prev = node;

before.next = node;
}

++size;
return node;

}

private Node<E> addBefore(Node<E> after, E e) {
if(after == null)

return addAfter(last, e);
else

return addAfter(after.prev, e);

}

@Override
public boolean add(E e) {

addAfter(last, e);

return true;
}

@Override

public ListIterator<E> listIterator(int index) {
return new Iterator(index);

}

@Override

public int size() {
return size;

}

private class Iterator implements ListIterator<E> {

private Node<E> next, lastReturned;
int nextIndex;

public Iterator(int index) {
nextIndex = index;

next = getNode(index);
}

@Override
public boolean hasNext() {

return nextIndex<size;
}

@Override

public E next() {
lastReturned = next;
next = next.next;

nextIndex++;
return lastReturned.value;

}

@Override

public boolean hasPrevious() {
return nextIndex>0;
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}

@Override

public E previous() {
if(next==null)

next=lastReturned=last;
else

next=lastReturned=next.prev;

nextIndex--;
return lastReturned.value;

}

@Override
public int nextIndex() {

return nextIndex;

}

@Override
public int previousIndex() {

return nextIndex-1;
}

@Override
public void remove() {

throw new UnsupportedOperationException();
}

@Override
public void set(E e) {

lastReturned.value=e;
}

@Override
public void add(E e) {

if(lastReturned == next) {
lastReturned = LList.this.addBefore(lastReturned, e);

} else {
lastReturned = LList.this.addAfter(lastReturned, e);

}

next=lastReturned.next;
++nextIndex;

}
}

}

11.9.3 C#

using System;

using System.Collections;
using System.Collections.Generic;

public class LinkedList<T> : ICollection<T>, IEnumerable<T>, ICollection, IEnumerable {
private class Node {

public T element;
public Node prev, next;

public Node(T element, Node prev, Node next) {
this.element = element;

this.prev = prev;
this.next = next;

}
}

public int Count { get; protected set; }



11.9 Examples

•
609

private Node first = null;
private Node last = null;

public LinkedList() {}

public LinkedList(IEnumerable<T> other) {
foreach(T element in other)

AddLast(element);

}

public bool IsReadOnly {
get { return false; }

}

public bool IsSynchronized {

get { return false; }
}

public object SyncRoot {

get { return this; }
}

void ICollection<T>.Clear() {
Count = 0;

first = last = null;
}

void ICollection<T>.Add(T element) {
AddLast(element);

}

public void AddLast(T element) {
Count++;
Node node = new Node(element, last, null);

if(last == null)
first = node;

else
last.next = node;

last = node;

}

bool ICollection<T>.Contains(T element) {
foreach(T t in this)

if(object.Equals(t, element))
return true;

return false;

}

bool ICollection<T>.Remove(T element) {
Node node = first;

while(node != null && object.Equals(element, node.element))
node = node.next;

if(node == null)

return false;

if(node.next == null)

last = node.prev;
else

node.next.prev = node.prev;

if(node.prev == null)

first = node.next;
else
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node.prev.next = node.next;
return true;

}

public void CopyTo(T[] array, int size) {

IEnumerator<T> e = GetEnumerator();
for(int i=0; i<size&&e.MoveNext(); ++i) {

array[i]=e.Current;

}
}

public void CopyTo(System.Array array, int size) {

IEnumerator<T> e = GetEnumerator();
for(int i=0; i<size&&e.MoveNext(); ++i) {

array.SetValue(e.Current, i);

}
}

IEnumerator<T> IEnumerable<T>.GetEnumerator() {

return GetEnumerator();
}

IEnumerator IEnumerable.GetEnumerator() {
return GetEnumerator();

}

public Enumerator GetEnumerator() {

return new Enumerator(this);
}

public struct Enumerator : IEnumerator<T>, IEnumerator {

private Node current;
private LinkedList<T> list;

public Enumerator(LinkedList<T> list) {
this.list = list;

this.current = null;
}

public T Current {
get { return current.element; }

}

object IEnumerator.Current {
get { return current.element; }

}

void IDisposable.Dispose() {
if(list == null)

throw new ObjectDisposedException(null);

current = null;
list = null;

}

public bool MoveNext() {
if(current == null) {

current = list.first;

return true;
}

if(current.next != null) {
current = current.next;

return true;
}
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return false;
}

void IEnumerator.Reset() {

current = null;
}

}

}

11.9.4 Comparing the examples

It is interesting how these languages provide a solution to the same problem.
The solution is similar, creating a generic class with a type parameter giving the
element type of the list. This generic always have two nested classes: one to hold
the elements and one to iterate over them.

It is important to note that only the language Java supports non-static nested
(inner) classes (see Chapter 10). In other languages, inner classes can be emulated
by passing the outer object as a constructor parameter – like the iterator in the
C++ and Enumerator in the C# solution. In the case of the elements of the
list (classes named node and Node), a careful reader would notice that only the
the Node in the language Java has type parameter. The reason for this is that
everything static belongs to the class itself (and thus the raw type in Java), in
correspondence to Section 11.6.6.

Another interesting fact is the way how subtyping is handled. In C++, there
is a constructor which accepts a range of elements of a container, which is
represented by two iterators. Being a template, nothing is assumed about the
container or about the type of the elements (except the elements are passed to the
push back method). In Java, there is a common superinterface called Collection,
so there is a constructor which takes a collection of elements of type E or a
subtype of E (i.e. Collection<? extends E>). In C#, the superinterface is called
IEnumerable, but this interface does not contain any mutator methods, so its
type parameter is covariant (out).

11.10 Exerises

Exercise 11.1. Compare universal and ad-hoc polymorphism.

Exercise 11.2. What are the benefits and drawbacks of strict monomorphism?

Exercise 11.3. Why is instantiation needed and how does it take place in differ-
ent languages?

Exercise 11.4. What are the types of polymorphism and which languages employ
them?

Exercise 11.5. Create a polymorphic method that swaps its two parameters of
the same type.
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Exercise 11.6. Is it possible to use covariant or contravariant type parameter for
the arguments of the swap?

Exercise 11.7. What kind of polymorphism is practical for defining a comparison
operator?

Exercise 11.8. Write a generic function, which takes a predicate and a collection,
and returns the first element of the collection, for which the predicate is true.

Exercise 11.9. Why do we call the parametric polymorphism of Ada and C++
syntactic?

Exercise 11.10. How could we classify the languages by the manner of instanti-
ation?

Exercise 11.11. In Java, there are three different ways to get a Class<T> in-
stance for a type, where the type parameter T is the type the class repre-
sents. The first one is to call getClass() method of an object, for example
"foo".getClass(). The second one is to append .class to the name of the
type, e.g. boolean.class. The third one is to load the class, by giving its name:
Class.forName("java.lang.String"). Each of them returns a Class instance,
but with different type parameters. What are they?

Exercise 11.12. In a generic function, how can you instantiate an object of the
type parameter?

11.11 Useful tips

Tip 11.1. Which kinds of polymorphism have an universal abstract implemen-
tation? In which kind of polymorphism will the polymorphic program unit work
on types defined in the future?

Tip 11.2. Which is easier to implement? A monomorphic or a polymorphic
language? Which has better expressive power?

Tip 11.3. When will the specializations created from the generic? Is there a
language construct to create them?

Tip 11.4. Object-oriented and functional languages both have their usual kind
of polymorphism.

Tip 11.5. The implementation language must modify the variables passed, so it
cannot be implemented in some languages (such as in Java). A C++ solution is
provided on page 11.6.4, so Ada or C# is preferred. The solutions should be a
generic procedure or a generic static method.
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Tip 11.6. Is it safe to swap variables of different types? Are they in- or output
variables?

Tip 11.7. In C++, it is possible to create an operator == with new parame-
ters, even if this operator is already defined for primitive types. What kind of
polymorphism is this? How it is possible to define the comparison operator for
templates?

Tip 11.8. In C++, use an iterator range, and a functor to define a template
function. In Java, a generic interface Predicate should be created, and a static
generic function should be created. In C# the solution is similar, and predicate
can be implemented using a delegate. Take into account which parameter of the
function has covariant and contravariant type parameter.

Tip 11.9. Is there a universal implementation of generics in C++?

Tip 11.10. Do we need to introduce the instance by hand? The new instance is
compiled at once, or only the used parts are compiled?

Tip 11.11. The difference is what can we assume about the type that the class
instance represents. This knowledge must be represented by wildcards.

Tip 11.12. It depends on the language, but we discussed the must important
cases, in C#, Java, Ada and C++. In C# there is an explicit syntax to do it.
In Java, there is no direct way to do that because of type erasure. In Ada, the
type parameter must explicitly forbid this, and in C++ type parameters can be
used just like regular types.

11.12 Solutions

Solution 11.1. In contrast to ad-hoc, universally polymorphic program units
have an universal, abstract implementation. This implementation will cooperate
with types defined in the future.

Solution 11.2. It is much easier to find type errors in a monomorphic language,
but it has much less expressive power.

Solution 11.3. During instantiation, actual parameters are checked against the
contract, and formal parameters are substituted. Instantiation is important,
because usable program units are created from the generics. In Ada, a new
program unit must be declared explicitly, before the generic instance can be
used, but most of the languages uses implicit instantiation.

Solution 11.4. There are four types of polymorphism. Inclusion and overloading
polymorphism is prevalent in object-oriented languages. Parametric polymor-
phism is very natural in functional languages, but it can be found in most of the
modern object-oriented languages as well. Coercion polymorphism is unusual in
functional languages.
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Solution 11.5. C#

public static class Swapper {

public static void Swap<T>(ref T a, ref T b) {
T tmp = a;

a = b;
b = tmp;

}

public static void Main(string[] args) {

int a = 1, b = 2;
Swap(ref a, ref b);

System.Console.WriteLine(a);
}

}

Ada
swap.ads

generic
type T is private;

procedure Swap(A, B : in out T);

swap.adb
procedure Swap(A, B : in out T) is

Tmp : T := A;
begin

A := B;
B := Tmp;

end;

swaptest.adb
with Swap;
with Ada.Text_IO;
use Ada.Text_IO;

procedure Swaptest is

procedure SwapI is new Swap(Integer);
A : Integer := 1;
B : Integer := 2;

begin
SwapI(A, B);

Put(Integer’Image(A)); New_Line;
end;

Solution 11.6. Input variables can be covariant, while output variables can be
contravariant. The arguments of swap are in- and output variables, so the type
parameter must be invariant.

Solution 11.7. To create a comparison operator for a new type, we should create
a new operator with the same name, but with different parameter types, which
is called overloading. In C++, this is possible:

struct complex {
double re, im;

};

bool operator == (const complex &lhs, const complex &rhs)

{
return lhs.re == rhs.re && lhs.im == rhs.im;

}
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To do the same with a template class, we can use parametric polymorphism
as well. For example to compare two lists:

template<typename T>

bool operator == (const std::list<T> &lhs, const std::list<T> &rhs)
{

typename std::list<T>::const_iterator it1 = lhs.begin();
typename std::list<T>::const_iterator it2 = rhs.begin();

while(it1 != lhs.end() && it2 != rhs.end() && *it1 == *it2)
{

++it1;

++it2;
}

return (it1 == lhs.end()) && (it2 == rhs.end());
}

Solution 11.8. C++
template<typename Predicate, typename InputIterator>

InputIterator findif(InputIterator first,
InputIterator last, Predicate f)

{
for(;first != last && !f(*first); ++first);

return first;
}

Java
import java.util.Collection;

import java.util.Iterator;

public class Find {
public interface Predicate<T> {

public boolean call(T t);

}

public static <T> T findif(Collection<T> collection,
Predicate<? super T> pred) {

Iterator<T> it=collection.iterator();

while(it.hasNext()) {
T t = it.next();

if(pred.call(t))
return t;

}
return null;

}

}

C#
using System.Collections.Generic;

public static class Find {
public delegate bool Predicate<T>(T t);

public static bool FindIf<T>(IEnumerable<T> list,
Predicate<T> match, ref T result) {

foreach(T t in list)
if(match(t)) {

result = t;
return true;

}

return false;
}

}
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Solution 11.9. C++ and Ada creates distinct code for distinct type parameters,
and there is no universal representation. In contrast, Java uses type erasure to
create a universal implementation for a generic.

Solution 11.10. Most languages uses on-demand instantiation, which means that
there is no need to instantiate the generic by hand. However, in Ada, all generics
must be instantiated and named explicitly. In C++, the instantiation is lazy,
and only the used functions of a class is instantiated, which means that unused
functions can contain type errors. In other languages, instantiation is eager, and
the whole generic is compiled at once.

Solution 11.11. In case of Foo.class, we know the exact type and thus the
parameters of the Class type. However, in case of foo.getClass(), the dynamic
type is unknown, so we can only assume that the type of the variable foo is some
subtype of Foo. When we load the class by name, we cannot assume anything,
but it extends Object:

Foo foo = new Foo();

Class<?> cl1 = Class.forName("Foo");

Class<? extends Foo> cl2 = foo.getClass();

Class<Foo> cl3 = Foo.class;

Solution 11.12. C++
template<typename T>
T *instance()
{

return new T;
}

Java
public class Factory<T> {

public T instance(Class<? extends T> clazz)
throws InstantiationException, IllegalAccessException {

return clazz.newInstance();

}
}

C#
public static class Factory<T> where T : new() {

public static T instance() {
return new T();

}
}





Corretness in pratie12

As the introduction of this book reveals, the
correctness of programs is an important quality
factor. In this chapter we investigate the language
constructs and elements available for increasing
program correctness. This topic is addressed while
discussing a particular example in Eiffel. We point
out that to interpret (to create meaning of) the
term correctness, we need somehow to define the
expected behavior of the program, in addition to the
syntax and semantics of a programming language in
which it is written. Therefore, we first discuss the
so-called correctness specification, which defines the
expected program behavior. Only afterward we are
able to address the notion of program correctness.
Correctness specification for loops, methods, classes
and programs will be defined. Furthermore, we
investigate the relationship among program
correctness, exception handling and inheritance. A
brief overview is also presented on the issues and
limitations of program validation. This chapter ends
with a concise survey on contemporary languages
supporting program correctness.



P

resent chapter describes how and to what extent the methods applied in the
field of program correctness checking are applicable in the case of modern
programming languages.

We deliberately use the term checking instead of verification or testing. As it
is well known, there are two basic approaches to validating program correctness.

The most widely adopted approach is program testing. In the course of
testing, program response is examined on predefined input sets. The program
outcome is recorded and compared to the expected results with respect to actual
input parameters. Thus actually checking in each case whether the program
really works as it is supposed to, by giving the same outcome as expected. This
process may be automated and facilitated by tools.

The other alternative, when programs are not tested by being executed,
instead their correctness is verified by logical reasoning with mathematical pre-
cision. The latter approach, the logical reasoning over correctness properties of
program, based on mathematical fundamentals, is called program-verification.

We strive to present practical knowledge in this chapter, nevertheless our
discussion does bear resemblance to both previously mentioned alternatives to
some extent.

It will be discussed how fundamentals of program-verification can be applied
to programming languages. However, when applying verification theory in prac-
tice we actually diverge from theoretical fundamentals. The focus in this chapter
is not on theoretical aspects of program-verification, nor we aim to present the
methods of program-verification or their foundations, still we briefly discuss the
relationship of theory and practice. Mathematically inclined readers who may
want to consult books on the theoretical aspects of verification please refer to
[GM94] and [LSS87].

We will see that extending programming languages with structures and el-
ements specific to program verification enables us to check run-time properties
of programs. This run-time monitoring is akin to traditional testing, but the
significant difference is that in this case programs are validated by internal
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mechanisms. Such correctness checking becomes possible thanks to the formal
definition of program behavior, which is incorporated into the program itself.
This formal definition or specification describing the program properties in turn
is made possible by transforming program-verification fundamentals into lan-
guage constructs.

12.1 Introdution

This chapter focuses on potentials of program-correctness checking elements
in the Eiffel programming language. There have been several arguments for
deciding on Eiffel. Eiffel is a modern object-oriented programming language,
which supports numerous concepts of program-correctness validation. This is
further made even more convenient with an integrated development environment.
The real strength of Eiffel comes from the synergy of three main factors as
follows:

• Many language constructs and tools for program-correctness checking
based on the theoretical fundamentals of program-verification are avail-
able in Eiffel.

• New principles have been advocated by Bertrand Meyer, the inventor of
Eiffel for components-based development, governing the relationships of
components in terms of correctness specification called contracts. This
approach is known as Design by Contract [Mey00], and proved to be
very useful and efficient when designing and improving quality factor for
systems with many components.

• The development environment (e.g. EiffelStudio) supports the methodol-
ogy by enabling run-time checking of program-correctness and inspection
of object properties.

Finally, the relative popularity (at least in research and education) of Eiffel
also has validated our choice.

Besides Eiffel, quite a number of other alternatives have been considered. The
Alphard language is one of them, in which language elements targeting program-
correctness checking and verification have been present as early as the mid 1970s
[Wul74]. The language concept and constructs supporting program-correctness
may even seem to be more advanced than that of Eiffel in a sense that the duality
and relationship of the abstract data type and its implementation is captured
more clearly, also rules for iterators are unique. Unfortunately, no (efficient and
fully fledged) compiler has been created and the language is barely known.

Another alternative worth considering is Sather [Gom97], which is a more
recent modern programming language. Sather follows the syntactical convention
of C/C++, while its semantics was influenced – including the constructs for
program-correctness – by Eiffel. In our opinion due to the C-like syntax Sather
programs may be more difficult to understand than their Eiffel counterparts for
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those who are just being familiarized themselves with the notion of program-
correctness. Furthermore, Sather does not seem to bring anything new to the
table with respect to program-correctness, although its inheritance and type-
system may be slightly more sound [How03].

Recently many contemporary programming languages have incorporated the
notion of assertions and the approach of Design By Contract. In many cases,
however, these constructs are not first-class citizens of the languages. For ex-
ample, C# (and other .NET languages) have defined a framework called Code
Contracts [Code13] built upon special classes emulating the behavior of Eiffel
assertions (pre and postconditions, class invariants, etc.). Such assertions, so-
called contracts are expressed by static method calls at method entries and
exits.

Java community has also come up with similar solutions. For instance, Con-
tract4J5 [C4Ja] is a tool supporting writing Design by Contract programs in
Java. Assertions are defined with Java 5 annotations and expressed in the form
of aspects in AspectJ.

There are certain limitations of such approaches. For example, Contract4J5
at the time of writing, provides only minimal support for preconditions and
postconditions in the context of inheritance. This is mainly due to the fact that
annotations on methods are not inherited [C4Ja].

JContractor [MHB99] is a library based framework, in which contracts are
written as methods following certain naming conventions. Due to the nature of
assertion implementation, JContractor is claimed to have preconditions, post-
conditions, and class invariants, with full support for inheritance. Comparing to
Eiffel this approach still lacks of some powerful constructs, such as loop variants
and invariant to name a few.

C4J[C4Jb] is a Java framework supporting contracts for Java, it can be used
as an Eclipse plugin too. Further examples are Java Modeling Language (JML),
Jtest, SpringContracts for the Spring framework, iContract, etc.

A more comprehensive treatment on potentials of program validation offered
by contemporary programming languages can be found at the end of this chapter.

The readers who would like to dedicate some more effort to this topic please
refer to Turing ([HC83], [Hol84]) and Euclid [Lam77] programming languages,
which have been the contemporaries of Eiffel.

12.1.1 Thought-provoking

Before we cover the topic of this chapter in detail, first let us stop for a moment
and think about what we actually mean by correctness. In every-day’s life we
tend to use the expression: ”the program works fine”, ”the program is correct”, or
”the program is incorrect” for that matter. Let us make an attempt to clarify the
meaning of these notions. To do this, consider the following program fragment,
which implements a simple function in Eiffel.
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f : INTEGER is
do

result := 1
end

It is quite futile to answer or even to raise the question whether the above
program is correct or not.

First of all, for a program to be interpretable for us or for the compiler, the
program must comply to a set of rules defining the formal textual and struc-
tural requirements. These requirements define the syntax of the programming
language.

However, the language syntax itself is not sufficient to understand the oper-
ations of the program. We need to have clear understanding of the mechanisms
and effects of language constructs. This is called semantics.

Even in possession of language syntax and semantics we still seem unable to
answer the above question. This is the case, because the term ’correctness’ is a
relative concept. A program neither can be considered correct, nor incorrect per
se. To interpret the notion of correctness we need to have the formal requirements
for the program behavior and a precise description of the problem to be solved.
We will refer to this description as correctness specification, or just simply as
specification if it is clear from the context.

The above function clearly does not conform to the specification: ”The func-
tion calculates the roots of an arbitrary quadratic equation.” Nevertheless it does
conform to the specification (and to many others indeed): ”The function always
returns a value less than ten.”

12.2 Flavor of objet-oriented approah

Prior to object-oriented paradigm the most important properties of structured
programs could be described with some simple models. One model is based on a
so-called While fictitious programming language [LSS87] (see Chapter 3, Section
3.3.1). Despite its simplicity it bears the important properties of third generation
programming languages, and also served as a proper foundation for supporting
formal verification of those program classes.

In case of object-oriented approach such simple model is not adequate. We
here remark that there are theories as well describing the formal properties of
object-oriented techniques, so-called object-calculi [AC98] and record calculi
[GM94], but these are not covered in this chapter as it would be beyond the
scope of this book.

12.2.1 Abstrat data types

As opposed to functions and procedures being the quintessence of structured
programming, the abstract data type is the central building block and the
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focus of object-oriented model. The language mechanisms make it possible to
encapsulate the properties and methods of the abstract data type and hide
them from the outside world. Services of the abstract data types are exclusively
available via public interface for its clients (for a more precise definition please
refer to Chapter 9 ). While the implementation details of those services are
concealed and not accessible from the outside world.

12.2.2 Type system

One of the most important fundamentals of object-oriented paradigm is the
extendable type system. Not only a wider range of basic library types are
readily available, but also the developer is able to define new types by combining
already existing ones with various type constructs. Such high level abstraction
mechanisms, being interesting on their own, are available, such as genericity.
This characteristic supports creating parametric modules. Polymorphism and
inheritance both further present interesting and effective possibilities.

Here we remark that as a prerequisite for the definition of program correct-
ness the program must be type-correct. Intuitively this requires that at any time
during program execution only expressions of the same or conforming types
can be assigned one to another. Investigating the type-correctness is also a
challenging issue on its own. This is the consequence of the aforementioned
mechanisms and as a result of the dynamism, which is explored in the next
section. Type-correctness issues will be addressed briefly in Section 12.5.3. From
now on, it is assumed that the programs are correctly typed.

12.2.3 Dynami properties

Dynamicity is at work increasingly for object-oriented paradigm. Implementation
of object-oriented approach involves intensive dynamic storage allocation. By
this we mean, that in the course of the program execution objects are created
and ceased to exist. Objects are reached by reference-type variables. Since one
object may be referenced by many variables, therefore the same object may
be accessed and modified via multiple paths. This phenomenon is also called
aliasing.

12.2.4 Objet-oriented problem solving

Usually there are quite a number of classes present when addressing a problem in
an object-oriented fashion. These classes are linked together to various extents.
Solving the problem requires aligned operation and communication from these
classes. Thus checking correctness of an object-oriented program implies checking
and verifying all the classes used in the problem-solving.
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Approah

Due to properties and nature of object-oriented paradigm discussed in the pre-
vious sections, verification and checking the correctness of object-oriented pro-
grams pose quite a challenge. Moreover checking program correctness requires
verifying large set of classes that constitute the object-oriented program itself
because of the nature of problem-solving.

Fortunately, there seems to be a simple approach, which may be taken to
overcome this apparently hopeless situation. Namely, to decompose the problem
(in our case the correctness checking of an object-oriented system) and split
it into smaller and simpler problem domains. The basic concept is to handle
the correctness of each class separately. Then, the verified components can be
viewed and used as valid atomic blocks to compose more complex systems.
This technique can be applied, partly due to the nature of data abstraction
by making distinction between the implementation and interface of classes, thus
separating them. In case, when only the implementation of a class changes,
but its interface remains the same (including the semantics and correctness
specification), then such change does not (directly) have impact on other classes.
Hence modification and validation of the dependent classes are not (always)
required. These principles are adopted by Eiffel programming language and its
related methodologies having the following benefits:

• Validating the correctness of individual classes can be handled relatively
easily.

• When a program is modified, it requires only re-checking and re-validation
of certain parts (particular classes).

• Classes once checked and verified, can be reusable, thus reliable libraries
can be built upon them. Eiffel library base classes can be considered such
correct and verified modules.

Overview

In subsequent sections we first discuss the language elements making up the
correctness specification. The language elements of correctness specification will
be presented through an example, thus providing an opportunity for the reader
to examine the advantages of such language constructs in practice.

In the possession of Eiffel correctness specification we will able to give mean-
ing to the term of program correctness. However, it will be pointed out, that the
correctness properties cannot be formulated in every case in a straightforward
manner.

We briefly give an overview on the practical and theoretical issues of vali-
dating program-correctness. Finally a concise survey on contemporary languages
supporting program correctness will be also presented.
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12.3 The orretness speifiation language

The correctness specification for a short program discussed previously defined
the problem’s requirements in textual form, i.e. requirements were described
in plain English. There are basically two issues when defining requirements in
textual form using everyday language. If tools were used to support the checking
of program correctness, then the textual description of requirements would be
inappropriate, since it could not be interpreted by the tool in question. Another
issue is that, in many cases textual definitions are not exact enough; they tend
to be imprecise and ambiguous.

In the next section we present those language constructs and elements, which
make up the correctness specification of programs written in Eiffel. These lan-
guage elements comply with both requirements. They are meaningful for the
compiler, as being part of the Eiffel programming language, furthermore with
the aid of such constructs the program behavior can be defined precisely and
unambiguously.

By correctness specification of Eiffel language, we mean a subset of the
language. This proper subset comprises mostly logical expressions and predicate
functions. These expressions describe in declarative way the behavior of the
program. The correctness specification of Eiffel language aims to answer the
question ”What?”, that is the program behavior is defined at a higher abstraction
level. Naturally, the Eiffel program devoided of specification elements solves
the problem in imperative way, in an attempt to answer the question ”How?”
similarly to other languages such as Pascal, C, C++ or Java.

We remark that the specification language is coherent with the program
implementation, but at the same time is more abstract and it is a completely
different notion. Specifications are not necessarily required to comprise Eiffel
language constructs. There exist independent specification languages, not spe-
cific to any programming language. One of the most widely known is perhaps
the Z [Spi92] and its object-oriented counterpart the Object-Z [Smi00].

There are practical reasons why Eiffel still adopts Eiffel language constructs
for specification language. On the one hand, it makes the developers’ task easier,
since mastering a separate specification language is not required. On the other
hand, it fulfills the condition so that the specification language matches the
programming language. The latter condition is perfectly fulfilled, since the Eiffel
correctness specification – as it will be pointed out – directly references Eiffel
variables and functions.

12.3.1 Eiffel and first-order prediate Logi

Specification languages are mostly based on first-order predicate calculus. With
the aid of first order predicate calculus statements describing program character-
istics in declarative manner can be easily given. Therefore it is worth comparing
the relationship between the first-order predicate calculus and Eiffel specification



626

•
Corretness in pratie

language. Table 12.1 depicts the elements of first-order predicate logic with their
respective Eiffel equivalents.

First-order logic Eiffel Notes
Unary and binary
logical operators
¬, ∧, ∨, ⇒, ≡

not, and, or, implies
respectively

Equivalency can be
defined as (a ≡ b) ≡ (a ⇒
b) ∧ (b ⇒ a). non-strict
equivalents of some of
these operators are also
available: and then,
or else. implies itself is
non-strict.

= =, equal, deep equal equal and deep equal are
used to compare objects
at attribute level.

Quantifiers (∃, ∀) there exists, for all used
with agent construct, all
and some keywords along
with loop construct

Besides agents and
iterators quantifiers can
be modeled to some
extent with functions and
loops in theory. Please
refer to the section on
Quantifiers for more
details.

Variables Eiffel variables
Logical constants True, False
Constants Named constants and

literals
Functions Eiffel functions These are functions

without global side effect,
which do not modify
object state.

Predicates Eiffel functions with
BOOLEAN return type

Same restrictions apply
as above.

Terms Literal, constant, variable
or function

any variable or
constant is a term
if t1, . . . , tn are
terms, then so is
f(t1, . . . , tn) where
f is a function.

If t1, . . . , tn are literal,
constant or variable and f
is an n-ary function, then
f(t1, . . . , tn) is also a term.
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First-order logic Eiffel Notes
Formulas
P(t1, . . . , tn)

Eiffel functions with
BOOLEAN return type,
where arguments are all
terms

Where arguments are all
terms.

t1 = t2 where
t1 ... tn are terms
and P is a
predicate

If t1 and t2 are terms,
then t1 = t2, equal(t1,t2 ),
deep equal(t1,t2 ) are all
formulas.

¬F1 If F1 is a formula, so is
not F1

F1 ∧ F2, F1 ∨ F2,
F1 ⇒ F2, where
F1 and F2 are
formulas

If F1 and F2 are
formulas, then F1opF2 is
a formula as well.

op denotes binary logical
operators such as and, or,
implies, or else, and then.

∃xF , ∀xF where
x is a variable and
F is a formula

there exists(agentP(x)),
for all(agent P(x)) where
P is function with
BOOLEAN return value
and x is a variable. Also
across operator with
some and all keywords.

See the section
Quantifiers for more
details.

Table 12.1: Elements of first-order predicate logic and their Eiffel counterparts

Formulas obeying the syntactical rules outlined in the previous table define
the set of so-called well-formed formulas in first-order predicate logic.

Logial operators

The observant reader may have noticed that in addition to the usual conjunction
and disjunction logical operations the set of well-defined formulas contains other
logical operations. In Eiffel, the and then, or else and implies all can be used. The
implies operation is the logical implication as the preceding section reveals. The
and then and or else and implies are the non-strict equivalents of conjunction and
disjunction and implication respectively. Evaluation in case of these expressions
is done sequentially from left to right. By this, we mean that firstly the left part
of the expression is evaluated. If the evaluation of the second part does not have
effect on the outcome of the expression, then it is not evaluated. For instance,
in case of and then, if the first part evaluates to boolean value False, then the
rest of the expression is not evaluated. Similarly, the second part of or else is
evaluated only, if the first part equals False. Finally a implies b evaluates to
true, if a has value false; otherwise it will have the value of b.

The a and then b logical operation can be expressed in Eiffel as follows:
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and then(a,b :BOOLEAN ):BOOLEAN
do

if a then
result:=b

else
result:=False

end
end

The a or else b is equivalent of the following Eiffel function:

or else(a,b :BOOLEAN ):BOLEAN
do

if a then
result:=True

else
result:=b

end
end

Please note that if both parts are evaluated, then there is really no difference
between the strict and non-strict counterparts (assuming that there is no side-
effect involved). There is difference, however, if the second part cannot be eval-
uated (i.e. evaluation of the second part is undefined, for example, the function
responsible for calculating second part does not terminate, or not defined). In
case of strict boolean operations if any part is undefined, so is the outcome.
Whereas in case of non-strict logical operations if first parts determines the
outcome of the expression, then second part is not considered and evaluated,
irrespectively of the fact that it is defined or undefined.

The and then logical operation can be widely used when the condition –
regardless whether or not second part can be evaluated – is determined by the
first part. For instance, if we would like to know if variable j is divisible without
reminder by variable i, then as a first attempt we may tend to write

if j\\i=0 then . . .

In the example above the \\ means the remainder of the division. The above
code does work in most of the cases, but does not take account of the case, when
i = 0. If i is indeed zero, then program execution is suspended due to exception
caused by dividing with zero. To overcome this problem, we may consider writing

if i/=0 then
if j\\i=0 then

. . .

The latter is correct and works as expected, but the structure is extended by a
new if−then−else branch. While checking more complex scenarios the extensive
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applications of if−then−else constructs makes the program more difficult to
comprehend and maintain. To resolve issues like this, the non-strict versions of
logical operations have been introduced. With non-strict operator the following
code snippet works as expected, since the second expression is only evaluated if
the first expression is true, so the division can be performed safely.

If i/=0 and then j\\i=0 then . . .

The Eiffel non-strict versions of logical operations can be applicable well in
many areas of program-correctness validation. It is important, however, that the
programmer is aware of their exact semantics.

Quantifiers

Universal and existential quantifiers are not directly available in Eiffel in form
of language constructs. Still there is a number of approaches one can take to
mimic these. The most general – also applicable in wide range of programming
languages – solution would be to use loops or recursion (both without global
side-effects), but there are more convenient ways in Eiffel at our disposal.

The keywords some and all can be used in loop constructs (both base and
iteration form). For example, to test whether or not some property of all items
of a list has a specific value can be expressed as follows with the help of the
across operator:

across my list as l all l.item.some property = some value end

One restriction is that the structure being traversed must belong to a de-
scendant class of ITERABLE . Another one is that the structure is not changed
while traversing it. Note it is also assumed that the items have the feature
some property conforming to the type of some value.

Alternatively, the same effect can be achieved by the powerful combination
of iterator (descendant of ITERATOR) classes and Eiffel agent mechanism.
Assuming finite sets, the first-order predicates can be given as follows:

• ∀x : P (x)- for all (agent P(x))
• ∃x : P (x) - there exists(agent P(x))

Where for all and there exists are routines of the iterator class, whereas P (x)
is an agent. In this example the agents act as functions with BOOLEAN return
values, but agent may as well represent procedures. Generally speaking agents
in Eiffel model operations. The fundamental difference between an agent and
a routine is that although an agent represents a routine, the agent itself is an
object, not a routine.

The fact that an agent expression may be either closed or open both in
its argument or its target introduces even more flexibility. This is somewhat
analogous to the concept of free and bound variables in the first-order predicate
calculus, although it is slightly distinct.
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First-order formula with
quantifier

Agent with open and closed
arguments

∀x : P (x, y) for all (agent P(?,z))

In the above first-order formula the first argument is bound, while the second
argument is free (not bounded by the universal quantifier). We say that an
argument in the agent represented by the question mark is open. In such case
its value is supplied by the iterator construct upon each iteration (so actually
from the first-order predicate calculus perspective it is bounded by the for all
constructs in this particular case). In Eiffel terminology the argument z is said
to be closed, since its value is determined in advance (supposing of course that
z is not affected by the iterator).

We remark that besides the ones listed above, there is quite a number of
iterator constructs: do all , do if , do while just to name a few. These are mainly
used for applying an operation to the structure elements meeting some criteria.

It is also worth observing that these Eiffel constructs (both loops and iterators
with agents) have certain limitations. One of them is that they only work on
collections with finite number of elements, such as lists, bags, sequences, trees,
arrays, etc. One cannot practically transform the formulas similar to the one
below into an equivalent Eiffel constructs:

∀x, x ∈ Z : P (x)

Assertions

Assertions are the most important elements of the correctness specification
language in Eiffel. They are logical formulas (basically BOOLEAN expressions),
which serve the basis for preconditions, postconditions of methods as well as for
class and loop-invariant and check instructions to be discussed later.

An assertion may be labeled with a tag (to help identify the assertion) and
may be followed by comments. Assertions are used to describe logical relation-
ships among program variables.

These relationships may concern class attributes, local variables and return
values of functions. Assertions, being the part of the Eiffel correctness specifi-
cation language, strive to define the meaning of the program in a declarative
manner, at the same time they help in understanding the program and the
corresponding problem. As a result they provide good basis for documentation.

For instance, if in a particular context vertex cnt variable is used to store the
number of vertices of a polygon, and as a part of the correctness specification
we would like to express that the polygon in question is either a triangle or
quadrangle, then it could be done as follows:

vertex cnt =3 or vertex cnt = 4



12.3 The orretness speifiation language

•
631

or more preferably:

triangle or quadrangle: vertex cnt =3 or vertex cnt = 4

It is important to emphasize that if the program is correct with respect to
its specification, then the variable vertex cnt indeed should store values 3 or 4,
as the assertion requires. If this condition does not hold, then it implies that the
program does not conform to its specification, which in this case happens to be
the single assertion above.

The two assertions are semantically equivalent. The subtle difference is the
tag, which provides information with the associated boolean expression. The
meaning of the first assertion may not be obvious to everyone (especially if
the variable name is not descriptive), whereas the intention behind the tagged
assertion is unambiguous. It is analogous to the situation when a value is used
in the program text as a numerical literal as opposed to a named constant. In
a program text, the value 8 may denote different things. It can be an age, an
amount, etc. If, however, a named constant spider leg cnt is used with the same
underlying value, it is certainly more comprehensible.

The reader may still argue that tags are superfluous, since the additional
information can be given in form of comments after the assertion. This is partly
true. It is possible to provide such information as comments. In fact in some
cases (due to the lack of expressiveness of the specification language; more on it
later) this is our last resort.

There are logical statements, which cannot be expressed (conveniently) in
Eiffel. For example, we briefly discussed that quantors and quantified formulas –
although with some limitations it can be circumvented by using iterators, across
operator and agents – are not directly and generally supported by language
mechanisms.

In other words, we cannot express formulas with ease such that ”every point
is inside the polygon”. Even if Eiffel were a language with all the expression power
of first-order predicate calculus, then there would be challenging situations. In
such cases we have to make do with the empty assertion with comments as in
the following example:

acyclic graph: −− g graph is without cycles

The above assertion expression is empty, since the assertion is made up of
the tag and comment only. Therefore this assertion does not introduce any
additional value to the program correctness. In fact, such assertion with no
boolean expression is considered to have value True. Thus the above assertion is
equivalent to the one below.

acyclic graph: True −− g graph is without cycles

Naturally such assertions are neither important from the viewpoint of cor-
rectness specification nor the executing environment. Still, they may serve basis
for better understanding and may be useful for documentation.
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We must mention that the assertions are not strictly part of the program
execution flow, in a sense that they may/should not have any (direct) impact
on program execution and hence its outcome.

In case of an assertion we do not evaluate the assertion expression in order
to decide whether continue the program in a particular branch or another, to
perform one calculation over another. An assertion can be viewed as a hypothesis
on the program flow. Referring to the assertion labeled by triangle or quadrangle,
if such assertion is placed at a given point of the program, then at that particular
point we assume that the variable vertex cnt does have value 3 or 4. This
assumption is based on the knowledge of the applied algorithm.

If we would like to decide that a polygon is a triangle or a quadrangle, and if
so, then continue with algorithm A, otherwise use algorithm B, then assertion is
definitely not the right construct to achieve this. This simply can be done with
an if−then−else statement in a similar way as it is done in many programming
languages.

−−triangle or quadrangle
if vertex cnt =3 or vertex cnt = 4 then

algorithm A
else

algorithm B
end

Nevertheless impact of assertions on program execution depends on compiling
options. It is sufficient to say for now, that the assertion checking can be enabled
(with some more options) and disabled. In the latter case assertions do not have
any impact on program execution, since they are not even evaluated.

On the other hand, if assertions are enabled, and the assertion being checked
is violated (that is, it evaluates to False) during program execution, then the
program execution halts with a special type of exception.

Referring to the distinction between tags and comments used in assertions,
in case such exception the executing environment will report the associated tag
(if any). So in case of tags in present it is easier to identify which assertion is
being violated (in other words, what hypothesis proved to be invalid). It must
be pointed out that assertion evaluation generally may not have any impact on
a correct program, apart from its speed of execution (provided that speed of
execution is not a concern, which can be: e.g. real time systems).

12.3.2 Stak as an example

After a brief introduction to the Eiffel specification language, the elements of
Eiffel supporting correctness specification will be presented through an example.
We have chosen the stack, as a simple abstract data type, because this is a well-
known notion and can be easily presented. Stack as an abstract data type will be
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implemented in Eiffel as a class. This class will be built step by step. In each step
we discuss the Eiffel programming elements supporting program-correctness.

Stak as abstrat data type

Let us recap on what we mean by the concept of stack. Stack as a structure is
such a container, which contains items conforming to a given type. Elements are
put in a stack in LIFO fashion (LIFO stands for Last In First Out), which means
the following: item to be put into the stack will be the top item. If another item
is put into the stack, then that item will become the top item, whereas the item
inserted before will be the second item from the top. At any given moment in
time only the top (which is inserted most recently) item (if any) can be read or
removed from a stack directly (first without having to remove other elements),
hence the name. To manipulate the stack we need the following basic operations:

• put – to insert new item on the top of the stack.
• remove – to remove top item from the stack.

To simply read the top element, we will use the following query function:

• item – to read current top item from stack.

Obviously different sets of operations may be defined for manipulating stack
data, but the above set also suffices. It is an easy exercise to see that manip-
ulation of stack can be done with the above set of operations, and also more
complicated operations can be defined in terms of this basic set. For instance, a
retrieve operation, working in a destructive fashion by getting and at the same
time removing the top item can be defined as a sequence of item and remove
operations.

Out of curiosity we define a reverse method as well, which reverses the order
of stack elements, so that top item will be the bottom item, second item from the
top, will be the second item from the bottom and so on. For practical purposes
(just to name one reason: the memory storage is limited) and also to make our
class more compelling, we would like to restrict the number of elements to be
inserted into the stack. Partly due to this restriction, we need the some more
operations (better call queries) in addition to the ones introduced above:

• empty – to test whether the stack is empty. This returns true value if and
only if stack contains no element.

• full – to check whether the stack is full. Returning true value if and only if
the stack has already reached its capacity, thus no element can be inserted
into the stack.

This completes the definition of our stack example.
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Data representation

When implementing an abstract data type, the data type must be represented
in terms of classes, components already being available in the language and the
base libraries. Our stack as an abstract data type will be represented as a generic
array along with two integer variables. The array will be used as a container for
storing the elements. The variable item count will define the current number of
elements in the stack, whereas the variable capacity will define an upper bound
for the number of elements that can be stored in the stack. The advantage of
using item count is the efficiency. Items will be only logically removed from
stack, physically not deleted, only item count will be decreased. This does not
induce any problem, since items associated with greater index than the current
item count will not be accessed. When a new item is put into the stack, then
the item count variable is increased, and the old element above the top item (if
any) is simply overwritten with the new one.

class MY STACK [G]
feature {NONE}

container : ARRAY [G]
item count : INTEGER
capacity : INTEGER

Please note that the scope (in Eiffel terminology the export status) of at-
tributes is NONE, which means that these attributes can only be directly ac-
cessed by methods of the same class. (Actually features with NONE export
status are accessible only by those classes other than its defining class, which
inherit from the class NONE. Since this special class is not ancestor of any
classes by definition of Eiffel class hierarchy, it follows that features with such
export status are only available for the defining class). It is obvious that many
suitable representations of stack as abstract data type co-exist. For instance,
we could use list-based representation instead of an array, or we could opt for
inheritance construct (thus making our stack class a descendant of ARRAY )
instead of using it as an attribute as in our above example.

12.3.3 Partial and total funtions

It is worth noticing that some of the operations cannot be interpreted on each
state of the MY STACK . Calling predicates empty and full should provide
consistent values for any existing stack instance, however, for example, put and
remove methods cannot be interpreted, and thus executed on arbitrary stack
instances. No item can be removed from an empty stack, similarly no item can
be put into a stack, if the stack is already full.

A method can be viewed as a partial function. For instance, the put method
can be seen as a function with arity two having a stack and a generic G item
parameters and a return value of MY STACK type.
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put: MY STACK x G => MY STACK

The put operation implements a partial function, because it is not defined for
all possible inputs. If the first argument is a full stack, then the function value
is not defined, since no item can be put into that stack. Please notice that using
partial functions is not satisfactory and practical in programs. We need total
functions, which are defined, and thus provide us with result for every allowed
combination of parameters. This key lies here in the ”allowed” adjective. Let us
have a look at the following mathematical function:

f(x) =
1
x

x ∈ R

This function is partial too, since it is not defined for the case x = 0. We
can, however, transform this partial function into a f ′ total function easily as
follows:

f ′(x) =
1
x

x ∈ R, x 6= 0

We will take a similar approach when writing programs. We restrict the
function domain to a set, so that the function will be defined for every element
of that set, thus essentially becoming a total function on that domain.

12.3.4 Preondition

We will refer to this restriction applied to function domain as a precondition.
The precondition is a characteristic function defined on the original domain of
the (partial) function, which defines exactly those elements of the domain, for
which the function is interpreted. (This characteristic function will assign True
values for elements of restricted domain, and will assign False value otherwise.)
In the above example we can consider the x 6= 0 predicate to be the precondition
of the function f ′.

It is quite straightforward to decide on the precondition of the put method.
Since the put operation can be executed if and only if the stack is not full; thus
giving us the precondition: not full. Analogously we can obtain the precondition
of the remove operation: not empty.

12.3.5 Postondition

We further would like to be able to describe somehow the outcome of the
operations executed in a method or function. Such descriptions can be defined
similarly to preconditions. For example, in case of the put method please observe
that the item just being put into the stack will be the top item. Such conditions
describing the effect of the method are called postconditions. Let us suppose that
put method receives the new item in the new item parameter. Then part of the
postcondition can be defined in Eiffel as: item = new_item.
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12.3.6 Pre- and postonditions in Eiffel

The precondition is introduced by the require keyword, while postcondition is
put after the ensure keyword. We remark that neither the precondition nor the
postcondition is actually mandatory in Eiffel. If they are not defined, then it will
have the same effect as the True logical formulas were given.

put(i:G) is
require

not full: not full
do

item count:=item count+1
container.put(i,item count) −− store item

ensure
new item on top: item = i
not empty: not empty
. . .

end

We call the ordered pair <Pre, Post> the correctness specification (or spec-
ification for short) of a routine where Pre and Post denote the precondition and
postcondition of the routine respectively.

Group of assertions

The attentive reader may have noticed that there are actually two assertions
in the postconditions of the put method. This is, because one predicate may
not be sufficient to describe the whole postcondition. Although one assertion
may contain more logical expressions combined with the logical operators (or,
and, and then, or else, etc.), such combination is not always desirable. It is
straightforward to define the two logical expressions as one assertion.

Postcondition: item = i and not empty and . . .

Such combination of different logical expressions is not always effective and
convenient as only one label can be assigned to each assertion. In the previous
postcondition of the put method the purpose of the two assertions is evident,
whereas their roles are blurred in the second example. Therefore Eiffel enables
us to put more assertions in precondition and postconditions (and also in class
and loop invariant and check construct introduced later in this chapter).

By group of logical expressions hereby, we mean the sequence made of one or
more assertions in the order they appear in the program source code. Assertions,
although it is not indicated in the source code, are combined with the and then
operator.
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Old onstrut

When describing the effect of a method, one may frequently need to reference the
value of an attribute prior to execution. This is, because only in the possess of old
and new values one can compare and describe the changes. This is supported by
the old construct, which can only be used in method postcondition. Only class
attributes (also can be viewed as global variables) for the class can be used in
this construct. The scope of old is restricted to the method and referring to the
actual value of the variable prior to method invocation. Please recall that the
item count variable denotes the number of items currently stored in the stack.
Thus the postcondition of remove operation can be defined as follows:

−− remove top item
remove is
require

not empty: not empty
do

item count:=item count−1
ensure

item count decreased: item count = old item count − 1
empty if there was one item: old item count = 1 implies empty
not full: not full

end

In the construct item count = old item count - 1 the old item count de-
notes the value of item count before the method execution. The whole construct
expresses the fact that by removing one item from the stack, the item count
is decreased by one. We remark that old operator has the highest precedence,
therefore the expression old item count = 1 implies empty is equivalent with
(old item count) = 1 implies empty. Please notice that we also could describe
two interesting consequences of the remove operation. The first one asserts if
the stack had only one item before the remove, then it must be empty after.
The seconds one says that once an item has been removed from a stack, the
stack cannot be full anymore, although it does not say or require that it was full
before.

Strip and only expressions

We have just seen how object attribute changes can be captured by old construct,
but there are also cases when we would like to assert that some attributes are
actually not affected, their values remain untouched. For example, we already
mentioned the reverse method, which does modify the order of stack elements,
but does not modify the number of items and their values stored in the stack
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and the stack capacity. In the postcondition of reverse method this property can
be expressed as follows:

same item count: old item count = item count
same capacity: old capacity = capacity

. . .

In the above postcondition all the unchanged class attributes must be enu-
merated. The more attributes the MY STACK class has, which remain unaf-
fected by an operation, the more cumbersome it becomes to express the condition
that these attributes are not updated by a method. Plus, if the class is expanded
by a new attribute, then postconditions of all methods having no impact on
the new attribute should be supplemented accordingly. In such cases the strip
construct comes handy, which along with the old construct may be used in
method postconditions. Attributes of the class are enumerated in parenthesis
after the strip keyword. The strip construct defines an array (ARRAY [ANY ]),
which essentially is a subset of class attributes. This subset is the relative
complement of the set – defined by class attribute elements enumerated in the
strip expression – in the set of class attributes.

In other words this array includes exactly those class attributes, which are
not appearing in between the parenthesis. Please notice that if no attribute is
written after the strip expression, that is, we write strip(), then the array will
contain all attributes of that class.

Please recall that the items of our MY STACK class are stored in an attribute
called container . Thus strip(container) in MY STACK class defines an array,
which contains all attributes. This is exactly what we need to describe the effect
of reverse method. Postcondition can thus be given as follows:

items changed only: equal(strip(container), old strip (container))

The above postcondition asserts precisely that the reverse method does not
have impact on any class variable except that the order of stack elements is
changed.

ECMA-367 [ECM06] Eiffel has introduced the only expression, which is sim-
ilar to, but slightly more general and straightforward than the strip expression
discussed above. Only construct works on queries (the term query covers both
attributes and functions) and may appear in postcondition as a last clause.
Solely those queries are listed after the only keyword in a method postcondition,
of which the return value calculated prior to and upon method execution differs
as a result of the method being executed. It is assumed that all other queries are
not affected by the method, that is, if q is a query not appearing in only clause
in a particular method, then q = old q. The syntax of only (similarly to strip)
also permits omitting the list of queries, thus only() asserts that the method
in which this clause appears in the postcondition leaves all queries unchanged.
Such routine is known as ”pure” routine.
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12.3.7 Design aspets

When specifying preconditions and postconditions we have to obey certain rules.
One of them is that a logical expression can only be used in the precondition
part of the routine, if all of its class attributes, functions (predicates) are also
available for the caller of the routine. The reason behind this is that the caller
cannot be expected to perform valid routine invocations (that is calling a routine
with a class state and parameter combinations which satisfy the precondition),
unless it is in a position to check actually the conditions beforehand. For instance,
if the remove method of MY STACK class the precondition makes use of the
not empty predicate, then this predicate must be exported, that is, available
for all classes, which can call the remove method. Certainly, we cannot expect
to perform a consistent routine call satisfying the precondition of the remove, if
there is no way for us to check this condition, by examining the value of predicate
empty prior to the method call.

Note that there is no such restriction on assertions appearing in postcon-
ditions. This is, because to fulfill the routine obligations described in form of
postcondition is the responsibility of the routine being invoked. If the routine
terminates, the caller can expect the conditions given in postcondition to be
fulfilled. It is a nice touch of the methodology that the caller, in fact, should
trust the called, and under no condition should double check the result.

Local variables must not be referenced in the precondition and postcondition
parts of the routine. As far as preconditions are concerned, this rule is partly the
consequence of the rule that assertions must be available for the caller, on other
hand, prior to executing the routine body local variables may have only default
values, thus checking them in assertions would not have any practical benefit.

In case of postconditions, such restriction is due to theoretical and program-
ming methodology reasons. Class methods introduce state transitions of objects.
These transitions are characterized by changes made to class attributes, since
object state is captured by them. What is important for us is to describe the effect
of a method. This is solely related to how the object is transformed as a result
of method execution, that is, from what initial state to what state the object
is transitioned. Local variables are not suitable to capture such effect. Further-
more, local variables are assigned values from parameters and class variables, or
from class functions called again with method parameters and class attributes.
Therefore such values are available at the time of evaluating postcondition of
methods (exceptions are functions with side-effects).

12.3.8 Class invariant

Valid objets

In the preceding section we have given one possible representation of the stack
concept. Let us suppose that container array contains the following values:
[1, 2, 3, 4, 5]
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The container array alone may not be sufficient to capture the entire state of
the stack, since depending on the implementation the above stack may represent
more than one state or stack instance. The above array as one extreme may
represent an empty stack, but as another extreme it can be viewed as a full stack.
For this particular representation we need to consider item count and capacity
attributes as well to be able to assign a precise interpretation to the stack. The
relationship between the actual representation (one concrete implementation of
the MY STACK class) and the abstract notion of stack is described by the so-
called representation (also called abstraction) function. For more information
on this function please refer to Section 5.1.2. The representation function maps
concrete implementation to abstract implementation. In our case this function
can be defined as follows:

representation:
container x item count x capacity=>’’STACK ’’−as an abstract concept

The actual implementation along with the representation function may still not
be sufficient to describe a concrete instance of the stack. More precisely, not all
possible representation instances may be valid. Please recall that item count and
capacity denote actual and maximum number of items in a stack respectively. If,
for example, the value of item count is 5 for a particular object instance and the
capacity is 4, then the interpretation of this instance can problematic. Likewise a
stack with negative capacity cannot be interpreted in a straightforward manner.

Please notice that in this case the problem is again that the representation
function is a partial function. We take the same approach again by transform-
ing the partial representation function into a total function. In addition to a
concrete implementation we need to fulfill some conditions, which ensure that
the representation function becomes total, which in turn, also implies that every
instance of the class is valid. In other words, we do not allow any of the above
examples. To maintain such consistent object state we will introduce predicates
which help characterize properties of valid objects. We can make the following
observations:

• capacity of the stack must be a positive integer

• actual item count of the stack must be between zero and the capacity
(zero item count denotes an empty stack in our interpretation).

These properties of the particular abstract data type implementation can be
expressed in Eiffel as follows:

invariant
valid capacity: capacity >0
valid item count: item count >=0

and item count <= capacity
. . .
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Such properties are introduced by the invariant keyword. These assertions are
called class invariant. The name comes from the nature of the condition that its
logical value cannot change and thus must be evaluated to True during the whole
lifespan of an object, from object creation till object destruction, no matter what
operations are performed on the object. That is, the values of these assertions
are invariant or constant with respect to class operations. A class invariant can
be composed of one or more assertions. These assertions are combined together
with the and then logical operator in the order they appear in the software text.

We note that invariants interpreted for a given representation scheme (in our
case container , item count, capacity) unambiguously determine which instances
of the representation are allowed and which are not. We also can say that class
invariants characterize the instances of a particular representation scheme. For
instance, the predicate labeled with valid item count asserts that for every valid
object instance of this class the item count must be between zero and capacity.
This property is maintained for every possible operation at ”certain moments of
time”.

Class invariant cannot only establish relationship among class attributes,
but can also define relationship between class attributes and class functions.
The invariant of MY STACK can be extended with the definitions below:

definition of empty:(empty implies item count = 0 )
and (item count = 0 implies empty)

definition of full: (full implies item count = capacity)
and (item count = capacity implies full)

The declaration tagged with definition of full , for instance, maintains a re-
lationship between the full function and the actual representation. It asserts
correctly that the stack is full if and only if the item count equals to the capacity.

We remark that an assertion appearing in class invariant may not necessar-
ily have a direct counterpart in the abstract data type. In fact, the majority
of assertions usually fell into this category. This is not surprising, since one
of the purposes of introducing class invariants is to capture the properties of
valid object instances making the representation function total. Such assertions
directly connected to the actual realization of abstract data type are called
implementation invariants in Eiffel terminology.

Evaluating lass invariants

In the preceding section we used the term ”certain moments of time”, by which
we mean the following: We cannot and do not expect actually the class invariant
to hold for every possible moment of time. This is because in case of a more
complex routine it may happen that these assertions are violated (that is some
assertions from class invariant may be evaluated to False) temporarily. Later
when discussing class consistency we define constructor method of the class.
It is worth noting that class invariants will become True upon terminating
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the constructor method and may not be True actually before and during the
execution of the constructor method. This is not surprising, as we will see
one of the responsibilities of constructors is to perform object initialization by
considering class validity properties given in form of class invariant.

Class invariants are only evaluated before executing public method calls
(exported generally or selectively), other than constructor methods, and after
public methods. However, at these certain moments of time we do require class
invariants to hold.

The reader may wonder why we do not require class invariants to hold
before and after for private routine calls. The object is a concrete instance
of the abstract data type. Their services may be accessible through its public
interface. Inside of private (non-exported) methods we allow the class invariant
to be temporary violated, since these methods are not directly invoked from the
outside world anyway. Private methods can be viewed as extension of algorithms
defined in public methods. These algorithms are factored out into separate
methods because of software methodological reasons (reusability, maintenance
etc.).

12.3.9 Chek onstrut

We have seen how class invariant can be associated with the class, how pre-
conditions and postconditions are defined for routines. Another possibility is
in Eiffel, that assertions can be placed also inside routine and loop bodies.
Such assertions are introduced by the check keyword. With the help of check
construct one can assert and document non-trivial conditions. Assertions making
up of check construct are similar to those used in assertions elsewhere in pre-,
postconditions, etc. For example, if in a method body we are absolutely sure
(because the algorithm is designed in such way) that the variable discriminant
cannot have negative value, then we may consider writing:

discriminant:=b*b−4*a*c
check
discriminant is positive: discriminant > 0
−−because a>0 and c<0 or vice versa
end

x1 :=(−b + sqrt(discriminant))/2*a
x2 :=(−b − sqrt(discriminant))/2*a

The calculation of the roots can be simplified after the check construct,
because analyzing the algorithm and the method parameters we came to the
conclusion that the discriminant could not be negative, and this conclusion is
defined in the form of the check construct.

We call the reader’s attention to the fact again, that here using the check
construct (just as this is the case for other assertions) does not indicate that such
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condition is checked, and if so, then we calculate the roots as above, otherwise we
perform some alternative calculation. The assertion part of the check construct is
a hypothesis, which must be always true whenever the method body is executed.
If such assertion is turned out to be false, then the method does not conform
to its specification (specification here is used in a broader sense including check
instructions). In the above example when calculating the roots of the quadratic
equation, we do know (because we analyzed our class beforehand) that the signs
of the coefficients of a and c are the opposite, therefore the hypothesis must
hold. In such cases the discriminant obtained by the formula b2 − 4ac cannot be
negative.

There are certain benefits, which come with using check constructs. To name
a few:

• Assertions of check construct also serve as documentation for the pro-
gram.

• Due to the use of check constructs the program logic can be simplified (for
example, in the above example, an if-then-else branch can be eliminated).

• Invalidity of a hypothesis may be identified during the program execution.

12.3.10 Loops

General problem

Along with recursive calls, loops are, which pose one of the greatest challenges
when writing programs. Typical issues are:

• Incorrect initialization.
• Executing the loop body one time less or more.
• Referencing elements outside the structure bounds (i.e. using greater or

less index than permitted).
• Infinite-loop.

Reverse method

To make our stack class more appealing we define a method for reversing the
order of items in the stack. The basic principle of the reverse method is the
following. The method will swap two items at a time. First, it swaps the top
element with the bottom element, then the second item from the top with the
second one from the bottom and so on. This process goes on until all items have
been swapped. This happens if the items being swapped have subsequent indices
or have the same index.

Issues similar to those discussed previously may arise with this loop. It may
happen that due to invalid iteration the loop does not terminate, or terminates
abnormally. The method and hence the loop may terminate, but elements may
not have changed as required. A classical symptom is when the majority of
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items have changed appropriately, but typically either the middle elements or
the top and bottom elements have not been swapped properly. Clearly, even
such a simple algorithm may require focus on details and may introduce quite a
number of issues.

Fortunately the Eiffel loop construct supports us in writing correct loops,
and ensures that the above problems can be eliminated. The reverse method
besides its postcondition and local variable declaration part only comprises a
loop. By analyzing the example in this section we will become familiar with the
Eiffel loop construct. The following variables are used in the loop:

• lower idx and upper idx denoting respectively the lower and upper indices
of elements to be swapped.

• lower item and upper item representing the lower and upper elements
respectively before the swap.

Iteration initialization block is given after the from keyword. This is responsible
for setting up initial values of loop variables. In our case this is limited to setting
values for lower and upper positions. The invariant keyword may be familiar
from class definition. If it is not clear from the context then we will refer to it
with its full name as loop invariant. The loop invariant is optional. This describes
the properties of the loop, which are constant during the iterations. Essentially
(and ideally) these formulas must define the whole purpose of the loop, the goal
we are trying to achieve by the iteration.

In our loop items to be swapped identified by two indices. By analyzing the
principles of the algorithm we can conclude that the lower idx must be less or
equal to the upper idx at any moment of time (except when exiting the loop).
We also know that the start value for lower index is 1 and the upper index
initially has the value of item count. Since the lower index is increasing by one
and at the same time the upper index is decreasing by one upon each iteration,
the sum of the two must be equal to the item count plus one (since the first
item is indexed by one). The two indices are bounded by the interval from 1 to
item count, furthermore lower index is bounded by the upper index (plus one
when exiting). This can be summarized in Eiffel syntax as follows:

invariant
valid range: lower idx + upper idx = item count +1
valid index : lower idx >=1

and upper idx <= item count
and lower idx <= upper idx+1

The above conditions make up the invariant, which asserts that elements
to be swapped coming from the lower and upper part of the stack. It is also
ensured that the role of indices defining the lower and upper indices of items
to be swapped are symmetrical. It cannot happen that, for instance, the lower
index is increased, but the upper is not decreased, since the sum of the two
indices must be constant at any time. That is the lower index may be increased
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by a value, which must match the value with the upper index is decreased. It is
also guaranteed that indices reference stack items, which are bounded by 1 and
item count. Finally the loop invariant asserts that items referenced by lower idx
are coming from the lower range, whereas items indexed by upper idx are coming
from the upper range of the stack until the loop terminates.

We have seen that the formulas defined by the loop invariant describe impor-
tant properties of the loop mechanism. With the support of this construct many
of the aforementioned typical loop pitfalls can be avoided. Yet we still have not
concluded anything in regard to loop termination, nor did we show that elements
are actually swapped. Let us have a closer look at the termination problem of
Eiffel loops.

The loop exit condition is given in Eiffel after the until keyword. Please notice
that as opposed to practice in many programming languages, Eiffel loop body is
executed until the exit condition becomes false. As far as our reverse method is
concerned it is precisely the case, when the length of remaining interval is less
than one. Which happens if lower and upper indices are the same, or lower index
is greater than the upper, as expressed in the exit conditions as follows:

until upper idx − lower idx < 1

In Eiffel the variant expression can be used for arguing on loop termination.
This keyword must be followed by an integer expression, which must have the
following properties:

• It must have a positive integer value (including zero) before and after
loop body is executed.

• Its value must be strictly monotonically decreased upon each loop iter-
ation. That is, its value before executing the loop body must be greater
each time, than after the body has been executed.

It is evident that the above properties are sufficient to conclude that the loop
will terminate (provided that the loop body and exit conditions themselves
terminate). No matter how big value the variant expression had before the
loop, since this value is asserted to be positive and also being decreased strictly
monotonically by the loop body with each loop cycle, this decrease cannot go
on forever. Hence the loop must eventually terminate. The reader being familiar
with the concept of program-verification, may have realized that the Eiffel loop
variant expression is not other, than a special case of a terminating function
with the well-founded set defined by partial order relation (N, <) .

In the reverse method the following expression is used as the loop variant:

variant
remaining interval: upper idx − lower idx + 1

By looking at the loop algorithm we can easily verify that the above expres-
sion is a good choice. On the one hand, the initial value of loop variant is a
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positive integer. On the other hand, we have already seen that the lower index
is continuously increasing as the upper index is decreasing, with the net effect,
that the value of the loop variant is decreased by 2 by every loop cycle.

We obviously could decide on a different loop variant, for example, the
variable upper idx would suffice alone. However, such variant would not be as
expressive as ours, as our loop variant will hold the length of the remaining
interval with items to be swapped at any given time during the loop.

With the help of the check construct we assert that elements are swapped.

lower item :=container.item (lower idx)
upper item :=container.item (upper idx)
container.put (lower item,upper idx)
container.put (upper item,lower idx)
check

items swapped:
lower item = container.item(upper idx)

and upper item = container.item(lower idx)
end

This particular example may be superfluous, since swapping two items is a
straightforward operation, the benefits of the check construct, however, can be
justified for more complex scenarios. The full implementation of reverse method
can be found at the end of this chapter.

Please notice the strength of the combination of Eiffel loop constructs at
work. The termination of the loop guarantees that the order of items in the stack
is indeed reversed. Exit condition indicates that loop will stop if the whole stack
is scanned. This happens when the length of the interval to be scanned is less
than one. The loop variant expression ensures that actually such situation (when
the exit condition becomes true) will be reached sooner or later. Loop invariant
formulas describe the symmetrical role of lower and upper indexes ensuring that
elements with the desired indexes are selected. Finally, check construct inside
the loop body guarantees that the appropriate stack items are actually swapped.

The whole Eiffel loop machinery may look startling and superfluous at the
first glance. Do not forget, however, that only the exit condition is mandatory.
Even if all other loop constructs are optional we still recommend that one should
use them. The loop mechanism enriched with loop variant and invariant is more
expressive and can be understood more easily. The loop variant and invariant
expressions actually define the loop algorithm at a higher abstraction level.

To come up with the appropriate loop variant and invariant may take time
and practice, but it helps understand and target the problem better. When the
Eiffel program is compiled with appropriate assertion checking option, then as an
additional benefit of the language and compiler is that the environment aborts
the loop execution whenever the loop behavior is not in conformity with the loop
specification described in form of loop variant and invariant. Thus typical loop
issues can be identified and avoided.
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12.3.11 Assertions and inheritane

In the context of inheritance many challenging issues may surface in connection
with the concepts addressed so far. What has been discussed is still valid, but
some of them need refinement.

Feature redefinition

Eiffel inheritance – besides many other things – supports the redefinition of
features (attributes and routines). The redefinition itself can be achieved in
numerous ways (using redefine, rename, undefine, or combination of these). For
the sake of our discussion we limit ourselves to the effect, namely that during
inheritance we are able to redefine features (with certain restrictions).

Let us take a closer look at inheritance from the perspective of (sub)typing.
We remark Eiffel takes the approach that inheritance also induces subtyping
relationship. That is, if a class C inherits from class B, and c is an instance of
C, then c can be used in any context, which requires the instance of class B.

It is not trivial what should happen to method pre- and postconditions in
such cases. If the precondition of a method of the new class (inherited from its
base class) is more restrictive (we use the term ’stronger’ informally), then object
c could not be used in places, where instances of B are expected, since method of
c would assume (in its preconditions) conditions which may or may not fulfilled,
because the caller is expected to conform to preconditions defined in B class
(which are less restrictive, or weaker). If we, however, use a weaker condition as
the precondition of the method in C, then the substitution is allowed, because
the precondition of method of B implies the precondition of the redefined method
in C.

We can argue similarly for postconditions. Should the postcondition of the
redefined method in C be weaker, then for client calling the method of C, the
conditions defined in postconditions of the method in B could not be guaranteed.
However, should the postcondition of the redefined method be the same or
stronger, then the client can assume the postcondition (or even more) of the
method in B to be satisfied.

In the above discussion we used the term ”weaker” and ”stronger” somewhat
intuitively. We say that P1 is stronger than P2, if P1 ⇒ P2 assuming that P1

and P2 are different. In the same relation P2 is said to be weaker than P1.
We call the specification 〈P re′, P ost′〉 the sub-specification of 〈P re, P ost〉,

if and only if, P re ⇒ P re′ and P ost′ ⇒ P ost. One of the conditions for
subtyping in the context of inheritance and correctness specification is that the
specifications of the methods in the class to be used in the place of its base class
must be the subspecification of the respective methods in the base class.

Please observe that subspecification will be valid from the subtyping per-
spective. Because if a method in C has the specification 〈P re′, P ost′〉, then its
client assuming instance of class is obliged to ensure P re, in turn satisfies P re′,
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since P re ⇒ P re′ by definition. Similarly, if the client is expecting P ost to be
satisfied upon method termination, then P ost′ also suffices, since P ost′ ⇒ P ost
by definition.

In this sense the P re formula is stronger than P re′, because in every case
when P re is true, P re′ is also true, whereas we call P ost to be weaker than
P ost′ for the same reason. Fortunately, we can relatively effortlessly obtain a
sub-specification for a specification. It can be easily verified, that for arbitrary
〈P re, P ost〉 specification, and A, B predicates, 〈P re ∨ A, P ost ∧ B〉 is a sub-
specification of 〈P re, P ost〉.

In line with the above, Eiffel makes the following restrictions on specification
of redefined methods [Mey91]. Precondition is introduced by the require else,
whereas postcondition is introduced by ensure then keywords instead of require
and ensure respectively. Let P re1, . . . , P ren and P ost1, . . . , P ostn denote the
pre- and postconditions of the methods in the ancestor classes (in most cases
n = 1), furthermore let P re and P ost denote the precondition and postcondition
respectively in the method being redefined. Then the entire pre- and postcondi-
tion of the redefined method are essentially as follows ([Mey91], [Mey00]):

• if the require else clause is missing or it is empty, then the entire precon-
dition is P re1 . . . or else . . . P ren.

• If the require else clause is non-empty, then the entire precondition is
P re or else P re1 . . . or else . . . P ren.

• if the ensure then clause is missing or it is empty, then the entire post-
condition is P ost1 . . . and then . . . P ostn.

• If the ensure then clause is non-empty, then the entire postcondition is
P ost and then P ost1 . . . and then . . . P ostn.

ECMA Eiffel[ECM06] introduces a slightly different and more rigorous ap-
proach both with respect to typing and assertions in the context of inheritance. It
takes default assertion values False and True for precondition and postcondition
respectively in case they were missing and it uses the following values for so-
called combined precondition and postcondition:

• the full (or combined) precondition is (P re1 . . . or . . . P ren) or else P re.
• the full (or combined) postcondition is (old P re1 implies P ost1) . . . and

. . . (old P ren implies P ostn) and then P ost.

Where P rex and P ostx are the (recursively) combined precondition and postcon-
dition respectively of their enclosing routine in class. Moreover P rex and P ostx

denote the so-called covariance-aware forms of precondition and postcondition
respectively (Please refer to Section 12.5.3).

Apart from addressing typing issues, the ECMA version of combined precon-
dition is very similar to that of the original Eiffel language definition[Mey91],
although the order of assertions and the use of logical operator (mostly or used
in place of or else) are somewhat different.
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It is worth analyzing the postcondition and comparing it to its original Eiffel
language definition [Mey91] counterpart. This definition removes the burden
of ensuring a stronger postcondition from the redeclared method at all costs.
This burden is a result of the fact that the precondition for the redeclared
method is actually weakened by essentially ’or’-ing its own and precursors’
preconditions. Thus the postcondition its ancestors may not hold in cases when
their precondition counterpart is not satisfied. Hence the ECMA version does
not actually require the postcondition of its ancestors to be satisfied in such
cases. Ancestor postconditions are required to hold only under their original
conditions, when their precondition counterparts are satisfied.

In the subsequent sections we use the pre- and postcondition of a routine in
the above sense, often referencing them as full preconditions and full postcondi-
tions respectively.

Class invariant

Let us turn our attention to the class invariant now. We already know that in
Eiffel inheritance plays double role. On the one hand using inheritance we may
reuse the implementation of the base class(es), on the other hand inheritance
induces subtyping.

If class C inherits from class B, then C can be viewed a specialization of
B. If we used inheritance properly, then conditions expressed in form of class
invariants in B, should still be valid for class C. But as we specializing B into
C, we may introduce additional properties specific to class C. We expect class
C to include the full class invariant already defined in B, and maybe some more
invariants related to additional features being present exclusively in C.

Let us define the new MY _ST ACK2 class inheriting from MY _ST ACK,
having additional characteristics, that its capacity can be only even, the invariant
of the new class could look like this:

invariant
valid capacity: capacity>0
valid item count: item count >=0

and item count >= capacity
definition of emtpy: ( empty implies item count = 0

and ( item count = 0 implies empty)
definition of full: ( full implies item count = capacity

and ( item count = capacity implies full)
even capacity: capacity \\2 = 0

end −− class MY STACK2

Where \\ denotes the Eiffel modulo operator. Please note that we list all
the class invariants of MY _ST ACK and extended it with the new assertion on
even capacity.
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To enlist the class invariants of base class(es) can be rather tedious and re-
quire considerable attention especially in the context of complex class-hierarchy.
Fortunately, the class invariants of base classes can be obtained automatically.
Eiffel language standard and the development environment do not require us
to list the class invariants of base class(es). If a class C inherits from other
class(es), then the class invariant of class C is automatically extended with the
class invariant of the base class(es). We will refer to this extended class invariant
as full invariant of the class. In case of our MY _ST ACK2 class it is sufficient
to define only one new assertion, as illustrated below:

invariant
even capacity: capacity \\2 = 0

end −− class STACK2

To generate the full class invariant is the responsibility of the Eiffel compiler
and development environment.

We remark that the proper definition of the full class invariant in the context
of inheritance and feature redeclaration (especially when redeclaring a function
into an attribute) slightly differs from Meyer’s original intention [Mey91] to
current ECMA [ECM06] standard.

The definition [Mey91] substantially applies similar, but more precise (gov-
erning the order in which invariants of parent classes appear recursively) consti-
tution of full class invariant (although the term full class invariant is not used)
with the difference that it takes also care of a fine point: when a function is being
redeclared into an attribute (in class C). In such case the definition [Mey91]
states that the class invariant must also include ”The postconditions of any
inherited functions, which C redefines as an attribute, with every occurrence of
result replaced by the attribute’s final name (If there are more such redefinitions,
include them in the order in which their new declaration appears in C).”

Note that preconditions of such redeclared functions are omitted, since an
attribute value can be retrieved at any time. This is actually also in line with
the precondition weakening principle, since essentially the precondition of such
features becomes True. Object-Oriented Software Construction[Mey00] further
argues that actually for argument-less functions it is a matter of style to express
the assertion in class invariant instead of postcondition. If one opts for using the
former then there will be no change to class invariants in this respect.

A function without arguments can only refer to and check in its precondi-
tion properties of global attributes and values of other argument-less features,
therefore such precondition in theory can be formed as class invariant.

ECMA [ECM06] coins the term unfolded assertion in the context of assertions
with inheritance. Class invariant of a class C is recursively obtained by unfolding
all of its parents’ (if any) class invariants. Thus the full class invariant, termed as
local unfolded form by ECMA standard is given by the formula: ”up1 and . . . and
upn and then ua, where up1, . . . upn are (recursively) the unfolded forms of the
invariants of these parents, after application of any feature renaming specified
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by C’s corresponding parent clauses.” Where ua denotes the local unfolded form
of class invariant in C and assuming that C has n parents for some n ≥ 1. Please
note that this definition is fundamentally very close to the ones already outlined
above.

Class invariant, pre- and postondition

Let us explore the relationship of the class invariant and pre- and postconditions.
The interpretation of class invariant may pose interesting problems in the context
of inheritance. We pointed out that the class invariant must hold before and after
exported methods and after creation. We also know that the full class invariant
is obtained by combining (with the and then operator) the class invariants of
base class(es) with the class invariant defined in the descendant class.

Let B a class with the class invariant I. Let m denote a public method of B
with the specification 〈P re, P ost〉. Since m is a public method of B, whenever
m is called, the condition I ∧ P re must hold, and whenever m terminates the
condition I ∧ P ost must be satisfied. At the first glance the class invariant
may look superfluous, since by selecting appropriate pre- and postconditions it
could be eliminated. However, this is not quite true because of two reasons. The
first reason is methodological. Class invariant is meant to describe the overall
characteristics of a class. The benefits of having a separate class invariant are:

• Class characteristics are more evident.
• Class is easier to maintain, because without class invariant, the assertions

(making up the invariant) should be repeated in the pre and postcondi-
tions of all public methods.

The second reason follows from the argument: We will realize that pre and post-
conditions play a slightly different role than class invariants. Let us investigate
this again from the perspective of subtyping and inheritance. Let still m denote
a public method of class B with specification 〈P re, P ost〉 and I denote the class
invariant defined in class B. Let us suppose that class C inherits from B. Let
I ∧ J denote the full class invariant of C, where J is the class invariant given
explicitly in class C. Let C inherit method m from class B in its original form
along with its specification. The effective conditions need to be satisfied prior to
invoking m in B is I ∧ P re, similarly the condition need to be fulfilled upon
termination is I ∧ P ost. For method m in class C the condition needs to be
satisfied prior to execution is I ∧ J ∧ P re, whereas the condition needs to be
fulfilled upon termination is I ∧ J ∧ P ost.

There seems to be an issue with the effective preconditions, since the assertion
required to be satisfied prior to the execution of m in C may be stronger than
for m in B. Note the same holds for the postconditions, but it does not pose
a problem there, since the requirement induced by subspecification definition is
satisfied, as I ∧ J ∧ P ost ⇒ I ∧ P ost always holds.
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Similar reasoning can be obtained if an inherited method m were redefined
and its specification were modified according to the subspecification rules. In such
a case the specification of the redefined m would be 〈P re′, P ost′〉, which would
satisfy on its own the subspecification relationship with respect to 〈P re, P ost〉.

Because of the reasons discussed above, other languages, for instance Sather
[Gom97] takes a different approach. It allows only abstract classes as base classes
in inheritance relation. This restriction although does not solve the issue ex-
plained above, but at least it does not impose problems in the context of sub-
typing, as instances of abstract classes cannot exist. A further refinement in
Sather is that class invariants are only evaluated along with postconditions.

It is worth considering the above statement. In Eiffel language the program
execution involves consecutive operations performed on various objects. If after
termination of a public method the class invariant still holds (and it must), then
the next public method may again count on the fact that class invariant is valid.

We seem to have reached a contradiction in our reasoning. Our starting point
was that during inheritance – because of the nature of how the class invariant
is inherited – the subspecification relation may not necessarily hold between the
specification of the exported method in the ancestor and descendant classes, if we
look at the precondition and the class invariant as a combined single assertion.
It is true, however, that at least the subspecification relation holds for method
postconditions extended with the class invariant. When taking a closer look at
how computation is performed in the object-oriented paradigm we come to the
conclusion that if the class invariant is satisfied upon termination of a public
method, then it certainly also holds when starting the next public method.

This apparent contradiction can be resolved by the following practical rea-
soning. Please notice that a class (or for that matter an object) does not expect
its clients to maintain its integrity in form of class invariant. On the contrary, the
class (object) itself is responsible for establishing and preserving such integrity.
Internal mechanisms provide that in case of valid method invocations the validity
of class invariant is preserved, regardless whether the class invariant is stronger
than that of its ancestor class, or whether the object is used in a context,
which assumes an instance of its ancestor. Therefore we cannot simply treat
class invariants as a sort of common extension of pre and postconditions. Class
invariants capture deeper semantics as already have been pointed out when
abstract data types and representation functions were discussed.

12.4 Program-orretness in Eiffel

In possession of language elements dedicated to correctness specification we are
able to reason on the correctness of Eiffel programs. By correctness as it will be
defined in the next section we will mean total-correctness.

From this on, by precondition, postcondition and class invariant we mean
their full or unfolded form in ECMA [ECM06] terminology.
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12.4.1 Hoare-formulas

Generally, in case of an S statement (single or compound) we use the notation
of {P re}S{P ost}, where P re and P ost predicates denote the precondition and
postcondition of S respectively. This triplet is called Hoare-formula. The formula
is valid if and only if, whenever S is executed in a state satisfying P re, then S
terminates in a state satisfying P ost. We remark that this definition describes so-
called total-correctness. There exists a weaker definition, which does not require
S to actually terminate. In that case we talk about partial-correctness.

In this chapter we deal with the program-correctness and its validation from
rather practical, not theoretical perspective. It makes a difference for us if a
program does or does not terminate, therefore from now on we are only concerned
with total-correctness in the above sense.

The 〈P re, P ost〉 ordered pair from the {P re}B{P ost} Hoare-triplet is called
the correctness specification of method M with method body B. Please ob-
serve that many correctness specification may co-exist for a given statement
or method. For example, for the operation x := x × 2 the 〈x > 4, x > 7〉
or 〈x > 4, x > 8〉 can be both appropriate correctness specifications. The
correctness specification along with the corresponding statement defines the
Hoare-triplet, for instance, {x > 4}x := x × 2{x > 7}. The meaning of this
formula is the following: if variable x is greater than 4 prior to executing the
statement x := x × 2, then the operation terminates and after the operation the
value of x will be greater than 7.

A simple Hoare-formula can be defined for the put method of our stack:

{ ¬full } put(new_item) { item = new_item and ¬ empty }

To interpret this snippet is straightforward: if the stack is not full, then the
put method terminates, and upon termination the new item will be available on
the top of the stack. Also as a consequence of the operation the stack will not
be empty. Please recall that the item function returns the top of the stack. Also
notice that without the precondition and postcondition it is not guaranteed that
the method will actually put the new item into the stack, in fact, on the top of
the stack.

An alternative put method can be easily implemented, which does nothing
with a full stack. It simply checks if the stack is full, it puts the new item into
the stack, if it is not full, otherwise it does nothing. With this particular stack
implementation the programmer relying on it may believe that a new item is put
into the stack even if the stack is full as no feedback is received in such cases.

The above small example illustrates the significant role of checking precon-
ditions. The other benefit is that if we inspect the postcondition of the put
method, then we realize that it is guaranteed that for every allowed (in cases
where preconditions asserts true) method invocation, the new item is actually
put on the top of the stack.
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12.4.2 Corretness of attributes

Correctness of attributes is not verified on their own. We assume all attributes
correct because of the following reasons:

• Every attribute is a simple variable or object; fetching their values does
not involve language level computation mechanism. It also follows that
such value retrieval is supposed to always terminate.

• Consistency of attributes with respect to classes, other attributes, or
functions is captured by class invariants defined at class level.

• Validity of attributes in a method invocation context is ensured by the
precondition and postcondition of the method to be invoked.

Both latter topics will be addressed later. We note that it may happen that
a feature (routine or an attribute) of a class attribute is referenced. This may
happen in a particular f feature or in a class invariant. In both cases correctness
of the referencing class does depend on the correctness of the class constituting
the attribute. However, the correctness of the class for the attribute is not defined
at attribute level in the class it is occurring, but at routine and class level of the
constituting class.

12.4.3 Loop orretness

The definition of loop-correct is given in the context of routines [Mey91] as
follows. A routine is loop-correct if every loop it contains satisfies the following
four conditions:

• {REQ}INIT{INV}

• {REQ}INIT{VAR ≥ 0}

• {INV ∧ ¬EXIT}BODY{INV}

• {INV ∧ ¬EXIT ∧ VAR = v}BODY{0 ≤ VAR < v}

Where INV denotes the loop invariant, V AR is the loop variant, INIT is
the initialization part of the loop, EXIT is the exit condition, finally BODY is
the loop body. It is further assumed that v integer variable in the above logical
formulas does not appear anywhere in the routine. We note that REQ is simply
taken to be T rue ([Mey91] and [ECM06]) (more on this later).

The first formula states that the INIT loop initialization block terminates in
a state, which satisfies the loop invariant. As already discussed in the preceding
sections this INV formula is served to capture the essence of the loop, to
establish and preserve a logical relationship among variables (class or local)
by expressing the properties of the goal we are trying to achieve along with
the EXIT condition. It is ensured by the third formula that the loop invariant
remains true whenever the loop body is executed. Note that therefore the loop
invariant is guaranteed to be true when exiting the loop (based on the EXIT
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condition) after zero (it holds because of the first formula) or more iteration (it
holds because of the third formula).

The rest of the formulas deal with the termination of the loop by establish-
ing and maintaining loop variant. The second formula describes that the loop
initialization must terminate in a state when the loop variant is non-negative.
The last formula asserts that loop variant must be decreased for each iteration
(executing the loop body until exit condition is reached) of the loop. The loop
variant is required to be non-negative at all times also by these formulas. Hence
the number of iterations is limited, bounded by the V AR expression, meaning
that the loop will eventually terminate, provided that the entire loop (including
initialization part, loop body and exit condition) conforms to its specification
given in terms of the above formulas.

The above rules implicitly assert that both the loop initialization and the loop
body themselves terminate, since the validity of {P re}B{P ost} Hoare-formula
in case of total-correctness requires that B terminates.

The correctness and correctness checking of the loop depends on how well
loop mechanism can be captured by the language construct supporting correct-
ness specification. As an extreme example the constant value True may be used
in the loop invariant formula. It is obvious that in such a case the T rue logical
formula does not reveal any information of the loop mechanism.

It is worth taking a moment and looking at loop correctness definition more
closely, especially to see why REQ is selected to be T rue both by Meyer [Mey91]
and the ECMA standard [ECM06]. First it looks surprising to take T rue as a
precondition in {T rue}INIT {INV } and {T rue}INIT {V AR ≥ 0}. In general,
the {T rue}INIT {INV } formula cannot be proven to be valid for arbitrary
INIT and INV (take for example {T rue}i := −1{i > 0}).

The loop-correctness definition, however, only is defined at routine level, and
solely states that a routine is loop-correct, if its every loop satisfies the formulas
appearing in the original definition. It does not use double implication, so theo-
retically this definition is correct, although somewhat weak in a sense that only
a small subset of loops (which otherwise could be proven to be correct provided
that appropriate REQ condition were selected) can be viewed as correct.

Furthermore, in some cases the precondition of the loop initialization part –
thanks to routine precondition – can be viewed/made stronger. For example, if
the loop is the first statement in a routine, then {T rue}INIT {INV ∧ V AR ≥ 0}
can be assumed to be {P RE ∧ T rue}INIT {INV ∧ V AR ≥ 0} (to save space
logical conjunction is used to combine formulas in postcondition), where P RE
is the routine precondition. This can be done, since the routine precondition
must always hold prior to executing the routine body, in this case the loop
initialization. If we are talking about an exported routine, then loop initialization
part may further rely on the class invariant. This makes sense, since the loop
being the part of the routine is only supposed to get executed under certain
conditions, for valid objects.
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Informally, even if the loop statement is not the first statement in the rou-
tine, or there are more loops, or even there are embedded loops, the routine
precondition and possibly class invariant still may implicitly assert much more
than the weak T rue precondition in the original definition, thus being sufficient
to get the loop initialization and the loop itself is properly executed with respect
to its loop correctness formulas.

To argue on loop-correctness in the context of classes and methods (not to
mention embedded loops and recursion) can become quite complicated, that is
why presumably the simple True formula was selected as a precondition in the
Eiffel loop correctness definition ([Mey91] and [ECM06]).

12.4.4 Chek orretness

Please recall that check constructs serving as hypothesizes on routine behavior,
may appear practically anywhere in a body of a routine. Meyer [Mey91] and
ECMA standard [ECM06] define this notion as follows: ”An effective routine r
is check-correct if, for every check instruction c in r, any execution of c (as part
of an execution of r) satisfies all its assertions.”

The above definition basically requires check assertions to hold only for valid
routine invocations. We remark that abstract classes and features can be defined
in Eiffel using the deferred keyword. Abstract classes must have one or more
deferred features, each with preferably some specification but without particular
implementation. At some point in the inheritance hierarchy a descendant may
implement a deferred feature, by making it effective.

12.4.5 Exeption orretness

The Eiffel programmer may write one special exception block - introduced by
the rescue clause - at method level for handling exceptions. The exception block
may have essentially two branches. The optimistic branch is ended with the
retry keyword assuming that after certain preparations made by the block, the
whole method body may be executed again (possibly by applying a different
algorithm), hopefully, this time without raising an exception.

It is required that in order to rerun the method body, the precondition
must be still (or again) valid (thus the block must do operations to restore
precondition), and if it is a method exported selectively or generally (other
than constructor), then the class invariant must be valid (again restoring class
invariant if necessary) in addition. In case of private methods or constructor it
is sufficient that the precondition is restored prior to re-execution.

If there is no hope for executing the method body again (by running the
retry block and the method body zero or more times more), then operations
for supporting non-handable exception are executed, finally method ends with
raising an exception. Because in such case the method fails, there is no way to
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guarantee the postcondition. Exported methods are still required to restore or
establish class invariant.

The notion of exception correctness was introduced by Meyer.1 His original
definition is not concerned with export status of routines and does not make
distinction between ordinary methods and constructors.

The ECMA standard [ECM06] takes even a simpler approach by requiring
that ”a routine is exception-correct if any branch of the Rescue clause not
terminating with a Retry ensures the invariant.”

A more complicated definition - taking account also of export status - based
on Meyer’s original [Mey91] can be adapted: The m exported method is said
to be exception correct if and only if, for every branch of exception block B
ending with retry keyword the {T rue}B{I ∧ P re} Hoare-formula, for every
branch of exception block B without retry the {T rue}B{I} formula is valid.
The m private method or constructor is said to be exception correct if and only
if for every branch of its exception block terminating with retry keyword the
{T rue}B{P re} Hoare-formula is valid.

We remark that the weakest precondition True is applied for the exception
block in the triplets {T rue}B{. . . }. This is, because after an unexpected excep-
tion we can rely neither on method precondition nor class invariant, since during
exception program may be in an non-expected, unstable state.

We must stress that the exception block should be really concerned with
unexpected failures that is addressing such exceptional cases, which cannot be
foreseen in advance. Thus, for example, when performing a division and not
paying attention to the special case when the denominator is zero is excluded
from such unexpected scenarios.

As those (remaining) set of exceptions are rather tied to the execution and ac-
tual implementation related properties of programs, one may also argue whether
or not exception-correctness should be included in the correctness definition.
These exceptions may be related to and be the consequences of hardware failures
(broken network link, etc.), physical limitations (memory or disk size, etc.),
which are resulted primary from the execution model, not from the pure math-
ematical algorithm itself.

Finally we remark that although assertion violations are implemented in
Eiffel base libraries and Eiffel implementations (e.g. EiffelStudio) as exceptions,
these two notions are quite different. From a practical point of view assertion vio-
lation (except for check on void target) cannot occur when assertion monitoring is
switched off or when correctness specification is completely missing or sufficiently
weak. Whereas there is no such option for turning off exceptions (other than if
the careless developer decides on ignoring exceptions in all exception blocks).

The fundamental difference between the two notions is, however, lies in
their semantics. ”A run-time assertion violation is the manifestation of a bug
in the software.” [Mey00] Routine preconditions and postconditions also serve

1 [Mey91] and [Mey00]
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for separating roles and responsibilities in the context of client and supplier
relationship, known as contracts, in Design By Contract methodology [Mey00].
Precondition violation clearly indicates the manifestation of a bug in the client,
similarly postcondition violation is a direct result of a bug in the supplier code.

Generally speaking assertion and assertion-violations are tied to the concept
of correctness, as opposed to exceptions, which are related to the robustness of
the software. ”Robustness is the ability of software systems to react appropriately
to abnormal conditions” [Mey00].

An exception may be a consequence of a non-expected internal or external
condition. Here by ’internal’ we mean something, which is directly dependent
on and coherent with the algorithm and nothing else. As opposed to ’external’,
which is exclusively related to the ”outer world” (suppliers, external systems,
hardware elements, etc.). An exception resulting from a non-expected internal
condition still indicates a bug in the code, however, external exceptions may
not. Therefore informally a routine must be constructed in such a way so that no
exception resulting from an unexpected internal condition should arise. Moreover
all exceptions due to external conditions should be handled in accordance with
exception-correctness policy. To understand and internalize the subtle difference
please refer to the exercises section at the end of this chapter.

12.4.6 Class onsisteny

The term class consistency is introduced [Mey91] based on the notions of precon-
ditions, postconditions and class invariant. According to the ECMA definition
[ECM06]: ”A class C is consistent if and only if it satisfies the following condi-
tions:

• For every creation procedure p of C: {prep} dop {INV C and then postp}
• For every feature f of C exported generally or selectively:

{INV C and then pref } dof {INV C and then postf }

where INV C is the invariant of C and, for any feature f , pref is the unfolded
form of the precondition of f , postf the unfolded form of its postcondition,
and dof its body.” Further assuming that any missing assertion (precondition,
postcondition, or class invariant) to be taken to T rue.

The above definition is one of the most important aspects of correctness
definition. On the one hand, it captures well the semantics of class invariant.
Class consistency requires that every creation procedure, provided that it is
called with valid arguments (as expressed in the precondition), must establish
the class invariant, that is, producing a valid object instance. Moreover, this
invariant must be maintained by every valid public feature call. The first Hoare-
triple can be considered as the base case for induction, the second triple is the
inductive hypothesis, which ensures that if the hypothesis (expressed in form
of class invariant) holds before the execution of the method, it will hold also
afterward.
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On the other hand, the formulas define the correctness of selectively or
generally exported feature in terms of their correctness specification. Requiring
both constructors and features that whenever invoked with valid arguments
(expressed in precondition) on a valid object instance (in terms of class invariant
and precondition. The former not interpreted for creation procedures.) they
will terminate in a state satisfying their postcondition, and class invariant is
maintained as discussed previously.

We remark that Meyer [Mey91] had given earlier a slightly different definition:
”A class C is consistent if and only if it satisfies the following two conditions:

• for every creation procedure p of C: {prep} dop {INV C}

• for every routine r of C exported generally or selectively:
{prer ∧ INV C} dor {postr ∧ INV C}

” We tend to adopt the more recent ECMA definition, as in our opinion it is
more compact. Not just because of the use of the non-strict boolean operators,
but also because we feel that the use of postconditions in constructors is justified.
Creating a valid object instance in the first place is clearly required, but it is
usually not sufficient, since many valid object instances may co-exist within a
representation schema. Postcondition of creation procedure should also deter-
mine the initial state of the object, as it is done in our constructor method of
MY _ST ACK class.

−− creation: create a stack with capacity of c
make(c:INTEGER)
require
valid capacity: c > 0

do
create container.make(1,c)
item count:=0
capacity:=c

ensure
space allocated: container /=void
new stack is empty: empty
capacity is set: capacity=c

end

Let us take a look at the precondition of the constructor. It requires that
capacity must be positive. If such constraint on capacity were not defined,
then it would not be possible to establish and later preserve class invariant.
Postcondition gives the constraints of successful creation of a stack object. It
asserts that space is allocated for the stack, the new stack is empty (note not
an arbitrary, but a very specific object instance is created), and that it has the
appropriate capacity as indicated in the argument of the constructor.
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12.4.7 Class orretness

A class C is correct with respect to its correctness specification (pre- and post-
condition of its methods, full class invariant, loop assertions, check constructs)
if and only if it is consistent and its every routine is check-correct, loop-correct
and exception correct ([Mey91] and [ECM06]).

12.4.8 Note on method orretness

It may be striking at first for the observant reader that Meyer ([Mey91] and
[Mey00]) and ECMA [ECM06] standard correctness definitions do not say any-
thing in regard to correctness of attributes and non-exported routines with
respect to their correctness specification given along with method signatures.
The definition includes check-correctness, loop-correctness and even exception-
correctness for routines in general (regardless of their export status), but is not
concerned with preconditions and postconditions of non-exported (or private for
short) routines.

We have pointed out that to talk about attribute-correctness may be a little
premature. As correctness of attributes are handled inside their constituting
class. It is not very difficult to see that class correctness does not directly depend
on private routines, since services of the class are only available via its interface.
Essentially, through a chain of calls a private routine to be useful must be called
from inside a public routine. If this is not the case, then the correctness of such
routine is irrelevant class correctness wise, as this may be never executed. If,
however, the non-exported routine is referenced by an exported one, then clearly
the correctness of the referencing public routine depends on the referenced one.
Hence the class consistency definition implicitly requires that private routines
do terminate in a state, which is appropriate for ensuring the postcondition of
the calling exported routines and maintaining the class invariant.

We remark that even in the absence of correctness definition of non-exported
routines, their correctness – given in terms of their precondition and postcon-
dition – may be continually being monitored depending on compiling options.
Please notice that this has an interesting and possibly undesirable effect that
run-time class correctness also depends on compiling option as illustrated by the
following class snippet.

class C

feature{NONE}
private
require

false
do . . .
end
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feature{ANY }
public
require

pre
do . . .

private
. . .

ensure
post

end

Let us assume that the class C is correct with respect to the definition
given in Section 12.4.7, further assuming that private method terminates in
a state ”appropriate” for method public. If preconditions are not monitored,
then class C works in conformity with its correctness specification. However,
if precondition monitoring is switched on, then class C stops working due to
precondition violation in the private method despite the fact that the class C is
correct with respect to definition given earlier.

12.4.9 Program orretness

Before turning our attention to definition of program-correctness of object-
oriented programs and the related issues, we must familiarize ourselves with
some supporting notions.

Connetions

In a given software context we refer to C as client and S as supplier, if class
C refers to directly or indirectly to any component of S (attribute or routine).
Please notice that a given class may be client in one context, and may be a
supplier in another context. This relationship may be interpreted at the object
instance level as well.

Dependeny

We say that implementation of class A is dependent on class B, if there is a
text in the implementation of class A, in which A and B are present as client
and supplier respectively. We denote this dependency as follows: B →d A , to
express that implementation of class A depends on the implementation of class
B. This dependency relation is reflexive and transitive. The transitive closure
of dependency relation is denoted by →+

d . For instance, A →+
d denotes a set of

classes, of which implementation is dependent on A, whereas →+
d A describes the

set of classes, on which implementation of A depends. Corollary of this definition
is that a descendant class always depends on its ancestor classes.
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Program orretness

Let P be a program of which execution is started by invocation of constructor
defined in class C. Then we say that program P is correct with respect to its
specification if and only if class C is correct. We remark that for C to be correct it
is further required that all other classes acting as servers (directly or recursively)
in client-supplier relationship in the above sense are also correct. More precisely,
program P is correct if and only if all classes defined by →+

d C are correct. For
MY STACK class this particularly means that it is required that

• the used ARRAY and INTEGER classes are correct.
• The MY_STACK class itself is correct.

12.5 Program orretness issues

In this section we briefly overview the issues and theoretical limitations of the
program-correctness validation.

12.5.1 Dependenies

The previously introduced approach, which advocates that the problem of check-
ing program-correctness can be easily decomposed into smaller problems that
focus individually on correctness properties of individual classes and cannot be
applied straightforwardly due to dependencies.

There could be easily multiple level of dependencies among classes and de-
pendency can be reciprocal. Therefore correctness of a class C, cannot usually
be isolated and easily verified. As we know the correctness of class C depends
on the set of classes denoted by →+

d C.
For example, in the simple scenario, when A →d B, B →d C and C →d B,

we are not in a position to argue on the correctness of a standalone class B or C.
When addressing correctness, the classes B and C should be handled together
as one unit. Furthermore, in order to be able to proceed, it is required that we
already verified class A, since →+

d B = {A, B, C} = →+
d C.

Figure 12.1. presents a sequence diagram in UML notation of a common
design pattern[Gam95]. The symmetrical dependency between the two classes,
the Subject and Observer is illustrated clearly in the figure. Due to this co-
dependency the correctness of these two classes can be addressed together.

• Instances of the Observer class, which are interested in the state of the
subject, are registered at the instance of the Subject class by calling the
subject.register(observer1 ) and subject.register(observer2 ) methods. Such
registration usually comes with adding elements to a list in instance of
subject class.
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• Later, the observer object modifies the state of the subject, by calling
set state method of the subject.

• The instance of subject class notifies all registered observer instances upon
state changes (subject.notify).

• The notify method will invoke the update method of the registered ob-
servers (observer1.update, observer2.update).

• Finally, every notified observer instance retrieves the current state of the
subject by calling subject.get state.

It is evident that many more complicated design patterns exist with multiple
dependencies.

Figure 12.1: Subject-Observer sequence-diagram

12.5.2 Void-safety

The reader may have encountered the error ”Java null pointer exception”, or its
Eiffel equivalent: ”Feature call on void target”. These are all clearly symptoms
of non-void-safe software. It may be evident at the first glance, how and why the
topic of void-safety should be tied to the notion of correctness. The potentials of
void-safe constructs are worth discussing, as void-safety is a facility for improving
software quality by eradicating calls on void targets [ECM06].
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We informally say that a program is void-safe if it is guaranteed that no call
is made on void object during run-time execution. Otherwise we categorize it as
non-void-safe or void-unsafe. A language is void-safe, if it supports creating void-
safe software, otherwise it is void-unsafe. With void-safety, of course, we do not,
as we cannot, eliminate void references. There are certain cases, in which they
are useful. It is enough to think of a linked list implementation, where the list
is implemented by the generic Eiffel class LINKED_LIST [G] and its element,
which are descendants of LINKABLE[G] class. If a cell is the last element in a
list, then it does not have a neighbor. This is expressed by having a void value
in the attribute ”right”. Please note that void-safety only arises in connection
with reference types, and does not pose problem for expanded types. The careful
software engineer may write something like this to make the program void-safe:

if o/=void then
. . .
o.m
. . .

else
. . .

end

Provided that no assignments to o are made in the interim, the feature call
is safe. It is worth noting that to ensure such thing, it is required that object o
above a local variable or a formal argument. Otherwise (e.g. o being an attribute)
its value could be overwritten via a reference (see problem of aliasing).

Eiffel terminology calls such patterns like the above Certified Attachment
Patterns (CAPs for short), when it is ensured that no call is invoked on void
objects. It would be more convenient to handle such a case with more elegance
and ease and also to extend this void-safety property to class attributes.

The attached syntax has been specifically introduced in Eiffel to solve this. In
Eiffel a variable may be either declared (technically also depending on compiler
options) as attached or detachable [ECM06].

It is ensured by the compiler that attached variables cannot be void, thus
any feature call made to them is void-safe.

To enforce the validity of this property Eiffel has extended its type system
with respect to conformance rules. A detachable variable cannot appear on the
right hand side of an assignment, if the target is an attached variable. The
reverse, however is allowed, since no harm may result from assigning a non-void
value to a possibly void variable.

attached var1 : attached SOME TYPE
detachable var1 : detachable SOME TYPE
attached var2 : attached SOME TYPE
detachable var2 : detachable SOME TYPE
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attached var1 :=attached var2 −− valid assignment
attached var1 :=detachable var1 −− invalid
detachable var1 :=attached var1 −− valid
detachable var1 :=detachable var2 −− valid

It is needless to say that the second assignment is invalid, whereas all the oth-
ers are allowed. The same applies to routine arguments. An argument declared
with some attached type only accepts attached parameters, while detachable
arguments accept both.

Evidently this can only work, if variables declared as attached are immedi-
ately initialized to be non-void values. But when and how this should happen?

Eiffel has taken the same approach as in case of class invariants. The role of
creation procedures is extended to also initialize attached attributes. In addition,
an ordinary attribute may have a special initialization part with the following
syntax, which guarantees that it is properly initialized prior to its first use.

my string: STRING
attribute

create result.make empty
end

Note that CAPs are not required for such attached variables, but since there
are still cases, when detachable variables with void references can occur, a care
must be taken to handle such situations.

if attached o as l o then
l o.feature call

end

The above snippet checks if the o variable is attached. If it is, then it creates
a local copy of it, and this local copy can be used further on, within its scope
(in this case the if-then statement). Please note that by creating a fresh copy,
we eliminated the potential issues that may be caused due to aliasing.

This so far looks promising but the life is not always as clear-cut as this.
Sometimes a non-void value cannot be assigned to a variable right away, just
after a later point in time. But it may be desirable that once a non-void value
is assigned, the variable cannot become void again from that moment on. To
address this issue, as a transition between attached and detachable variables
there exists the notion of stable attribute.

my attr : detachable SOME TYPE
note
option: stable
attribute

end
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Another delicate issue is void-safety in the context of genericity. Eiffel pro-
poses constrained-genericity to assert that only attached types are allowed for a
class parametrization. For example,

class C [G −> attached ANY ]

denotes that only attached generic parameters are accepted. This works for
all generic type parametrization, except for ARRAY [Eiff]. As long as only
expanded types are used as generic parameters this construct is void-safe. When
an ARRAY is instantiated with reference-types as generic parameters, then
instead of simple make routine the make_filled must be used. The latter
ensures that all array entry items are initialized properly. For instance,

a: ARRAY [STRING]
create a.make filled("",1,100 )

will create an array of empty strings, thus the above statement ensures that
all items have non-void references. Finally, we remark that check construct has
a slightly different syntax and semantics in the context of void-safety. A special
variant of CAP is:

check attached detachable object as l object then
l object.feature call

end

Here the check construct is used to assert that the detachable_object (possi-
bly a stable attribute) being declared detachable (hence void-unsafe) is assumed
to be non-void when this part is executed. To enforce void-safety, this type of
check construct is always being monitored even if assertion monitoring is turned
off.

12.5.3 Type safety

Type safety is the extent to which a programming language ensures that only
statements and expressions (such as assignments, operators, methods, functions,
etc.) of the right (conforming) type are valid in a language, furthermore such
property is enforced during run-time execution [(refer within the book Chapter
5)]. Type safety can be achieved statically at compiler time or dynamically at
run time or a combination of both. So far in our discussion we assumed that
programs were both syntactically correct and correctly typed. Conventional non-
OO imperative programming languages (such as Pascal, C, etc.) – lacking the
expressive power of prominent features like polymorphism, inheritance, etc. –
have relatively simple type system relying on some basic types (e.g. integer, real,
string, etc.) with some possible limited form of extension such as records. Due
to the rigidness of their type system it is easy to decide if a statement in a given
program context is correct with respect to the typing rules. For example, the
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following C program fragment illustrates that generally an assignment statement
is not valid among variables of different types.

int i1;

int i2;

char c;

. . .

i1=i2; /* valid assignment */
i1=c; /* invalid assignment */
i1=(int)c; /* valid assignment due to casting */

However, to provide some plausible flexibility, mapping between certain types
still can be made due to explicit type conversion known as casting. Due to the
simplicity of such type systems type-correctness can be checked at compiler time,
so that syntactically valid programs are ensured to be type-safe. Smalltalk being
an early untyped OO programming language is another extreme with tremendous
flexibility in typing. Due to this high level of freedom (essentially with no
typing rules) Smalltalk programs may abort with the infamous ”Message-Not-
Understood” when an attempt is made to apply an operation to an object of the
improper form (note: to put ”type” here would be a paradox). Eiffel terminology
refers to such run-time type violations as catcalls. Clearly, Eiffel programs must
obey some typing rules but due to the complexity and flexibility of the type
system the type validity cannot be statically checked at compiler-time. The
sources of Eiffel catcalls have been identified[How03] to be the following:

• ”A covariant argument redefinition.
• A routine argument whose type is a generic parameter.
• Descendant hiding (export restriction for an inherited feature).”

We remark that covariance formally can be defined as follows. Let A, A′,
B and B′ denote types. We say that the x is a covariant operator (in both
arguments), if A′ x B′ <: A x B provided that A′ <: A and B′ <: B,
where <: is the subsumption relation defined on types [AC98]. (Please also refer
to Section 10.7.2 in Chapter 10.) Intuitively, A′ <: A indicates that A may be
a more general type than A′, and an instance of the possibly more specialized
type A′ can be used whenever instance of type A is expected. Eiffel takes the
approach that the operator →, hence function types are covariant ([AC98] and
[SWM04]).

The type safety issue arises mainly when argument covariance is used along
with polymorphism, genericity and descendant hiding. By prohibiting such fea-
tures a language can remain type-safe. Notably such approach would limit the
expressiveness of the language that is why Eiffel community still flavors their
own approach. As we mentioned earlier Eiffel adopts the view that inheritance
implies subtyping. This has numerous practical advantages, but is a clear source
of potential catcalls. This is the case, because polymorphism (thus polymorphic
method invocations) is made possible by this assumption that if a class C is
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inherited from its base class B, then the instances of class C can also be viewed
as instances of class B (however not the other way around). There are other
views on whether the two notions inheritance and subtyping are related[AC98].
For instance, Sather with contravariant type system has separate implementation
and type inheritance [Gom97], thus eliminating the majority of the above issues.

Correctness (sub)specification becomes even a more delicate issue in the
context of covariance, and inheritance. To remedy this situation ECMA [ECM06]
advocates the so-called covariance-aware form of an inherited a assertion, which
is as follows:

• ”If the enclosing routine has one or more arguments x1, . . . xn redefined
covariantly to types U1, . . . Un: the assertion
({y1 : U1} x1 and . . . and {yn : Un} xn) and then a′ where y1, . . . yn are
fresh names and a′ is the result of substituting yi for each corresponding
xi in a.

• Otherwise: a.”

Decoupling subtyping from inheritance will result in what is called implementa-
tion or nonconforming inheritance. This is proposed to be achieved in the future
version of Eiffel by using the expanded keyword along with inherit clause (not to
confuse this with expanded types, although the two are related to some extent.)
For illustration see the table below.

Eiffel expanded type definition as
per the current standard [ECM06]

Proposed Eiffel syntax [How03]
for implementation inheritance

expanded class C... class C
inherit
expanded B

When implementation inheritance is used the C descendant class solely reuses
its B ancestor’s implementation, but the two classes are not related in terms of
typing. Neither C <: B, nor B <: C holds. Therefore the operators x
,→ follow so-called invariance policies. Neither instances of C can be used in a
context where instances of B are expected, nor vice-versa. Therefore issues may
otherwise raise under polymorphism are completely eliminated.

In places where the expanded inheritance is not used covariance still poses a
problem for features exported generally or selectively. In such cases the developer
must explicitly supply so-called recast functions, otherwise covariant redefinition
will be rejected [How03]. If C <: B and f feature is redefined in class C so that
its argument type in class C is A′ whereas its type is A in class B, where A′ <: A
, then the recast function must have type A → A′ (in case of multiple arguments
and redefinition A1, . . . , An → A′

1, . . . , A′

n). Thus providing an explicit and safe
conversion for covariant arguments used in polymorphic routine calls.

As we have seen an attempt is being made to achieve a higher degree of
type safety in Eiffel both statically (introducing expanded inheritance explained
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earlier and enforcing some restrictions on descendant hiding) and dynamically
(expecting the developer to define so-called recast functions in places of covariant
redefinitions ) [How03].

12.5.4 Conurreny

Concurrency in general introduces a great deal of efforts for developers. Most
developers tend to think sequentially and thus designing, developing and testing
even simple concurrent program may become soon a perplexing problem. Even
simple predicate or precondition checking may fail (and now by this we mean to
fail to serve its purpose) when used in concurrent context. Take, for example,
when remove operation is executed in parallel on s MY _ST ACK object.

if not s.empty then if not s.empty then
s.remove s.remove

end end

If the two threads of code are interleaving then one of the remove oper-
ations may not be executed correctly. Please note that depending on timing,
precondition of remove (which happens to be the same: not empty) may or
may not be violated in the second method invocation, but certainly there could
be some cases, when the second method call would fail. Eiffel has introduced
the separate keyword to address concurrency issues and to denote that such
objects will be handled by concurrent threads ([Eif13] and [Mey00]). Essentially,
in such cases the correctness condition is transformed into a wait condition by the
executing environment causing the remove operation being suspended until its
precondition does not hold. Concurrency as a delicate topic on its own deserves
a separate treatment. In the present section we intended only to call attention to
the issues related to parallelism in the context of correctness validation. For more
information on concurrency and parallel programming please refer to Chapter
13.

12.6 Corretness speifiation language

12.6.1 Pratial limits

At the beginning of this chapter we compared the first-order logic with the Eiffel
constructs supporting program-correctness checking. We pointed out that not
every first-order formula can be directly captured with Eiffel program constructs.
The observant reader may have noticed the reverse method does not require in
its postcondition that the order of items should actually change. In Eiffel we
cannot (always) describe easily properties such as ”all elements have changed”
even with the advanced constructs like agents and iterators.
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Although mimicking such quantified formulas can be relatively straightfor-
ward in some cases. For example, LINKED_LIST class has a predicate called
has, which returns T rue if the list contains a specific element, and returns
False otherwise. Thus whether a list l has element ”six”, can be formalized as
l.has(′′six′′).

Let us try to formalize in Eiffel the condition: ”all items reversed”. Since such
predicate with universal quantor cannot be written directly, we try to achieve
this by introducing a predicate function. So we extend the postcondition of the
reverse method with the assertion

all items reversed: reversed(oc)

Where oc denotes a copy of the container before applying changes. So far
this looks promising, but before reaching a premature conclusion let us come up
with a possible implementation of this predicate.

reversed(o like container):BOOLEAN is
local

item pos:INTEGER
do

result:=True
from

item pos:=0
invariant

valid item: item pos>=0
and item pos<= item count

until item pos = item count
or not result

loop
item pos:=item pos+1
result:= result

and container.entry(item pos) =
o.entry(item count+1− item pos)

variant
checked items: item count − item pos

end
end

The predicate reversed may work correctly, but it is not straightforward to
see why. Universal quantifier in this example is circumvented by a loop construct.
It is obvious that before using such function in other assertions one must prove
that the function itself is correct and terminates. Generally speaking whenever
we use functions with BOOLEAN return values to implement more complicated
predicates, then correctness of such functions has to be verified prior to using
them in assertions.
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The strength of the correctness specification is that the program behavior
is captured at a higher level of abstraction, focusing on the question ”what”
devoided of imperative elements. The reversed predicate does not fulfill this
requirement. We remark that we have used functions with BOOLEAN return
values as predicates before, such as empty and full. However, the correctness of
these predicates can be verified easily.

full:BOOLEAN is
do

result:= item count = capacity
end

The full function seems to be quite safe, because it is virtually without any
imperative elements. The item_count = capacity itself is a predicate, also
conforming to first-order predicate calculus. The only imperative element is the
assignment attached to result value, but this assignment serves purely technical
purposes only and it does not alter the state of the object.

In closing, we can conclude that predicates with almost arbitrary complexity
can be expressed in Eiffel, however, we must be very cautious with functions,
which are complex, and their algorithm involves loops and recursive calls.

12.6.2 Model lasses: an interim solution?

The precondition of the put routine seems to be satisfactory, however the same
cannot be said about the postcondition. The postcondition asserts much less,
than it should or could. While postcondition argues about the top item, it does
not tell anything about the items already having been in the stack. These items
could be overwritten, their order may be changed, etc. The routine does not
guarantee anything useful in this regard in its postcondition.

It is observed that in general postconditions and class invariant are usually
underspecified, hence ensure less than it would be desirable [SWM04]. This is,
among other things, due to the absence of higher level mechanism and the lack
of expressive power of Eiffel specification language.

Eiffel community wanted to address this issue in a way that Eiffel language
would not be bloated with first order formulas exclusively related to specification
language. Also their goal was to maintain the seamless integration between the
language and specification. Furthermore, they did not want average classes to
be polluted with predicates solely implemented to support predicates to appear
in assertions. Finally, they wanted an efficient solution, which can be applied in
practice ensuring that formulas are evaluated at reasonable cost during execution
([SWM04] and [Mey00]).

An approach was taken to rely on special classes, called model classes. These
classes are deduced from mathematical concepts ([SWM04] and [Mey00]) repre-
senting elementary notions such as set, pair, relation, function, sequence, graph,
powerset, etc.
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Note that Eiffel thanks to its inheritance, genericity and other advanced
mechanisms such as agents, is perfectly suited to implement such mathematical
objects with ease.

It is evident that particular attention must be taken when developing such
classes. Model class must be immutable, by minimizing side-effects and state-
changes. To achieve this, a model class is allowed to have only queries (without
side-effects), but not commands (which primary induce state change). This
restriction is, however, for obvious reasons (to obtain the model instances in the
first place) relaxed for creation routines ([SWM04] and [Mey00]). For instance,
MML_SEQUENCE does not have a command extend, but instead has a query
extended. Therefore the sequence s : MML_SEQUENCE itself cannot be
extended (thus modified by writing s.extend(i)), instead s.extended(i) denotes
a new sequence made up by appending the sequence s with item i, whereas
the original s sequence is untouched. (Analogously, when one writes the simple
addition 2 + 1, this operation does not change the value or identity of natural
numbers 2 or 1, instead it denotes a new object, which represents the value 3.)

The correctness of these classes can be verified or can be taken granted by
knowing that the concepts, properties they represent are proved mathematical
axioms and theories. These classes can then be organized in model-libraries.

The average developer with the assistance of model libraries can argue over
the properties of the class (henceforth referred as the developer class) he or she
is developing. To do this, a suitable set (note for complex classes more than one
model class needed) of mathematical concept (with existing implementation in
model-libraries) must be selected. This choice is made so as to establish a clear
relationship between the developer class and the model class. Or more precisely
the choice must be such, that there exists a function (essentially a representation
function) by mapping instances from developer class to that of the model class.

Instead of relying on state changes occurring in developer class, we define
routine and class correctness in terms of conditions specified at the abstraction
level of the model class.

For instance, the MML_SEQUENCE class seems to be a suitable model
for the stack class ([SWM04] and [Mey00]). A query is with the following speci-
fication is added to the developer class:

{SPECIFICATION}
model: MML SEQUENCE [G]

Note that model is exported selectively, and thus only available to classes con-
cerned with model specification denoted by SP ECIFICAT ION in the above
example. Model query is implemented so that it returns a stack of items modeled
by a sequence. Each element in the sequence corresponds to an element in the
MY _ST ACK representation in that particular order.

The postcondition of the put routine in MY _ST ACK thus becomes the
following:
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ensure
same capacity: capacity = old capacity
item count inreased: item count = old item count + 1
new item on top: item = i
not empty: not empty
stack extended: model === old model.extended (i)

where === denotes a specialized version of equality operator defined to
work well on model-classes. For more information please refer to [SWM04] and
[Mey00].

The postcondition now captures the full semantics of put operation. It now
also asserts correctly that old items are still in the stack in the exact order
as they were beforehand. Note that new_item_on_top assertion now becomes
superfluous, so that it could be dispensed.

Naturally the questions still remain:

• Model-classes can really be taken to be correct and trusted?
• What mathematical objects are the best candidates for model classes?
• How complex classes can be modeled efficiently and elegantly with such

basic set of notions?

12.6.3 Theoretial limits

There is even a more important restriction on the usage of correctness formulas
in Eiffel. In general the expressive power of axiomatic semantics is less than that
of operational semantics [Mit98]. So even in the possess of an ideal specification
language we will not be able to capture all important aspects of programs.

12.7 Languages and tools supporting Design by Contrat

General importance and impact of the concept of Design by Contract to the
software community is reflected by the spread of languages and tools supporting
it. We would like to give a short overview of some of the interesting languages
and tools. Most of them, but not all, follow the keywords of Eiffel, embedded in
their own syntactic structures.2

12.7.1 D language

The D programming language[Dlng13] was designed by Walter Bright as a ”next
step” after C++. One of the main goals was the reliability. We can prescribe
assert conditions, pre- and postconditions and class invariants.

2 The description of these possibilities is based on the official references of the languages, as
indicated.
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Assert ondition

The simplest condition is the assert: if it is false, an AssertException is thrown:

int i;
Symbol s = null;
for (i = 0; i < 100 ; i++)

{

s = search(array[i]);

if (s != null) break;

}

assert (s != null); //could we find the searched element?

Pre- and postonditions

The general form of a program in D with pre- and postconditions is:

in { . . . } out { . . . } body { . . . }

The rules of this construct are:

• in and out blocks are optional
• without in and out blocks, the keyword body can also be omitted
• in block checks the preconditions
• out block is executed after the body
• neither in nor out blocks may change the program environment

A simple example in D for the pre- and postconditions[Dlng13]:

long square root(long x)

in
{ assert(x >= 0); }

out (result)
{ assert((result *result)<=x && (result+1) * (result+1) >=x); }

body
{

return cast(long)std.math.sqrt(cast(real)x);

}

Type invariants

A special member function is the class invariant – it is not allowed to change
the data members, and is automatically called after the constructor, before the
destructor and before and after all public member functions to check the correct
state of the actual object.

A simple example in D for the class invariant[Dlng13]:
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class Date {

int day;

int hour;

invariant()

{

assert(1 <= day && day <= 31);

assert(0 <= hour && hour < 24);

} . . .

}

12.7.2 Cobra language

The Cobra language – designed by Chuck Esterbrook, who is well-known for
his work in Python – is a general purpose, open source language, under a
considerable development yet. The syntax of the language is very close to Python.

Pre- and postonditions

The concept of contracts in Cobra comes from Eiffel. We can prescribe, that
certain pre-, and postconditions together with type invariants have to be true at
the time of the execution of a method. We have to use the keyword require for
the precondition and ensure for the postcondition of a method. These conditions
can be described as lists of logical expressions. In postconditions we may refer
with the keyword old to the original value of the attributes.

Simple examples in Cobra for the pre- and postconditions[Cob13a]:

class Person
def drive(v as Vehicle)

require
not v.hasDriver
v.isOperable

ensure
v.miles > old v.miles

body
. . .

class ContiguousList<of T>

implements IList<of T>

def insert(index as int, item as T)

require
index >=0 and index < count

ensure
.count = old .count + 1

this[index] is item
body . . .
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Support of inheritane

The pre- and postconditions of the subprograms are inherited in Cobra according
to the ”standard” rules:

• The inherited preconditions can be weakened by using the keywords
or require;

• The inherited postconditions can be more restrictive by using the key-
words and ensure.

Only the new requirements should be written in the redefinition of a method
by the descendant (see [Cob13a] and [Cob13b]):

class NonContiguousList<of T> inherits ContiguousList<of T>

"""

Allows insertions past the end of the list.

"""

def insert(index as int, item as T)

or require index >= 0
body . . .

Type invariants

The class invariant can be called using the keyword invariant [Cob13a]:

class Player
invariant
.name.length.score >= 0
.isAlive implies .health > 0

12.7.3 Oxygene language

The Oxygene language [Oxy13a], which was first called ”Chrome” language, was
designed at RemObjects Software. It is based on Object Pascal and is available
for .NET, Java, Android and Mono[Oxy13c]. The most important new feature
in Oxygene is the support of contracts, it is based syntactically and semantically
on Eiffel.

Pre- and postonditions

Pre- and postconditions can be written in Oxygene only for the methods of
classes.

Preconditions should be written after the keyword require. It must be true
when entering the method – here can one give, e.g. the constraints of the
parameters.
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The postconditions, given after the keyword ensure are evaluated before the
end of the method. In the postconditions we may refer to the original value of
the attributes with the keyword old .

A small example [Oxy13b]:

method MyObject.DivideBy(aValue: Integer);
require

aValue <> 0 ;
begin

MyValue := MyValue/aValue;
end;

method MyObject.Add(aItem: ListItem);
require

assigned(aItem);
begin

InternalList.Add(aItem);
ensure

Count = old Count +1 ;
End;

Type invariants

The Oxygene language supports two kinds of type invariants:

• the conditions written after the keywords public invariants are checked
at the end of all public methods, after the postcondition,

• the conditions written after the keywords private invariants are checked
at the end of all methods.

A small example [Oxy13b]:

type
MyClass = class;

public
. . . some methods or properties
public invariants

fField1 > 35 ;
SomeProperty = 0 ;
SomeBoolMethod() and not (fField2 = 5 );

private invariants
fField > 0 ;

end;
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12.7.4 Corretness in .NET

Microsoft Research supports reliability of programs by the Code Contracts Li-
brary in the .NET Framework[Code13]. Thus all .NET programming languages
– C#, VB, F#, Scala, etc. – can lean on its benefits.

Assert and assume onditions

We can check an arbitrary condition in the program with the Contract.Assert
and Contract.Assume functions. They have the same runtime behavior, the only
difference between them is, that Contract.Assume can be used by static checker.
Both functions have two forms, it is possible to give a string message as a second
parameter, which will be written to standard output if the condition is false.

Small examples [Code13]:

Contract.Assert( this.privateField > 0 );

Contract.Assert( this.x == 3, "Why isn’t the value of x 3?" );

Contract.Assume( this.privateField > 0 );

Contract.Assume( this.x == 3, "Static checker assumed this");

Pre- and postonditions

Preconditions can be checked by the function Contract.Requires(. . .). In gen-
eral it can be used for controlling the input parameters. In the contract, the
fulfillment of the precondition is the responsibility of the caller method. The
reason of the rule is, that all components of the precondition should be available
for the caller. Conditions may not have side effects. If, e.g. the parameter x
cannot be null [Code13]:

Contract.Requires ( x ! = null );

We can prescribe also the exception raised in case the condition check fails:

Contract.Requires<ArgumentNullException> ( x != null );

Traditionally the check of the appropriate parameters in the methods is described
in if-then-throw structures. If these are at the beginning of the method, they can
be transformed to precondition, but an explicit contract-method call is needed
after them. (e.g.: Requires, Ensures, EnsuresOnThrow or EndContractBlock) As
for example:

if ( x == null ) throw new . . .

Contract.EndContractBlock();

// all preceding if statements are viewed as precondition

Postconditions can be checked by the function Contract.Ensures(. . .). The
argument of the function should be the condition as, e.g.:
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Contract.Ensures( this.F > 0 );

A special possibility is that we can prescribe conditions also when exception
is thrown – depending from the T type of the exception using the function
Contract.EnsuresOnThrow<T>( . . . ) as, e.g.

Contract.EnsuresOnThrow<T>( this.F > 0 );

There are some special methods which we can use only in postconditions:

• Contract.Result<T>() – refers the returned value of the function – it is
not allowed by void functions, as, e.g.:

Contract.Ensures(0 < Contract.Result<int>());

• Contract.OldValue<T>(e) – refers to the value of the expression e at the
beginning of the function. It’s use has limitations:

– the expression e may not contain another oldValue function

– the expression e may have only components which had value before
the call of the method

Examples of possible errors:

• It is not allowed to refer Result in the OldValue function as, e.g.:

Contract.OldValue(Contract.Result<float>() + sg) // ERROR

• OldValue may not depend from the Result, as, e.g.:

Contract.ForAll(0,Contract.Result<int>(),

i => Contract.OldValue(y[i]) > 5 ); // ERROR

We can check the out parameter of a method in the postcondition with the
function Contract.ValueAtReturn<T>(out T t) as, e.g.:

public void OutParam(out int x){

Contract.Ensures(Contract.ValueAtReturn(out x) == 3);

x = 3;

}

Type invariants

Type invariants should be true before and after the call of public methods. To
check this we can create a special invariant method in our class, where the body
of this method contains call(s) of the function Contract.Invariant( . . . );

The invariant method of a class must be of type void, and if it is allowed to
inherit from this class, then its visibility should be protected.
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The [ContractInvariantMethod] attribute should be used to mark a method
being an invariant method.

The .NET framework checks the invariant of the class for all public methods
after the execution.

A small example:

[ContractInvariantMethod]

protected void MyObjectInvariant()

{

Contract.Invariant( this.y >= 0.0 );

Contract.Invariant( this.x < this.y );

. . .

}

Other possibilities

• Contract.EndContractBlock – If the preconditions are described in if -
then-throw form at the beginning of the method, then this indicates that
these are preconditions, here is the end of the control block, as, e.g.:

if ( x == null ) throw new ArgumentNullException("x");

if ( z < 0 ) throw new ArgumentOutOfRangeException(. . .);

Contract.EndContractBlock( );

• Contract.ForAll – it is a check for elements in a collection, it can be used
in a contract. It has two forms:

– two-parameter version: the first parameter is a collection; the second
parameter is a predicate. The function checks the predicate for all
elements in the collection and returns true if the predicate is true
for all, stops and returns false, if there is an element for which the
predicate is false. A small example:

public int SomeEx<T>(IEnumerable<T> sg){

Contract.Requires(

Contract.ForAll( sg, (T x) => x != null)
);

• – three-parameter version: here the first parameter is the lower limit,
the second is the upper limit of the collection to be traversed given
in the third predicate-parameter. The function checks whether the
predicate is true for all elements between the lower and upper limit.
A small example:
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public int[ ] Bar(){

Contract.Ensures(

Contract.ForAll(0, Contract.Result<int[ ]>().Length,

index => Contract.Result<int[ ]>()[index] > 0)

);

• Contract.Exists – it is also a check for elements in a collection, it can be
used in a contract. It also has two forms:

– two-parameter version: the first parameter is a collection; the second
parameter is a predicate. The function checks the predicate for the
elements in the collection, stops and returns true if there is an
element in the collection for which the predicate is true, returns
false if the predicate is false for all elements in the collection.

– three-parameter version: here the first parameter is the lower limit,
the second is the upper limit of the collection to be traversed given
in the third predicate-parameter. The function checks whether there
exists an element in the collection between the lower and upper limit
for which the predicate is true.

Contrats of interfaes and abstrat lasses

In case of interfaces and abstract methods of abstract classes the methods may
not have a body, thus contracts can be added with the help of a special contract
class, which is connected to the interface with attributes, see bellow.

• Interface contracts:

[ContractClass(typeof (ISomeExContract))]

interface ISomeEx {

int Count { get; }

void Put(int value );

}

[ContractClassFor(typeof (ISomeEx))]

abstract class ISomeExContract : ISomeEx {

int ISomeEx.Count {

get {

Contract.Ensures( 0 <= Contract.Result<int>() );

return default( int ); // dummy return
}

}

void ISomeEx.Put(int value){

Contract.Requires( 0 <= value );

}

}
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• Abstract method contracts:

[ContractClass(typeof (SomeExContract))]

abstract class SomeEx {

public abstract int Count { get; }

public abstract void Put(int value );

}

[ContractClassFor(typeof (SomeEx))]

abstract class SomeExContract : SomeEx {

public override int Count {

get {

Contract.Ensures( 0 <= Contract.Result<int>() );

return default( int ); // dummy return
}

}

public override void Put(int value){

Contract.Requires( 0 <= value );

}

}

Overloading of ontrat methods

Each contract method may have a second argument of type string. If the condi-
tion is false, the error message will be, e.g.:

Contract.Requires( x ! = null,
" If x is null, then an error occurred! " );

Inherited ontrats

Contracts are inherited to the subtypes of a type. The precondition of a method
in the subtype must be weaker, thus if the method of the ancestor doesn’t have
any precondition (it means, the precondition equals with the value true), the
descendant’s method cannot have precondition. The descendant may redefine
postconditions of inherited methods - they must be stronger than the original in
the ancestor.

12.7.5 Java language and additional tools

Assert statement in Java

The only built-in possibility in Java for the support of Design by Contract is the
assert statement. With the help of it one can describe the pre- and postconditions
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and invariants of classes[Jass02]. Its benefit is – compared to if statements – that
it can be switched on and off.

There are two forms of the statement:

assert logical expression;

assert logical expression: message;

If the logical expression is false, the statement throws an AssertionError and
returns the message if it is given. An important rule is, that the condition in the
assert statement may not have any influence on the execution of the program
since the use of it can be switched off.

A simple example from the book Deitel and Deitel[DD05] illustrates the use
of the assert statement:

import java.util.Scanner;

public class AssertTest {

public static void main( String args[ ] ) {

Scanner input = new Scanner( System.in );

System.out.print( "Enter a number between 0 and 10: " );

int number = input.nextInt();

// assert that the value is >= 0
assert ( number>=0 && number<=10 ): "bad number: "+number;

System.out.printf ( "You entered \%d\n", number );

} // end main
} // end class AssertTest

Enter a number between 0 and 10 : 50

Exception in thread "main" java.lang.AssertionError: bad number: 50
at AssertTest.main(AssertTest.java:15)

Java � jContrator library

The jContractor library ([MHB99] and [Abe03]) is a pure Java support for Design
by Contract. The contracts can be added to the classes as separate functions
using a naming convention, the conditions are in Java.

Pre- and postonditions

The precondition can be given with a boolean function, where after the original
function name the suffix Precondition is written as, e.g.[Abe03]:

protected boolean push Precondition (Object o) {

return o != null;
}
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The precondition is checked before entering the method body.
The rules for preconditions are:

• Contract methods, native methods and the main method may not have
preconditions.

• The preconditions of static methods must also be static.
• The preconditions of non static methods are not static.
• The preconditions of non private methods must be protected.
• The preconditions of private methods must also be private.

The postconditions – similar to preconditions – can be given with a boolean
function, where after the original function name the suffix Postcondition is
written. It is allowed to use the argument RESULT too, the type of it is the
return type of the original function as, e.g.[Abe03]:

protected boolean push Postcondition (Object o, Void RESULT) {

return implementation.contains(o) && (size()==OLD.size()+1);

}

In postconditions the OLD refers to the value of the object at method
entrance time. The use of OLD is allowed only in case the class implemented
the interface Cloneable, i.e. the object must have a clone() method.

The postcondition is checked before leaving the method body.
The rules for postconditions are:

• Contract methods and native methods may not have postconditions.
• The postconditions of static methods must also be static.
• The postconditions of non static methods are not static.
• The postconditions of non private methods must be protected.
• The postconditions of private methods must also be private.
• The postconditions of constructors do not rely on OLD.

Type invariants

Type invariants belong to the class. This can be described with a protected
boolean function – without arguments – called Invariant as, e.g. [Abe03]:

protected boolean Invariant () {

return size() >= 0;

}

Invariant is checked before entering the public methods and before leaving
the public methods and the constructors.

The rules for type invariants are:

• Type invariant is not checked for the contract, the static and the native
methods:
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• Type invariant is checked for constructors only before leaving them.

• The Invariant() method has to be protected and non-static.

Inherited ontrats

The inheritance of contracts defined with jContractor works as usual, inherited
preconditions may be weakened, postconditions and invariants may be narrowed
in the descendant classes.

Predefined exeptions

In case a contract is violated the exceptions PreconditionViolationError ,
PostconditionViolationError or InvariantViolationError are thrown respectively
and the program terminates.

Use of ontrat lasses

The previous contracts can be collected to a separate contract class. The name
of such classes should be suffixed with CONTRACT as, e.g. [Abe03]:

class Stack CONTRACT extends Stack {

private Stack OLD;

private Vector implementation;

protected boolean Stack Postcondition (Object [ ] initialContents,
Void RESULT) {

return size() == initialContents.length;

}

The jContractor will interpret the methods of contract classes as methods of
the original class.

That is the way of defining contracts for interfaces and abstract classes too.

Using quantifiers in jContrator

The JaQuaL library (Java Quantification Library) can be used in jContractor
contracts for description of conditions containing universal and existential quan-
tifiers.

The following JaQuaL expressions can be used:

• With the help of the ForAll.in(collection).ensure(assertion) expression
can be checked that the condition given in assertion for all elements in
collection as, e.g.:
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Assertion connected = new Assertion () {

boolean eval (Object o) {

return ((Node) o).connections >= 1;

}

};

return ForAll.in(nodes).ensure(connected);

• The existential quantifier is achievable with the help of the expression
Exists.in(collection).suchThat(assertion).

• The function Elements.in(collection).suchThat(assertion) creates
a new object of type Vector from those elements in collection for which
the assertion is true.

• The function Logical.implies(a, b) is the logical implication: it returns
true if the value of a is false or if both a and b are true.

The built-in assertions in JaQual are:

• InstanceOf : checks whether an object is an instance of a given class or
not.

• Equal : checks whether two objects are equal or not.
• InRange: checks whether a given value is in a given interval or not.
• Not: is useful for negation of an expression.

Java Modeling Language (JML)

The Java Modeling Language (JML)[JMLc06] is a formal interface specification
language, where the behavior of methods can also be prescribed.

The contract-conditions can be formulated with annotations in comments
of the program code. This can be either a line, starting with //*, or a block
/* . . . */. In the expressions Java notations can be used extended with special
elements. This code can be compiled with jmlc, the JML’s own compiler. Since
the contracts are in form of comments, the code can also be compiled with the
original Java compiler.

Pre- and postonditions in JML

Pre- and postconditions can be written using requires and ensures respectively.
A small example[JMLc06]:

public class IMath {

/* requires (* x is positive *);

ensures \result >= 0 &&
(* \result is an int approximation to square root of x *)

*/
public static int isqrt(int x) { . . . }

The extension possibilities in JML are:
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• Universal and existential quantifiers \forall and \exists

• General expressions for \sum, \product, \min, \max

• etc.

The specification of a method can look like in the example [Ald07]:

/* requires len >= 0
ensures \result ==

(\sum int j; 0 <= j && j < len; v[j])

*/
float sum (int v[ ], int len) {

float s = 0.0;

int i = 0;

while (i < len) {

s = s + v[i];

i = i + 1;

}

return s;

}

The old function refers to the value of an attribute before entering a method,
the result refers to the value returned as in the next simple example[JML13]:

/* requires amount >= 0;

ensures
balance == \old(balance)-amount && \result == balance;

*/
public int debit(int amount) {

. . .

}

Type invariants in JML

Type invariants can be given in JML after the keyword invariant, they are
checked with the pre- and postconditions of the individual methods.

public class BankAccount {

final static int MAX BALANCE = 10000000;

int balance;

/* invariant 0 <= balance &&

balance <= MAX BALANCE;

*/
. . .
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Contrats for Java (ofoja)

Contracts for Java (cofoja) is a contract programming framework for Java. It is
designed and implemented by Google[Mor11] based on Eiffel. It uses annotation
processing and bytecode instrumentation to provide run-time checking.

The possible annotations are:

• Type Invariants – the conditions after the keyword Invariant describe the
type invariants, these are checked on entry and exit of all normal public
and package-private methods and at the end of constructors. Invariants
are inherited, the invariant of the descendant is connected to the invariant
of the parent with the logical and.

• Preconditions – the conditions after the keyword Requires describe the
preconditions of the method, these are checked on entry of methods.
Preconditions are inherited and can be weakened by the descendant.

• Postconditions – the conditions after the keyword Ensures describe the
postconditions of the method, these are checked on normal exit. Postcon-
ditions are inherited and can be strengthened by the descendant.

• Exceptional postconditions – there is a possibility to check some condi-
tions even on abnormal termination of method (when an exception has
been thrown) using the keyword ThrowEnsures Checked.

There are two special keywords defined in cofoja:

• The keyword old can be used in postconditions (both normal and excep-
tional). It refers to the state of an expression at method entrance time,
as, e.g.:

old(size()) == size() + 1

• The keyword result can only be used in normal postconditions, it refers
to the method’s return.

An example of cofoja in a contracted stack from [Le11]:

@Invariant("size() >= 0")

interface Stack<T> {

public int size();

@Requires("size() >= 1")

public T peek();

@Requires("size() >= 1")

@Ensures({

"size() == old(size()) - 1",

"result == old(peek())"

})
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public T pop();

@Ensures({

"size() == old(size()) + 1",

"peek() == old(obj)"

})

public void push(T obj);

}

12.7.6 Ada 2012 language

A very important novelty in the new standard of the Ada 2012 programming
language is its support of Design by Contract ([Ada12] and [Bar12]).

Pre- and postonditions

It is allowed to write pre- and postconditions with Pre and Post using the syntax
as is in the example [Bar12]:

procedure Push(S : in out Stack; X : in Item)
with

Pre => not Is Full(S),
Post => not Is Empty(S);

It is allowed to refer to the original value of a variable with the attribute Old
as, e.g.:

Post => I = I ’Old;

Type invariants

Type invariants are designed for private types to check the consistency of a type,
as, e.g. [Bar12]:

type Stack is private
with Type Invariant => Is Unduplicated(Stack);

type Disc Pt is private
with Type Invariant => Check In(Disc Pt);

12.8 Summary

In this chapter we have discussed how program-correctness checking can be
interpreted, defined, implemented and validated in practice, selecting Eiffel as
our primary programming language for this purpose.
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In particular, we have shown how formulas describing correctness properties
can be described in Eiffel. Such formulas - also called in general assertions - are
used in many contexts of Eiffel programs. Routine behavior and correctness are
declared in terms of preconditions and postconditions. Class invariants serve to
capture attributes of valid object instances in a given representation scheme.
Loop variants and loop invariants are essential to reason over loop structures,
to detect and eliminate typical pitfalls and to get the loops right in the first
place. Likewise we have pointed out that check construct is an effective way
of expressing different hypotheses at various places of the programs. These
powerful concepts have been introduced step by step going through a concrete
and practical example when implementing a LIFO stack class. The full source
code of this class can be found as a reference at the end of this chapter.

Formal definitions of class consistency, check, loop, exception and class cor-
rectness have been also defined based on the work by Bertrand Meyer ([Mey91]
and [Mey00]) and the current ECMA definition [ECM06]. The relationship of ex-
ception and correctness as well as the interpretation and definition of correctness
in the context of inheritance have also been subject to discussion.

A number of source of issues – such as component dependencies, void- and
type-safety, concurrency, etc. – which may lead to difficulties when arguing over
correctness have also been identified and briefly discussed. Finally, how and
to what extent language elements targeting program-correctness are present
in contemporary programming languages also have been studied. Numerous
examples were given for a wide range of languages including D, Oxygene, .NET
languages, Java, etc.

The principles of program-correctness checking have been applied in practice
for over one and a half decades. Along with the Design By Contract methodology,
it has been proven to be the most useful in industrial environments. We could
only encourage the reader to study and internalize the fundamentals and start
applying them in practice. A clearly must-read classic in this topic is Bertrand
Meyer’s Object-Oriented Software Construction [Mey00].

12.9 Example soure ode

Finally we present the complete Eiffel source code of MY _ST ACK class.

class
MY STACK [G]
create

make
feature{NONE} −− representation

container : ATTACHED ARRAY [G] −− to store elements
item count: INTEGER −− number of elements
capacity: INTEGER −− maximal number of elements



12.9 Example soure ode

•
691

feature{ANY }
−− Creates a stack with capacity c. Capacity must be positive integer.

make(c:INTEGER)
require

valid capacity: c>0
do

create container.make(1,c)
item count :=0
capacity :=c

ensure
created: container /= void
empty: empty
capacity set: capacity=c

end
−− Puts a new item on the top of the stack
−− provided that the stack is not full.

put(i:G)
require

not full: not full
do

item count:=item count+1
container.put (i,item count)

ensure
not empty: not empty
new item on top: item = i
item count increased: item count = old item count + 1
same capacity: capacity = old capacity

end
−− Removes the top item provided that the stack is not empty.

remove
require

not empty: not empty
do

item count:=item count − 1
ensure

not full: not full
item count decreased: item count = old item count − 1
same capacity: capacity = old capacity

end
−− Reverses the order of items in the stack.

reverse
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local
lower idx :INTEGER
upper idx :INTEGER
lower item :G −− lower item being swapped
upper item :G −− upper item being swapped

do
from

lower idx :=1
upper idx :=item count

invariant
valid range: lower idx + upper idx = item count +1
valid index : lower idx >=1

and upper idx <= item count
and lower idx <= upper idx+1

until upper idx − lower idx < 1
loop

lower item :=container.item (lower idx)
upper item :=container.item (upper idx)
container.put (lower item,upper idx)
container.put (upper item,lower idx)
check

items swapped:
lower item = container.item(upper idx)

and upper item = container.item(lower idx)
end
lower idx :=lower idx+1
upper idx :=upper idx−1

variant
remaining interval: upper idx − lower idx + 1

end
ensure
item reversed:old container.item(1 )=container.item(item count)

and old container.item (item count) = container.item(1 )
end

−− queries
−− Obtains the top item of a non-empty stack.

item:G
require

not empty: not empty
do

result:=container.entry (item count)
end

−− predicates
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−− Checks if the stack is empty.
empty:BOOLEAN
do

result:= item count = 0
end

−− Checks if the stack is full.
full:BOOLEAN
do

result:=item count = capacity
end

invariant
valid capacity: capacity > 0
valid item count: item count >=0

and item count <= capacity
valid representation: capacity = container.capacity
empty definition: (empty implies item count=0 )

and (item count =0 implies empty)
full definition: (full implies item count=capacity)

and (item count =capacity implies full)
end

12.10 Exerises

Exercise 12.1. This exercise is originated from Bertrand Meyer [Mey00]. We
have deliberately chosen it as a starting example, because it is very intuitive.
Let us assume that a company in order to have a more efficient recruitment
process, publishes its vacant positions along with Hoare-formulas in their usual
form {P re}J{P ost}. This also helps the applicant select from jobs and find the
most suitable one. The P re precondition describes that the job J under what
conditions is expected to be performed, whereas the P ost postcondition puts
restriction on the result of the job. Describe the easiest and the most difficult
job description up to J using Hoare-triples! Also provide some more alternatives
for easy and difficult jobs with an explanation.

Exercise 12.2. Try to formalize a correctness specification of a Nespresso coffee
machine!

Exercise 12.3. Why is the following correctness specification not correct?

{washing powder, water softener, pack of cigarettes, rinse water,
electricity, water}

washing program
{clean clothes}
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Exercise 12.4. Identify the problem with the routine below, which attempts to
calculate the roots of a quadratic equation. Parameters are denoted by a, b and
c following the usual convention. x1 and x2 are global attributes used to store
the roots.

x1 :REAL
x2 :REAL
calculate roots(a,b,c: like x1 )
require

discriminant positive: b*b − (4*a*c)> 0
local d:REAL;
do

d:=sqrt(b*b)−(4*a*c))
x1 :=(−b+d)/(2*a)
x2 :=(−b−d)/(2*a)

ensure
correct roots:

x1+x2 = − (b/a)
and x1*x2 = + (c/a)

end

Exercise 12.5. Define the relationship of the Eiffel classes below from inheritance
perspective, where formulas with the same name denote the same assertions in
pre- postconditions and class invariants, and formulas do not contain references
to functions. Furthermore formulas everywhere denote the full preconditions,
postconditions and class invariants, and assuming that formulas differ from the
simple T rue and False logical constants.

class A class B class C class D
. . . . . . . . . . . .
m is m is m is m is
require require require require
pre pre pre and pre’ pre or pre’

do do do do
. . . . . . . . . . . .
ensure ensure ensure ensure
post post and post’ post post and post’

end end end end
. . . . . . . . . . . .
invariant end invariant invariant

inv inv and more inv
end end end

Exercise 12.6. The following function implements a simple addition routine. Is
this routine loop-correct in a sense of Meyer [Mey91] and ECMA [ECM06] stan-
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dard definition? Does the function work correctly with respect to its correctness
specification?

sum(a,b:INTEGER):INTEGER
require

positive b: b>=0
local

i:INTEGER
do

from
result:=a
i:=0

invariant
result=a+i

until i=b
loop

result:=result+1
i:=i+1

variant
b−i

end
ensure

added: result=a+b
end

Exercise 12.7. Please fill the last two columns of the table below based on
the information provided in context and condition columns. Specifically, in the
“Expected Result” enter the result you expect, in the last column indicate the
cause of the result and also make some observation on the routine being executed.
An example is given in the first row.

class SOMETHING
feature{ANY }
do something
require

pre something −− 1.
do

. . . −− 2.
do other thing −− 3.
. . . −− 4.
do another thing −− 5.
. . . −− 6.

ensure
post something −− 7.
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rescue
. . .
retry −− 8.
. . . −− 9.

end
feature{ANY }
do other thing
require

pre other thing
do

. . . −− 10.
ensure

post other thing
end

feature {NONE}

do another thing
require

pre another thing
do

. . . − 11.
ensure

post another thing
rescue

. . .
retry −− 12.
. . . −− 13.

end

invariant
some invariant

end

Context Conditions occurs/
State

Expected Result Reason/Observation

Calling
do_something

pre_something does
not hold

Precondition
violation

Calling module is
incorrect by not
fulfilling
precondition of
do_something

Calling
do_something

post_something is
not fulfilled

Calling
do_something

Class invariant does
not hold

After calling
do_something at
point 7

Class invariant does
not hold
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Context Conditions occurs/
State

Expected Result Reason/Observation

At point 3, when
calling
do_other_thing

pre_other_thing
evaluates to false

At point 3, when
calling
do_other_thing
At point 3, when
calling
do_other_thing
Right after point 10 Class invariant does

not hold
Right after point 12 Class invariant does

not hold
At point 4, after
calling
do_other_thing
At point 4, after
calling
do_other_thing
At point 5, when
calling
do_another_thing

Class invariant does
not hold

At point 6, after
calling
do_another_thing

Class invariant does
not hold

At point 8 Class invariant does
not hold

At point 8 pre_something does
not hold

At point 9 pre_something does
not hold

Right after point 9 post_something
does not hold

Right after point 6 post_something
does not hold

Right after point 6 post_something
holds

After point 11 Pre_another_thing
does not hold

At point 12 Pre_another_thing
is satisfied

At point 12 Pre_another_thing
is not satisfied

Right after point 11 Class-invariant does
not hold

12.11 Useful tips

Tip 12.1. A job with a weaker precondition is likely to be performed under many
more circumstances than the one with a stronger precondition. On the contrary,
a weak postcondition makes the job easier, whereas a strong postcondition is
bad news for the applicant.

Tip 12.2. Try to think in terms of inputs and outputs. What inputs (meant here
in a broader sense) are required to make a cup of coffee?
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Tip 12.3. Are the conditions specified in the precondition part necessary and
sufficient?

Tip 12.4. Is the precondition strong enough? Or is it too restrictive?

Tip 12.5. Please recall how the sub-specification relationship on correctness spec-
ification of methods is defined. Please do not forget either how full invariants of
classes are generated during inheritance. See Section 12.3.11 for reference.

Tip 12.6. Please review the loop-correctness definition described in the relevant
Section: 12.4.3. Try to verify the validity of all formulas appearing in the def-
inition. Can this routine be proven to be correct if the preconditions in the
loop-correctness formulas are made stronger?

Tip 12.7. Think of whose responsibility is to satisfy the precondition, and whose
is to ensure the postcondition? Who, when and how should satisfy the class-
invariant? Please revisit the sections dedicated to class-invariant (12.3.8) and
exception-correctness (12.4.5 ) if necessary.

12.12 Solutions

Solution 12.1. The easiest job is:

{False} J {Anything}

This is because under no condition the job J is to be performed. Notice that
the postcondition can be anything (even False), since the job itself cannot be
started.

Still a very easy job specification is:

{Anything but not False} J {True}

The job is performed, but irrespective of how it is done, the employer is
always satisfied. Please note, however, in this case the employee must at least do
something (no matter what) sometimes (based on the precondition) as opposed
to the previous case when the employee does not have to do anything (possibly
not even showing up at the employer’s site).

The following job description looks quite easy as well, but in fact to do such
job may be very uncomfortable and even sometimes dangerous:

{True} J {True}

Notice that the employee must perform the job always (even under conditions
far from optimal, for example in an extreme case when the site is on fire). At
least the employer is not picky and does not care about how the job is performed.

The most difficult is:
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{True} J {False}

The job must be performed in any condition, but no matter how it is done,
the result is never good enough.

Solution 12.2. A possible correctness specification of a Nespresso coffee machine:

{plugged in, water filled, capsule inserted, cup placed}
coffee making

{cup of hot coffee}

Solution 12.3. The precondition is missing the clothes part. The specification
incorrectly promises clean clothes in its postcondition without putting any re-
striction on clothes in its precondition. Moreover a pack of cigarettes may make
sense for a smoker to do the washing, but clearly it is not a must, therefore
it should be removed from the precondition. By adding dirty clothes in its
precondition, thus stating:

{washing powder, water softener, dirty clothes, rinse water,
electricity, water}

washing program
{clean clothes}

resolves this issue. Note any type of clothes will not suffice - despite the
utopian promise of washing powder manufacturers -, as we cannot expect a
washing machine to produce clean and fresh clothes out of dad’s dirty ones.

Solution 12.4. The method does not account for the case when a=0 . Also it
excludes the case when discriminant is zero. Either the precondition must be
extended with a restriction ensuring that the equation is really quadratic. The
modified precondition is as follows:

require
discriminant positive: b*b − (4*a*c)>= 0
quadratic equation: a<>0

Or the algorithm of method should be enhanced to handle special cases. To
do so, the original method may be split into three methods as follows:

calculate_roots(a,b,c:like x1)
require

quadratic_or_linear: a/=0 or b/=0
do

if a=0 then
calculate_linear_roots(b,c)

else
calculate_quadratic_roots(a,b,c)

end

ensure
same_roots_if_linear: a=0 implies x1=x2
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same_roots_if_disc_zero: b*b-4*a*c implies x1=x2
end

calculate_linear_roots(b,c:like x1)
require

b_non_zero: b/=0
do

x1:=-c/b

x2:=x1
end

calculate_quadratic_roots(a,b,c:like x1)

require
quadratic: a /= 0
discriminant_non_negative: b*b - (4*a*c)>= 0

do
d:=sqrt((b*b)-(4*a*c))

x1:=(-b+d)/(2*a)
x2:=(-b-d)/(2*a)

ensure
correct_quadratic_roots:

x1+x2 = - (b/a)
and x1*x2 = + (c/a)

end

Alternatively, the method can be modified to be able to calculate complex
roots. In such case no restriction applies to the discriminant.

Solution 12.5. No relationship between class A and B. Class A cannot inherit
from B, because its postcondition is weaker. Neither can class B inherit from
class A, as invariant of class B is weaker.

No relationship between class A and C either. Precondition of m in C is
stronger, therefore class cannot inherit from A. But as class invariant of class A
is weaker than that of class C , A cannot be a descendant of C either.

D may be a descendant of class A, since they have the same class invariant.
Furthermore the specification of m in D is a valid subspecification of m in A.
This is because

pre or pre’ => pre
post and post’ => post

Class C cannot be a descendant of class B, because the postcondition of m
in C is weaker than that of m in B. Class C cannot be an ascendant of B either,
because its class invariant is stronger.

Class D may inherit from B, because the specification of m in D is a valid
subspecification of m in B. Moreover the class invariant is strengthened in D.
The inverse relationship clearly may not hold.

Class D cannot be a descendant of class C due to the weaker invariant in
class D. The inverse relation cannot hold either, because the postcondition of m
in C is weaker than that of m in D.

Solution 12.6. The loop must fulfill the following conditions to be loop correct
in the sense of [Mey91] and [ECM06]:
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{True}INIT{INV }
{True}INIT{VAR>=0}
{INV and then not EXIT}BODY {INV }
{INV and then not EXIT and then (VAR=v)}BODY {0<=VAR<v}

Where

INIT := result:=a; i:=0
INV := result = a+b
VAR := b−i
EXIT := i=b
BODY :=result:=result+1 ; i:=i+1

The routine is not correct with respect to the correctness definitions, because
the second formula

{True}result:=a; i:=0{b−i>=0}

is not valid. Take, for example, b=−1 . Note, however, that

{True}result:=a;i:=0{result=a+i}

- as described by the first formula - holds.
Nevertheless, thanks to its routine precondition such case(s) are excluded,

resulting in the

{b>=0}result:=a;i:=0{b−i>=0}

alternative formula, which is valid.

{INV and then not EXIT}BODY {INV }

also holds, since

{result=a+i and i<>b}result:=result+1 ;i:=i+1{result’=a+i’}

{result=a+i and i<>b} => {result+1=a+i+1}

Same can be proven for

{INV and then not EXIT and then (VAR=v)}BODY {0<=VAR<v}

First the decreasing part (VAR<v) is justified:

{result=a+i and i<>b and VAR=b−i}
result:=result+1 ;i:=i+1

{b−i’<b−i}

Clearly, b−(i+1 )=b−i−1<b−i.
Moreover, 0<=b-i can also be seen.
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Thanks to the precondition again, we can argue that the initial variant value
is greater than or equal to zero.

{b>=0}result:=a;i:=0{b−i>=0}

with i=0 we obtain:

{b>=0} => {b>=0}

Assuming that the invariant b−i>=0 before executing the loop body, then
because i is increasing from zero up to the value of b, the loop body (result:=result+1 ;i:=i+1 )
is only executed if i<b (loop exit condition i=b). Since i and b are both integers,
thus follows that i+1<=b. Hence omitting the INV and VAR parts we get:

{i+1<=b}result:=result+1 ;i:=i+1{b−i’>=0}

Substituting i’ with i+1 :

{i+1<=b} => {b−(i+1 )>=0}

{i+1<=b} => {i+1<=b}.

All in all, the routine works correctly.

Solution 12.7. Context Conditions occurs / State
Expected Result Reason/Observation

==================================================================

Calling do_something pre_something does not hold

Precondition violation Calling module is incorrect by not
fulfilling precondition of do_something

Calling do_something post_something is not fulfilled

Postcondition violation do_something is incorrect not fulfilling
its postcondition

Calling do_something Class invariant does not hold
Class invariant violation Class SOMETHING is incorrect

After calling do_something
at point 7 Class invariant does not hold

Class invariant violation do_something is incorrect, it does not
preserve class invariant

At point 3,

when calling do_other_thing pre_other_thing evaluates to false
Precondition violation do_something is incorrect

At point 3,
when calling do_other_thing post_other_thing evaluates to false

Postcondition violation do_other_thing is incorrect

At point 3,

when calling do_other_thing Class invariant does not hold
Class invariant violation do_something is incorrect since it does

not preserve class invariant

Right after point 10 Class invariant does not hold



12.12 Solutions

•
703

Class invariant violation do_other_thing is incorrect

Right after point 12 Class invariant does not hold

Normal completion do_another_thing is not required to
maintain class-invariant

At point 4,
after calling do_other_thing Internal exception occurs

n/a do_something is incorrect

At point 4,
after calling do_other_thing External exception occurs

n/a Nothing wrong so far

At point 5,

when calling do_another_thing Class invariant does not hold
Non-issue, do_another_thing is non-exported

At point 7,

after calling do_another_thing Class invariant does not hold
Non-issue class invariant must be re-established upon exiting

do_something

At point 8 Class invariant does not hold

do_something is not exception-correct it should restore class invariant

At point 8 pre_something does not hold

do_something is not exception-correct, it should restore precondition

At point 9 pre_something does not hold
non-issue

Right after point 9 post_something does not hold
non-issue. Exception is propagated.

In such cases postcondition is not required to be satisfied.

Right after point 6 post_something does not hold
do_something fails to comply to its specification.

Right after point 6 post_something holds

Normal completion

After point 11 Pre_another_thing does not hold
Normal completion Precondition is required to be satisfied

only upon routine entry

At point 12 Pre_another_thing is satisfied

Routine re-execution

At point 12 Pre_another_thing is not satisfied

Precondition violation Pre_another_thing is not exception-correct

Right after point 11 Class-invariant does not hold
Non-exported routines are not required to preserve class invariant.
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In this chapter we concentrate on the most
important language constructs for concurrent
software development. We demonstrate and describe
the most common problems with concurrency
through a set of abstract examples, then introduce
the elementary models of communication and
synchronization: busy waiting, mutual exclusion, the
issues with critical sections, the semaphore and the
monitor. We also include a taxonomy of concurrent
applications, programming languages and the
advantages of and main issues in concurrent
software. Widely used execution models are also
covered. Furthermore, we introduce the available
toolbox in a set of selected languages and
frameworks including Ada, CSP, Occam, Java, C#,
MPI and Scala.



”Concurrency is hard and boring. Unfortunately, my favored technique of ignor-
ing it and hoping it will go away doesn’t look like it’s going to bear fruit.” – A
common verdict about concurrency

W

riting concurrent code with today’s library and tool support might
seem to be easy, but writing correct concurrent code is even harder.
Concurrent software development has its own issues, approaches, de-

sign patterns and solutions on top of the usual toolbox programmers have to
deal with. It is surprisingly easy to put the pieces together and create software
that is executed in a concurrent way and ”almost” does the right thing – but
inherently flawed at the same time and reveals serious problems through the
eyes of a domain expert. These programs usually work only ”by accident”, and
become extremely unstable often at the worst possible time: in a production
environment, under heavy workload when it would be critical to keep the services
up and running.

But what is the reason for that? In the next sections of this chapter we give
a general overview of today’s definition of concurrency, and of the selection of
language constructs that were built to handle it; then we show the basic concepts
and some common pitfalls; and finally we demonstrate how easy it may be to
introduce additional program errors, but how hard it is to investigate them and
find them, and how non-trivial it is to fix them.

So, does concurrency deserve attention at all? If dealing with it requires
careful design and thoughtful implementation, is it worth the effort? Will a
software developer ever encounter it in production code? The answer is definitely
yes. As an illustration, let us see a few cases where concurrency, rather than
anything else, solves the problem.

• For desktop applications, the user interface must be responsive even dur-
ing computationally intensive operations as well (such as loading or pars-
ing huge binaries, updating the software from the Internet, loading data
from a database through sophisticated queries and so on). This is usually
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done as a background process (i.e. by a different thread) and its progress
is usually shown in a progress bar – seeing one is a good sign of something
happening in the background.

• For web applications, the multi-user environment is inherent: a website
is used by multiple users who simultaneously create, read, update or
delete similar – or even the same! – resources, such as database entries,
forms or online articles. Even the backend of these applications (think of
web/REST services or web applications) must be prepared to work in a
multithreaded environment. The reason is simple: the response time of
the website must be kept at an acceptable level. Thus, it is unacceptable
to serve the user requests sequentially in a queue.
Note that the underlying database may often hide the issue of concurrency
(in the form of transactions1 for example), but as soon as any state
is associated with the users in the forms of sessions, for example, the
problems of concurrency comes to the fore.

• Multicore systems utilize the existence of multiple processing units, such
as threads, cores or central processing units. Since even the cheapest
computers (including mobile phones) tend to have multiple processing
units, it is strongly recommended to be familiar with their peculiarities.
Manufacturers, such as Intel for example, offer full-feature integrated
development environments to aid programmers write platform-specific
code easier, where the full potential of the system can be utilized.

• The idea that databases must be sharded is ever more popular. This means
that they are stored semi-redundantly on several computers to make the
storage physically possible (e.g. consider China where there are banks
with more than 3 billion users) or to improve the performance how the
data is used. Social sites, like Facebook, for instance, must build on this
technique heavily.

• Scalability is also an important factor, getting a lot of attention nowadays.
Grid and cloud systems (like what Amazon, Google App Engine, Windows
Azure and Heroku offer at the moment) are becoming more and more
popular because the computational power they offer can cover occasional
load waves (peeks) on a service at a relatively cheap price.

We could continue the list with specific examples where programmers must
be prepared to encounter concurrency, such as C++ compilation farms and

1 According to Wikipedia, a transaction symbolizes a ”unit of work” which is typically
performed within a database. It is treated in a coherent and reliable way, independently
of other operations. One of their greatest advantage is that they provide an ”all-or-nothing”
proposition: each work-unit performed must either complete in its entirety or have absolutely
no effect. Transactions ensure that the database cannot get into an inconsistent state. Think
of two users of a web application editing the same entry: the first user starts editing an article
through a web form while the second simply deletes it from the database. Then, when the
first user tries to save the data which may result in the alteration of several tables, all those
modifications will be rolled back since none of them could have been committed.
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test or 3D rendering grids whose roles are connected to a specific job. Most
of these applications of concurrency help to drastically reduce the required
processing time to an acceptable level, and being familiar with the basic concepts
of concurrency is a huge advantage when it comes to using these tools.

But, instead of going into details, let us discuss the reasons why industrial
application developers turned their attention to concurrent code in the first
place.

A bit of history
At the very beginning of computer science, we had enormous computers at

research institutes and universities that were capable of executing a single soft-
ware at a time, for a mere 15 minutes at best. Technology quickly developed, and
soon we had personal computers in almost every household which were capable
of executing individual programs in separate processes (like the operating system
and different user softwares). These processes had different stacks in the memory,
and their execution was interrupted and rescheduled by the operating system in
order to show the illusion of concurrent execution (think of writing a simple
textual document and listening to music on the same single-core computer at
the same time). There were several factors that motivated this enhancement,
the most important probably being resource utilization and convenience. An
example for resource utilization is when one of the processes are waiting for some
expensive external I/O operation other processes might do some useful work on
the CPU, convenience on the other hand, means that it is easier to create and
maintain small software components that do simple tasks on their own than to
write one multi-functional ”god component” that deals with all sorts of tasks
repeatedly. Having multiple processing units that can handle multiple processes
concurrently is a more intuitive approach, especially if we take into account that
developing stronger processing units has become a physically impossible task
recently.

Processes were usually completely independent from each other; however,
over time facilities have evolved to support the communication between them.
We still utilize these mechanisms such as communication through sockets, files,
signals and signal handlers, shared memory and so on.

After a while, it turned out that having a degree of asynchronicity in separate
processes might also be useful. Think of today’s applications: downloading a
file within a browser should not interrupt the user in browsing the Internet by
disabling the graphical interface during the process. This created the requirement
for spawning sub-processes (such as threads, tasks or processes)2 from an existing
one.

In the field of research, the price of supercomputers shifted the attention
to cheaper solutions. It is possible to approximate the computational power of

2 These concepts are defined in Section 13.8.1. Here we only mean to illustrate that there are
several different approaches to define a sub-process, but to avoid distraction from the topic,
think of all of them as the elementary units of concurrent code execution: each of them being
capable of running code concurrently.
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such a computer through creating distributed systems by joining several cheaper
machines with lower capacity into the same network, and by forming a grid or
cloud system.

Today, even the low-range portable computational devices (smart phones
or tablets) have multiple multicore processors, so the architecture is given to
support this kind of development. The question is what do we have on the
software side?

13.1 Reasons for onurreny

We can state that parallel programming helps us solve different parts of a task
at the same time. The most common real-life situations where this might help
us are the following:

• It is more intuitive to approach the solution of a problem in a concurrent
way (e.g. server architectures, distributed services or graphical applica-
tions). In these situations there are usually at least two different tasks that
have to be performed at the same time. In general, it might be easier and
more intuitive to model every separate subtask with a different processing
unit that can be executed with the other tasks in parallel – like defining
database reader and writer processes separately.

• The software has to be running on physically different devices at the same
time (like in the case of most Internet applications). For these applications
concurrency is inherent as the software components must be explicitly
modeled as separate entities.

• It is more efficient to solve the given problem in a parallel manner. In
these cases the program can usually be solved in a sequential manner
as well, but in cases there is a strict restriction on the throughput of
the system that cannot be satisfied by using a single process. Utilizing
multiple processors or grid architectures might result in a considerable
performance gain – if done correctly.

13.2 An abstrat example

”Most programs are so rife with concurrency bugs that they work only by ac-
cident.” – Josh Bloch, author of the comprehensive book Java Concurrency in
Practice

In this subsection, we highlight some common issues related to concurrency
ad illustrate them through an abstract example. We use a simple pseudo-code
in order to focus on key concepts without distracting attention away by various
language constructs.

The problem we investigate here is a refined version of [KV06], which is based
on the work of [AO97].
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The problem

Let us assume that there is a number of different processes (n) and each is
working on its own data structure, an infinite stream (noted by s1, s2, . . . , sn).
The streams are not shared between the processes. The input of the program
is a conditional function cond that evaluates the elements of the streams as
true or false. The processes must search in the streams for the first element
that evaluates true in the streams. The output should be the first index of the
element in the ith stream. More specifically, we expect the first j index for which
cond(si[j]) holds, where 1 <= j <= n.

This is a somewhat trivial problem: it can be done easily in a sequential
manner. However, if concurrency comes into the picture, the problem becomes
much more complicated.

For the sake of simplicity, let us suppose that (1) the elements in the streams
are all different, (2) the element can be found in one of the streams, (3) the
element occurs only once, and (4) there are only two processes (n == 2).
That is enough for demonstration purposes, still, enough to encounter potential
problems. This is the smallest number of preconditions we need to demonstrate
potential concurrency issues.

The first attempt for finding the solution

The pseudocode shown in Listing 13.1 is our first attempt to solve the prob-
lem. First, we define a global variable which is shared among all the different
processes. This is a simple boolean variable that indicates if we have found the
required e element already or not. The loop variable, which is smaller or equal
to n, is the searched position. Then, we start two similar processes which work
as shown below.

found = false A found = false

i = 0 B j = 0

while (!found) { C while (!found) {

found = cond(s1[i]) D found = cond(s2[j])

i++ E j++

} F }

Listing 13.1: The first Solution

This approach is intuitive, as we do what we would do in the case of a
sequential program: we set the initial conditions (found for false, the local i, j
indices for the threads to 0), iterate through the elements of each stream and
set the found flag until we find the required element. Pretty straightforward.
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However, here we run into our first problem: in some of the execution paths
the program may result in an infinite loop (in the case of infinite input streams,
or an index out of bounds error with finite data structures)!

The reason is the following: let us suppose that one of the processes get a
higher priority in the beginning. When the p1 process starts, executes the loop
statements several times, and then finds the required element at line D.

If meanwhile the operating system interrupts it in this specific instant of
time, takes the right of execution from p1, and starts the p2 process. It simply
reinitializes the shared value to false, causing the infinite loop or an index out
of bounds error.

The problem with this case is the multiple initialization of the shared variable.
Let us try to eliminate it through a second attempt.

The seond attempt for finding the solution

In the second attempt, as it is shown in Listing 13.2, before creating any pro-
cesses, first we create the global variable which is shared among all of the
processes, and then perform the initialization separately:

found = false

Listing 13.2: The second attempt - Initialization

Otherwise we leave the activity of the processes unchanged, as shown in
Listing 13.3.

i = 0 A j = 0

while (!found) { B while (!found) {

found = cond(s1[i]) C found = cond(s2[j])

i++ D j++

} E }

Listing 13.3: The second attempt

The initialization issue is resolved. However, when we start running the code
repeatedly, we encounter our second problem: in some of the executions, the
program may result in an infinite loop again.

The reason is the following: let us assume that the p1 process initiates,
executes the loop statements a few times, then finds the required element at
line C. It sets the global found variable to true, and right after that, the
operating system that schedules the ordering of process executions gives the
right of execution to p2. After it has begun, it evaluates its first element, and
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sets the found flag back to false again. In the end, neither p1 nor p2 terminates,
since we have skipped the single occurrence of the searched e element.

This error is very special, since it does not often cause program errors, only at
specific execution paths. These kinds of errors are common in concurrent code,
happen frequently in production, are easy to make, and may be extremely hard
to find and resolve. We will discuss this issue in details, later in Section 13.4
through a widely known example.

The third attempt for finding the solution

The drawback of the previous version has been that we need to update the state
of the same variable in every iteration. Let us examine what happens if we add
a guard condition before the assignment as it is shown in Listing 13.4:

i = 0 A j = 0

while (!found) { B while (!found) {

if (!found) C if (!found)

found = cond(s1[i]) D found = cond(s2[j])

i++ E j++

} F }

Listing 13.4: The third solution

This is a concrete example for a common pattern called a check-then-act
compound statement, which is commonly encountered in production code (as in
the case of lazy initialization for example).

The problem with this solution is similar to the previous one, we still get
infinite loops. A critical program execution may be the following.

Process p1 and p2 starts executing their actions. Let us consider a case when
the element is not found yet and both of them executing the loop statements are
at line C. Since both conditions are met, both of them executes the update of
the found variable. In the case p1 finds the element at position i, setting found
to true, and right after that p2 also updates the found variable from true to
false, resulting in an infinite loop again.

The fourth attempt for finding the solution

To fix the previous problems we may eliminate the usage of the shared variable.
Let us try to update its state once, and only in the case the element is found as
shown in Listing 13.5.

Surprisingly, this program works.
What we can conclude is that we need an ability to define a set of instructions

to be atomic: uninterruptable by other processes until all of them are executed.
This way the problematic situations where a shared resource (e.g. the found
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i = 0 A j = 0

while (!found) { B while (!found) {

if (cond(s1[i])) C if (cond(s2[j]))

found = true D found = true

i++ E j++

} F }

Listing 13.5: The fourth solution

variable in the example) is accessed and updated simultaneously by multiple
processes (i.e. they interfere with each other) is avoided. Let us define such a
new language element as shown in Listing 13.6.

await (b) {

stmt 1

stmt 2

. . .

}

Listing 13.6: A new language element

The semantics of this new construct is that the process is on halt (be-
comes blocked) until the specified b logical condition is met. Then, it executes
the stmt1, stmt2, . . . statements as uninterruptable, atomic operations, indepen-
dently of other processes.

However, there is another theoretical issue with the example above, namely
the issue of unfair scheduling. Since we have not defined how the actual execution
of the processes happens, it might be that one of the components does not
progress. Let us suppose that we divided the input streams based on some sort
of heuristics (e.g. one of them contains only the positive numbers, while the other
contains the negative ones; or one of the streams contains the odd numbers, while
the other the negative numbers), and search for a specific number.

If one of the processes gets higher priority over the other one, the program
may not terminate since the other process may not have even started. An
example is when we search the first number that is greater than ten in two
infinite streams where the first one contains the positive numbers, while the
second one contains the negative numbers. If the process iterating through all
the negative numbers always gets an advantage over the other one, we get an
infinite loop again. This phenomenon is similar to starvation which is covered in
details in Section 13.7.2.

What we can do here, however, is explicitly force the system to execute the
processes periodically after one of them has been executed for a given number
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T of iterations. Let us try it as our next attempt. To simplify the problem let
us assume that T = 1, but the solution can be generalized easily.

The fifth attempt for finding the solution

In order to make the runtime system execute the defined threads with approxi-
mately the same speed, we can introduce an explicit scheduling. Let us define a
new shared global variable next which defines which process should be executed.

Before the processes are initialized, we declare this variable with the value of
1, indicating that process p1 is allowed to take the next action (Listing 13.7).

found = false

next = 1

Listing 13.7: The fifth solution - Initialization

Then, in the body of the processes (shown in Listing 13.8), let us use a new
notation to block the process which is not allowed to progress while the other is
acting, and then pass the right of execution to the other one.

i = 0 A j = 0

while (!found) { B while (!found) {

await (next == 1) { C await (next == 2) {

next = 2 D next = 1

} E }

F

if (cond(s1[i])) G if (cond(s2[j]))

found = true H found = true

i++ I j++

} J }

Listing 13.8: The fifth solution

We now encounter another trap of concurrent programming called deadlock.
The code above behaves as the examples before – it is working most of the time,
but surprisingly, not in every case. Take a look on the following execution path.

Let us consider the case when p1 and p2 processes work on their own for
a while without any problems, both of them are at line C, and the value of
next is 1. As a result, p1 progresses to G while setting next to 2. Right after
that p2 is also activated, it sets next to back again to 1 while also reaching
line G. Now let us assume that p2 processes forward to C again, while passing
back the execution to p1. If p1 finds the searched e element, it terminates as
expected. However, p2 process never terminates, as it is waiting for next to be
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2 again, which condition is never met. This special state is a common problem
called a deadlock: the program cannot progress further because it is waiting for a
condition (acquisition of a resource or an external signal) that is never satisfied.

The sixth attempt for finding the solution

The last piece of the puzzle is to add one additional statement at the end of
each process that allows the progress (and termination) of the other process as
follows. It is illustrated in Listing 13.9.

i = 0 A j = 0

while (!found) { B while (!found) {

await (next == 1) { C await (next == 2) {

next = 2 D next = 1

} E }

F

if (cond(s1[i])) G if (cond(s2[j]))

found = true H found = true

i++ I j++

} J }

next = 2 K next = 1

Listing 13.9: The sixth solution

This solution is an acceptable implementation for the original problem at
last.

What we can conclude, is that even a simplified problem we have addressed
in this section that is trivial to implement in a sequential manner may lead
to several unintuitive and previously unexpected problems. Programmers who
write concurrent code should bear in mind several additional issues (for example
correct termination, while avoiding liveness hazards like deadlocks and livelocks
are also important) in addition to providing anotherwise bug-free software.

13.3 Fallaies of onurrent omputing

There are some common misbeliefs and misconceptions about concurrency which
spread through word-of-mouth. It is practical to mention a selection of these
myths and misbeliefs when speaking about concurrency for a better understand-
ing.

• If it is concurrent, it is quicker (partially true) A common misbelief
about concurrency is that just because we execute the same program
in a concurrent way it is going to be quicker. Unfortunately, the efficiency
is heavily task-specific, and in some cases it may turn out after running a
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benchmark that regardless of our serious efforts, the parallelized version
of a software is actually slower. The reason is that concurrency comes
with an overhead (creating processes requires scheduling and managing
them on the level of the operating system, switching contexts between
them requires intensive modifications of the stack, and each new thread
created has a small memory footprint which may accumulate, thus cause
additional measurable load on the computer and so on).
As discussed in Section 13.4.1 in detail, there is a theoretic upper bound
for the maximum performance gain by executing a task concurrently.
Speed is influenced by many factors like the architecture on which a multi-
threaded software is running (undoubtedly, a single computer having
multiple CPU cores handles them better). To get an objective result,
make the software parametrizable, make benchmarks several times and
apply statistics. Believe only what you can measure - and of course, handle
it carefully.

• The structure of the program does not have to be change to run con-
currently (almost a complete lie) Many of the junior programmers fall
into this trap. They get an assignment to write a concurrent software
component which they first try to accomplish in a sequential manner.
However, when they produce the final prototype of the software and try
to apply concurrency, they realize that it does not work, and that the
whole program must be completely rewritten from scratch, because the
codebase becomes so complicated thus hard to maintain. They realize
most of their production time has been wasted, because all their work
ends up in the thrash.
Concurrent softwares have different issues, they require different building
blocks, approaches, thus, and thus different design patterns to apply. It
requires a cautious and detailed design phase to build such a system, and
it is often easier to rewrite malfunctioning components from scratch than
to refactor existing sequential ones. As we will see, there is an emerging
set of tools that targets this issue, but even their usage need a general
understanding of elementary concepts about concurrency. They can also
introduce serious software or performance problems if used blindly.

• It is easier to write a sequential prototype, and then rewrite it to a
parallelized version (almost a complete lie). See the previous reasoning.

• I do not care about concurrency, since I will not encounter it in my
work (complete lie) Writing production code does raise the need of at
least basic understanding of concurrent programming. We hope in the
introductory sections we were able to demonstrate this. See Section 13.4
for a short summary of situations where mere programmers may typically
encounter concurrency.

• Concurrency is easy as a pie. Even if I make any mistakes, I will debug
it easily (complete lie) Producing parallel applications and keeping the
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number of bugs at an acceptable level is a hard and time consuming
task. However, it is far from impossible: several industrial/scientific case
studies exist from grid/cloud systems to microkernel-based operating sys-
tems, through services like e-mailing which show that these tasks can be
accomplished if done correctly. They require extra work and carefully
managed components. The lack of carefulness may result in several hard
to find, non-deterministic (i.e. impossible to debug) program errors. The
reason is explained in the next section.

As a message take this home from this chapter: concurrency comes with a price,
it is far from trivial, needs structural changes in the software to support concur-
rency, and the introduced problems are non-deterministic.

13.4 Possible number of exeution paths

Figure 13.10: A Geek and Poke Webcomic issue about concurrency by Oliver
Widder. http://geekandpoke.typepad.com/

We already mentioned non-determinism several times by now, let us consider
a concrete example. It is a simple but shocking example of Brett L. Schuchert
and Martin Fowler [Mar08] that perfectly illustrates the basic problems with
concurrent programming.

Let us consider the following trivial class definition in Java:
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public class Counter {

private int ctr = 0;

public void increaseAndPrint() {

ctr++;

System.out.println(ctr);

}

}

This example has nothing Java-specific, the results of the discussion can be
generalized for a wide set of languages. Java is one of the most widespread
languages according to the TIOBE index3 and easy to understand even if the
Reader has no prior experience with the language.

As shown in Listing 13.11, here we are set to use the same instance of this
class only from two different parallel execution units (these are called Threads in
Java, but we could use POSIX threads in C with the fork() function, Threads

in the .Net platform, and so on). A simple demo application and is shown in
Listing 13.11.

public class Main {

public static void main(String[ ] args) {

Counter counter = new Counter();

class Incrementer extends Thread {

public void run() {

while (true) {

counter.increaseAndPrint();

}

}

}

Incrementer process1 = new Incrementer();

process1.start();

Incrementer process2 = new Incrementer();

process2.start();

}

}

Listing 13.11: Using the Counter from different threads

The output might be something unexpected,4 see Listing 13.12.

3 http://www.tiobe.com The TIOBE Programming Community Index is an ”indicator of
the popularity of programming languages updated monthly. The ratings are based on the
number of skilled engineers world-wide, courses and third party vendors found by popular
search engines. Observe that the TIOBE index is not about the best programming language
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1
3
4
4
5
6
. . .

Listing 13.12: Sample output

Now that is interesting, isn’t it? The first unexpected result is that 2 for
example is missing; the second one is that some of the values (like 4) is appearing
multiple times. How is this possible? What is the reason behind it? In order to
answer those questions, we have to discuss a bit about atomicity.

An atomic operation is an action which happens all at once. If it consists
of multiple operations, the state transitions between the embedded instructions
are not visible to any other processes.

If we analyze the actual bytecode,5 we will see something like shown in Listing
13.13.

0 : aload 0
1 : dup
2 : getfield #2
5 : iconst 1
6 : iadd
7 : putfield #2
. . .

Listing 13.13: Bytecode representation of the source

As Listing 13.13 illustrates, some operators, which are seemingly one state-
ment in a high level language (the ++ in this case), are actually compiled into
multiple statements (4 bytecode statements in this case). Roughly speaking a
read method, that gets the value of the given field, moving the integer constant
1 to the register, performing the addition, and putting the value back to the
field. Detailed description of these instructions can be found in [LYBB13].

or the language in which most lines of code have been written”
4 Your mileage may vary on different hardware, operating system, Java version, system load

and the interstellar constellation of the stars, but the same trends should definitely appear
in any output.

5 This can be obtained by running the javap tool which can be found in all versions of the Java
Development Kit. With compiled languages such as C++, similar results may be obtained
in the actual assembly code.
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If we consider two threads, while the operating system is executing them, it
has the right to interrupt the execution of a thread at any point, to immediately
continue with the one that has been interrupted before, and to resume from the
state wherever it was stopped.

The problems raise here by a common construct called read-modify-write. Let
us say both threads are interrupted just after calling increaseAndPrint, and the
counter variable has the value of n. The operating system allows execution of
reading the value n for process1, and immediately passes the right of execution
to process2. Now, the value it reads will also be n and updates the content of
the variable to n + 1, so it prints n + 1 to the standard output as a result. Right
after this, the execution is passed back to process1 which also writes n + 1 into
the common variable, and also prints n + 1. This is the first and foremost issue
with concurrent programming humorously illustrated on Figure 13.10.

It can be proven6 that the total number of execution paths for n statements
through T threads is:

(nT )!
n!T

Evaluating the formula for the current example results in 924 different exe-
cution paths, which is rather frightening for the first time. This illustrates that
even a trivial example consisting of 5 lines of code can cause an exponential blow
in its complexity when executed concurrently. Another interesting issue is that
if we replace int with long: a trivial change that changes only the primitive type
of the variable increases the total number of execution paths to 12.870, as both
reading and writing a 64 bit variable takes 2-2 statements to execute.7

This is the reason for non-deterministic program execution and for the faulty
program behaviors. It is relatively easy to introduce such errors into more com-
plex examples, and extremely difficult, if not impossible, to localize a reported
program error from the billions of possible execution paths (even to reproduce
the problematic state to analyze it for the source of errors in standard manners
like debugging is a hopeless task in most of the cases).

The question of the missing number is now up to you. Can you provide a
reason for this issue? A hint: try reasoning when both threads are after the state
of reading the value of the common variable.

13.4.1 Amdahl's law

There is a widely known theoretical upper bound for the possible performance
gain by concurrency which is often apostrophed as Amdahl’s Law8 after [Amd67].

6 Based on [Mar08].
7 Do not think this is only a Java-based problem. The .NET platform has the same issue with

the CLI platform, moreover, reading the EAX register in assembly also requires the same
amount of statements, effecting all low level compiled languages like C/C++.

8 http://en.wikipedia.org/wiki/Amdahl’s_law
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The performance gain by paralellizing an application is heavily bounded by
the ratio of concurrently executable parts that are independent of each other. A
few examples are illustrated on Figure9 13.14.

Figure 13.14: Illustration of how performance gain changes by Amdahl’s Law

As an example, consider a software that has a running time of 20 hours when
run sequentially on a single computer. In a very optimistic case when there is
only 1 hour of running time that cannot be executed in a parallel manner, but
the remaining 19 hours of work (95%) can be potentially executed concurrently.
This is an exceptional case that is almost never encountered in real life. This
shows that not even in an ideal case can we reduce the total running time
below 1 hour: thus, regardless of the number of additional parallel processes, by
increasing them to any further extent the maximum performance gain cannot
be greater than the factor of 20.

More formally, if P is the portion of the program code that can be executed
concurrently, then (1 − P ) must be executed sequentially (i.e. it cannot be
parallelized). The total maximum performance gain that can be achieved by
using the number of N different execution units is:

1
(1 − P ) + P

N

9 Image is adapted from the Wikipedia article about Amdahl’s Law.
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In the case of N → ∞, the result converges to 1
1−P . This is the indicator of

the maximum performance gain achieved when exploiting parallel architectures.

13.5 Taxonomy of onurrent arhitetures

There is a widely known classification of computer architectures commonly
referred to as Flynn’s taxonomy,10 proposed by Michael J. Flynn in 1966 [Fly72].
Since the effective hardware architecture poses an interface for the software
compiled to that specific architecture, it has a great influence on the software.

Flynn proposed a simple taxonomy based on the number of instruction
streams and the number of associated data streams:

Single instruction
stream

Multiple
instruction streams

Single data stream SISD MISD
Multiple data streams SIMD MIMD

These architectures have their own specialties.

• Single Instruction, Single Data Stream (SISD)
A simple sequential computer which does not exploit concurrency at
assembly level. It has a single processing unit which fetches only one
instruction and is able to operate on a single data stream at a time.
A single-core personal computer is a perfect example of this hardware
category, however, these architectures have almost disappeared by today.
The interesting thing is that even this architecture was able to imitate
parallel software execution. The solution was that the operating system
was able to switch between the processes (e.g. with a Round Robin
scheduling), thus providing the illusion of parallel program execution -
of course, the context switching of different processes was an expensive
operation: all the local variables, stack, registers had to be saved for the
previously executed process and loaded for the next one.

• Single Instruction, Multiple Data Streams (SIMD)
In some specific cases, parallelism is more convenient on the level of data.
Examples include array processors or Graphical Processing Units where
the same algorithm is commonly executed but, for instance, on different
images. One of the most popular SIMD parallel computing platform is
NVIDIA’s CUDA. This kind of processing is often called data parallelism.

• Multiple Instruction, Single Data Stream (MISD)
This is a somewhat uncommon (yet sometimes very important) architec-
ture that usually characterizes mission critical systems. The main reason
why it might be useful to execute different instructions at the same time
for the same data is fault tolerance. The Space Shuttle flight control

10 http://en.wikipedia.org/wiki/Flynn’s_taxonomy
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system for instance was built on this architecture [MSH11][Kno93]. It was
called a fly-by-wire system: sensor data were preprocessed by 5 different
processors whose output was given to a voting system before showing them
to the astronauts. The voting system then evaluated these values and
ignored data that seemed to be erroneous (either because of measurement
errors or faulty hardware components).

• Multiple Instruction, Multiple Data Streams (MIMD)
Probably the most common architecture, where multiple processing units
execute different instructions on different data stored either in a shared
memory or their own distributed memory space. Today’s devices (even
handheld devices) usually fall into this category.

In a concurrent software, parallelism can be implemented at different abstrac-
tion levels. The most essential is at the level of the instructions which means
that two or more instructions are executed at the same time (e.g. in the case
of multicore systems when coding in a low level language such as assembly or
C). Parallelism can also be implemented on the layer of subroutines (these are
commonly referred to as tasks) which encapsulate parallelism of instructions
or other subroutines. Another abstraction layer may be the parallel execution
of different components of a software (as in the case of a distributed system)
or different softwares. In this chapter, our main focus is the parallelism of
instructions and subroutines (i.e. on the level of instructions or methods).

13.6 Communiation and synhronization models

As we have seen in the introductory sections of this chapter, two of the main
problems that have to be solved when creating concurrent applications are
communication and synchronization between the components.

During communication one of the components can access information from
another, concurrently executed component. This communication can be per-
formed through several media, like shared memory, message passing, files, sock-
ets, signal handlers and so on.

When using a shared memory space, some of the variables of the application
are accessible for multiple processes. In this case, a process can communicate
with another by writing data into the shared memory so that the other one
can read it. What is crucial in this situation is that the processes must be
synchronized – if both of them are writing for the same shared memory space
(into the same variable), the result will be undefined (think of a simple read-
modify-write statement).

In the case of message passing, a process is allowed to send a message directly
to another process or to a group of processes. This communication might either
be asynchronous or synchronous. In the asynchronous communication model,
the process does not wait for the recipient to accept the message; it is only
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blocked till it sends the message usually through the channel. By contrast, in
the synchronous communication model (often referred to as a rendezvous) the
execution of the caller process is blocked until the recipient has acknowledged the
incoming message and has sent its reply to the message. The processes are not
allowed to progress further until the communication is completed in its entirety.

Several alternatives exist for the aforementioned communication models, but
those are usually problem specific solutions. For instance, it might be useful
to implement a delayed synchronous communication model where the client
processes send asynchronous messages to the dedicated server process, usually
under heavy load. Until the server is capable of processing the incoming message,
the clients can continue their own work. Whenever the server is able to process
the message, it can contact the client in a synchronous way to notify it about
the results. If the client needs the result of the message before the server is able
to construct it, it is blocked. This mechanism is known as a future object and is
commonly used in most of the concurrent programming libraries.

13.7 Mutual exlusion and synhronization

Beyond communication, synchronization is another critical issue. By synchro-
nization we mean a mechanism that allows aligning parallel processes, i.e. it
can define an ordering in which the instructions of the parallel processes are
executed.

As we have seen before, the ordering of the executed instructions is important
in a concurrent environment. If a process is waiting for an input from another
process, it has to wait until the counterpart sends its reply to the request
message. If multiple processes would like to access the same resource (may it
be a shared variable, file, database connection, or anything else), they have to
wait until it is released by any previous processes that was using it. We have
illustrated this facility in one of the introductory examples by waiting for a
specific condition to be met with the await statement.

Restricting access to shared resources raises several unique problems, for
which we must be prepared when implementing the specific solution.

13.7.1 Deadloks

One of these unique problems is known as deadlock.11 As we have seen in Section
13.2, a deadlock is encountered when a group of processes are mutually waiting
for each other (or for an external signal that never appears), and none of them
are able to make any progress.

It is relatively easy to encounter such a situation. Let us assume that we have
two different resources A and B, and two processes need both of them in order

11 http://en.wikipedia.org/wiki/Deadlock
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to perform their tasks. In this case, it is easy to cause a deadlock by ”playing”
with the resource acquisition order. If one of the processes locks resource A, then
try to lock resource B; if, however, the other process locks resource B, try to
lock resource A simultaneously, we get a deadlock.

However, an important thing to note, is that to encounter a deadlock, we
need to satisfy all of the following conditions (also known as Coffman conditions
[CJS71]) met simultaneously in a system:

• Mutual exclusion
There is a shared resource that cannot be handled by multiple processes

in a given instant of time.

• Hold-and-wait locking
A process is allowed to wait for the acquisition of an additional resource

that is currently used by another process while it is already owning a
different shared resource.

• No preemption
The runtime environment (like the operating system or a virtual machine)
is not allowed to interrupt a process and force it to release a resource it
is currently owning.

• Circular dependencies
It is possible in a given instant of time that a set of processes are mutually
waiting for each other to release a resource. For example, there is a p1

process that is waiting for a resource that is held by p2, while p2 process
is waiting for a resource that is held by p3, and so on, while there is a pn

process at the end that is waiting for a resource that is held by p1.

As a corollary, we can conclude that if we can explicitly eliminate all of these
conditions, our software is theoretically deadlock-free.

Unfortunately, this is not always feasible, or an explicit deadlock handling is
required for which several approaches exist:

• One of the most common approaches is to ignore them completely by
assuming a deadlock will never occur in the software;

• Another approach is to focus on the detection of encountered deadlocks
in mission critical systems. If a deadlock is detected, the system may
try self-healing itself. This approach can be done by model checking and
interrupting a set of running components, either by resource preemption
or by process termination, as an example;

• Breaking any of the Coffman conditions would also be sufficient. Unfor-
tunately, this can be hard, or even impossible, in most real-life situations.
The most commonly used solution involves breaking mutual exclusion by
well known algorithms like the Banker’s algorithm [Dij82].
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13.7.2 Starvation

Another important issue is resource starvation.12 In this case, multiple processes
would like to acquire the same resource, but a set of certain processes may never
get the privilege of holding he required resource.

A commonly referred example is when two group of people meet in the middle
of a narrow corridor where only one man can pass. If one of the groups is too
polite, it will not be able to go through the corridor until all the groups from the
other side has left. If processes behave the same way, and we know that there is
an endless flow of processes on the other side, the processes on hold will never get
a chance to progress. Another example could be the circular road intersection:
if there is a continuous flow of vehicles from any of the entrances, all the other
joining roads are stopped.

13.7.3 Tehniques for synhronization

Communication and synchronization issues must be solved by paying attention
to the above mentioned problems.

Synchronization (if it is available in the specific language) can be solved in
the form of rendezvous (synchronous message passing), but several other alter-
natives also exist. Before we move on to describe the different synchronization
techniques, we need to provide some definitions.

In case of shared variables, the question is how the different processes can use
these variables with mutual exclusion, – i.e. this is necessary to prevent processes
interfere with each others’ instructions involving the shared variable. The typical
example is a simple read-modify-write instruction x = x + 1 executed by p1 and
p2 threads (for theoretical description, see Section 13.2 and technically in Section
13.4 in detail). While the p1 process reads the value of the x variable, the p2

process does the same while executing, but executing the update, and storing
the result simultaneously with p1. This way the value of x is increased by 1 only,
not as it was expected by 2. So if the processes do not execute the required
operations without mutual exclusion, there might be a serious information loss
in the background.

If we apply mutual exclusion on variable x, only one process can access it
in the given instant of time, and thus we have guaranteed the safe usage of the
shared variable.

A critical section is as a set of instructions (or blocks of statements) where
the execution of the software is restricted to a single process. It is used to ensure
safe update of a shared memory space [Pet81].

In the example above, the x := x + 1 instruction is a critical section in the
program, and mutual exclusion ensures that only one process can execute it. In
order to ensure mutual exclusion, all the processes have to perform a managed
entry protocol before entering into the critical section, and must perform an exit

12 http://en.wikipedia.org/wiki/Resource_starvation
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protocol after leaving it. This way we can prevent entering multiple processes
into the critical section.

13.7.4 Solutions for managing ritial setions

There are several possible solutions for managing critical sections, of which we
give a few examples now.

Busy waiting

The busy waiting is probably the most intuitive solution. Until a given condition
is met, a process continuously reevaluates it in a loop, see Listing 13.15.

while (!p) {

sleep 100;

}

Listing 13.15: Busy waiting

The disadvantage of this solution is that it wastes valuable processor time.
Busy waiting is primarily used to handle critical sections, which is one of the
most essential synchronization tasks. Under special circumstances, however, on
specific hardware architectures busy waiting may be a preferred solution.

Semaphores

In concurrent programming, and also in the area of operating systems, the
semaphore13 is an essential tool to protect and manage processes which have
to execute the instructions of a critical section. The concept of semaphores was
introduced by the Dutch E. W. Dijkstra [GD68], and has been included in several
languages since the introduction of ALGOL 68, either as a language primitive
or a library component.

In its most generic form, a semaphore is a simple integer number with
an associated waiting queue. An s semaphore basically supports two different
methods, one of them is symbolized by P(s) while the other with V(s). These
canonical names come from the initials of the Dutch words verhogen (increase)
and the portmanteau prolaag, the short form of probeer te verlagen (literally
meaning try to reduce).

The instructions embedded within the P(s) and V(s) method calls are ex-
ecuted in an atomic, uninterruptable way. Atomicity here grants that the state

13 http://en.wikipedia.org/wiki/Semaphore_(programming)
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transitions within the encapsulated instructions (i.e. the inner state) are not
observable to any of the other processes except the one actually executing it
[And91]. For the other processes it seems as a single instruction.

The semantics of the P(s) and V(s) methods are defined as follows:

• P(s): If s > 0, then decrease the value of s by one; otherwise the process
that wants to execute P(s) is included in the end of the waiting queue of
the semaphore;

• V(s): If there is any processes waiting in the queue of the s semaphore,
the first of them is activated; otherwise increases the value of s by one.

The initial value of the counter associated to the semaphore specifies how
many processes are allowed to enter into the guarded critical section. The strict
semaphore (also called binary semaphore) allows only two values, 0 and 1. This
construct can be utilized to implement mutual exclusion.

The advantage of the semaphore is that compared to the busy waiting, a
more efficient software can be implemented. The processes waiting for any shared
resource are not wasting the performance of the computational unit, instead they
are simply blocked and inserted into a waiting queue.

The disadvantage of using a semaphore is that it is against structured pro-
gramming, and it is easy to cause deadlock-prone situations (i.e. situations where
all the parallel processes are blocked because they are waiting mutually for each
other, and thus the program cannot progress any further).

A binary semaphore can be used for mutual exclusion as the following exam-
ple demonstrates:

s = 1; // Initialization - done separately

// Code executed by the processes

P(s); // Executing the entry protocol

... // Critical section

V(s); // Executing the exiting protocol

The binary semaphore is also commonly referred to as a lock for this reason.
Also, its methods are often referred to as locking in the case of P(s), and
unlocking in the case of V(s).

Monitor

The monitor14 is a more structured language construct than the semaphore,
that encapsulates data structures (variables and functions or methods defined
over them) in a way that considering the set of all the subroutines defined at the
level of the monitor, only one of them is allowed to be active in a specific instant
of time. Accessing its inner state is also restricted to the interface it defines. The

14 http://en.wikipedia.org/wiki/Monitor_(synchronization)
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only way to access the inner representation of the monitor from the outside can
be done through the defined interface of the monitor.

Monitors may be illustrated perfectly through a slightly modified illustration
of Bill Venners [Ven00]. Imagine a library building with a secret room which only
one person is allowed to occupy in a given instant of time. In the room there
are rare and unique resources whose secret is sought by visitors. Unfortunately,
the librarian keeps a close attention to who and when is granted the privileges
to enter into the room to access the secret knowledge (resources). Visitors (pro-
cesses), in order to get entrance to the secret room, must wait in a queue in front
of the room within the library. When there are no visitors in the secret room and
a new visitor arrives into the queue, it is granted access to the room, otherwise
he must wait for his turn. From the time a visitor enters this room until the
time it leaves, it has exclusive access to any data in the room. Entering the
library is called ”entering the monitor”, while entering the special room inside
the building is called ”acquiring the monitor”. Occupying the room is called
”owning the monitor” and leaving the room is called ”releasing the monitor”.
Leaving the entire building is called ”exiting the monitor”.

Monitors may also be ”Wait and Notify” (sometimes called a ”Signal and
Continue”) monitors. In this case, visitors may suspend their work in the secret
room and have a nap on one of the armchairs (wait signal). The armchairs are
so comfortable that visitors sleeping do not wake up by themselves, but must be
awaken by an external signal (i.e. by another visitor with a notify signal). After
the notification the notifier will release, and the notified visitor will acquire the
monitor. If there are only sleeping visitors in the secret room, the librarian may
allow any new visitor to enter the area.

At an abstract level, the monitor utilizes a set of conditional variables. For
each conditional variable, it also defines a waiting queue, and like the semaphore
it supports two methods called wait and signal whose semantics are defined as
follows:

• c: condition;
• wait(c): the process executing this function call becomes blocked and is

put in the waiting queue of the c conditional variable. The responsibility
to start this process is delegated to someone else.

• signal(c): If there is a process in the waiting queue of the c conditional
variable, the first one of them is started so that it can continue its
execution. Otherwise, nothing happens.

At first sight, conditional variables are very similar to semaphores, but there
is a very important semantical difference between these concepts. That is, the
conditional variable does not own an associated counter, i.e. it does not keep
track of the incoming signal requests as the semaphore does. Moreover, if we
call the signal method at a specific point in time when there is nobody waiting
in the queue of the conditional variable, the signal event perish without any
consequence [Hoa74].
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Conditional ritial setion

A second alternative for the semaphore is the conditional critical section, which
was introduced by Brinch Hansen at about the same time as the concept of the
monitor[Han72].

This construct is a critical section where processes can enter and access shared
variables only in a managed way. Entering the critical section is guarded by a
conditional expression, and, if the specified conditional expression is unsatisfied,
the execution of a process is suspended before the guarded block.

Outside the critical section none of the processes are allowed to access the
variables of the critical section, and all the other processes have to wait till none
of the processes are in the critical section and the conditional guard expression
is satisfied.

Several other tools, concepts and language constructs have emerged to handle
the issues of synchronization, which we cannot wish to cover in details here.
However, we will provide a detailed summary of languages at the end of this
chapter to demonstrate language specific approaches (e.g. the protected objects
in Ada).

13.8 Taxonomy of languages supporting onurreny

Languages supporting concurrency can be classified from several points of view.
A concurrent software is inherently non-deterministic, meaning several ways it
can be executed. What is essential is an efficient and robust solution for a given
problem in a concurrent environment that uses distributed/shared resources.

Several approaches have been developed to support the execution of con-
current applications. It is possible to classify the different language constructs
based on the execution model [PV92]. In the next section, we will enumerate the
execution models which can be interpreted for low and/or high level concurrency.
In some cases, a entire class of programming languages might be associated with
one of the models shown.

• Control driven computation The primary focus is on the monitoring of
the started processes with common commands like fork(), join() and
wait(). Most imperative languages like Java fall into this category. Op-
erating systems which follow the POSIX standards also include such
mechanisms to handle processes and to expose a C/C++ application
programming interface for that.

• Data driven computation The execution of the software is based on the
structure of the data and the associations encoded in it. The execution of
the concurrent components starts when all the input data are available for
the process. The Irvine Dataflow (ID), the Value Algorithmic Language
(VAL) and the Intel Concurrent Collections framework is based on this
execution model.
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• Demand driven computation The processes are executed when there is
an explicit signal (request) from another process, thus the execution is
defined by messages. Some Prolog-based languages like Parlog or Concur-
rent Prolog are examples of this execution model.

Another class of concurrent programming implements the processing of ar-
rays and matrices in parallel computer architectures (MIMD). These architec-
tures have vector- or matrix processors, and always handle similarly structured
data. The communication between the processes is synchronous. This is one
of the oldest approaches for concurrent programming, and with regard to the
languages which support this kind of execution model, we distinguish three
different approaches to solving the issues of concurrency.

1. The different FORTRAN-variants (like FORTRAN IV, CFT and Cyber
FORTRAN) extract the concurrently executable parts of the software
from the do loops, and thus they automatically try to parallelize the
program.

2. The parallel parts can also be declared explicitly (e.g. in the case of CFD
and DAF FORTRAN), but this requires a deep understanding of the
underlying hardware architecture that executes the software. The syntax
and semantics of these languages offer great support for writing code on
MIMD architectures, but the drawback is that the software written this
way is not portable.

3. The third group of programming languages solves the issues of concur-
rency independently from the underlying hardware architecture (like the
Actus language).

Although the programming languages mentioned above are some of the first
languages, they contain language constructs which were later adopted, and even
improved by modern languages. As an example, languages following the data
driven computation approach (such as C* and Dataparallel-C) used the same
array structures,. Let thus us now look at the concepts briefly.

Cyber 200 FORTRAN is a high level programming language where it is the
task of its compiler to determine which parts of the sequential software can
be executed concurrently. Basically, it marks the body of simple and nested do

loops which work on arrays to be executed concurrently. This operation is called
vectorization [Cyb83]. The CFT programming language works along the same
concepts as Cyber FORTRAN, the difference being that it cannot handle nested
loops. Software written in these languages are not portable, meaning they can
be executed only on the hardware architectures they were compiled for.

In the case of CFD FORTRAN, the central processing unit decodes the
next instruction, and either executes it, or sends it for execution to any of the
subprocessors. The central processing unit basically executes only the arithmetic
operators that are used to determine a memory address or to handle loops. This
language was designed for a specific SIMD (single instruction, multiple data)
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architecture. Programmers, however, do have control over the process: they can
specify which processor should execute a specific instruction by their index. The
language constructs contain a special if statement which can be used to com-
pare vectors and update their values concurrently. The language also contains
concurrent versions of the and, or, not, any and all operators. Combining them
with the wait statement the data exchange can be synchronized.

VS FORTRAN language uses the concept of tasks. Tasks have separate mem-
ory space and behavior. The concurrent code can be specified by the programmer,
but even the compiler may trace down the possible concurrent execution paths.
The language operates with virtual processors that are associated with physical
processors by the operating system. The result is that this language has become
independent from the underlying hardware and can be ported to and make run
on different architectures. The concurrent code is automatically generated by
the compiler, and the different loop constructs and iterations can be run in an
asynchronous way. The prerequisite of concurrent execution is that the iterations
must be independent from each other and this information must be available at
compilation time. Common operators are: originate, terminate, schedule,
wait for task, wait for any task and wait for all tasks. To define paral-
lel execution paths, the following operations are supported by the language:
parallel do, local, dobefore, doevery, doafter, exit, parallel sections,
section, end sections, parallel call, wait for all calls. The VS FOR-
TRAN offers a blocking facility in order to handle critical sections.

The Actus programming language ([Per79] and [PCM83]) is a descendant
of the Pascal language that supports the handling of parallel data structures.
It is independent of the architecture as it supports both vector and matrix
processors. Concurrency can be handled explicitly, meaning the computational
resources may theoretically be exploited to the maximum. It has a built-in array
type capable of storing both simple and complex types that can be handled
concurrently. For concurrent processing of an array the index of the first and
last elements are required only, and these happen automatically. These arrays
also support the rotate and shift operators.

Languages are often apostrophed as are programming languages for multi-
processor machines. Their processes usually perform the same operations for
similarly structured data again and again. Hence, they are sometimes called
synchronous languages.

The motivation of modern languages to introduce new language constructs
to handle concurrency could be expressed by the following questions:

• On which level would the language like to support concurrency?
• How should the language support concurrency? Should it be done through

shared memory or message passing?
• Should it be possible to create side-effects?
• How should language support concurrency in terms of communication?
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• What kind of elementary concurrent language constructs should be in-
cluded into the language?

Programming languages may be classified into groups based on the questions
above, although there are languages that can be classified into multiple groups
at the same time.

• Languages that support shared variables – namely,
Pascal Plus [Wel79], Concurrent Pascal [HP79], Modula-2 [Wir83] and
[BP90];

• Languages that support message passing where the communication is han-
dled through send−receive-like operators: CSP [Hoa78], Occam [Bar92],
Scala [OSV11];

• Data driven languages using shared memory: VAL [Ack79], Dataflow
[Arv78], Lucid [WA85];

• Object-oriented parallel languages: Emerald [Hut87], Pool-T [Ame87];
• Functional programming languages that contain parallel language con-

structs: Clean [Pla99], many Haskell- or ML-variants (D-Clean [ZHH06],
Glasgow Parallel Haskell [LT01], pH [NA01], JoCaml [FFMS01], Scala
[OSV11]);

13.8.1 Proesses, tasks, threads: Conurrent exeution units

So far in this chapter we have referred to processes as the elementary units
of concurrent execution. The process is one of the most important concepts
of parallel programming. In the next sections, we will take a brief overview
of languages from the point of view how they define this building block. Our
overview will also tries to demonstrate the wide variety of developed parallel
language constructs, and the different interpretations of the same theoretical
concepts. The overview does not attempt to be comprehensive.

As we will see, the interpretation, usage and actual implementations of
processes in different languages are of a wide range. Moreover, several naming
conventions exist. In the following sections we will introduce processes with
regard to communication as well as it is one of their most important properties.

The Modula-2 language ([Wir83] and [BP90]) is built upon the concept of
processes. The processes communicate through shared variables and signals.
Signals are operations exported from processor modules. They are used for
synchronization and cannot contain any message. A process can send or wait a
signal from another process. Further operations of processes include startprocess,
which starts a new parallel process, and awaited , which is a property of a given
signal and shows if there is a process waiting for the given signal.

Signals are different from semaphores in a fundamental way – namely, when
there is a signal that is not awaited by any of the processes, it is considered
as a no-operation. The language contains language construct called coroutines
[Con63]. It implies parallel processes capable of activating each other. When a
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process is suspended, it resumes execution at the same position where it was
suspended before when the right of execution was passed to another coroutine.

The application in Listing 13.16 presents a solution for a simplified variant
of the producers-consumers execution model by Modula-2 processes.

MODULE ProcessDemo;
FROM Terminal IMPORT

Read, Write;
FROM SYSTEM IMPORT

PROCESS, NEWPROCESS, TRANSFER, ADR, SIZE ;
VAR p, c: PROCESS ;

workspace: ARRAY[1 . .100 ] OF CARDINAL;
char : CHAR;

PROCEDURE Consumer ;
BEGIN

LOOP
IF char="$" THEN EXIT END;
Write(char);
TRANSFER(c, p);

END
END Consumer ;

BEGIN
NEWPROCESS(Consumer, ADR(workspace), SIZE(workspace), c);
LOOP

Read(char);
TRANSFER(p, c);

END
END ProcessDemo.

Listing 13.16: A simplified solution for the producers-consumers problem in
Modula-2

The TRANSFER(p1, p2 ) function interrupts the execution of the p1 process,
suspends it and passes the right of execution to the p2 process.

The SIMULA 67 [Lam82] programming language is built on the concept
of coroutines as well. The following SIMULA 67 example also demonstrates the
complexity of execution. The coroutine in this context is an instance of an
arbitrary class which is cooperating with other objects and can be temporarily
stopped and resumed later. An instantiated object (coroutine) depends on the
object which has created it. The new object can pass the right of execution back
to its parent by the detach instruction, while the parent can activate the detached
object again by the call(X) instruction. The execution can be passed from one
coroutine (object) by the resume(X) instruction to another X coroutine (object).
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When the execution of the coroutine is resumed, it is continued at the exact
position where it was suspended previously. The lifecycle of a coroutine object
starts when it is instantiated, and the object starts executing the instructions in
its body. Such an object is in an active state, and it is considered as an attached
object to its generator (the object which performed the instantiation).

The coroutine can suspend its execution by the detach instruction for the
benefit of its generator. These objects are considered to be in detached state
(but not in terminated state). An object can give up the right of execution
voluntarily to an arbitrary coroutine by the resume(X) instruction. The object
then may gain the right of execution again either by a call(X) instruction from
its generator or a resume(X) call by a ”sibling-process”. The execution of the
object is terminated, when the execution of its body reaches the end keyword.
In a terminated state, the execution of the object cannot be started again either
by the call(X) or the resume(X) instructions. However, the object (including its
member variables and operations) may still be accessible.

In the ALGOL 68 [BW79] programming language instructions separated by
comas (collateral clauses) and in begin–end blocks can be executed concurrently,
thus becoming parallel clauses. The begin–end block is not finished until all its
enclosed instructions are executed. The synchronization of actions is controlled
by Dijkstra-semaphores through the sema keyword.

In Concurrent Eiffel [Eif13], concurrency is implemented by the separate
keyword. Calling any method of a separate object does not block the caller,
it can progress further (however, if it is a function call, the result is awaited).
Any method or class can be annotated by the separate keyword . If an instance
of such a class is instantiated, all its methods are run at a new processor.15 An
argument may also be defined as separate to ensure controlled access resulting
in automatic mutual exclusion. These arguments cannot be used by a separate
object by default, but using exception or yield can ease this restriction. The Eiffel
language has several (sometimes unimplemented) variants supporting concurrent
software development like Distributed Eiffel or Cameo [PP08].

The Modula-3 language [BW96], despite of it being the member of the
Modula-family, defines processes as threads. These are communicating through
shared memory space. The tools of concurrency are in the Thread module in the
form of Fork and Join. A sample application is given in Listing 13.17.

The mutual exclusion is implemented by the Lock instruction and the Mutex
objects. The example in Listing 13.18 demonstrates the usage of locks through
a simple decrement function.

15 In Concurrent Eiffel, the processor is an abstract notion to an autonomous concurrent
execution unit. It sequentially executes instructions on one or more objects.
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. . .
TYPE

Closure = Thread.Closure OBJECT
a, b, result: INTEGER;

OVERRIDES
apply := Start

END;
VAR

cl := NEW(Closure);
thread: Thread.T ;
a: ARRAY [1 . .4 ] OF INTEGER;
max: INTEGER;

PROCEDURE Start(cl : Closure): REFANY =
BEGIN

cl.result := Max(cl.a, cl.b);
RETURN NIL

END START ;

BEGIN
cl.a := a[1 ]; cl.b := a[2 ];
thread := Thread.Fork(cl); (* evaluates the maximum *)
max := Max(a[3 ], a[4 ]); (* of 4 numbers concurrently *)
EVAL Thread.Join(thread);
max := Max(max, cl.result);

END

Listing 13.17: Defining processes in Modula-3

With the help of the Channel abstract type it is possible to create chan-
nels used for message passing (synchronous communication) after initialization.
These channels are unbuffered, unidirectional and synchronized.

We also encounter the concept of threads in the Java programming language
[Har98], where processes are implemented by the Thread class. An instance
of this class represents a process. The body of the process is defined by the
instructions defined in the run() method. An arbitrary number of threads can
be instantiated and started. It is also possible to set different priority levels to
these threads, and to suspend, restart or stop them. Java threads can also be
synchronized by the join() method. Monitors can also be found in the language,
and they can be accessed by the synchronized keyword. Communication is
done by shared variables. In a synchronized block, both cooperation (through
wait(), notify() and notifyAll()) and mutual exclusion are supported through
associated monitors. The language offers an extensive built-in API support for
multithreaded programming (for details, see Section 13.14).
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. . .
TYPE

Counter = MUTEX OBJECT
n: CARDINAL;
. . .

END;
PROCEDURE Decrease(counter : Counter): BOOLEAN =
BEGIN

LOCK counter DO
IF counter.n > 0 THEN DEC (counter.n); RETURN TRUE
ELSE RETURN FALSE
END;

END;
END Decrease;
. . .

Listing 13.18: Mutual exclusion in Modula-3

In Delphi subclasses of the Thread class can be executed concurrently. To
implement synchronization and communication, a class must declare a method
responsible for the execution, in which it can implement the communication of
the concurrently executed code with a synchronize(〈MethodName 〉) instruction.

In the BETA [MMPN93] programming language a new execution thread
is created from an object by the P: @|Activity command. Such a thread is
executed concurrently with other threads. The fork command is also a tool to
execute the same set of commands concurrently. BETA has a predefined pattern
representing a semaphore. An example in Listing 13.19 embraces two concurrent
components, A and B:

(# S: @semaphore;

A: @ | (# do st1; S.P; st2; S.V; st3 #);

B: @ | (# do st4; S.P; st5; S.V; st6 #);

do S.V; A.fork; B.fork

#)

Listing 13.19: Defining semaphore in BETA

In the example above, component A may execute the st1 or st3 concurrently
with the st4 or st5 statements of component B. By contrast, component A

and B cannot execute the st2 and st5 statements at the same time (note the
conventional P and V notations for the monitor operations).
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Monitors are available through the Monitor pattern, while synchronization is
done by the Port pattern, whose entry operation is used to synchronize different
processes.

Another important implementation of processes is tasks. The PL/I [GI90]
programming language supports concurrent programming on the level of instruc-
tions, and it is one of the early languages that introduces the concept of tasks.
The tasks are concurrently executed program units. Method P may call method Q

in a concurrent way by the Call Q(〈parameters 〉) Task(X) instruction. Method
Q notifies P through the X event variable if it finished its execution. Method
P may test the X variable anytime, i.e. it can query if method Q is still under
execution or it has been terminated already. Task P may also perform a task
rendezvous with Q by the wait(X) statement. Task Q inherits all variables of P

so they can share data.
Processes are represented by task-objects in the Ada programming language.

An Ada tasks may have an entry point which may be called from another task.
Every task has a body describing the activities of the given task. In its body,
every entry point is associated with an accept instruction. When execution of
the body reaches that point, the task is ready to accept the call of another for a
rendezvous. The communication is synchronous, and the caller task is suspended
until the acceptance of the rendezvous, the execution of the corresponding accept
instruction. An entry point may also have in, out or in out parameters. When
a task calls the entry point of another task, its execution is suspended until the
end of the rendezvous. This mechanism may be avoided by using a timed entry
call, where a maximal waiting time can be specified for a rendezvous. If the
called task cannot response in the given time interval, the execution of the caller
is resumed. The language offers an extensive API support for handling tasks, for
the details, see Section 13.10.

Processes may also communicate through channels by message passing. The
CSP/K and SP/K languages are both extensions of the PL/I programming
language. The message passing is synchronous: process P sends the x message to
process Q by the Q ! x instruction. This message is handled within process Q by
the P ? y instruction that stores the message sent by P in variable y. A process
is described in the following form: name: procedure options (concurrent).
Entry points can be specified by the name: process; declaration. The language
is discussed in details later, see Section 13.11.

The Occam [Bar92] programming language is interesting because in general
it has two elementary building blocks: processes (proc) and channels (chan).
The most important constructions are enumerated below.

1. SEQ specifies instructions to execute in a sequential order (as the reader
can see in Listing 13.20). It is important to note that this is not done
implicitly as it is common in other imperative languages.
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SEQ

x := x + 1

y := x + 3

Listing 13.20: Defining sequential instructions

2. PAR executes instructions concurrently (see Listing 13.21).

PAR

c1 ! data1

c2 ! data2

Listing 13.21: Defining concurrent instructions

3. ALT is used to define alternative (guarded) instructions bound to different
conditions. The example in Listing 13.22 is waiting data either from
the input or observer channel. If there is a message from input, it
increments a counter, but if there is a message from observer, it returns
the current counter.

ALT

input ? data

SEQ

ctr := ctr + 1

. . .

observer ? info

SEQ

stat ! ctr

. . .

Listing 13.22: Defining alternative instructions

Standard branching instructions like IF, WHILE and SEQ. . . FOR are also supported
by the language. Variables declared in the form of TYPE variablename:, where
the : character binds the variable to a given process. Processes are declared by
PROC process, and channels declared by CHAN prot channel. Communication
is implemented by message passing. The language is discussed in Section 13.12.
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Channels are also used by the Par C programming language. It is an extension
of the standard C language with the channel data type along with the par and
select instructions. Communication between processes is done by channels or
global variables. The syntax of par is identical to the for loop, but it spawns
parallel processes. A channel is able to accept any type as a message, while
the select statement is similar to the select statement of the Ada programming
language discussed earlier.

The Super Pascal programming language, member of the Pascal family is
another example using channels. The forall keyword is used to start the same
statements in multiple instances concurrently (the number of processes is dy-
namically evaluated during runtime) and the parallel keyword is used to execute
a given number of statements concurrently (as you can see it in Listing 13.23 be-
low). Processes communicate over channels. The regarding language constructs
to use are open to initialize a new channel, send to put a message on the specified
channel, and the receive method to accept a message from the channel.

forall i := 1 to 100 do
processConcurrently(i)

parallel
producer() | consumer()

end

Listing 13.23: Concurrent execution of statements

The CC++ language comes with extensions for standard C and C++. The
parbegin–parend expression is used to define concurrently executed code blocks.
Synchronization is done by special variables declared as synch typed variables.
The CC++ utilizes both parallel and sequential language constructs. The co-
operation of these components are done by atomic functions. Another such an
extension is Cilk++ [BJK95].

13.8.2 Monitors

Monitors are also an important element of inter-process communications. Since
there are several interpretations for the same concept, there is also a wide range of
specific implementations. For example, in Concurrent Pascal [HP79] the monitor
is an abstract encapsulation of variables shared among several processes, and
classes are abstract data types. An instance of a class may be attached either
to a process or a monitor. The monitor ensures the protection of its data fields,
while its methods and functions are associated with a waiting queue ensuring
that only one of them may be active at a given instant of time. The execution
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of a method of the monitor is initialized with init, may be suspended with delay
and resumed with the continue instructions.

The Portal programming language is another example from the Pascal family
that supports concurrent programming with the help of monitors. In Modula-2,
the shared variables used to communicate between processes are encapsulated
within monitors. The CSP/K and SP/K languages use monitors to implement
mutual exclusion and the wait-signal construct for synchronization. In the Java
programming language every object has an implicit monitor associated to im-
plement cooperation (wait-notify-notifyAll) and mutual exclusion (through
synchronized blocks).

13.8.3 Alternative approahes

Funtional languages

These languages follow a set of different paradigms discussed in detail in Chapter
15. We include only a brief overview here. An elementary concept of functional
languages is mapping and reducing of expressions. Processes considered as sepa-
rate function calls in these languages (in pure functional languages there are no
mutable state thanks to referential transparency). Thus, the evaluation of func-
tion calls and expressions is done concurrently along explicit annotations in the
source code or implicit evaluation strategies. In these cases, processes are created
dynamically, for instance in the VAL [Ack79], ParAlf, Concurrent Clean [PE01],
Distributed Haskell and JoCaml [FFMS01] programming languages.

These principles started emerging in the functional programming world,
but have become popular in mainstream programming languages too for their
usability. Examples include the countless map-reduce framework for processing
large datasets which semerged after Google’s model described in [Lam08].

Logi programming

This follows an alternative approach, where the evaluation of rules is done con-
currently (see Chapter 16 for details). Some Prolog variants such as Concurrent
Prolog and Parlog follow this approach.

The Parlog programming language is based on the And/Or-Parallelism. As in
Prolog, its semantic is defined by first order predicate logic, but the programmer
is allowed to express concurrency explicitly in a declarative framework. A goal
is declared by a number of literals which can be separated by a few additional
operators. The And operator is symbolized by the , operator and evaluates
expressions from left to right concurrently. Clauses are separated by the . or ; op-
erators. The expressions separated by the . operator are evaluated concurrently,
and if there was no resolution for the required goal, the evaluation continues
by the clauses declared after the ; operator (Or-Parallelism). The concurrent
components communicate through shared variables. Communication in this case
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is called incomplete messages or back communication: the process that would like
to communicate binds a shared variable as a nonground nonvariable term which
is later filled by the receiving process. Synchronization is automatically managed,
cooperation is asynchronous, parallel components are instantiated automatically,
and recursion is also allowed.

Strand is a high-level symbolic language environment uses concurrent tasks.
Its syntax is similar to Prolog. Synchronization is done through shared variables
which are also used for mid-process communication. The Strand programs are
always executed concurrently.

Objet-oriented languages

Sequential, object-oriented languages, which satisfy the following three condi-
tions:

1. The program starts with the instantiation of exactly one single object;
2. When an object sends a message to another object, its execution is sus-

pended until the reply is received (i.e. the caller waits for the acceptance
and processing of the sent message);

3. An object is active only when it is executing a method that is processing
an incoming message.

Concurrency can be achieved in these languages by leaving any of the afore-
mentioned conditions, allowing multiple processes to be active at the same time:

1. The program may start with the execution of multiple objects;
2. When an object sends a message to another it does not wait for the

answer (i.e. it is not suspended) and immediately continues its execution
(asynchronous communication)

3. The objects are not waiting passively for incoming messages, but have
their own execution logic in their bodies. This execution then may be
suspended at certain points in their bodies to answer incoming messages,
which is done in the form of rendezvous (i.e. the caller and the receiver
are synchronized).

The concurrent building blocks of the Pool-T [Ame87] programming lan-
guage are objects. The communication is done in the form of rendezvous or
message passing. The objects are created dynamically and their execution is
asynchronous.

Parallel proessing environments

An example for distributed parallel processing environments is when Linda, a
coordination and communication model, has two kinds of tuples: active and
passive. Active tuples represent processes, while passive tuples represent data.
Tuples are handled in a shared environment called the tuple space. Data in the



742

•
Conurreny

tuple space is accessible to any process (or restricted to a group of processes),
but it is not associated directly with any of the processes by default. All the
communication is done through the tuple space: if a process wanted to send a
message to another one it simply writes a tuple into the space that the other
process can read and take.

There are basically four operations allowed on the tuple space that processes
can execute:

eval(processname): creates a new process of the specified name that evaluates
tuples and writes the results back to the tuple space.

out(P1,. . .Pn): The out instruction creates a new (P1,. . .Pn) tuple and
writes this new data structure into the tuple space. It is also possible to
specify elements by using an active tuple instead of a value. In this case,
the associated elements will be evaluated by the execution of the given
processes, and when all these processes are executed, the active tuple with
a writing on it, ”freezes” into the tuple space, thus becoming a passive
tuple.

in(P1,. . .,Pm): The in instruction is used to read and take passive tuples
from the tuple space. Its arguments may be either values or variables. The
instruction searches for tuples in the space where the tuple components
are of the same type as P1,. . .,Pm, or in the case of values, they are
identical. If there is no such tuple on the space at that moment, the
caller process become suspended until a tuple that satisfies the supplied
parameters is available. The localized tuple (or a random one if there were
multiple alternatives) is removed from the tuple space, and the variables
with the ? wildcard are assigned the current tuple values.

rd(P1,. . .,Pk): The rd (read) instruction is similar to the in instruction with
one exception – namely, it does not remove the localized tuple from the
tuple space (i.e. it is non-destructive).

Linda was originally implemented in C and FORTRAN, but several libraries
are available for different languages like CppLinda for C++, Erlinda for Erlang,
JavaSpaces and TSpaces for Java, PyLinda for Python or Rinda for Ruby.
Linda has also inspired several projects like Piranha, Trellis and Linda Program
Builder.

In a heterogeneous distributed network, tools such as the MPI and PVM
frameworks supports developers to spawn processes, manage their communica-
tion, and message passing, and to solve synchronization issues during the devel-
opment of distributed applications. These tools are described later at Section
13.13.
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13.9 Common exeution models

Fortunately, there are a range of problems which indicate the need for concurrent
execution. In the next sections we describe some of these. These problems are
used to illustrate possible synchronization issues and alternative solutions for
designing concurrent algorithms. Our reason to describe them is twofold.

On one hand, while the problems themselves may seem trivial, inadequate
implementations for their solution may easily result in problem of concurrency
(involving deadlocks, livelocks and starvation). On the other hand, understand-
ing these problems, and being familiar with the patterns that are needed for
solving them is important for every developer preparing to write parallel appli-
cation in their day-to-day work.

A selective set of solutions for these problems is described in detailed in the
subsequent sections.

13.9.1 Produers-onsumers problem

At the heart of the producers-consumers problem16 lies the finite storage, a buffer,
usually represented by an array, queue or similar data structure. Since this buffer
is limited, the problem is also known as bounded-buffer problem. Two processes
use this shared resource:

• a producer, which creates new elements during its activity and puts them
into the buffer, and

• a consumer, whose role is to repeatedly take elements from the buffer and
process them one after the other.

In its original form, there is only one of each processes but the problem can be
generalized to N producers and M consumers. This is a commonly used model
when the problem can be split easily into two separate tasks and the throughput
must be finetuned by varying the number of producers/consumers (the rate of
creating or removing elements may vary).

A good practical example for this model is a web crawler application: since
the I/O communication through sockets may be slow and may get parallelized
efficiently, we may have several walker processes that parse URLs and put the
different downloaded HTML contents into the buffer as separate elements. Then
a set of other processes may take an element (an HTML page) from the buffer,
parse them and save the results into a database.

There are several caveats for which the implementation must be prepared
for. Inadequate solutions might result in liveness hazards, performance issues
and starvation. For example, when the buffer is full, producers must wait until
a consumer takes an element out and frees up some space in the shared storage.
Conversely, if all the elements are removed from the storage, consumers must

16 http://en.wikipedia.org/wiki/Producer-consumer_problem
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wait until one of the producers prepares a new data structure and puts it into the
buffer for further processing. This problem can be solved through inter-process
communication, typically by using semaphores.

13.9.2 Readers-writers problem

In the readers-writers problem,17 there is a shared resource which may typically
be represented by a database, used by multiple processes. A set of the processes
is reading this resource only, while another set of the processes is modifying it
too.

One might use several approaches to solve the problem. The most intuitive
solution is probably to use mutual exclusion on the shared data. The problem
is that this solution is suboptimal: readers should be allowed to use the shared
resource concurrently because their work does not interfere. However, this ex-
tension must be done carefully since it may lead to serious starvation issues.
Reader processes may monopolize the resource preventing writers to acquire it
even once at least.

The key to the solution is to find a proper parametrization for the number
of processes. This requires experimenting and creating benchmarks.

13.9.3 Dining philosophers problem

The Dining philosophers problem18 was originally proposed in [Dij74] as a course
exercise, but its current formalism was developed in [Hoa04].

The problem may be demonstrated as follows: there are five philosophers
sitting around a table eating spaghetti. To eat spaghetti a philosopher needs
two forks, but there is only one fork available for each two ”neighbors”.19

The philosophers spend a some of their time thinking about the universe,
and when they get hungry, they pick up either of the forks on one their sides,
or both. If they are successful in grabbing two forks, they can start eating the
(otherwise infinite supply of) spaghetti. When they finish eating, they put down
the forks and continue thinking. This process is repeated infinitely.

The original problem was used to describe how different computers rep-
resented by the philosophers may access shared peripherals like tape drives.
Nowadays it can be generalized –philosophers represent processes, forks repre-
sent shared resources and spaghetti represents input, processed by the shared
resources. The model could be considered as a minimized model of the interaction
of operating system processes where for example hundreds of processes cooperate
by hundreds of synchronization primitives like locks and semaphores.

The importance of the model is shown by its demonstrative power. For one
incorrect implementation several synchronization issues may be encountered:

17 http://en.wikipedia.org/wiki/Readers-writers_problem
18 http://en.wikipedia.org/wiki/Dining_philosophers_problem
19 Alternatively it may be the problem of rice and chopsticks. ;-)
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• deadlocks: e.g. if all the philosophers may acquire the fork on their right,
and the implementation does not allow the release of locked resources (no
preemption), the system cannot progress forward.

• starvation: if one of the philosophers is interrupted to release its forks
for the benefit of others, or the forks are assigned priorities, some of the
processes might have advantage over the others. This may result in the
starvation of specific processes (i.e. philosophers with lower priorities).

• livelocks: if any of the philosophers is interrupted to release their forks,
unfortunate timing of the system may result in a livelock. For example, if
all the philosophers grab the fork on their right at the same time, and then
put it back on the table with the same timeout, none of the philosophers
have two forks at a time. They grab the forks on their right again, and
the process may repeat. The system is not ”frozen” but cannot perform
any useful activity.

There are several proven solutions for the problem. The original one, proposed
by Dijkstra [Dij74], introduced a new component: a waiter whose responsibility
is to give instructions to the philosophers when and how the philosophers to
acquire the forks. Without his permission, the philosophers are unable to get
any of the required resources – they first have to ask the waiter about their
availability, i.e. the waiter acts as a semaphore.20

Another solution by Dijkstra [Dij71] proposes a hierarchical ordering for
the forks (i.e. the resources). When philosophers cannot acquire a fork, they
release their fork with the lowest priority, thus making the system deadlock-
free. Unfortunately, this solution is impractical in some real-life situations (e.g.
performing joins on database tables would be inefficient this way: if a table
cannot be read at a certain time, previously locked tables would have to be
released so they must be locked again).

A third notable solution by K. M. Chandy [CM84] suggests the use of artifi-
cial agents (i.e. no dirty forks), a solution, which handles the issue of starvation
by assigning a dirty/clean state to the forks. This solution, however, violates
one of the rules underlying the original problem – that is the philosophers must
communicate with each other about the availability of the common resources.
If the system starts with a ”proper” initial state, this is also a deadlock-free
solution.

In the next sections, we introduce the characteristics of a selection of pro-
gramming languages from the the point of view of concurrency.

20 As we have pointed out before, the concept of semaphore was also introduced by Dijkstra
in 1965.
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13.10 Ada

In the Ada programming language ([Nyek98], [Koz93], [Whe96] and [Bar96]) the
language constructs for concurrent programming are tasks and protected objects.

13.10.1 Tasks

Tasks are program units executed concurrently by virtual processors in the same
way as a simple, sequential program is executed, line by line.

Virtual processors are independent of each other and each of them is execut-
ing its own task concurrently. How the virtual processors associated to concrete
processing units are implementation details handled by the language.

Tasks are working independently and are able to communicate at certain
synchronization points. Tasks are cooperating in an asynchronous way by default.
Synchronization of tasks are done in the form of rendezvous which is performed
between a caller and a receiver task.

Tools for synchronization in Ada are the entry, accept, delay, select and
abort instructions.

Tasks communicate through specified entry points. If a task is ready to send
or receive a message from a certain task, it calls its corresponding entry point.
In the receiver task each entry point is associated with at least, one accept
instruction, and for the call the instructions embodied in the accept block are
executed. Signature of an entry is similar to a method or function definition. It
may also have parameters to solve the information flow between the caller and
the receiver tasks.

In the following sections we concentrate on language elements used for com-
munication and synchronization between tasks. Our goal is to illustrate the usage
of these elementary building blocks through specific examples. These are the
following elements: task is the most important language construct representing
concurrency in the language; entry and the associated accept instruction is used
to describe connection between different tasks; select whose complex semantics
allows the declaration of different communication protocols; delay to resolve
timing issues; and abort to stop the execution of a specified task.

Speifiation and body of a task

In the Ada programming language, a process is defined by a task unit which
consists of the specification and the body of the task. The purpose of the speci-
fication and the body is to describe the activities performed by a given task. It
is possible to declare anonymous tasks and create unique instances by omitting
the type keyword. To create such a task, first it must be declared (13.24):
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task Hello is
entry message(s: String := "Hello world!");

end Hello;

Listing 13.24: Hello task in ADA

For the instructions to be executed, it must be defined as the task body (13.25):

task body Hello is
begin

accept message(s: String := "Hello world!") do
put line(s);

end message;
end Hello;

Listing 13.25: Hello task body

To define a new task type (not just a unique task instance) to implement a
behavioral pattern, the specification must start with the task type keywords.
This way it is possible to declare a new type of tasks that can be used to
instantiate new objects based on this definition.

Values of a task type are tasks whose entry points are enumerated in the
specification, and similarly to their bodies, they are defined after the task body
keywords.

An example for the definition of a new task type:

task type Resource is
entry Lock;
entry Unlock;

end Resource;

task type Execution is
entry Read(C : out Character);
entry Write(C : is Character);

end Execution;

task type AnsweringMachine is
entry IdentifyCaller(i : Integer);
entry PickUp(s: Message);

end AnsweringMachine;
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The body defines the execution of a task. The execution of a task body is
triggered by the execution of a task, while the execution of a task is triggered
after the evaluation of the declaration sections of the program, but strictly before
starting the execution of the main body of the program (this scheduling is
discussed in details later). A few examples for unique tasks and their bodies
are shown in Listing 13.26.

task Producer ;
task Consumer ;

AnsweringMachine: array (1 . . 10 ) of AnsweringMachine;

task body Producer is
C : Character ;

begin
loop

Produce(C );
Storage.Put(C );

end loop
end Producer ;

task body Consumer is
C : Character ;

begin
loop

Storage.Pop(C );
Consume(C );

end loop;
end Consumer ;

task body AnsweringMachine is
begin

accept IdentifyCaller(i : Integer) do
put line("Client " & Integer ’Image(i) & ". called you.");

end IdentifyCaller ;
accept PickUp(s: Message) do

put line(Message’Image(s));
end PickUp;

end AnsweringMachine;

Listing 13.26: Solving the producers-consumers problem with ADA tasks
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Task types, task objets

Each task is considered as a separate object, and thus they are called task objects.
As all objects, tasks have types as well. Task objects having the same type do
the same instruction sequences repeatedly, but independently of each other.

If the task object is an object (or a member of an object) that was introduced:

• in an object declaration, the actual value of the task object is defined on
the basis of that object declaration.

• through the evaluation of a pointer (new), the concrete value of the task
object is defined on the basis of the evaluation of that pointer.

The task type is considered as a limited type, which means that neither the
assignment operator nor the comparison operators (=, /=) are applicable for
them. This also means that their behavior is strictly restricted to the attributes
of the task. Consequently, the value of task objects are constant, and they cannot
be modified during runtime. Task types cannot be specified as out or generic in
parameters of a method, but a function is allowed to return a task object by
passing by reference. A task object is declared in the same way as any other
object, as it is illustrated in Listing 13.27.

T1, T2 : TaskType;

−− Create an array of tasks
type TaskArray is array(1 . . 10 ) of TaskType;

−− defining pointers is done by using access
−− about using access, see the section on using pointers
type TaskPointer is access TaskType;

−− Dynamically create a new task
TP: TaskPointer := new TaskType;

Listing 13.27: Defining the array of tasks

Listing 13.28 shows a few examples about defining different task variables.

type AnsweringMachinePointer is access AnsweringMachine;
AnsweringMachineArray: array (1 . . 10 ) of AnsweringMachine;
AnsweringMachinePointer : Pointer := new AnsweringMachine;

Listing 13.28: Task variables
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Every task object owns separate instances of the variables defined in the task
type. A new task object from a given task type is executing the instructions of
its body concurrently with any other object. Besides their own variables, a task
may also access any global variable defined outside of the task body which may
be a shared variable.

A task may also contain a discriminant section which parametrizes the type
(see Listing 13.29). The same rules apply for using a discriminant with a task
as when using them for arrays or record types. If a task has a discriminant, it
is evaluated at the instantiation of a new task object. During the lifetime of a
task object the value of its discriminant cannot be changed.

task type Identifier(Discriminant: Type) is
entry Declaration;

end Identifier ;

Listing 13.29: Task with discriminant section

The discriminant is a parameter that has influence on the execution of a
task object. While tasks of the same task type execute the same sequence of
instructions repeatedly, their discriminant is allowed to contain different values.
This execution of the tasks may also differ either at initialization (i.e. evaluating
the initial value of the discriminant) or during communication.

As an example (shown in Listing 13.30, we consider a task type that writes
data into an array. If the array is specified as a discriminant, the task objects
may work on different array instances with different types:

task type ArrayWriter(ArrayName: access String) is
entry Put(K : Character);

end ArrayWriter ;

Listing 13.30: Definition of ArrayWriter

A task with a discriminant cannot be a uniquely instantiated task. Instantiation
is done as the example in Listing 13.31 illustrates, where CharArrayName and
StringArrayName are two String variables:
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A: ArrayWriter(ArrayName => CharArrayName’Access);
B: ArrayWriter(ArrayName => StringArrayName’Access);

Listing 13.31: Definition of ArrayWriter

The body of a task may be replaced by the declaration shown in Listing
13.32.

task body Name is separate;

Listing 13.32: Definition of ArrayWriter

The declaration which denotes that the body of the task is in a separate source
file. In this case, the source file containing the actual implementation of the task
body must start with the separate(〈taskdeclaration 〉) line.

Starting and exeuting tasks

Execution of a task is defined by its body. The initial step of execution is the
starting of a task which includes the evaluation of its declarations.

Starting a task is done right after processing the declarations of the object
that introduced it, but before executing the first statement of the defining entity.

If the declaration is in a package specification, starting takes place after
processing the declarations. Task objects, declared either separately or as a
member of an object, and assigned by pointers, are instantiated when the pointer
is evaluated, after the initialization of the non-task typed components of the
enclosing object is finished.

If an error occurs when a task has started, the state of that task becomes
completed, and a Tasking Error is reported whose location is pointing right
before the first instruction of the program unit containing the definition of the
task or at the line that contains the pointer referring to the task. A task in
completed state cannot be restarted again.

Termination of tasks

A given task is connected to several other program units. All tasks are depending
on at least one parent, which may be another task, a code block under execution,
a subroutine or a package. This dependency is direct in the following two cases:

• The task (object), code block, subprogram or package which contains the
definition of a given task is considered as the parent of the task;
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• If the task was created by the evaluation of a pointer (allocator), the task
(object), code block, subprogram or package declaration of the concrete
access type is considered as the parent of the task.

If a task depends on a block or subprogram, it also depends on the task
executing the block, subprogram or package indirectly. If T1 task depends on
T2 task, then T1 is a descendant of T2 . This is a transitive relation: if T1 task
depends on T2 task, and T2 depends on T3 , then T1 depends on T3 as well.

A task becomes completed when it meets any of the following conditions:

• All its instructions in its body are executed correctly;
• When there was an error but the task did not had any corresponding

error handling;
• An error was raised and its handling was completed successfully and there

was no additional instructions after the error handling.

The abort yields to abnormal interruption of a task that stops its execution.
A task stopped this way cannot participate in any additional rendezvous which
may result in allocated but unreleased resources. A task stopped by the abort
statement is an abnormal task that becomes completed when it reaches the next
synchronization point (i.e. entry call, starting of a new task, finishing its activity,
any of the select, abort, delay statements, reaching either the beginning or end
of a corresponding exception handler or an accept block). A task is permitted
to stop itself (suicidal tasks).

A task terminates, if one of the following conditions exists:

• It is completed, and all of the tasks which depend on it are terminated;
• Its execution has reached a terminate statement, and the task depends

on a program unit that is completed (i.e. its execution is ended,21) and
all the tasks which depend on the parent are also terminated, completed
or waiting at a terminate statement.

• It got into an abnormal state by an abort call, has become completed and
has been removed from all waiting queues.

Task attributes

All tasks provide the following attributes:

TaskName’Callable: a boolean value which is false if the task has reached one
of the completed, terminated or aborted state; true otherwise (i.e. it is
able to answer to any call).

TaskName’Terminated : a boolean value which is true if the task is terminated;
false otherwise.

EntryName’Count: returns the number of awaiting accept calls for the specified
entry point.

21 The sole exception from this rule are packages.
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13.10.2 Entry, entry alls, aept statement

A task may define any number of entry points. A task communicates with
another task by calling its corresponding entry point (similar to function calls).

As we have mentioned before, the synchronization and data sharing between
tasks is done by entry calls in the first place. The declaration of an entry is similar
to the declaration of any subprogram, but it is allowed strictly within a task
definition. An entry point may have parameters like any subprograms, with the
same rules applied for the formal and actual parameters. An important difference
is, however, that an entry point is not allowed to declare an access parameter.
The specification of the entry point defines the direction of communication
upon entering and the possible messages (entries may have in, out or in out
parameters).

As an example, the Hello task in the example in the introduction of this
section has a message entry point that may be called by Hello.message(str),
where str is the actual parameter of the entry point.

Each entry is associated with at least one accept statement (entry and accept
coexist symmetrically) defining the sequence of instructions to perform on the
given entry call.

Using entry points tasks are able to directly communicate with each other.
If a task calls the entry point of another task which acknowledges the call,
a rendezvous is performed between the two tasks. If two tasks would like to
communicate in the form of a rendezvous, the first task reaching the rendezvous
point is suspended and waits for its partner.

When a task performs an entry call to another task which has not reached
the corresponding accept statement, its execution is suspended. By contrast, if
a task has reached an accept statement and there are no other tasks waiting at
a corresponding entry call, it is suspended as well.

If a task calls an entry point of another task, it waits until the other task
accepts its call, i.e. its execution must reach a corresponding accept statement
for the given entry point. Thus, a task calling its own entry point results in a
deadlock.

At an entry call when the called task reaches a corresponding accept state-
ment, the caller is suspended, and the body of the accept statement is executed.
This is how a rendezvous takes place between two tasks. After the processing of
the body of the accept statement, both tasks continue their work separately as
they have done before.

If there are multiple tasks calling on the same entry point while the receiver
task have not reached the corresponding accept statement, the calls are put into
a waiting queue. All entry is associated with a separate queue, where the tasks
calling the same entry are waiting in the order their call has arrived (it is a
first-in-first-out queue).

Each execution of the corresponding accept statement extracts the first ele-
ment of the queue. There are two ways how a suspended task could be removed
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from the waiting queue of an entry point: the receiver has reached a corre-
sponding accept statement, thus it extracts the task from the queue that was
waiting for the longest time for the communication (successful rendezvous); or the
timeout was reached for the given call, or the caller was abnormally terminated,
aborted (missed rendezvous). The number of tasks waiting at a given entry point
at a given instant of time is stored in its E ’Count attribute.

The Storage task (shown in Listing 13.33) is a simple example for the usage
of the accept statement. It can store a single element that is accessed both by
the Producer and by the Consumer tasks.

task body Storage is
T : Character ;

begin
loop

accept Put(C : in Character) do
T := C ;

end Put;
accept Pop(C : out Character) do

C := T ;
end Pop;

end loop;
end Storage;

Listing 13.33: Definition of Storage body

The accept statement is a statement inside the body of a task. For a single
entry point multiple accept statements may be defined. An incoming call is then
served by the first executed accept statement of the receiver.

The parameters of an accept statement are identical to the parameters of the
corresponding entry statement. Under a rendezvous, the tasks may communicate
through the actual parameters. If a parameter of an accept is declared as an
in parameter, its value is copied into the variable represented by the formal
parameter; if it is declared as an in out parameter, the result is copied back
to the variable represented by the actual parameter. Until the execution of the
accept block is finished, the execution of the caller task is suspended.

All the instructions that a task may execute outside of a rendezvous should
be put outside of an accept to let the caller task continue its work without
unnecessary waiting.

The accept statement is also usable to synchronize the execution of tasks. A
simple accept statement without parameters that has an empty body consisting
only from the null statement may enforce the caller to continue its work strictly
after the other task has reached a certain execution point or state. The accept
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statement of task T must be defined in the body of task T - it cannot be declared
in any of its subprograms, packages or tasks that is encapsulated within T .

It is important to note the differences between a method/function call and
a rendezvous. In the case of a method/function call, the body of the subpro-
gram becomes part of the caller. Local variables of the method/function are
represented by corresponding temporal variables within the caller. The same
subprogram may be executed by multiple processes, so different instances of
the same code block may be active at the same time (reentrancy). During
a rendezvous, two active processes are joined. The interaction is done in a
symmetric and synchronous way, when both of the participants are ready to
perform it. Mutual exclusion is automatically managed for the objects defined
in the declaration of a task.

Entry families

An entry declaration may also introduce a group of related entry points called an
entry family. An entry family is an array of entry points. They are declared by a
single entry point, and just like arrays, the entry points are indexed by a discrete
type. Outside of the body, the entry names must be referred by a qualified name,
where the prefix is the name of the task object. Another advantage of using entry
families is that the number of entry points is easily increased with the size of
the associated waiting queues. In the case of a single waiting queue the entry
calls must be accepted by using a first-in-first-out scheduling, but in the case
of multiple waiting queues alternative approaches might be implemented. The
example in Listing 13.34 demonstrates the declaration of a simple entry family:

type Discrete Type is Integer range 1 . . 5 ;
entry Family (Discrete Type) (Parameters);

Listing 13.34: Definition of an entry family

Calling the Family entry point is done by the following way, where Expression
must be a member of Discrete Type, as it is illustrated in Listing 13.35.

Family(Expression);

Listing 13.35: Calling the entry point
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The selet statement

A rendezvous makes the communication between two tasks possible, but its usage
might grow tedious. The reason is that a task must wait until someone does not
accept its call, and vice versa; if a task receives a message, it must wait until
someone contacts it with a message.

The select statement used together with the accept, delay and terminate

statements lifts the burden. It allows a task to wait and accept multiple messages,
thus makes managing rendezvous easier. It is also possible to define conditions
(guards) for the acceptance of certain messages. The select statement also offers
a convenient way for a task to terminate itself or to continue its own execution
if there were no incoming messages for a while (timeout).

Consequently a whole set of different rendezvous can be implemented in the
language with the combination of the select, accept, delay and terminate state-
ments. Examples include implementing selective activation of tasks, selective
waiting, conditional entry statements and timed entry calls.

13.10.3 Seletive handling of inoming messages

Let us suppose we need to print words and numbers into the console. In order
to prevent appearing the characters of the words and digits of the numbers
randomly on the screen, we have to implement mutual exclusion for the task
performing the printing (see Listing 13.36).

task Buffer is
entry PrintNumber(I : in Integer);
entry PrintString(K : in String);

end Buffer ;

Listing 13.36: Selective handling of messages

Using selective wait is easily done by putting an additional or statement
between the defined accept statements inside a select (13.37).

A task may contain multiple accept branches inside a select statement, and
these alternatives are separated by the or keyword, allowing a task to listen for
multiple entry calls at the same time.

In the example above, when the task reaches the select statement, it waits
for any of the embodied entries to be called. If any other task calls one of the
corresponding entry points, the corresponding accept alternative is executed. If
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task body Buffer is
begin

loop
select

accept PrintNumber(I : in Integer) do
put(Integer ’Image(I ));

end PrintNumber ;
or

accept PrintString(K : in String) do
put(K );

end PrintString;
end select;
new line;

end loop;
end Buffer ;

Listing 13.37: Selective handling of messages

the entry call was performed before the receiver reached the select statement,
the caller is suspended until the receiver is ready to accept the message.

If more than one entry points has a non-empty waiting queue within the same
select statement, the executed accept alternative is chosen in a non-deterministic
way.

Seletive waiting

By using selective waiting the execution of different select alternatives may
be associated with preconditions called guards. If one of the branches of the
select statement starts with a when condition => . . . definition, its execution
is guarded by the specified condition. This means that it can accept a message
only if the given condition is satisfied.

A branch is considered open if it has no associated guard (when), or the
specified condition is satisfied. Otherwise the branch is considered closed.

Guard conditions are evaluated only once when the execution encounters
the select statement. A task may accept messages only for its open branches;
execution of closed branches is prohibited. Re-evaluation of the guard conditions
requires another execution of the corresponding select statement which can be
achieved by, for example, a delayed execution of the select statement in a loop.
It is important to note, however, that if there are no open alternatives, and a
selective wait is executed, a Program Error is raised.
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The terminate alternative

In most cases activities of a task are defined by a selective wait within a loop.
This means that if there are no terminate alternatives specified, the task never
ends – it never passes the execution to any other program unit. Similarly,
the unit containing the definition of the task object also runs forever. The
terminate alternative of the select statement ensures the termination of the
task execution. The terminate alternative may also be defined with a guard in
the form of when 〈condition 〉 => terminate.

A task defined this way executes the terminate alternative when it has
accepted all the incoming entry calls defined by its specification (i.e. all of its
entry waiting queues are empty). Listing 13.38 shows an example.

select
accept AcceptMessage(X : in Message) do

−− . . .
end A1 ;

or
accept SendMessage(Y : out Message) do

−− . . .
end A2 ;

or
−− The task terminates if there are no incoming messages to process
terminate;

end select;

Listing 13.38: Termination alternative

The delay and the abort statements

The delay t statement suspends the execution of the task for at least t seconds.
In Ada, the main program is also defined as a task. This means the delay

statement may be executed outside a task definition which results in the suspen-
sion of the main program. To specify time, Ada provides a real Duration type
and the Calendar package to handle dates. Using a delay statement within a
selective wait makes it possible to delay the execution by the specified amount
of time in the task before progressing further (or trying to execute guarded
alternatives again in a select within a loop). The specified delay is evaluated
from the execution of the select statement, and the delay alternative may also
be associated with a guard condition.

The abort T statements puts the task into the previously described abnormal
state. While in this state, a task may neither accept nor initiate a rendezvous.
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The aborted task becomes completed when it reaches the next synchronization
statement as discussed before.

The else alternative

Another possible alternative for selective wait is the else statement. The select

statement executes the instructions of the else alternative when none of the
previous entry calls could have been served at the given instant of time (i.e.
there are incoming calls for the alternatives but they cannot accept the call
temporarily because of their guard preconditions, and/or because there are no
incoming calls for the open alternatives).

The selective wait must contain at least one branch that contains an accept
statement, and in addition, it may have a branch that contains any of the delay,
terminate or else alternatives.

Entering a select statement defines the open alternatives by evaluating the
preconditions. In the next stage, one of the open alternatives (or if there are
only closed ones, the else alternative) is executed. Then, the selective wait is
considered as executed. If there are multiple open alternatives, the selection is
done based on the following rules:

• If there is an open accept alternative where a rendezvous may be initiated,
that one is chosen;

• If there is no open accept alternative, an open delay alternative is chosen;

• The else alternative is chosen strictly if all the other alternatives are
closed;

• The terminate alternative cannot be chosen until a selective wait has a
non-empty entry waiting queue.

Following is an example code for selective waiting:
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task body Resource is
Locked: Boolean := False;

begin
loop

select
when not Locked => accept Lock do

Locked := True;
end Lock;

or
accept Unlock do

Locked := False;
end Unlock;

or
terminate;

end select;
end loop;

end Resource;

Distinct accept statements may be nested, and the body of an accept state-
ment may just as well contain an entry call (nested rendezvous).

By contrast, additional rendezvous for the same entry point that is being
executed cannot be initiated (i.e. accept statements for the same entry point
cannot be nested into each other). The main reason is that a long delay may
precede the incoming message for the nested rendezvous which implicitly delays
the execution of the enclosing rendezvous (hidden waiting). It is a good practice
to avoid nested rendezvous, and if unavoidable, make them guarded.

Conditional entry all

In the previous sections we have described how a task can answer different entry
calls selectively, but it is also possible to call the entry points of a task based on
certain conditions.

In order to prevent overtly long waiting for the acceptance of a submitted
entry call, a conditional or a timed entry call is the right solution. However,
it is best not to use conditional entry points inside loops (cf. busy waiting) for
performance reasons. Calling multiple entry points is not supported, but polling
can be applied instead.

As it is demonstrated in Listing 13.39, a conditional entry call is a select
statement with an entry and an else alternative. The entry call is processed if the
rendezvous may be initiated instantly, otherwise the else alternative is executed
(this may have several reasons, e.g. the execution of the counterpart has not
reached the required accept statement yet, the accept is a closed alternative,
or the required entry point has a non-empty waiting queue).
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procedure TryLocking(R: in Resource) is
begin

loop
select R.Lock;
else null; −− Waiting for resource release
end select;

end loop;
end TryLock;

Listing 13.39: Example for conditional entry call

Timed entry all

A timed entry call is a select statement with two alternatives: the actual entry
call and a delay statement. The entry call is processed if the rendezvous can be
initiated instantly. Otherwise the delay alternative is executed postponing the
required (but currently unavailable) operation that cannot be done at the given
instant of time, see the example below for its usage.

select
Server.SetUser(user, password);
put line("Login completed.")

or
delay 4.0 ;
put line("Server was busy, trying again.");

end select;

13.10.4 Exeption handling

Task-related exceptions reported based on the following rules:

• When there is an error during the initialization of a task, a Tasking Error
is reported in its parent;

• When an entry call was made on an abnormal, terminated or completed
task, a Tasking Error is reported in the caller;

• An exception raised within a rendezvous that was not handled is reported
both in the caller and the receiver tasks.

13.10.5 Examples

Mutual exlusion

In the introductory section of this chapter we have seen that mutual exclusion
is a vital tool in concurrent programming to ensure exclusive access to a shared
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resource for a single process. In the Ada programming language this can be
implemented in several straightforward ways.

In the first example (13.40) the shared resource is defined within the task,
where T is a previously defined type, and Shared is the name of the shared
object.

task SharedVariable is
entry Write(X : in T );
entry Read(X : out T );

end SharedVariable;

task body SharedVariable is
Shared: T ;

begin
loop

select
accept Write(X : in T ) do

Shared := X ;
end Write;

or accept Read(X : out T ) do
X := Shared;

end Read;
or terminate;
end select;

end loop;
end SharedVariable;

Listing 13.40: Sharing resources within tasks

The shared resource may well be a global variable. In this case mutual
exclusion must be implemented explicitly by using a semaphore. Next we provide
a simple implementation for the conventional P and V methods, where only the



13.10 Ada

•
763

first caller task may enter the protected code (binary semaphore).

task type Semaphore is
entry P;
entry V ;

end Semaphore;

task body Semaphore is
begin

loop
accept P;
accept V ;

end loop;
end Semaphore;

Using a shared resource properly requires locking it first (i.e. calling the P
method on the associated semaphore), and releasing it after the task has finished
processing it (i.e. calling the V method on the associated semaphore), as shown
in Listing 13.41. This way mutual exclusion is provided for the common resource.

Shared: T ;
S : Semaphore;

begin
. . .
S.P;
Shared := F(Shared); −− Updating the variable
S.V ;
. . .

end

Listing 13.41: Providing mutual exclusion by a semaphore

The semaphore used for global variables (or client-side locking in general) is
not a safe synchronization method. If there is a single place in the codebase where
any of the semaphore methods have been omitted by accident when accessing
the shared resource, the program starts producing nondeterministic bugs.

Produers-onsumers example

Let us take a look on a naive implementation of the producers-consumers exam-
ple in ADA as shown in Listing 13.42 (for its description, see Section 13.9.1).
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with Shared Queue;
package Int Shared Queue is new Shared Queue(Integer, 128 );

task body Producer is
C : Integer ;

begin
loop

−− Producing the new C element. . .
Int Shared Queue.Queue.Put(C );

end loop;
end Producer ;

task body Consumer is
C : Integer ;

begin
loop

Int Shared Queue.Queue.Pop(C );
−− Consuming the extracted C element. . .

end loop;
end Consumer ;

Listing 13.42: Solving the producers-consumers problem

The produced but not processed data is stored in a queue that is accessible
for both the producer and the consumer tasks with mutual exclusion. Handling
such a queue is demonstrated in Listing 13.43.

Proteted objets

Protected objects [Nyek98] contain data that is accessible in a task through a
set of predefined protected methods. They offer a convenient solution without
the need for explicit mutual exclusion. The protected members must be defined
within the private section of the specification.

Three kind of subprograms can be exported from a protected module -
namely, protected procedures, protected functions and protected entries. A pro-
tected entry is similar to a guarded entry point of a simple task. If the specified
precondition is true, the caller task executes the body of the entry point. If
it is false, the caller is put into a waiting queue for the given entry call until
the specified precondition is satisfied just like in the case of tasks. The protected
procedure has read and write access to the variables defined in the private section
of the specification. When a task calls a protected procedure, no other task is
allowed to access the private variables, i.e. there is no need for explicit mutual
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generic
type Elem is private;
Queue Length: Natural;

package Shared Queue is
task Queue is

entry Put (D: out Elem);
entry Pop (D: in Elem);

end Queue;
end Shared Queue;

package body Shared Queue is
task body Queue is

type P is new Natural range 0 . . Queue Length;
subtype Actual Storage is P range 1 . . P’Last;
Storage: array (Actual Storage) of Elem;
Counter : P := 0 ;
Inx, Outx: Actual Storage := 1 ;

begin
loop

select
when Counter > 0 =>

accept Pop (D: out Elem) do
D := Storage(Outx);

end Pop;
Outx := Outx mod P’Last + 1 ;
Counter := Counter − 1 ;

or
when Counter < P’Last =>

accept Put (D: in Elem) do
Storage(Inx) := D;

end Put;
Inx := Inx mod P’Last + 1 ;
Counter := Counter + 1 ;

or terminate;
end select;

end loop;
end Queue;
end Shared Queue;

Listing 13.43: Solving the producers-consumers problem by using a shared queue

exclusion on the shared data. Protected functions have only read access for the
private variables, therefore a protected functions may be executed by multiple
tasks at the same time.
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A protected entry point differs from a protected procedure in two ways: it
has an additional waiting queue and it must have a guard condition.

Protected objects provide a convenient and easy way to solve several problems
and to build up the required synchronization architectures in an inherently
concurrent environment. The example in Listing 13.44 demonstrates how a
binary semaphore could be implemented by a protected object.

protected type Resource is
entry Lock;
procedure Unlock;

private
locked: Boolean := False;

end Resource;

protected body Resource is
entry Lock when not locked is

begin
locked := True;

end Lock;
procedure Unlock is

begin
locked := False;

end Unlock;
end Resource;

Listing 13.44: Example for protecting objects

The usage of semaphores is shown in Listing 13.45.

Printer : Resource;
begin

Printer.Lock;
Print;
Printer.Unlock;

end program;

Listing 13.45: Example for protecting objects with semaphores

A protected unit may also define an entry family. The example in Listing
13.46 demonstrates how to use entry families to handle prioritized messages,
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where the Console always prints the most important message to the standard
output.

type Priority is (High, Medium, Low);
protected Console is

entry Message (Priority) (Text: in String);
function CanPrint (Actual : Priority) return Boolean;

end Console;

protected body Console is
entry Message (for Actual in Priority) (Text: in String)

when CanPrint(Actual) is
begin

Put Line(Priority’Image(Actual) & Ascii.HT & Text);
end Message;

function CanPrint (Actual : Priority) return Boolean is
HigherPrior : Priority := Priority’Last;

begin
while HigherPrior > Actual loop

if Message(HigherPrior)’Count > 0 then
return False;

end if ;
HigherPrior := Priority’Pred(HigherPrior);

end loop;
return True;

end CanPrint;
end Console;

Listing 13.46: Example for handle prioritized units

Tasks using the Console object defined above can send messages to the standard
output in the following way, where each member of the entry family has a
separate waiting queue:

Console.Message(High)("Minima maxima sunt");

It is possible to create protected objects and protected types in the same
manner as how task objects and task types are declared.. A protected object can
be instantiated statically (through a variable definition) or dynamically (through
an allocator) from a protected type. The sole difference between the definition
of a protected type and a protected object syntactically is the presence of type
after the protected keyword.
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Protected type declarations might also have discriminants for which the same
rules apply as for records: the discriminant may either be a discrete type or
a pointer definition. The example in Listing 13.47 shows another semaphore
definition with a discriminant this time:

protected type Semaphore ( Max: Positive := 1 ) is
entry P;
procedure V ;

private
Nr : Natural := 0 ;

end Semaphore;

protected body Semaphore is
entry P when Nr < Max is
begin

Nr := Nr + 1 ;
end P;

procedure V is
begin

Nr := Nr − 1 ;
end V ;

end Semaphore;

Listing 13.47: Defining semaphores with discriminants

13.11 CSP

The CSP (Communicating Sequential Processes) is a language described by
C. A. R. Hoare in 1978 [Hoa78]. An updated version of the language is described
in [Hoa85]. It is important to note that originally CSP was invented as a formal
notation: an academic approach to describe, simulate, and most importantly,
to allow reasoning (i.e. the notation permits to formally provide the deadlock-
freeness) about concurrent systems, but without many practical implementation
features. There is considerable literature on the concept and the features of the
language, but implementations have been rare. Today, there are several CSP-like
implementations, frameworks and domain specific languages, like C++CSP for
C++, CSP.NET for the .NET platform, JCSP for Java, PyCSP for Python and
Agent for Ruby.

In addition the language is important as it has had a great influence on
numerous upcoming languages and approaches like Occam (which was based
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on CSP), Ada, Google’s Go and Linda-systems. Moreover, before 2006, Hoare’s
book was the third most cited computer reference book of all times, states the
Citeseer22 database. Thus, the language definitely deserves some attention.

CSP considers the input/output statements as elementary language con-
structs (like the assignment operator for instance). To handle communication
between concurrent processes, input/output operations have a short and ele-
gant notation. The input operations are done by the ? operator. The following
example:

p2 ? msg()

means that process executing an input operation is waiting the arrival of the
msg() message from the p2 process. The pair of the input operator is the output
operator which is denoted by the ! symbol. The usage is similar:

p1 ! msg()

which means that the process executing the output operation is sending the
msg() message to the p1 process through an abstract channel. Communication is
done in the form of rendezvous between the p1 and p2 processes, where the latter
process declares the former as the receiver of the message (output operation),
and the former declares the latter as a possible sender of the message (input
operation).

The communication is synchronous and the process executing the first oper-
ation must wait for its counterpart. Until the proper operation is executed on
the other side, the process is blocked. The communication is done by pattern
matching. The sent and received messages match and are acceptable only if the
names of their constructors are identical respectively, i.e. they are from the same
type. In the previous two examples the same compound variable has been present
having an empty expression list, whose constructor was the msg identifier.

The input/output operation is unsuccessful if the specified sender or receiver
process is already terminated.

The additional operators and language constructs in CSP are the following
ones. To handle nondeterminism, prefixing is an important operation that con-
sists of two parts, an event (channel guards) and a sequence of statements. The
event definition may contain both a boolean condition and an input statement.
The specified sequence of statements can be executed only if the given precon-
dition is true, or if an input operator is specified, and the sender process has not
terminated yet, and it is ready to send the required message. Output operations
are not allowed in event definitions. In the following example:

p ? msg1() −→ p ? msg2()

when the p process receives a msg1 message, then it receives a msg2 message
afterward. Subsequently, the acceptance of the first msg1 message is the precon-
dition for the acceptance of the second msg2 message.

22 http://citeseerx.ist.psu.edu
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The interleaving operator (| |) is used to describe simultaneous execution of a
sequence of statements. These statements are arbitrarily interleaved in time. The
processes are started at the same time, and the interleaved statement ends when
all of its parallel components are terminated. The processes are independent
of each other and are prohibited to use shared variables (i.e. none of them is
allowed to use a variable reference that appears at the left side of an assignment
operator in any other process).

The choice statement ([ ]) consists of a finite number of event definition,
like (α1 -> p1 [ ] α2 -> p2). It describes an event on whose execution any
one of its components whose precondition is satisfied may be executed non-
deterministically. If none of the preconditions are satisfied, the operation does
not have any effect. If all of the components whose precondition is true have
an input operation that specifies a process that is not ready to send its input
(and is not yet terminated), the execution of the choice statement is suspended
temporarily.

The iterative statement (*) consists of choices. The enclosed choice state-
ments are executed sequentially after each other until the defined guard condition
is true, and the statement is terminated when it becomes false.

The statement sequences may also be addressed with labels. If the label is
defined with an interval, like:

p(i:0..4)::P

then a sequence of P processes starts executing the same set of instructions, but
in this time substituting the i variable with the corresponding element of the
specified interval.

Example: Dining philosophers problem

As an example, let us consider a CSP solution for the dining philosophers
problem. This particular implementation was made by Dan Richardson on the
basis of Hoare’s CSP book [Hoa04].

PHIL = *[ ...During n’th lifetime

THINK;

room!enter();

fork(i)!pickup();

fork((i+1) mod 5)!pickup;

EAT;

fork(i)!putdown();

fork((i+1) mod 5)!putdown();

room!exit();

]

FORK = *[ phil(i)?pickup() -> phil(i)?putdown();

[] phil((i-1) mod 5)?pickup() -> phil((i-1)mod5)?putdown();

]
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ROOM = occupancy:integer; occupancy = 0;

*[ (i:0..4)phil(i)?enter() -> occupancy := occupancy + 1;

[]

(i:0..4)phil(i)?exit() -> occupancy := occupancy - 1; ]

MAIN = [room::ROOM || fork(i:0..4)::FORK || phil(i:0..4)::PHIL].

The implementation details deserve a closer look. In the definition of the ROOM

process the precondition to enter the room is the value of the occupancy variable
that must be lower than four. This way the case when all the philosophers enter
the room simultaneously is avoided. This is important because in the case when
the room is full and all the philosophers get the fork on their left for example
at the same time could lead to a deadlock – a case when processes are infinitely
waiting for each other. Such situations are ruled out this way for this particular
implementation.

13.12 Oam

The Occam [Bar92] programming language was specifically designed to support
the development of concurrent applications. An application constructed by this
particular language can be imagined as a collection of concurrently executed
processes.

As it has been emphasized several times in this chapter, in the world of
concurrent programming one of the most important issues is how communication
is implemented between the processes. In Occam, communication is done through
unidirectional channels (simplex communication) without buffering. The type
of the channel (i.e. the type of message structures sent through the channel)
is specified by the channel protocol at the declaration of the channel. These
properties come from the strictly typed aspect of the language. Communication
is implemented by the means of two basic operations. One of them is the output
operation which is used to write a value on one side of the channel. The output
operation waits until a proper input operation reads and removes the written
value from the channel. The general form of the operation is shown in Listing
13.48.

channel ! expression

Listing 13.48: Writing a value on a channel

The other important operation is the input operation which reads a value
from the channel and puts it into a variable with a proper type. Just like the
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output operation, the input operation also waits until it is able to read the
required message from the channel. Listing 13.49 shows the general form of the
operation.

channel ? variable

Listing 13.49: Reading from a channel

Let us now examine which types are used for message passing and for the
declaration of channels. The available primitive types include BOOL, BYTE, and
integer and real values represented on 16, 32 or 64 bits named by INT16/32/64

and REAL16/32/64, respectively. As an example, declaration of an INT32 variable
is done in Occam as the code in Listing 13.50 demonstrates.

INT32 x:

Listing 13.50: Declaring a variable in Occam

Accordingly, the declaration of a simple channel whose identifier is inchannel

used to communicate 32 bit integer values looks as follows (see Listing 13.51).

CHAN OF INT32 inchannel:

Listing 13.51: Declaration of a channel for 32 bit integers

In the most recent version of the Occam language (Occam 2.1 was defined
in 1994, while Occam-π was introduced in 2006) it is possible to define complex
data structures, like literals, array and record constructs with the possibility
of channel retyping. This new language element makes it possible to define a
channel for instance that can be used to send a string whose length is defined
only at the call site. The following example defines a simple channel used to
transfer an integer value (the length of an array) and a series of elements:

CHAN OF INT::[ ]BYTE inchannel:

Listing 13.52: Defining a channel for transferring an integer
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The output operation may look like the following, for instance:

inchannel ! 4 :: "Long Message"

Listing 13.53: Sending a message through the channel

while the input operation may receive the message as follows:

inchannel ? length::array

Listing 13.54: Receiving the message

In the examples above, variable length receives the value of 4 while the array

variable receives the ’’Long’’ message (the first 4 elements of the corresponding
input).

After discussing the basic concepts of communication, next we will show
how simultaneously running processes may be defined. The first step is to take
a look on how two processes are bound together. The simplest composition is
done by the SEQ keyword which ensures the sequential execution of the specified
instructions:

SEQ

screen ! "Input character: "

keyboard ? char

screen ! char

screen ! cr

screen ! lf

The example above reads a character from the standard input and echoes it back
to the screen followed by a carrige return and a newline character.

A more interesting building block is the composition of statements by the PAR

keyword which results in the concurrent execution of the specified instructions:

WHILE next <> eof

SEQ

x := next

PAR

in ? next

out ! x*x
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The short example above first assigns the value of the next variable to x.
Then it concurrently updates the value of the next variable from the in channel
while writing the value of x*x into the out channel at the same time. These
statements are repeated until the value of next does not contain the end of file
character.

It is important to note that in parallel execution, a variable whose value is
updated in any of the processes (either through an assignment operator or in
an input operation) cannot be referred to in any other concurrent process. This
rule makes the following example erroneous:

PAR -- This composition is erroneous!
error := 42 -- The error variable is used. . .
ch ? error -- . . . for multiple concurrent processes.

Similarly, a channel that is used during an input operation cannot be used
in an input operation within another process. The same stands for channel
variables used in output operations. Another demonstrative erroneous example
is the following:

PAR -- This composition is erroneous!
ch ! 0 -- The ch channel is used in an output operation. . .
SEQ

ch ? x

ch ? y

ch ! 1 -- . . . within multiple concurrent processes.

When it comes to concurrent execution, it is common to execute the same
sequence of instructions repeatedly. The PAR construction (along with SEQ, ALT

and IF) has a special syntax for this common case embedding a FOR statement
called replicated processes. The left and right hand side variants of the following
example are identical.

PAR i = 1 FOR 4 PAR

user[i] ! message user[1] ! message

user[2] ! message

user[3] ! message

user[4] ! message

The ALT control flow statement is another interesting construction, similar
to the choice statement of the CSP programming language. This language
element is used commonly in situations, when for example there are multiple
input channels, and the result of the output channel is depends on which input
channel was the source of the data.

ALT

〈boolean condition 〉 & in1 ? next

out ! x*x

in2 ? next
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out ! x+5

As the example above illustrates, a boolean condition may be associated to
the guard precondition, just like in the CSP programming language.

When the alternatives are identical, the FOR statement may be used with
the ALT composition as well, similarly to the PAR keyword. The left and right
handside variants of the following example are identical.

ALT i=1 FOR 3 ALT

in[i] ? next in[1] ? next

out ! next out ! next

in[2] ? next

out ! next

in[3] ? next

out ! next

13.13 MPI

MPI (Message Passing Interface) [MPI94] is a standard specification for defining
communication based on messages between different applications, algorithms or
subprograms. It is implemented by various programming languages such as C
[KR89] or Fortran 77 [LV77] to support low-level parallelism. In this chapter,
we deal with the implementation in C, therefore the code samples are written
according to C syntax. The main purpose of MPI is to solve inter-thread point-
to-point communication, to handle tasks in groups and to organize them in a
graph of Cartesian topology. As most of the MPI functions operate on variables,
not on defined types, we have to specify their type as another argument. All
of the standard basic types such as int or char have their proper identifiers,
for instance int type is specified by MPI INT, char type is done by MPI CHAR.
Complex, or self-defined data types must be converted to MPI derived data types
by MPI Type create struct function.

As MPI 1 standard does not define methods for starting tasks, in its concept a
task means a stand-alone applications which are going to be executed in parallel.
Specification of MPI 2 solves many restrictions of the previous version. It allows
to create tasks after starting the application, and thus it extends the concept of
a task by allowing also subprograms to be executed as a different task. Another
great improvement of the MPI 2 standard is that it provides an opportunity for
communicating tasks which are not in any relation to the graph topology (in
MPI 1 the communication was restricted to parent-child-related tasks).

MPI ontrol methods

To be able to use MPI functions, at first we have to initialize the MPI library
itself by calling the MPI init function, and since MPI deals with command
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line arguments, we must specify them as parameters. In the case of normal
termination the allocated resources are freed by using MPI Finalize method.
Otherwise, in the case of an error, a task or a group of tasks can be interrupted
by the MPI Abort method.

Creating tasks

There are two methods for creating MPI tasks. Both allocate a given maxprocs

number of processors and execute the applications with the specified argv pa-
rameters, then create communication possibilities among them, and finally re-
turn an external communication environment (MPI COMM WORLD). The only dif-
ference between these methods that is while MPI Comm spawn can be used to
start one program in several instances, MPI Comm spawn multiple starts differ-
ent applications, or the same application but with different input parameters.
Consider the following example of starting two applications.

char *array of commands[2] = {"prog1", "prog2"};

char **matrix of argv[2];

char *argv0[ ] = {"-gridfile", "ifile.grd", (char *)0};

char *argv1[ ] = {"ifile2.grd", (char *)0};

matrix of argv[0] = argv0;

matrix of argv[1] = argv1;

MPI Comm spawn multiple(2, array of commands, matrix of argv, . . .);

Groups

To avoid code repetition and to ensure more flexible code optimization, processes
can be organized into groups. By definition groups are ordered set of tasks, in
where all tasks can be identified within the group by an index starting from
0. It can be done by connecting a pair of a group identifier and a sequen-
tial number to the tasks, which refer to the task unequivocally. Group ID,
which can be referenced to as a variable with MPI GROUP type can only be
used inside of the tasks and cannot be given to another task. There are two
other types in relation to the groups: MPI GROUP EMPTY denotes the empty
group, while MPI GROUP NULL denotes the non-existing group. Although
one pair of a group ID and a sequential number identifies a task, a task can
have membership in several groups, so it can have multiple pairs associated
with it. All of the set operations can be performed on groups obtaining new
ones. For example we can have the intersection (MPI Group intersection), union
(MPI Group union), subtraction (MPI Group difference) of two groups; we can
also add (MPI Group incl method), or remove (MPI Group excl) a task to/from
the group.
Groups can be compared (MPI Group compare), their size (i.e. how many pro-
cesses are in the group) can be retrieved by the MPI Group size method, or we
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can get the sequential number of a given task in the group (MPI Group rank).
Groups can be freed by MPI Group free method.

The concept of communication environments is motivated by the need for
separating the functional code of a task from its communication with the out-
side world. With this concept we can define different message communication
levels that enable us to create and handle message channels separately from
each other for more tasks. A communication environment can be set for a
group only. MPI Comm group method returns a group associated with a given
communication environment.

Communiation methods

Basic communication methods implement unidirectional, ordered point-to-point
communication. Besides that, communications can be classified in accordance
with the usage of temporary storage (yes or no), synchronization (synchronous
or asynchronous), by behavior (blocking or non-blocking) and the level of com-
munication (single tasks or groups). The concept of synchronization in MPI
terminology means that if task A sends a message to task B with synchro-
nization, task A must wait until B starts a receiver method, but not until the
end of it, therefore it cannot guarantee the completeness of messaging. Correct
synchronized mode can be achieved if we apply blocking communication methods
both for sending and for receiving a message. The most simple method called
MPI Send implements a blocking, asynchronous communication without using
temporary storage. It is capable of sending a vector of data with a given type.
Other methods which provide communication in different ways have the same
signature that is, they are different in their names only. MPI Bsend method
implements data transfer using a temporary storage, which means the successful
transfer does not follow necessarily from the end of the method since the data
itself can be stored temporarily.

Synchronous communication can be done by MPI Ssend method. But, as we
have mentioned before, it does not mean real synchronization since the method
will not be blocked until the message receiver method ends; it waits until the
receiver starts to work.

MPI Rsend implements the so-called expected communication, where its call-
ing can be successful in one way: if and only if the receiver has already executed
an MPI Recv method, so mainly it is waiting for the message. Otherwise it
returns with undefined result.

Non-blocking communication methods can be separated to two parts: one
which initializes the communication while the other is for checking its end. It is
a practical solution if the communication itself takes a long time, and instead of
waiting, the sender and receiver tasks can process other instructions.

MPI Isend method is responsible for sending messages in non-blocking way.
It differs from its analogous blocking method in its last MPI Request parameter.
The method initializes the given MPI Request structure to store the properties
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of messaging running in the background which enables the programmers to check
the current state of the transfer, to collect information about its successfulness
and to check whether an error has occurred. After initialization the method
returns, but does not terminate further processes (real messaging, updating the
status structure) that are being executed in the background concurrently with
the execution of the program’s other part. Modifying the message to be sent
during the transfer is inexpedient since the system reads it non-determinately.

Non-blocking messaging has additional versions, e.g. MPI Ibsend method
works with temporary storage, while MPI Issend implements synchronized com-
munication, and MPI Irsend implements expected communication.

For non-blocking receiving, we can use MPI Irecv method, which differs from
MPI Recv in its last MPI Request parameter only.

Non-blocking messaging requires the ability to check the status of the running
methods. MPI provides more opportunities for this: MPI Wait method blocks
the execution until the given method finishes, MPI Test works without blocking
the execution and checks if the messaging has been finished.

MPI contains methods for receiving data sent by any sending methods. For
instance, the MPI Recv method is capable of getting messages sent by using
blocking communication methods. Although the type and the source of the
message may be specified, it may be specified using MPI ANY SOURCE, or
MPI ANY TAG parameters to accept messages from any tasks or with any type.
Status information about the received messages can be retrieved from status pa-
rameter which has predefined fields to store the source task id (MPI SOURCE),
the type of the message (MPI TAG), and the success-fulness of the reception
(MPI ERROR).

Communiation in groups

In addition to point-to-point communication, MPI provides possibilities for com-
munication across the groups (hereafter: group communication), which means
that more tasks contribute to the communication and all of them must call
the methods at the same time. Methods for group communication implement
simple algorithms that may be achieved by using methods introduced above,
but these new ones have simpler signature, are completely separated from other
communication methods, and are executed faster than the composition of the
original point-to-point methods.

Among others, group communication methods implement functionalities of
synchronization, collect data or broadcast messages. MPI Barrier can be used to
synchronize multiple tasks, collect data from tasks or broadcast messages to all
tasks. The method is blocked until all of the tasks using the given communication
environment does not call the same barrier method.

Collecting data from a set of tasks is one of the main objects in the case of
distributed applications. MPI Gather provides this functionality. All tasks send
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a certain amount of data collected in a vector. The place of the data item is
identified by the index of the sender task.

With the MPI Scatter method we can distribute a vector of data among
tasks in a given communication environment by index. For example, data in ith
place of the vector are going to be sent to the task with i.

MPI Alltoall can be used to broadcast different data from all tasks to all
others in the same communication environment. Technically, it is identical to
the parallel execution of the MPI Gather and MPI Scatter methods.

In addition these basic methods described in detailed before, MPI 2 specifi-
cation provides other functionalities (e.g. MPI 2 allows communication between
tasks which does not have common communication environment; it allows com-
munication by remote memory access).

A simple MPI example is shown as a next example. This application starts
n tasks and all of them send its unique id and the number of the tasks to task
0.
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#include <stdio.h>

#include <mpi.h>

main(int argc, char *argv[ ]) {

const int tag = 42;

int id, task number, code id, collector id, error, i;
MPI Status status;

int msg[2];

error = MPI Init(&argc, &argv);

if (error != MPI SUCCESS) {

printf ("MPI initialization error!\n");

exit(1);

}

error = MPI Comm size(MPI COMM WORLD, &task number);

error = MPI Comm rank(MPI COMM WORLD, &id);

if (task number < 2) {

printf ("At least 2 processors required for this program\n");

MPI Finalize();

exit(0);

}

if (id == 0) {

for (i = 1; i < task number; i++) {

error = MPI Recv(msg, 2, MPI INT, MPI ANY SOURCE,

tag, MPI COMM WORLD, &status);

code id = status.MPI SOURCE;

printf ("Received message %d %d from task %d

\n", msg[0], msg[1], code id);

}

} else {

msg[0] = id;

msg[1] = task number;

collector id = 0;

error = MPI Send(msg, 2, MPI INT, collector id,

tag, MPI COMM WORLD);

}

error = MPI Finalize();

if (id == 0) printf ("End.\n");

exit(0);

}

13.13.1 Case study: Matrix multipliation

In order to demonstrate language constructs which support concurrency, we
consider a case study of matrix multiplication. We would like to multiply three
matrices called A, B and C. For simplicity their dimensions are 3 ∗ 3. Since
multiplication on matrices is an associative operation, theoretically, this problem
can be solved in two steps. First, we count multiplication of A and B, and then we
multiply the result matrix and C to get multiplication of all the three matrices.
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In all the examples below we denote matrix A by matrixA, B by matrixB and
C by matrixC, and their values in this case are the following:

matrixA :=





1 2 3
4 5 6
7 8 9





matrixB :=





2 3 4
5 6 7
8 9 1





matrixC :=





3 4 5
6 7 8
9 1 2





13.14 Java

There are three mayor ways to implement codes with paralellization in Java
- namely, by implementing Runnable interface, extending Thread class or by
implementing a Callable interface which is similar to Runnable, but can return
a value and can throw exceptions.

The Runnable interfae and the thread lass

Since Java does not support multiple inheritance, when implementing interfaces
we are still able to extend our class from another one. Another advantage of
using Runnable interface is that they can be restarted anytime independently of
each other implementation. A simple implementation of Runnable class is shown
in the next code snippet:

public class SimpleRunnable implements Runnable {

public void run() {

System.out.println("New runnable started.");

}

}

Separating and executing the example above can be done by defining the
class to extend Thread :

public class SimpleThread extends Thread {

public void run() {

System.out.println("New thread started.");

}

}
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Similar to Runnable interface and in case of main methods, the core algorithm
must be implemented in a run() method in classes extending Thread as well.
After starting a thread, this method will be executed once, which means that the
thread class itself must implement a way of long-time execution. For instance it
can be done by starting infinite loops, and within it by creating an exit point
by an interrupted condition. Among other functionalities, Thread class offers a
possibility for controlling these issues by high-level methods detailed in the next
table:

Method name Return value Description
currentThread() Thread Returns a reference to the

thread object currently being
executed.

getState() Thread.State Returns the state of this thread.
interrupt() void Interrupts this thread.
isAlive() boolean Tests if this thread is alive.
isDaemon() boolean Tests if this thread is a daemon

thread.
isInterrupted() boolean Tests whether this thread has

been interrupted.
join() void Waits for this thread to

terminate.
setDaemon(boolean
on)

void Marks this thread as either a
daemon thread or a user thread.

sleep(long millis) void Causes thread to sleep
(temporarily cease execution)
for the specified number of
milliseconds.

start() void Causes this thread to begin
execution; the Java Virtual
Machine calls the run method of
this thread.

yield() void Causes the currently executing
thread object to temporarily
pause and allow other threads
to execute.

Table 13.1: Most important methods of the Thread class

As it can be seen in the next code example, starting threads, or Runnable
objects are not very different, since Runnable object can be wrapped within
Thread by specifying it as a constructor parameter. However, there is huge a
difference among their process, since creating a thread means creating a defined
object with separated memory allocation in line with the terms of object-oriented
programming theory. Importantly, if we create a thread using Runnable imple-
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mentations multiple times, the runnable object will be shared among the different
thread objects.

SimpleThread thread = new SimpleThread();

thread.start();

SimpleRunnable runnable = new SimpleRunnable();

Thread runnableThread = new Thread(runnable);

runnableThread.start();

It is important to note, however, that there is another possibility to create
tasks by creating objects of Callable class. It differs from the Runnable class in
only one respect - that is, its objects can return a value, while objects of the
Runnable class cannot do it explicitly.

Creation of Thread objects is a relatively time-consuming process, therefore,
however if we would like to use it for simple tasks (e.g. to exploit multiple
cores without possibility of interference) implementing Runnable interface is
suggested. On the other hand, if functionalities could be implemented conve-
niently by functionalities of Thread objects, we need to take care about their
optimal management. As we can see on the next pages, Java supports these
thread management concepts in many ways.

Now let us have a look at an example that implements the Matrix mul-
tiplication problem mentioned above to illustrate the usage of threads from
different aspects. This example will be modified incrementally as we introduce
new features of parallelization in Java.

public static int[ ][ ] Multiply(int matrixA[ ][ ],int matrixB[ ][ ]) {

int matrixR[ ][ ] = new int[3][3];

for (int i=0;i<matrixA.length;++i) {

for (int j=0;j<matrixB.length;++j) {

for (int k=0;k<matrixB[j].length;++k) {

matrixR[i][k] += matrixA[i][j]*matrixB[j][k];

}

}

}

return matrixR;

} . . .

int matrixAB[ ][ ] = Multiply(matrixA,matrixB);

int matrixABC[ ][ ] = Multiply(matrixAB,matrixC);

The execution can be made faster on a large scale. That is, we need to create
and dedicate as many threads as the number of rows matrix A, and the main
program will collect all the results of the rows. When all the rows are returned
from the threads, the same method will be executed, but on the result matrix
and matrix C. In this sense comparing with the original application, the running
time is decreased by creating a new thread. Let us now create a thread class
called RowMultiplier :
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public class RowMultiplier extends Thread {

private int RowA[ ];

private int matrixB[ ][ ];

private int result[ ] = new int[3];

public int[ ] getResult() {

return result;
}

public void run() {

for (int j=0;j<matrixB.length;++j) {

for (int k=0;k<matrixB[j].length;++k) {

result[k] += RowA[j]*matrixB[j][k];

}

}

}

public RowMultiplier(int RowA[ ],int matrixB[ ][ ]) {

this.RowA = RowA;

this.matrixB = matrixB;

}

}

As it is shown in the next Listing within the constructor we store the argu-
ments, and then start executing the thread. It executes run method to operate
on the stored row and the matrix, and saves the result of the multiplication
in result array, which can be get by getResult() method. In the main method,
we iterate matrixA by its rows, and in each iteration we create RowMultiplier
object and read the results.

public static int[ ][ ] MupltiplyByThread(int matrixA[ ][ ],int matrixB[ ][ ])

throws InterruptedException{

int result[ ][ ] = new int[3][3];

for (int i = 0; i<matrixA.length;++i){

RowMultiplier counterThread=new RowMultiplier(matrixA[i],matrixB);

result[i] = counterThread.start().getResult();

}

return result;
}

. . .

matrixAB = MupltiplyByThread(matrixA,matrixB);

matrixABC = MupltiplyByThread(matrixAB,matrixC);

This solution looks good on a small scale, but once we start increasing the size
of the matrices to be multiplied, the algorithm stops working. It stops, because
the threads need more and more time to do the multiplication of the row and
the matrix, which also means that they cannot produce the counted array right
after starting them (by the getResult() method). As shown in the next Listing,
what we can do instead is to start all the threads, then, in a next loop, use the
join() method of the threads, which blocks the caller (the main) thread until the
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called one is terminated. As the threads have already been started, this function
does not block the parallel execution, and does not delay any other threads to
start: it only guarantees that the results will be queried in order of the rows, and
block the loop within an iteration until the current thread does not terminate.

for (int i=0; i<matrixA.length;++i){

threads[i] = new RowMultiplier(matrixA[i],matrixB);

threads[i].start();

}

for (int i=0; i<matrixA.length;++i){

try {

threads[i].join();

} catch (InterruptedException ex) {

ex.printStackTrace();

}

}

for (int i=0; i<matrixA.length;++i){

matrixAB[i] = threads[i].getResult();

}

return matrixAB;

}

. . .

matrixAB = MultiplyByThreadSafely(matrixA,matrixB);

matrixABC = MultiplyByThreadSafely(matrixAB,matrixC);

Thread groups

In this book, the focus is on applicable solutions for parallelism, and, as Brian
Goetz says, ”The ThreadGroup class was originally intended to be useful in struc-
turing collections of threads into groups. However, it turns out that ThreadGroup
is not all that useful. You are better off simply using the equivalent methods in
Thread. ThreadGroup does offer one useful feature not (yet) present in Thread:
the uncaughtException() method. When a thread within a thread group exits
because it threw an uncaught exception, the ThreadGroup.uncaughtException()

method is called. This gives you an opportunity to shut down the system, write a
message to a log file, or restart a failed service.” [GPB06]. Suffice it to say here
that Java provides solutions named ThreadGroups, but we do not go into detail
in explaining its features.

The onurrent API

Java collects high-level constructs for concurrency in java.util.concurrent pack-
age including several tools for avoiding deadlocks, tools to support lock idiom,
and means to organize threads in groups or pool structures.

The following codes are based on Java online documentation [Mic03]. Primi-
tive types such as integers from Java 5.0 have analogous implementation named
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Atomic, which ensures memory consistency by its specification. Therefore, devel-
opers need not deal with, they get this bond by default. Technically these classes
implement manipulation on basic volatile variables, which can be achieved by
using synchronized method technique. However, Atomic variables also protect
from unnecessary synchronization.

Conurrent olletions

Concurrent package extends the Java Collection Framework with analogous,
but thread-safe implementations of common collections. In the earlier versions
of Java 5.0, coarse-grained safety is implemented against possible troubles of
concurrent usage. The collections within the concurrent package are designed
specifically for multi-threaded usage. Built in mechanisms have been extended
with new concepts, the Map interface as ConcurrentMap, the Queue inter-
face as BlockingQueue and ConcurrentMap has a new ConcurrentNavigableMap
subinterface. They ensure mutual exclusion on a set of collection items, and
this reduce the need for synchronization and the performance overhead under
heavy workload. In general, to ensure memory consistency, writer methods in
concurrent collections invoked by a thread must be executed before any reader
method coming from any other thread.

ConcurrentMap (which is implemented by ConcurrentHashMap) operates on
key-value pairs, and defines atomic operations guaranteeing the consistency of
the data structure. Actually, manipulation methods (remove() and replace())
are executed if and only if the key exists, and putIfAbsent() method applies if
the key is not found in the collection.

BlockingQueue defines a FIFO queue which blocks if we retrieve from an
empty queue, or add further elements to a full queue. Next we show its imple-
mentations.

• DelayQueue An unbounded blocking FIFO queue of elements on which a
specific getting method is defined: an item can be retrieved if and only
if a given time after its insertion is expired. If there is no available item
after the specified delay, the retrieving method will return null.

• LinkedBlockingDeque An optionally-bounded blocking deque based on
linked nodes.

• LinkedBlockingQueue An optionally-bounded blocking FIFO queue based
on linked nodes.

• LinkedTransferQueue An unbounded specific FIFO queue called TransferQueue
based on linked nodes. TransferQueue is a modified BlockingQueue in
which the invoked threads’put method can wait for other threads for
getting that element.

• PriorityBlockingQueue An unbounded blocking queue that uses the same
ordering rules as class PriorityQueue and supplies blocking retrieval op-
erations.
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• SynchronousQueue It is a structure which may contain only one element,
implemented as a blocking queue with specific semantics : each insert
operation must wait for a corresponding remove operation by another
thread and vice versa. As it can be seen, it is a really specific imple-
mentation of a queue: it cannot be iterated, because there is nothing
to iterate, as it can store only one element. Insertion of a non-empty
SynchronousQueue cannot be applied. If there is no head element in the
queue, then no element is available for removal for the poll() methods,
so they will return null.
Synchronous queues are similar to rendezvous channels used in CSP and
Ada. They are well suited for handoff designs, in which an object running
in one thread must sync up with an object running in another thread in
order to hand some information, an event or a task to it.

• ConcurrentNavigableMap is inherited from the ConcurrentMap interface,
and modified with a useful and practical meaning. Instead of the original
sematics of get method in maps (which returns the value of the given
key), ConcurrentNavigableMap supports approximate matches. The gen-
eral and scalable implementation is ConcurrentSkipListMap.
The map is sorted according to the natural ordering of its keys, or by
a Comparator provided at map creation time, depending on which con-
structor is used.
This class implements a concurrent variant of SkipLists providing ex-
pected average log(n) time cost for the containsKey(), get(), put()

and remove() operations and their variants. Insertion, removal, update
and access operations safely execute concurrently by multiple threads.
Iterators are weakly consistent, returning elements reflecting the state of
the map at some point or since the creation of the iterator. They do not
throw ConcurrentModificationException , and may proceed concurrently
with other operations. Ascending key ordered views and their iterators
are faster than descending ones.

The Exeutor framework

To start and to manage threads at a high-level, the concurrent package contains
an API called the Executor Framework which can be used to create threads
in a more sophisticated way separated from the core application itself, and to
organize threads for computation-demanding applications. It contains a feature
called Executor Interface to create threads easier than implementing a Runnable
class for each one. Concept of Thread Pools is to manage several threads with a
generic solution. The Fork/Join Framework, introduced in Java 7, is to utilize
multi-core or cluster systems in the application by ensuring a generic way for
cloning threads, which will be executed on a different core, and for collecting
threads.
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Exeutor Interfaes

The executor interface defines a simplified interface to create and start threads,
as it can be seen in the next example Listing. Instead of creating a new object
of our thread that extends the Runnable class and then starting it, we just add
it to an executor object’s execute method as a parameter.

(new Thread(r)).start();

e.execute(r);

Although Java provides these possibilities to create threads, these methods
are not completely equivalent. While we may be sure that start() method starts
the thread immediately, execute() can make an existing worker thread to run,
or drop the Runnable object to a queue of a worker thread.

Since the Executor interface provides an elementary functionality, it has been
extended by additional subinterfaces: ExecutorService adds features for thread or
executor management, and its subinterface ScheduledExecutorService supports
future and/or periodic execution of tasks.

The ExeutorServie interfae

Executor interface deals with only Runnable objects, which can be a heavy
constraint if, for instance, we use Callable objects, as executors cannot be used
to handle them. Therefore, to resolve this issue, we may turn to ExecutorSer-
vice interface (a subinterface of Executor interface) which replaces the execute
method with a different submit method that allows the Callable object to be
handled. It returns a Future object to be able to manage the status of the task
and to get the Callable return value.

ExecutorService also provides methods for submitting large collections of
Callable objects. Finally, ExecutorService provides a number of methods for
managing the shutdown of the executor. To support immediate shutdown, tasks
must handle interrupts correctly.

There is a need not only to handle a large set of Callable objects, but also to
execute them periodically. This is why ScheduledExecutorService interface was
defined and added to the collection package. This interface states that threads
must be executed after a given time in line, with a given scheduling or time and
time again repeatedly.

Among others, the ThreadPoolExecutor and ScheduledThreadPoolExecutor
classes implement the ExecutorService and the ScheduledExecutorService inter-
faces, respectively.

Thread pools

Although threads are suitable to exploit multi-core systems, starting and shut-
ting them down are time-consuming operations, and if, for instance our ap-
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plication requires an increasing number of threads to process (let us imagine
a web-server that creates a handler thread for each request coming from the
users), it makes the program run out of memory. These are serious problems,
which occur in a system that deals with large sets of data, or (in case of servers)
has a constraint of acceptable response times. Therefore, thread pools have been
specified to solve these issues. Thread pools consist of worker threads which exist
independently from the Runnable and Callable tasks they execute and they are
often used to execute multiple tasks.

One common type of thread pools is the fixed-size thread pool. This type of
pools has a specified number of worker threads running; if a thread is terminated,
it is automatically replaced with a new thread.

The java.util.concurrent.Executors class offers several factory methods to
create executor objects which use fixed-size thread pools as their execution
structure. One of them is the newFixedThreadPool() method which simply
creates a thread pool capable to handle the specified number of threads. The
newCachedThreadPool() method creates an executor with an expandable thread
pool. This executor is suitable for applications that launch many short-lived
tasks. The newSingleThreadExecutor() method creates an executor that exe-
cutes a single task at a time. There are several alternative factory methods to
create ScheduledExecutorService versions of the above executors.

Our next example implements the Matrix multiplication problem using thread
pools as a conclusion. At first, we create a BlockingQueue to store Runnable ob-
jects (which will be used worker threads), then we create a ThreadPoolExecutor
object called executor and set the threadQueue as its storage structure. Finally,
we create and start a monitor thread to check the status of the worker threads
(ThreadMonitor is a self-developed class, as it will be shown soon).

public static int[ ][ ] MultiplyByThreadPool(
int matrixA[ ][ ], int matrixB[ ][ ],int matrixC[ ][ ]) {

int matrixABC[ ][ ] = new int[3][3];

BlockingQueue<Runnable> threadQueue =

new ArrayBlockingQueue<Runnable>(6);

ThreadPoolExecutor executor = new ThreadPoolExecutor(

3, 3, 10, TimeUnit.SECONDS, threadQueue);

ThreadMonitor monitor = new ThreadMonitor(executor);

monitor.start();

}

Now we have to have a list to store the manager objects of the multiplication
of A and B matrices, so a list with Future objects are initialized to store an
array of integers. Then, we iterate over each row of matrix A and submit a new
thread to the executor (return values must be stored in listAB).
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ArrayList<Future<int[ ]» listAB = new ArrayList<Future<int[ ]»();

for (int i=0; i<matrixA.length; ++i){

RowMultiplier rowMul = new RowMultiplier(matrixA[i], matrixB);

Future<int[ ]> submit = executor.submit(rowMul);

listAB.add(submit);

}

Then we create a new list of manager objects to store objects of multiplication
of AB and C. We can iterate through the manager objects, and submit a new
multiplication thread to the executor. Finally we add its Future object to the
listABC list.

ArrayList<Future<int[ ]» listABC = new ArrayList<Future<int[ ]»();

for (Future<int[ ]> result : listAB) {

try {

int[ ] resulti = result.get();

RowMultiplier rowMul = new RowMultiplier(resulti, matrixC);

Future<int[ ]> submit = executor.submit(rowMul);

listABC.add(submit);

} catch (Exception ex) {

ex.printStackTrace();

}

}

Finally we collect all the results to the multidimensional array matrixABC
and shut down the executor and its monitor.

for (int i=0; i<listABC.size(); ++i) {

try {

int[ ] resulti = listABC.get(i).get();

matrixABC[i] = resulti;
} catch (Exception ex) {

ex.printStackTrace();

}

executor.shutdown();

monitor.stopSignal();

return matrixABC;

}

As a first step in our example, we have claimed that we will create a monitor
object which is able to check the status of the worker threads covered by the
pool. The following code block shows its implementation.
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import java.util.concurrent.ThreadPoolExecutor;

public class ThreadMonitor extends Thread {

private boolean stopSignal = false;

private ThreadPoolExecutor threadPool;
public ThreadMonitor(ThreadPoolExecutor threadPool) {

this.threadPool = threadPool;
}

public void stopSignal() { stopSignal = true; }

@Override
public void run() {

do {

int active = this.threadPool.getActiveCount();

long completed = this.threadPool.getCompletedTaskCount();

long task = this.threadPool.getTaskCount();

System.out.println("Thread statistics: " +

"Active/Task/Completed: "+active+"/"+task+"/"+completed);

} while(!stopSignal);

}

}

Fork/Join Parallelism

In Java 7, the ExecutorService interface was implemented by a feature called
Fork/Join Framework to create applications executed typically in multi-core
environment. The concept follows a split-as-many-as-you-want idiom, which
means that the main problem (e.g. operations on large, but separatable data)
can be split into smaller pieces until it can be executed by one worker thread. As
it implements ExecutorService, the Fork/Join Framework uses worker threads in
a thread pool. The advantage of the Fork/Join Framework is that it uses a work-
stealing algorithm. Worker threads that run out of things to do can steal tasks
from other threads that are still busy. For purposes of illustration, consider the
following example.

Expecting for matrix multiplication itself can be parallelized, let us extend
the problem to show the benefits of the Fork/Join Framework. We would like to
multiply n matrices (A1, A2, ..., An) instead of multiplying just three of them.
How should it be done? As the operation of multiplication has the property
of associativity, we can multiply the matrices one by one, A1 ∗ A2 then A1,2 ∗
A3 etc. It does not seem to be a good solution, though, as it can hardly be
parallelized - the ith operation requires the result of the (i−1)th. A better choice
is to create pairs from the matrices, (A1, A2), (A3, A4), ..., (An−1, An), do the
multiplication against the pairs resulting ⌈n/2⌉ multiplied matrices. Then, as in a
generic case multiplication is not a commutative operation, by keeping the order
of the matrices, we can create (A12, A34)(A56, A78)...(A(n−3)(n−2), A(n−1)n pairs,
do the multiplication against the pairs again, and repeat the process iteratively
until we have only one A1,2,...,n matrix, the result of the multiplication.
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This process shows how the Fork/Join Framework can be used – we must
create a specific class extended by RecursiveAction class that implements the
basic operation which can be executed, in our case the multiplication of two
matrices (in the code example this method is called ComputeDirectly). This class
must implement the abstract method called compute() with no parameters. A
commonly used solution is to implement compute() as a recursive method. In
our case, if the given set of the matrices contains more than two matrices, we
may split the matrices to two vectors and invoke a new execution against them
concurrently. Otherwise we can do the multiplication. But how could we retrieve
the evaluated matrix? We need smart indexing of the result vector which should
be initialized with maximal number of rows and the columns in the matrices.
Therefore we can be sure that it can be used to load the result matrix there.

The process is the following. Each MMultiplier object must be constructed
with an index called binaryIndex . It is stored as a simple string and it must
contain only 0 or 1 characters. When the two new MMultiplier objects are
generated, their index will be generated using their parent index concatenating
0 in one case, and 1 in the other. All iterations start with index 0. By using this
process, all pairs have a unique index identifier that contains only 0 or 1, which
we convert to decimal numbers as normal indices. The indices will be generated
according to the order of the matrices. One issue that must be emphasized that
this process results an array of n matrices with ⌈n/2⌉ filled places. Therefore
before the next iteration we must erase the null matrices, and the MMultiplier
class must extend theRecursiveAction class. Furthermore, its compute() method
must be implemented to be a recursive method.
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public class MMultiplier extends RecursiveAction {

private Vector<int[ ][ ]> matrices;

private int[ ][ ][ ] results;

private String index;

public String getIndex() { return index; }

public int[ ][ ][ ] getResults() { return results; }

public void setResults(int[ ][ ][ ] results) { this.results = results; }

public MMultiplier(Vector<int[ ][ ]> matrices,String binaryIndex,

int[ ][ ][ ] result){

this.matrices = matrices;

index = binaryIndex;

this.results = result;
}

protected void computeDirectly() {

// matrix A := matrices.get(0)
// matrix B := matrices.get(1)
int[ ][ ] result = new int[3][3];

if (matrices.size() == 1){

result = matrices.get(0);

} else{

for (int i=0;i<matrices.get(0).length;++i) {

for (int j=0;j<matrices.get(1).length;++j) {

for (int k=0;k<matrices.get(1)[j].length;++k) {

result[i][k] += matrices.get(0)[i][j]*matrices.get(1)[j][k];

}

}

}

}

results[(int)Integer.parseInt(index,2)] = result;
}
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@Override
protected void compute() {

if (matrices.size() < 3){

computeDirectly();

return;

} else {

int split = matrices.size() / 2;

Vector<int[ ][ ]> matrices0 = new Vector<int[ ][ ]>();

Vector<int[ ][ ]> matrices1 = new Vector<int[ ][ ]>();

for (int i=0;i<split;++i){

matrices0.add(matrices.get(i));

}

for (int i=split;i<matrices.size();++i){

matrices1.add(matrices.get(i));

}

String currIndex = this.getIndex();

invokeAll(new MMultiplier(matrices0,currIndex+"0",results),

new MMultiplier(matrices1,currIndex+"1",results));

}

}

We create an MMultiplier object with the input matrices, create a new
ForkJoinPool object to handle the process, then call its invoke() method for
MMultiplier object. As its result variable has a blocking getter method, right
after it we can retrieve the vector of the evaluated matrices by the getResult()

method. Then we set up the new vector of matrices (null matrices must be
erased), and until the actSize is variable (which stores the number of valid
matrices) greater than one, we execute these steps iteratively.

public static void MultiplyByForkJoinGeneral() {

Vector<int[ ][ ]> matrices = new Vector<int[ ][ ]>();

matrices.add(matrixA);

matrices.add(matrixB);

matrices.add(matrixC);

matrices.add(matrixD);

matrices.add(matrixE);

int actSize = 5;

int[ ][ ][ ] r = new int[actSize][3][3] ;

while (actSize>1) {

int[ ][ ][ ] results = new int[actSize][3][3];

MMultiplier m = new MMultiplier(matrices,"0",results);

ForkJoinPool forkjoin = new ForkJoinPool();

forkjoin.invoke(m);

r = m.getResults();

double doubleSize = actSize;

matrices.removeAllElements();
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for (int i=0; i<actSize; ++i){

if (!isMNull(results[i])){

matrices.add(results[i]);

}

}

actSize = (int) Math.ceil(doubleSize/2);

}

System.out.println("Final Multiplication");

for (int i=0;i<r.length;++i) {

System.out.println("–––" + i + "––––-");

printMatrix(r[i]);

}

}

private static boolean isMNull(int[ ][ ] matrix) {

for (int i=0; i<matrix.length; ++i) {

for (int j=0; j<matrix[i].length; ++j) {

if(matrix[i][j] != 0) return false;

}

}

return true;

}

13.15 C#/.NET

Since beside Java, C# is the other main programming language used world-wide,
we avoid describing its features for concurrent programming. For the same rea-
sons we show the concurrency-related options and concepts in reference to Java
too. As part of the .Net Framework, C# is a powerful object-oriented language
with a wide-range of programming techniques coming with .Net, represented
by code libraries, such as database manager libraries or libraries responsible for
autogenerating ASP web-pages. Concurrency is supported at two levels.

Since its beginnings .Net has offered several techniques for concurrent pro-
gramming (Threads or tasks), which have then been improved by, for instance,
Thread Pools. However, before the release of .Net 4.0 in 2011, there was no
dedicated library for supporting concurrency, which includes specific and pre-
fabricated thread-safe data structures. Our description is based on .Net 4.0.
First of all, let us compare .Net with Java.

13.15.1 Comparison of .Net with Java

Similarities

As .Net was specified and developed by taking Java concepts in count, the two
languages are fundamentally very similar. Both languages provide techniques for
implementing mutual exclusion; Java has synchronized keyword for it, C#/.Net
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names it lock, but the semantics of the two are the same. One other similarity
is in the field of signaling. In Java, the Object class has methods to block the
execution process (wait), and to send a signal to one or all the waiting threads
(notify and notifyAll , respectively); in C# we have analogous methods defined
in the Monitor class, but they are named Wait, Pulse, PulseAll respectively..

Differenes

In Java a part of the algorithm must be implemented in consideration of its
multithreaded nature, namely, the classes that implement Runnable or Callable
interface, or extended from the Thread class, may be handled with multithread
techniques. In C# there are more options since, as it is shown by the following
code sample, any method can be used as core code of a thread:

Thread t = new Thread( () => FunctionToBeExecutedParallel() );

The same is true for lock-free variables. Java represents lock-free version of
common variable types such as Integer or Boolean by prefabricated classes in
java.util.concurrent.atomic package. C# follows a different path - it provides a
general manner (System.Threading.Interlocked) that can be used to define lock-
free behavior on any object type. The following code snippet shows how we may
increment a locked variable through its reference using interlocked:

System.Threading.Interlocked.Increment(ref locked);

Speialties

Task Parallel Library was introduced in .Net 4.0 as a set of commonly used
libraries for implementing multithread applications. It offers solutions for both
data and task parallelism. An interesting feature in this set is the revision of the
common iteration structures in C#. Namely, developers are allowed to execute
all the iterations of a loop in parallel by using Parallel.For or Parallel.ForEach
keyword. As the following code snippet demonstrates, the doSomething method
will be executed six times in parallel:

Parallel.For (0, 5,i =>

{

doSomething(i);

});

As a great improvement of .Net 4.0, the System.Collections.Concurrent
class introduces several and various lock-protected thread-safe data structures:
beside the thread-safe version of the common structures (ConcurrentQueue,
ConcurrentDictionary), BlockingCollection<T> gives a simple thread-safe ver-
sion for collections that implement IProducerConsumerCollection<T> interface.
While ConcurrentBag<T> is a simple, but thread-safe set for unordered objects,
ConcurrentStack<T> is an alternative version of ConcurrentQueue representing
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a LIFO queue instead of a FIFO. The OrderablePartitioner<TSource> is more
interesting: it can be applied on an ordered data source, and can split them into
multiple parts which can then be modified in parallel. Partitioner<TSource>

which does the same, but without the restriction of orderliness.
In the next case study of matrix multiplication we give an example of many

of these functionalities and techniques from the above mentioned ThreadPools
until the Interlocked objects.

Case study: Matrix multipliation

Creating class for thread parameters:

public class ThreadParameters
{

public int threadId{ get; set; }

public int[ ] rowA{ get; set; }

public int[ ][ ] matrixB{ get; set; }

}

Declaration of variables:

class MainClass{

// These static variables are shared among Threads!
static int[ ][ ] matrixA = new int[3][ ] {

new int[ ] {1,2,3},

new int[ ] {4,5,6},

new int[ ] {7,8,9}};

static int[ ][ ] matrixB = new int[3][ ] {

new int[ ] {2,3,4},

new int[ ] {5,6,7},

new int[ ] {8,9,1}};

static int[ ][ ] matrixC = new int[3][ ] {

new int[ ] {3,4,5},

new int[ ] {6,7,8},

new int[ ] {9,1,2}};

static int[ ][ ] matrixAB = new int[3][ ];

static int numberOfActiveThreads;

static AutoResetEvent[ ] eventNotifiers = new AutoResetEvent[3];

Invoking row multiplication (one thread for each):

public static void MupltiplyByThread(int[ ][ ] matrixA,int[ ][ ] matrixB) {

Parallel.For (0, matrixA.Length,rowIndex =>

{

startThread(rowIndex,matrixA[rowIndex], matrixB);

});

WaitHandle.WaitAll(eventNotifiers);

Console.WriteLine("All done");

}



798

•
Conurreny

Starting a thread:

private static void startThread(int rowIndex,int[ ] rowA,int[ ][ ] matrixB){

Console.WriteLine("Index is : " + rowIndex);

// using Interlocked method
System.Threading.Interlocked.Increment(ref numberOfActiveThreads);

eventNotifiers[rowIndex] = new AutoResetEvent(false);

ThreadParameters parameters = new ThreadParameters();

parameters.threadId = rowIndex;

parameters.rowA = rowA;

parameters.matrixB = matrixB;

ThreadPool.QueueUserWorkItem(

new WaitCallback(RowMultiplierThread),(object)parameters);

}

RowMultiplier thread:

public static void RowMultiplierThread(object parameters) {

ThreadParameters threadParam = (ThreadParameters)parameters;

int rowIndex = threadParam.threadId;

int[ ] rowA = threadParam.rowA;

int[ ][ ] matrixB = threadParam.matrixB;

Console.WriteLine("Starting Multiplication on row "+rowIndex);

int[ ] result = new int[3];

for (int j=0;j<matrixB.Length;++j){

for (int k=0;k<matrixB[j].Length;++k){

result[k] += rowA[j]*matrixB[j][k];

}

}

Console.WriteLine("Done!");

matrixAB[rowIndex] = new int[3];

matrixAB[rowIndex] = result;
// set a signal, we’re done!
eventNotifiers[rowIndex].Set();

System.Threading.Interlocked.Decrement(ref numberOfActiveThreads);

}

13.16 Sala

Scala [OSV11] is a language that mixes functional programming paradigms (like
referential transparency, first class and higher order functions, type inference,
infinite data structures and pattern matching) and object-oriented design con-
cepts. It was created by Martin Odersky at the EPFL university in 2003, and is
developed with a very impressive community support. According to the recent
ZeroTurnaround Developer Productivity Reports [Zer12], 11% of developers are
using it in a way or another at the moment – and how it supports development
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of concurrent applications highly contributes to that. Its popularity is reflected
through the words of James Strachan (author of the Groovy programming lan-
guage)23 who stated that ”I can honestly say if someone had shown me the
Programming in Scala book by Martin Odersky, Lex Spoon and Bill Venners
back in 2003 I’d probably have never created Groovy.”.24

Scala is built on top of the Java Virtual Machine, maintaining strong inter-
operability with Java. This means that any Java class can be used seamlessly in
Scala code and vice versa. Moreover, Scala can be run either in an interpreted
environment (in a Read-Evaluate-Print-Loop, REPL), as a script or as compiled
code.

Odersky founded Typesafe25 which is the company behind the language. The
board advisors include people like James Gosling (creator of the Java program-
ming language) and Doug Lea (concurrency expert, author of the concurrent
library support of Java [GPB06]). They are working on creating a full Scala
Stack that includes everything required for enterprise projects.

Scala has a succinct, lightweight syntax and a safe, performant, strong static
type system. It proposes to use immutable data structures over mutable ones by
default, and offers an extensive language and library support for sideeffect-less
code. These are essential building blocks for creating concurrent software.

As we have seen in the previous sections, one root of the main problems is
non-determinism caused by concurrent threads accessing a shared mutable state.
However, if the mutable state can be avoided (by programming in a functional
manner), we get a deterministic processing. Even the name Scala (meaning stairs
in Italian) is a blend of the phrases ”scalable” and ”language”, which also reflects
the design to support concurrent software development.

Shifting attention to concurrency, Scala offers an actor model in its stan-
dard library, in addition to the standard Java concurrency APIs. Typesafe have
included Akka26 in their stack, a separate open source framework providing
actor based concurrency, where actors may also be distributed or combined
with software transactional memory (often referred as ”transactors”). Alter-
native CSP implementations for channel-based message passing are available
through Communicating Scala Objects [Suf08], or simply via the native Java
implementations like JCSP.

Ators in general

An alternative approach to handling concurrency is to define several, simple,
independent entities concentrating on specific subtasks without any shared state
at all, and by enabling communication through message passing.

23 http://groovy.codehaus.org/
24 http://macstrac.blogspot.hu/2009/04/scala-as-long-term-replacement-for.html
25 http://typesafe.com/
26 http://akka.io
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Actors were originally intended for the research field of Artificial Intelligence
in the mid 1970s [HBS73], [Agh87], [WP09]. Since then, the concept of actors
and the actor-based model have appeared in several programming languages, so
Scala’s solution is not unique. Actually, it was inspired by Erlang (a language
developed by Ericsson suitable for handling massive communication load, it has
become an open source project). An example of it is the Facebook chat function.

13.16.1 Comparison with onurrent proesses

The actor model is often compared to languages based on the concurrent process
model (successors of the CSP and Occam languages for example).27 It might
seem identical as far as communication through message passing is concerned,
but there are a few fundamental differences that worth mentioning.

• The processes are usually anonymous, while actors are entities known by
their names. Note that languages using channels also identify them by
name, but one does not know who on the other side of the channel is –
to whom the component is sending the message;

• Communication in the concurrent process model is usually done in the
form of rendezvous (i.e. it is a type of synchronous communication where
the participants become blocked until their counterpart is ready to accept
their messages);

• Communication in the actor model is asynchronous by default: execution
of actors sending messages is not blocked, but the message is delivered into
a mailbox instead of directly to the recipient. The recipient is continuously
processing the messages in its mailbox until they are depleted. If the actor
has nothing else to do then it is usually suspended.

Ators in Sala

The actor-based model is a simple way to do concurrency and distribution.
Fundamentally, an actor is an independent entity which can be active (i.e.
generate messages on its own) and reactive (i.e. wait for incoming messages
and perform tasks only on those events). It has a message queue by default in
which the incoming messages have accumulated, and they can be handled in
any order. Actors can handle messages on their own or they can send messages
to other actors. In addition they can create, manage, restart other actors. This
results in a high level and convenient abstraction.

Scala offers several implementations for the actor-based model. It has a built-
in framework in the standard library which is widely used, the widely known
Scalaz library offers short and elegant definition and handling of actors, and the
Akka and Lift frameworks share a common interface offering several additional
features.

27
http://en.wikipedia.org/wiki/Communicating_sequential_processes#Comparison_with_the_Actor_Model
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To demonstrate the differences, an interesting property of the Akka frame-
work is that it follows the ”Let it crash” philosophy, which allows recovery
of failed processes (e.g. from deadlocks). By utilizing supervisor hierarchies,
it is possible to create self-healing systems and achieve an impressive ”nine-
nine” uptime theoretically, which is a considerable advantage for mission critical
systems. It also supports different kind of messages (synchronous, asynchronous
communication and even the usage of future objects) and pairs a very small
fingerprint with relatively high performance (”allows handling 2.7 million actors
per gigabytes of heap supporting 50 million messages per second on a single
medium-class machine”).28

In the next sections, we will demonstrate the usage of the default actor API
in the standard library through specific examples.

Defining a simple ator

Creating a standard Scala actor is straightforward: one must subclass from the
scala.actors.Actor class and override its act() function.

import scala.actors.Actor

class Greeter extends Actor {

def act() = {

println("Greetings!")

}

}

The actor then can be activated by simply calling its start() function. A
minimal application that does this follows.

object Main extends App {

val greeter = new Greeter()

greeter.start()

}

Scala offers an extensive support for creating both internal and external
domain specific languages. A good example is the API that the standard library
offers. Let’s take a look on the next code segment that demonstrates the usage
of this feature:

28 http://akka.io/
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import scala.actors.Actor

import scala.actors.Actor.

object Main extends App {

val classifierActor = actor {

loop {

receive {

case i: Int => println("Received an integer: " + i)

case s: String => println("Received a String: " + s)

case x => println("Received: " + x)

}

}

}

classifierActor ! 256

classifierActor ! "Actors are fun"

classifierActor ! 0.11

}

The code above demonstrates how to create a simple actor with basic func-
tionalities and how to send messages to it with the help of the built-in domain-
specific language support.

First, the actor is defined by the actor statement which is a shortcut for
creating a new class that is a subclass of scala.actors.Actor. Then there is a
loop statement which is nothing more than a shortcut for an infinite loop. The
loop then calls receive which blocks the execution of the actor and makes it
wait until a new message is delivered into its message queue.

The actor’s actual task uses another powerful feature of Scala (which is widely
used in functional languages) called pattern matching. To avoid distraction of
explaining new features, think of it as an improved switch-case statement that
allows matching on types, values, regular expressions and with many advanced
features. For the current example, we make a simple distinction on integer values
and strings, and write a proper message on the output for each one. There is
also a default case for any other input.

The last thing to note here is the use of the ! operator (read as exclamation
mark or bang operator) which sends a message to the actor. This is similar to
the notation of CSP and Occam, but also identical to the syntax used for Erlang
actors. Other alternative usable commands are listed in the following table:
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Method name Return value Description
act Unit29 This is the top-level method for an

Actor that is called on start()

and typically contains one of the
methods below

! Unit Sends an asynchronous message the
actor.

!! Future Sends an asynchronous message to
the actor and immediately returns
a future representing the reply
value.

!? Any Sends a synchronous message to
the actor and awaits reply.

receive Any Blocks until a new message is
received

receiveWithin Any Like receive, but it is possible to
specify a timeout for waiting

react Nothing Similar to receive, but it is a bit
more efficient and cannot have a
return a value

reactWithin Nothing Like receiveWithin, but it is a bit
more efficient and cannot have a
return a value

restart Unit Restarts the actor.

Table 13.2: Commonly used Actor methods. For a complete list, please refer to
http://www.scala-lang.org/api/current/#scala.actors.Actor

Case study: A simple ping-pong arhiteture

The following example demonstrates how to write a simple ping-pong service
with Scala actors. These services are common in distributed network applications
to keep track of active clients to a server for example. The protocol is quite
simple: when a server wants to check if a given client connection is still alive,
it sends a ping message to it. If a pong event is received in the server, it
acknowledges the message and the connection is considered as a living one. The
IRC chat protocol, for instance, defines this kind of event passing.30

30 For the details, please consult the Internet Relay Chat RFCs 2810, 2811, 2812 and 2813,
and visit the http://irchelp.org/irchelp/rfc/ website.
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First, we define a few classes that represent different messages.31

case object Ping

case object Pong

case object Stop

We define the Ponger component first as an actor. It should handle ping
messages with a proper reply, and terminate on any stop message.

import scala.actors.Actor

import scala.actors.Actor.

class Ponger extends Actor {

def act() {

loop {

receive {

case Ping =>

println("Pong: ping message received")

sender ! Pong

case Stop =>

println("Pong: stop")

exit()

}

}

}

}

The other component is slightly different. When it starts, it sends a ping
message by default. Then, it submits additional messages sequentially at a
specified number of times. If all messages have been submitted and the proper
replies have been collected, it sends the stop message.

31 With a rough simplification, case classes are simple classes primarily used for pattern
matching. Case objects are the same, except for singletons.
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class Pinger(count: Int, pong: Actor) extends Actor {

def act() {

println("Sending initial message")

pong ! Ping

var messagesSent = 1

loop {

receive {

case Pong =>

println("Ping: pong message received")

if (messagesSent < count) {

messagesSent += 1

println("Ping: Sending ping message " + messagesSent)

pong ! Ping

} else {

println("Ping: sending shutdown message and terminating")

pong ! Stop

exit()

}

}

}

}

}

13.16.2 Parallel olletions

The following section supposes that the reader is familiar with the basic concepts
of functional programming, such as traversing, mapping, filtering, folding and
reducing of collections.

Scala also offers an alternative approach to handling concurrent algorithms
within the form of parallel collections [PBRO11], as several languages support
this kind of approach (like the Cilk++ library [Lei09] for C++).

The idea behind parallel collections is that it requires a considerable effort
to write the boilerplate code required to introduce parallelism. Providing a
convenient and high-level abstraction on common tasks is a natural need in
order to save programmers from low-level concurrency details.

So given the most common data structures in every programming language,
why not create alternatives that can handle concurrent execution in a trans-
parent and lightweight way? Our next simple sequential example converts a list
of strings into upper case variants through a functional approach by the map

operator:

val list = List("Dallas", "Ripley", "Lambert", "Brett",

"Kane", "Ash", "Parker")

list.map( .toUpperCase )
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Converting the list to a parallel one where all the conversion processes (here
the toUpperCase calls) take place in several different threads automatically is
done by simply calling the par function on the list.

list.par.map( .toUpperCase )

Behind the scene, Scala automatically creates a new copy of the original
collection that supports parallel execution. Then a set of threads is spawned
instantly in an automatized way and starts processing the elements of the collec-
tion in a non-deterministic order. Scala offers various implementations including
arrays, maps, sets, ranges, trees and vectors. The collection framework defines an
extensible interface so it can also be extended easily. For a detailed description
see [PBRO11].

As it is demonstrated by the next code snippet, parallel collections can be
created on their own as simple collections, and can be converted back to standard
sequential collections anytime by seq.

import scala.collection.parallel.immutable.ParVector

val parlist1 = ParVector(1,2,3)

val parlist2 = List(1,2,3).par

val simpleList = parlist1.seq

It is a great advantage of parallel collections that they may be used during
common operations like traversing, mapping, filtering, folding and reducing.
However, the semantics of the parallel collections presents an interesting case.
It is elegant and trivial to use them, but they perform a lot of processes in
the background simultaneously and automatically. Nevertheless in a few specific
cases they can also lead to nondeterministic program execution.

How does the parallel olletions work?

We have seen examples for the parallel collection framework of Scala. However,
they serve demonstrative purposes only.

The creation of parallel collections (i.e. creating a copy of the original col-
lection), creating the threads in the background, distributing the work and
reassembling the results mean a considerable overhead which can be huge when
creating benchmarks on small sized collections. Typically, it worth experimenting
with this approach over several thousands of elements, or in situations when the
processing is based on network operations for example.

An excellent use case is when there is a slow HTTP request to download
specific data from the web. Using parallel processing might improve the process-
ing considerably as the most of the time is spent on I/O operations that can be
parallelized easily.
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// A list of RSS feeds to process

val rssAddresses = List("http://stackoverflow.com/feeds", . . .)

// Slow HTTP request to different hosts

def downloadRssData(rssAddr: String) = . . .

// Sequential processing

users.foreach( downloadRssData( ) )

// Parallel processing with multiple threads

users.par.foreach( downloadRssData( ) )

For more information on its performance, one can find additional descriptions
of the parallel collections32 and detailed benchmark analyse in the official Scala
documentation.33

A particularly interesting case is presented next. We have a list that we
process concurrently. First, each element we process is printed on the output,
and in the last line, we also print the whole constructed parallel collection.

val list = 1 to 100

val parList = list.par.map( i => { println(i); i} )

println( parList )

Running the code should give something like the following output:

88

1

51

76

52

2

89

3

...

This clearly indicates the nondeterministic way in which the elements are
chosen. However, the last line shows that the original ordering is somehow
reconstructed:

ParVector(1, 2, 3, 4, 5, 6, 7, 8, 9, ...)

To understand this behavior, we need to provide further information about
the collections.

Assoiative operators

There are a few other things to keep in mind when using parallel collections.
First of all, the executed operator should be associative. This is required as the

32 http://docs.scala-lang.org/overviews/parallel-collections/overview.html
33 http://docs.scala-lang.org/overviews/parallel-collections/performance.html
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program execution is distributed, and we may never know in which order it has
been executed between the split parts. Let us consider a simple operator such
as subtraction or division in the Scala interpreter.

val pl = (1 to 100).par

// Execution might result in surprising results, like:

pl.reduce( - ) // 4838

pl.reduce( - ) // 4838

pl.reduce( - ) // -1900

pl.reduce( - ) // -2942

As the example above demonstrates, the order in which the subtraction has
been executed is nondeterministic as we have a non-associative operator.

Certain operators which are associative, but not commutative, allow the
same parallelization. A common example is the string concatenation function: it
is associative (i.e. ("a" + "b") + "c" == "a" + ("b" + "c")) but not com-
mutative (i.e. "a" + "b" != "b" + "a"). However, when we execute the next
example, the output is deterministic, and is always "abcd".

val pv = ParVector("a", "b", "c", "d")

pv.reduce( + )

The reason for this behavior is that while the operations executed on the
parallel collections can be executed in any order, it does not mean that the result
will also be recombined in the same order. So even if the collection was assembled
into different parts in an arbitrary order, the result is always reassembled in the
original order.

Side effets

The operator that is executed on the parallel collection may has a side effect. A
typical example is modifying a shared variable, which – as we have seen before
– rise a race condition and lead to a nondeterministic program execution.

A simple example is shown below, where we execute a read-modify-write
statement during the mapping operation:

var sum = 0

val parlist = (1 to 100).par

parlist.foreach( sum += )

In the example above (when executed with a large enough collection), we
might encounter disappearing values from the sum local variable. The reason is
the same what have seen in introductory section of this chapter: two threads
read the previous value, execute the addition, and update its value right after
each other - resulting in a disappeared component from the total sum value.
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13.17 General tips for reating onurrent software

As we have seen in this chapter, writing concurrent software that does its job
correctly is far from trivial. However, many common pitfalls can be avoided if we
bear in mind a few issues suggested by Robert C. Martin and Brett L. Schuchert
[Mar08]. Some of their advice is useful when developing a single-process software
as well, but their importance is emphasized in a concurrent environment.

13.17.1 Single responsibility priniple

The Single Responsibility Principle (SRP, [Mar02]) in software design states
that a method (or a class, or a component) is allowed to change only because
of a single reason. Since the parallel approach is complex enough to change
the structure of the software, it is advisable to keep the concurrent building
blocks separated from the other parts of the software: ”the concurrent code should
have a separate development, modification and fine tuning life cycle during the
development” [Mar08].

13.17.2 Restrit aess to shared resoures

As we have seen in the introduction of this chapter, multiple processes modifying
a shared resource (like a data structure) at the same time might have surprising
results and a program state. The solution is that to identify all the possible access
to these resources and restrict access by defining critical sections. These sections
must be handled with care because, on one hand, they decrease efficiency, but
on the other hand:

• The chance of forgetting the use of synchronized access to the common
resource increases with their number. Remember: if there is even a single
access to that resource where the synchronization is left by accident, our
software is hopelessly broken;

• It will be hard to trace down any concurrency-related errors, because the
concurrent parts are scattered around the whole sourcebase.

13.17.3 Independeny

It is a great advantage if the different threads owned by the same process can be
separated even on the level of data access. If all these threads can live in their
”own world”, they do not share data, they do not interfere with each other. Thus,
most of the big caveats of concurrent code execution can be avoided (including
deadlocks, performance loss on synchronization points and race conditions).

This is not always possible, but there are a few workarounds that we can still
do. One of them is to use immutable (i.e. non-modifiable) views on the common
data sources or only a copy of the original data. The result is that we can elim-
inate all synchronized access to the shared resource, and the performance gain
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may balance the loss on initialization and cloning the original data. Moreover,
the software becomes easier to understand without synchronization and easier
to modify.

Some languages heavily support immutable data structures, while others (like
Scala) use them by default (e.g. by importing the immutable data structures into
the default scope by default and by using the val keyword). As Steve Jenson,
a Twitter engineer suggests: ”Start with immutability, then use mutability where
you find appropriate.”

13.17.4 Do not reinvent the wheel!

Writing concurrent applications usually lead to the same design decisions, issues
to think of, bug reports and tool support that is required efficiently solve them.

The most important thing is to utilize the knowledge we have gained through
industrial and academic examples: the problems we face are always the same,
relying on design patterns successfully applied in other scenarios is a great
advantage. Building on bullet-proof library support helps us avoid the need to
write common building blocks (which is a huge and error prone enough task on
its own).

Know the potential problems

Concurrent code has its own issues, but they can be classified into some major
classes. Having a considerable knowledge about these issues (i.e. what can lead
to them, in which way they modify the program behavior, the best practices
to avoid them and their solutions) is the key to designing robust, scalable
multithreaded applications.

Creating more and more concurrent code helps to build up experience and
to get a ”sixth sense” feeling when looking on a codebase. In this sense spending
days of work hunting down trivial locking errors is not a waste.

The importance of synchronized access to shared resources and the concepts
of deadlocks, livelocks and starvation have been discussed in details within this
chapter, including suggestions as how to deal with them.

Know the ommon patterns

Most of the concurrent tasks we face in our daily work can be classified into three
major groups. These cases can be described as the Producers-Consumers (Sec-
tion 13.9.1), Readers-Writers (Section 13.9.2), and Dining Philosophers problem
(Section 13.9.3). Knowing these problems and understanding the algorithms that
solve them help one to get a better understanding of the issues of concurrent
programming.

These execution models are well-known and commonly used, their under-
standing is essential when approaching concurrent problems.
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13.17.5 Know the library support

Modern programming languages offer a wide set of tools, both low-level (like
native language support for handling synchronization and monitors) and high-
level building blocks (like built-in semaphores, locks, barriers, thread-safe collec-
tions and execution frameworks) to support concurrent software development.
Understanding the available tools like semaphores, locks, barriers, concurrent
data structures and additional libraries is a great advantage. These building
blocks are commonly used, implementing them would be waste of time (as we
have seen, it is far from trivial to implement even a simple semaphore), and it is
unnecessary since we already have bullet-proof implementations. If we just have
to read the documentation, why don’t do so?

13.17.6 Write thread-safe modules

Encapsulating and making multithreaded components ”pluggable” is always an
advantage. First of all, it becomes possible to develop, profile and examine
the component that allows fine-tuning the application to find and balance the
optimal running conditions.

Another great advantage of encapsulating and documenting synchronization
policies is that client-side locking can be evaded. Client-side locking violates the
Don’t Repeat Yourself principle [HT99], since the same instructions (locking the
resource, executing the required operation and unlocking the resource) must be
repeatedly used in each and every place in the source code. It does not only
become cumbersome in the long run, but also easy to forget, making their use
an error-prone task.

13.17.7 Testing

It is always a good idea to perform tests for a multithreaded application in differ-
ent environments, on different architectures, operating systems and hardwares.
Since all of them follow different rules for scheduling, switching processes and
optimizing multithreaded applications, they can help hidden issues come to the
light. If a strange program behavior or a paranormal activity occur, consider it as
potential thread issue! These kind of issues are commonly known as heisenbugs.34

An extensive exploration of different parameter settings of a concurrent
software (e.g. using more threads than the physically available central processing
units) could also help the process.

Automated tools also offer several features that can be utilized to test con-
current applications. For instance, stress-testing applications (i.e. generating a

34 According to the Wikipedia, it is a term used for a software bug that seems to disappear
or alter its behavior when one attempts to study it. It is a pun on the name of Werner
Heisenberg, the physicist who first asserted the observer effect of quantum mechanics, which
states that the act of observing a system inevitably alters its state.
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massive number of simulated user interactions) might reveal issues which other-
wise would manifest only under heavy workload in the production environment.
There exist tools specifically designed for finding concurrency-related issues like
CHESS [MQB07], ConTest [Ric07] or MultithreadedTC [IEE07].

Using standardized software development processes like introducing code
review, automated static [APM07] and/or dynamic code analyzer tools and
profilers also reveal potential deadlocks.

13.18 Summary

In this chapter we have concentrated on the most important language constructs
for concurrent software development. We have tried to demonstrate the most
common problems with concurrency through a set of abstract examples with
excluding language-specific solutions. Through a set of small case studies, we
have described a selection of the basic issues in concurrency (shared variables,
race conditions, deadlocks, livelocks), and how easy it is to fall into their traps.

Then we introduced the elementary models of communication and synchro-
nization, including busy waiting, mutual exclusion, the problems of critical sec-
tions, the semaphore and the monitor. We have also included a short summary
about how languages have solved the same problems with different techniques
over time.

We have also included a taxonomy of concurrent applications, programming
languages and the advantages of and the main threats in concurrent software.
Common execution models are important for many reasons, they offer a guiding
assistance when designing concurrent applications. The most common issues
have been illustrated through; other, less common execution models are included
in the following Exercises section. Furthermore, we have introduced the available
toolbox in some carefully selected languages and frameworks including Ada, CSP,
Occam, Java, C#, MPI and Scala.

We have given a concise guide to parallel programming tools, and hopefully
we have been able to show the common pitfalls, their solutions, and the gains
of embracing concurrency. Overall, we hope we have given a helping hand to
determine the right programming model for the Reader’s application and its en-
vironment. It requires a different state of mind to work with concurrent code, and
we hope our chapter has helped the Reader acquire the elementary knowledge.

13.19 Exerises

In the following examples, after finishing the implementation, try running the
examples with different configurations, on different hardware architectures and
operating systems. Ask yourself if you can reason about the correctness of the
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program, and try to identify locations in the source code that may be the source
of potential synchronization or liveness issues.

Exercise 13.1. Create alternative implementations for the Producers-Consumers
in your preferred programming language.

Exercise 13.2. Create alternative implementations for the Dining Philosophers
problem in your preferred programming language.

Exercise 13.3. Create an implementation for the Readers-Writers problem in
your preferred programming language.

Exercise 13.4. The Cigarette Smokers problem35 was proposed by Suhas Patil
in 1971 to in support of Dijkstra’s semaphores [Pat71], for which he used his
example. His arguments were not widely accepted, since he made additional
restrictions on the problem (e.g. he ruled out the usage of conditional statements
or multiple semaphores for example).

The problem may be illustrated by three chain smokers around a table, and
each with specific resource for smoking. They have an infinite supply of tobacco,
cigarette paper to roll the cigarettes and matches to light them, respectively. The
smokers are not allowed to directly seize the required resources in each others
pocket, but there is an arbiter who periodically chooses two of the smokers
randomly, and asks them to put their resources in the middle of the table. When
the resources are available, he notifies the third smoker to roll and smoke a
cigarette. While the smoker is smoking he does not participate in any other
interactions. Meanwhile, the arbiter (seeing that there are no more materials left
in the middle of the table) chooses two smokers again. This process is repeated
infinitely.

Create an implementation for the Cigarette Smokers problem in a preferred
programming language. Compare the implementations by their complexity, length
of the source code and supported language primitives for concurrent execution.

Exercise 13.5. The Sleeping barber problem36 is also a widely known classical
problem for inter-process communication and synchronization, attributed to
E. W. Dijkstra.

There is a barber shop where a barber is working with a single chair and a
waiting room with limited space. From time to time, a new client comes into
the shop and checks if the barber is available. If the barber is free, the client
instantly gets a hair cut immediately. If the barber is cutting the another client’s
hair, the new client checks in the waiting room (if there are unoccupied chairs,
left for him, he sits down, joins the waiting queue, otherwise he leaves the shop).
When finishing the hair cut, the barber checks if there is anybody waiting for
him. If there is a client waiting, he asks him to sit into the barber chair; if their

35 http://en.wikipedia.org/wiki/Cigarette_smokers_problem
36 http://en.wikipedia.org/wiki/Sleeping_barber_problem
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is nobody waiting, he sits in his chair and falls asleep. He only wakes up when
a new client enters the shop. This process is repeated infinitely.

Create an implementation for the Sleeping barber problem in a preferred pro-
gramming language. Compare the implementations by their complexity, length
of the source code and supported language primitives for concurrent execution.

13.20 Useful tips

The tips that follow are given in Java.

Tip 13.1. For the Producers-Consumer problem the ExecutorService could be
used together with LinkedBlockingQueue.

Tip 13.2. Dining Philosophers can be easily implemented using simple Threads

(to represent a Philosopher and the Table that stores the tableware)

Tip 13.3. The Readers-Writers problem can be solved using Locks as semaphores,
but Java offers a specific Lock class called ReentrantReadWriteLock, which is
ideal to solving this issue.

Tip 13.4. Please note that in Cigarette Smokers problem, beside the smokers
there is another actor called Arbiter who picks one type of component periodi-
cally. All actors can be implemented as Threads

Tip 13.5. The BarberShop and the clients can be implemented as Threads.
Please note that the waiting room must be a finite queue, so a capacity must
be defined to control standard. One option is to use infinite queues such as
LinkedBlockingQueue initialized with a given capacity. Other solution would
be the use of finite arrays with static length. In this case you have to check the
actual size of the array against the capacity.

13.21 Solutions

Solution 13.1. Producers-Consumers problem

1. Main class:
package producerconsumer;

import java.util.concurrent.ExecutorService;

import java.util.concurrent.Executors;
import java.util.concurrent.TimeUnit;

public class Main {
public static void main(String[] args)

throws InterruptedException {

Container container = new Container(1);
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ExecutorService executorService = null;
executorService = Executors.newFixedThreadPool(7);

executorService.execute(new Consumer(1, container));
executorService.execute(new Consumer(2, container));

for (int i = 0; i < 100; ++i) {
executorService.submit(new Producer(i, container));

}
executorService.awaitTermination(2, TimeUnit.MINUTES);

executorService.shutdown();
container.setCloseContainer(true);

}
}

2. Producer class:
package producerconsumer;

import java.util.Random;
import java.util.logging.Level;

import java.util.logging.Logger;

public class Producer implements Runnable {
private int id;
private Random randomGenerator = new Random();

private Container container;
public Producer(int id, Container cont) {

this.id = id;
this.container = cont;

}

public void run() {// every producer creates only one product
String product = produce();

boolean putFinished = false;
while (!putFinished) {

if (!container.putProduct(product)) {
try {

System.out.println

("Producer" + id + ":Could not put product");
Thread.sleep(100);

} catch (InterruptedException ex) {
ex.printStackTrace();

}
} else {

System.out.println("Producer" + id +

" created and sent : " + product);
putFinished = true;

}
}

}

public String produce() {
try {

Thread.sleep(randomGenerator.nextInt(1000));
} catch (InterruptedException ex) {

ex.printStackTrace();
}
String product = id + "_" + randomGenerator.nextInt(1000);

return product;
}

}

3. Consumer class:
package producerconsumer;
import java.util.Random;

import java.util.logging.Level;
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import java.util.logging.Logger;
public class Consumer implements Runnable {

private int id;

private Container container;
private Random randomGenerator = new Random();

public Consumer(int id, Container container) {
this.id = id;
this.container = container;

}
public void run() {

String product = container.getProduct();
while (!container.isCloseContainer() || product != null) {

try {
System.out.println
("Consumer" + id + " polled product " + product);

Thread.sleep(randomGenerator.nextInt(1000));
product = container.getProduct();

} catch (InterruptedException ex) {
ex.printStackTrace();

}
}

}

}

4. Container class:
package producerconsumer;

import java.util.concurrent.LinkedBlockingQueue;
import java.util.logging.Level;

import java.util.logging.Logger;

public class Container {
private boolean closeContainer = false;
private LinkedBlockingQueue container;

private int capacity;

public Container(int capacity) {
container = new LinkedBlockingQueue();

this.capacity = capacity;
}

public boolean isCloseContainer() {
return closeContainer;

}

public void setCloseContainer(boolean closeContainer) {

this.closeContainer = closeContainer;
}

public boolean putProduct(String product) {

if (container.size() < capacity) {
try {

this.container.put(product);

} catch (InterruptedException ex) {
ex.printStackTrace();

}
return true;

} else {

return false;
}

}

public synchronized String getProduct() {
return (String) this.container.poll();
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}
}

Solution 13.2. Dining philosophers problem

1. Main class:
package diningphilosophers;

public class Main {

public static void main(String[] args) {
Table table = new Table(7);
for (int i = 0; i < 7; ++i) {

Philosopher p = new Philosopher(i, table);
p.start();

}
}

}

2. Philosopher class:
package diningphilosophers;

import java.util.Random;
import java.util.logging.Level;

import java.util.logging.Logger;

public class Philosopher extends Thread {

private Table table;
private int id;

private Random randomGenerator = new Random();

public Philosopher(int id, Table table) {
this.id = id;
this.table = table;

}

public void run() {
while (true) {

try {

think();
int leftFork = (id) % table.getNumberOfParticipants();

int rightFork=(id+1 % table.getNumberOfParticipants();
if (leftFork < 0) {

leftFork += table.getNumberOfParticipants();
}
if (table.grabFork(leftFork)) {

if (table.grabFork(rightFork)) {
try {

doEatMyMeal();
} finally {

table.releaseFork(leftFork);

table.releaseFork(rightFork);
}

} else {
table.releaseFork(leftFork);

}
} else {

think();

}
} catch (InterruptedException ex) {

ex.printStackTrace();
}

}

}
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public void think() {
try {

System.out.println("Philosopher " + id + " is thinking.");

Philosopher.sleep(randomGenerator.nextInt(1000));
} catch (InterruptedException ex) {

ex.printStackTrace();

}
}

public void doEatMyMeal() {

try {
System.out.println("Philosopher " + this.id + " is eating.");
Philosopher.sleep(randomGenerator.nextInt(1000));

} catch (InterruptedException ex) {
ex.printStackTrace();

}
}

}

3. Table class:
package diningphilosophers;

import java.util.ArrayList;
import java.util.concurrent.locks.Lock;

import java.util.concurrent.locks.ReentrantLock;
public class Table {

private ArrayList<Lock> tableware;

private int numberOfParticipants;
public int getNumberOfParticipants() {

return numberOfParticipants;
}
public void setNumberOfParticipants(int numberOfParticipants) {

this.numberOfParticipants = numberOfParticipants;
}

public ArrayList<Lock> getTableware() {
return tableware;

}
public void setTableware(ArrayList<Lock> tableware) {

this.tableware = tableware;

}
public boolean grabFork(int forkId) throws InterruptedException {

return (this.tableware.get(forkId).tryLock());
}
public void releaseFork(int forkId) {

this.tableware.get(forkId).unlock();
}

public Table(int numberOfParticipants) {
this.numberOfParticipants = numberOfParticipants;

tableware = new ArrayList();
for (int i = 0; i < numberOfParticipants; ++i) {

Lock l = new ReentrantLock();

tableware.add(l);
}

}
}

Solution 13.3. Readers-writers problem

1. Main class:
package readerswriters;
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import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.TimeUnit;

import java.util.logging.Level;
import java.util.logging.Logger;

public class Main {
public static void main(String[] args) {

ExecutorService executorService = null;
executorService = Executors.newFixedThreadPool(7);

SharedData sd = new SharedData();

for (int i = 0; i < 10; ++i) {
executorService.execute(new Reader(i, sd));

executorService.execute(new Writer(i, sd));
}

try {

executorService.awaitTermination(1, TimeUnit.MINUTES);
} catch (InterruptedException ex) {

ex.printStackTrace();

}
executorService.shutdown();

}
}

2. Reader class:
package readerswriters;

import java.util.Random;
import java.util.logging.Level;

import java.util.logging.Logger;

public class Reader implements Runnable {
private SharedData sharedData;
private int Id;

private Random randomGenerator = new Random();

public Reader(int Id, SharedData data) {
this.sharedData = data;

this.Id = Id;
}

public void run() {
for (int i = 0; i < 10; ++i) {

try {
Thread.sleep(randomGenerator.nextInt(1000));
System.out.println("Read SharedData " +

Id + ":" + sharedData.getData());
} catch (InterruptedException ex) {

ex.printStackTrace();
}

}
}

}

3. Shared Data class:
package readerswriters;

import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantReadWriteLock;

public class SharedData {
private int data;

private final ReentrantReadWriteLock readWriteLock
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= new ReentrantReadWriteLock();
private final Lock write;
private final Lock read;

public SharedData() {

write = readWriteLock.writeLock();
read = readWriteLock.readLock();

}

public void setData(int newData) {

write.lock();
try {

data = newData;
} finally {

write.unlock();

}
}

public int getData() {

read.lock();
try {

return data;

} finally {
read.unlock();

}
}

}

4. Writer class:
package readerswriters;

import java.util.logging.Level;
import java.util.logging.Logger;
import java.util.Random;

public class Writer implements Runnable {

private SharedData sharedData;
private int Id;

private Random randomGenerator = new Random();

public Writer(int Id, SharedData data) {

this.sharedData = data;
this.Id = Id;

}

public void run() {

for (int i = 0; i < 10; ++i) {
try {

Thread.sleep(randomGenerator.nextInt(1000));
System.out.println("Write to SharedData by Writer" + Id);

sharedData.setData(Id);
} catch (InterruptedException ex) {

ex.printStackTrace();

}
}

}
}

Solution 13.4. Cigarette Smokers problem

1. Main class:
package cigarettesmokers;
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import java.util.ArrayList;

public class Main {

public static void main(String[] args) {
ArrayList<Boolean> table = new ArrayList();

table.add(false); // tobacco on table
table.add(false); // paper on table

table.add(false); // match on table

Arbiter arb = new Arbiter(table);

Smoker s0 = new Smoker(table, arb, 0);
Smoker s1 = new Smoker(table, arb, 1);
Smoker s2 = new Smoker(table, arb, 2);

arb.addSmoker(s0);

arb.addSmoker(s1);
arb.addSmoker(s2);

s0.start();
s1.start();

s2.start();
arb.start();

}
}

2. Arbiter class:
package cigarettesmokers;

import java.util.ArrayList;

import java.util.Random;
import java.util.logging.Level;
import java.util.logging.Logger;

public class Arbiter extends Thread {

private ArrayList<Boolean> table;
private ArrayList<Smoker> smokers;

public Arbiter(ArrayList<Boolean> table) {
this.table = table;

this.smokers = new ArrayList();

}

public void addSmoker(Smoker s) {

smokers.add(s);
}

public void run() {

while (true) {
try {

Arbiter.sleep(1000);

} catch (InterruptedException ex) {
ex.printStackTrace();

}

// Picking a component

Random componentGenerator = new Random();
int chosenSmoker = componentGenerator.nextInt(3);

//asking the others to place a component onto the table
//table.add(chosenSmoker,Boolean.TRUE);

for (int i = 0; i < 3; ++i) {
if (i != chosenSmoker) {
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smokers.get(i).addYourComponent();
}

}

if (canINotifyToSmoke()) {
System.out.println("I took " + chosenSmoker +

" to the table, let’s notify the Smoker");

smokers.get(chosenSmoker).wakeUpAndSmoke();

pause();
} else {

System.out.println("Nope... I need to sleep");
try {

Arbiter.sleep(500);
} catch (InterruptedException ex) {

ex.printStackTrace();

}
}

}
}

public boolean canINotifyToSmoke() {
int components = 0;

for (int i = 0; i < 3; ++i) {
if (table.get(i)) {

++components;
}

}

return (components > 1);
}

public synchronized void pause() {

try {
wait();

} catch (InterruptedException ex) {

ex.printStackTrace();
}

}

public synchronized void wakeUp() {

this.notify();
}

}

3. Smoker class:
package cigarettesmokers;

import java.util.ArrayList;
import java.util.logging.Level;

import java.util.logging.Logger;

public class Smoker extends Thread {
private ArrayList<Boolean> table;
private Arbiter arbiter;

private int smokerId;

public Smoker(ArrayList<Boolean> table,
Arbiter arbiter, int smokerId) {

this.table = table;

this.arbiter = arbiter;
this.smokerId = smokerId;

}

public void run() {
while (true) {
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if (canISmoke()) {
try {

System.out.println(smokerId+" is smoking");

table.add(0, Boolean.FALSE);
table.add(1, Boolean.FALSE);

table.add(2, Boolean.FALSE);
notifyArbiter();
Smoker.sleep(1000);

System.out.println("I’m finished");

} catch (InterruptedException ex) {

ex.printStackTrace();
}

} else {

System.out.println(smokerId +":I cannot smoke");
pause();

}
}

}

public void addYourComponent() {

table.add(smokerId, Boolean.TRUE);
}

public synchronized void notifyArbiter() {
arbiter.wakeUp();

}

public boolean canISmoke() {
int components = 0;

for (int i = 0; i < 3; ++i) {
if (i != smokerId) {

if (table.get(i)) {

++components;
}

}
}
return (components > 1);

}

public synchronized void pause() {

try {

this.wait();

} catch (InterruptedException ex) {
ex.printStackTrace();

}
}

public synchronized void wakeUpAndSmoke() {
this.notify();

}
}

Solution 13.5. Sleeping barber’s problem

1. Main class:
package sleepingbarber;

public class Main {

public static void main(String[] args) throws InterruptedException {
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BarberShop b = new BarberShop();
b.start();

for (int i = 0; i < 5; ++i) {

HairyClient client = new HairyClient(b, Integer.toString(i));
client.start();

}

}
}

2. Barbershop class:
package sleepingbarber;

import java.util.concurrent.BlockingQueue;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.logging.Level;

import java.util.logging.Logger;

public class BarberShop extends Thread {
private BlockingQueue<HairyClient> waitingRoom

= new LinkedBlockingQueue();

private int capacity = 5;
private boolean occupied = false;

public BlockingQueue<HairyClient> getWaitingRoom() {

return waitingRoom;
}

public void setWaitingRoom(BlockingQueue<HairyClient> waitingRoom) {
this.waitingRoom = waitingRoom;

}

public boolean isOccupied() {

return occupied;
}

public void setOccupied(boolean occupied) {

this.occupied = occupied;
}

public boolean isThereAnyFreeSpace() {
return (waitingRoom.size() < capacity);

}

public void run() {

while (true) {
//is there anyone waiting?

if (waitingRoom.size() > 0) {
try {

//wait until the next person is getting available;
HairyClient client = waitingRoom.take();

client.wakeUp();
setOccupied(true);

cutting(client);
// okay, she’s hair has been cut, looks better..
setOccupied(false);

} catch (InterruptedException ex) {
ex.printStackTrace();

}
} else {

try {
BarberShop.sleep(1000);
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} catch (InterruptedException ex) {
ex.printStackTrace();

}

}
}

}

public void cutting(HairyClient client) {

System.out.println("Working: client is" + client.getClientName());
try {

BarberShop.sleep(1000);
} catch (InterruptedException ex) {

ex.printStackTrace();
}

}

public synchronized void wakeUp() {

this.notify();
}

public void wakeUpAndCut(HairyClient client) {
setOccupied(true);

wakeUp();
cutting(client);

setOccupied(false);
}

}

3. HairyClient class:
package sleepingbarber;

import java.util.logging.Level;
import java.util.logging.Logger;

public class HairyClient extends Thread {
private BarberShop myBarber;

private String clientName;

public String getClientName() {
return clientName;

}

public void setClientName(String clientName) {

this.clientName = clientName;
}

public HairyClient(BarberShop barber, String clientName) {
myBarber = barber;

this.clientName = clientName;
}

public void run() {

if (myBarber.isOccupied()) {
if (myBarber.isThereAnyFreeSpace()) {

System.out.println("There are free place");
try {

myBarber.getWaitingRoom().put(this);

this.pause();
} catch (InterruptedException ex) {

}

}
} else {
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myBarber.wakeUpAndCut(this);
}

}

public synchronized void pause() {

try {
wait();

} catch (InterruptedException ex) {

}
}

public synchronized void wakeUp() {

this.notify();
}

}





Program libraries14

In this chapter we will be acquainted with the
question, how to design and develop program
libraries. The requirements and design aspects for
program libraries, as well as needed knowledge for
object-oriented library design will be discussed in
detail. The main features of the standard program
libraries in some prevailing program languages will
also be mentioned.



P

rogramming languages and environments usually include standard built in
program libraries which implement the basic services. The development of
bigger program systems may often require to create a special API of their

own. This chapter explains the design aspects required for the above purpose.

The most important from these aspects are: correctness, efficiency, reliabil-
ity, extensibility, reusability, and appropriate documentation. Design principles
of class structure and hierarchy, size and grouping, security features, naming
conventions and memory management will be covered in detail.

The approaches of standard libraries from Java [Nyek08], C++ [Str00], Eif-
fel [Mey91] and some other typical languages will be reviewed as examples.
We also present the most typical representatives of programming paradigms
(functional, aspect-oriented, etc.) independent of the object-oriented approach.

Hereafter, program libraries are referred to as collections of subprograms,
modules, classes and data types which contain program code implementing a
well defined set of program services, and offer a unified (nowadays usually object-
oriented) interface for user programmers. That is why they cannot be viewed as
end user programs, but rather as (software-)building blocks to facilitate the work
of the programmers. The collection aspect must be emphasized: module design
principles already discussed in Section 9.3. are also valid for program libraries,
but all those must be applied on a higher, more generic level.

Services of program libraries can be categorized as shown on Figure 14.1.
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Figure 14.1: Services of program libraries

Further way for grouping services are provided by packages (Java) or clusters
(Eiffel). Program libraries and packages can have a one-to-many, or a many-
to-one relationship with each other. Packages are generally directly stored on
physical data level, such as files or directory structure.

14.1 Requirements against program libraries

The quality of the program library must be a very important factor, indepen-
dently – if it is a graphical toolset, or a b2b interface – of its goal. General
software quality requirements also apply, but there are more specific demands,
especially for program libraries.

Before listing these requirements, we will try to describe which personal skills
should library designers have.

14.1.1 Skills of a good program library developer

Making a program library is practically the same as developing a complex
software system. That is why the following requirements should be fulfilled
by everyone designing and developing complex software consisting of numerous
parts.

This list is not exhaustive, but contains the most important points. A good
program library developer should:

• have a good abstraction skill – is capable of generalization from specific
phenomena;

• have a good sense of details – in a program library every detail counts
(there is no ”good enough” library, it must be complete);

• know every aspect of the language – knowing the advantages, disadvan-
tages and what construct is best suitable for which purpose;
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• be orderly – is capable of classification, can find the right place for
everything (it is not practical if the elements of a program library are
named or sorted inconsequently);

• have a literary sense – description remarks must have proper style and
elegance;

• be an excellent programmer and designer – can understand the needs
of future users of the library (where is generality necessary, and where
should it be more efficient, etc.);

• be a team player – individual style must be suppressed, the goal is a
uniform and consistent working style (creativity can be displayed in the
variety of services provided by the library).

Having these attributes are absolutely essential to be able to start developing
program libraries which fulfill the following requirements to the fullest extent.

14.1.2 Basi quality requirements

Basic requirements are the same as for general software development: correctness,
efficiency, reliability, extensibility and reusability (see the Introduction). In case
of program libraries these requirements apply even more.

Corretness

Correctness of a software means that a program solves exactly the problem and
fits the desired specification. This is the first and most important criterion, since
if a program is not working like it should, other requirements do not really count.

For program libraries, because of their complexity it is especially important
to have a detailed, comprehensive, deliberate design and specification. That is
why particular care must be taken – with the help of language constructs, or
even by applying ”administrative” tools such as CASE,1 round-trip engineering,2

software quality assurance methods and standards (CMM,3 SPICE,4 Bootstrap,5

1 Computer-Aided Software Engineering. Software tools for automation of some system design
and development steps by applying certain design and development methods based on e.g.
code generators and reverse engineering code. Nowadays the most widespread modeling
standard is the UML, the most popular CASE tools for this are: ArgoUML, Oracle Designer,
Paradigm+, Rational Rose, Software Through Pictures, Together.

2 This denotes the process, when source code of legacy systems produced by code analyzer
tools is transformed to a model using specific design notations, from which after redesigning
or developing source code will be generated again without loosing its original elements (code
not noted in model).

3 Capability Maturity Model. A method developed by Carnegie Mellon University which
focuses on grading software developer organizations on a five-point scale for integrating
quality assurance in the lifecycle of their products.

4 Software Process Improvement and Capability dEtermination, it is an ISO standardized
technique, such as CMM, but more general and more complex.

5 A method related to SPICE and CMM, developed by a consortium of European firms.
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RUP,6 ISO 90017 etc.) –, to have the software product fully comply with the
stated requirements specified during design in every respect.

Effiieny

The efficiency of a program is proportional to the running time and used memory
size. The faster (CPU time, I/O, network load) and the less memory and storage
are used, the more efficient it is.

These requirements often counteract each other. A faster run is often set off
by bigger memory requirements, and vice versa.

According to Bjarne Stroustrup, creator of the C++ language, efficiency
and generality are contradictory requirements. He means that in the case of
creating program libraries, efficiency is more important, while if not so, the
users (developers) would start to write their own more efficient code for certain
purposes. This would violate standardization attempts, and lead to increased
number of incompatible software.

This is contradicted by the point of view that if a service is not designed
generic enough, and has for efficiency too many ”hardcodings” than developers
may sometimes also start replacing library elements by their own code segments
to satisfy special needs. Obviously, there is no good solution for every case to
this problem. The designer of the program library must keep the main goals of
the library in mind, when deciding this question.

Obviously, the C++ language is mostly used for efficiency requiring tasks,
so program libraries based on it also rather focus on that. For example, in
the Standard Template Library, inheritance is mostly banished for performance
reasons, obviously loosing so generality. In higher level languages, generality can
easily be what is more required.

Reliability

A program is called reliable, if abnormal – not described in the specification –
circumstances lead to no catastrophe, but are handled in a ”reasonable” way.

This definition shows that reliability is a notion by far not as precise as
correctness. One could say, of course, with a more specific specification reliability
would mean correctness exactly, but in practice there are always cases which are
not covered by specification explicitly.

For example, in C if an array stores n bytes, and the specification does not
specify a range check to prevent overflow, when a programmer has not paid
attention to reliability and let the byte on position n + 1 to be overwritten,

6 Rational Unified Process. A software production process based on UML, covering the full
lifecycle by using products of Rational and helping the job of designers, developers and
testers.

7 Quality assurance standard not for the development process of software, but for its endresult
product.



14.1 Requirements against program libraries

•
833

the program will show unexplainable behavior (another variable may have been
overwritten), or a protection exception from the operating system will be raised.

That is why reliability and security are very important aspects in a widely
used program library. For implementing this, pre- and postconditions, and in-
variants can be used. This actually means a contract between the authors and
users of the program library where preconditions are obligations of the user and
security for the programmer, postconditions are obligations of the programmer
and security for the user. Now the programmer needs no ”defensive” program-
ming (to be prepared for every possible error and input) and the code also gets
more efficient and simpler. The two possible approaches:

• The tolerant approach: program library routines have no preconditions (or
only weak) and react somehow to every possible input. This, of course, has
the consequence that because of the often unnecessary rigorous checking
of the input, efficiency of the code strongly degrades.

• The pretentious approach: every routine has strong preconditions, the
fulfillment of those is the responsibility of the user. In this case, input
data checking can be safely discarded, but for error-prone input the right
behavior of the program cannot be guaranteed.

As can be seen, both cases have their advantages and disadvantages. The
recommended approach:

• Only preconditions required for the logically correct execution of abstract
operations are checked

• Only those conditions are checked that would seriously affect efficiency,
if not met.

Any violation of this contract indicates a program error. Violating the precondi-
tion indicates error from the user side, postcondition or invariant failure denotes
program library error. So after developing the program library before distribution
for efficiency only checking of preconditions should be switched on.

Extensibility and maintainability

Extensibility refers to how easy it is to adjust the program product to specifica-
tion changes.

Users often demand further development, modification, adjustment of the
program product to new external conditions. According to some surveys 70 %of
program product costs are spent on maintenance, so it is understandable that
this requirement significantly affects the quality of the program.

Extensibility is relevant, especially when developing big program systems and
program libraries, since changes in small programs are usually never too complex.
To increase extensibility, design simplicity and decentralization (to have the more
independent modules and components) can be seen as the two most important
basic principles (see next section about object-oriented program library design).
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Reusability

In current times, when the amount of software products to develop is extremely
high, it cannot be allowed to build every system from scratch. There is a growing
demand for reusable components.8

If a software system is designed with reusability in mind, this requires a little
bit more effort which will pay back at the next development by already having
done a lot.

14.1.3 Speial requirements for program libraries

The following requirements are specifically for those software products which are
used not by endusers, but by other software developers. As program libraries are
specifically made for this purpose, all of this is particularly true with regard to
them.

Classes from a program library can be expected to have the following prop-
erties:

• Easy and intuitive usage;
• Immediate and wide usability in a wide range of software systems;
• High level documentation;
• Portability and compatibility.

In the following, these requirements will be discusses in detail.

Easy and intuitive usage

Services offered by program libraries should be easily understandable and after
some usage easy to remember.

Easy usability can be examined in many ways. One of these is the separation
of services. If a program library has many similar services, the user will have a
difficult choice to select just the right one. In general, it is better to define less,
nearly completely orthogonal9 services – in every case to suit a well defined role,
following the optimal implementation.

Generality (accommodation to the possible uses) and simplicity (achieving
every task by combining elemental operations) contradict each other. Profes-
sional programmers need the primitive operations for efficiency; on the other
hand, casual programmers need more general components and accommodation
of conventions for convenience.
8 As a component many things are considered, for example, software components with runtime

connection capabilities through interfaces (e.g. CORBA, COM, EJB), or even standard
program language types (such as in C++ the Standard Template Library or in Java the
classes from its API). The naming is valid in both cases, but we will use it for components
which can be combined on source code level.

9 Implementing separate functional aspects or dimensions see aspect-oriented programming
and the Multi-dimensional Separation of Concerns
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Unified naming convention also greatly helps the usage of a program library.
This means consistent naming, on the level of services based on categorization
of the operations with the implemented data types, following these rules:

• The name of getter/query services for data elements should start with
the get prefix;

• The name of setter services for data elements should start with the set
prefix;

• The name of services to remove data elements should start with the
remove prefix;

• The name of services returning a logical value should start with the is
prefix.

Of course, this list can also be freely continued. Please note that these prefixes
come from the English language, because in the field of programming English is
dominant without a doubt.

Following these, a unified naming system can be easily adopted. Like for
prefixes, unified naming should be used also for the same attributes of data
types:

• For the capacity of a given structure: capacity;
• For the element count of a given structure: count;
• For the emptiness of a given structure: empty; etc.

Combination of these words can be used to name services, such as setCapacity,
getCount, or isEmpty. Capitalization of each word part also makes the adoption
of the naming convention easy.

Based on these examples, the following principles can be summarized:

• The name should be short (usually one word), but communicative;
• The name of a service should not refer the containing class (except when

renaming at multiple inheritance);
• The name of the classes should be always a noun or noun structure;
• Names of commands (procedures) should be verbs (in imperative), maybe

with supplementary nouns;
• Names of not logical getters should be nouns or nous structures;
• The name of a logical getter should be an adjective which suggests a

yes/no answer, or the is prefix should be used;
• The name of the service should be interpretable from the perspective of

the target object, since by calling a service there is always an object (the
target object) which offers the service;

• Operation and query pairs should be named with the same stem (ex-
tendible – extend).
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Immediate, broad usability

Reusability is the feature of the software products that they can be partly or as
a whole reused in new applications and in a wide range of software systems.

The experience should be utilized that many elements of software systems
follow common patterns. Reimplementing already solved problems should be
avoided.

This question is particularly important, not primarily when producing indi-
vidual program products, but for a global optimization of software development,
as the more reusable components are available to help problem solving, the more
energy remains to improve other quality characteristics (at the same costs).

High level doumentation

A particularly important attribute of well usable program libraries is the accu-
rate, well structured documentation.

This has the function to guide the user (programmer) easily through the
multitude of services, and to be able to optimally utilize available possibilities.

When writing the documentation, the following should be considered:

• Sourcecode is not abstract enough. Beside the relevant information for
the user it also contains the low level implementation, so reading it means
browsing through too much information, or could lead the programmers
to use implementation possibilities not intended for the public. It has the
advantage that it is always up to date.

• Separate documentation can become inconsistent with the software. It
has the advantage that it contains only relevant information for the user.

Regarding this two aspects the recommended way of ”internal documentation”
can be specified: documentation should be embedded in the source code. It has
the big advantage that source code and documentation are always consistent (as
changing the code definitely changes also the documentation), and the generation
of the documentation can be automated by using utility programs (such as
javadoc).

Portability and ompatibility

Portability regards how easy it is to convert the program to another machine,
configuration or operating system – usually to run in different runtime environ-
ments.

Compatibility shows how easy it is to combine the software products with
each other. Programs are developed not isolated, so efficiency can go up by orders
of magnitude, if ready software can be simply connected to other systems, and
adapts well to background infrastructure (operating system, database engine,
web server, 3D API, XML schema, etc.).
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Portability and compatibility often contradict each other, since, for example,
if a program library is designed to efficiently use all possibilities of a particular
operating system, then obviously, even only converting to another operating
system may be difficult, and efficiency would certainly suffer. The same is true
vice versa: if an API is designed for maximum portability, possibilities of different
environments would most likely not be fully utilized.

To achieve a healthy compromise, the main goal of the particular library
must be kept in mind, and the decision has to be made according to that if
portability or compatibility should be more emphasized.

14.1.4 Conditions for fulfillment of the requirements

As a result of the requirements listed above, the following properties can be
expected from a good program library:

• Consistency – every component (types, classes, modules and packages) of
a library should be as a result of comprehensive and coherent planning,
and should follow numerous systematic, explicit and unified conventions;

• Components should be homogen and of good quality;
• At design time, object-oriented approach should be applied, since sup-

porting data abstraction is particularly suited for developing program
libraries.

Simultaneous compliance to only a part of the above criteria is very hard. It
can be, for example, that the most generic algorithm is not the most efficient for
many special, but frequent cases.

Most of these requirement – mainly reusability, extensibility and compatibil-
ity – can be best supported, if libraries are designed according to the principles
of modularity discussed in Section 9.3. As already stated there, object-oriented
approach is a good way to complete modular design and to handle problems
originated from there efficiently, therefore suitable for the production of high
quality program libraries. In the following a short overview of the object-oriented
method will be given from the aspect of the program libraries.

14.2 Objet-oriented program library design

Usability, quality, extensibility and reusability of an object-oriented program
library is very significantly influenced by the number of its classes (compared to
the possibilities and the problem) how big these classes are, in what kind of a
hierarchy they are structured, and which interconnections they have.

According to this the following few pages will describe which approach should
be chosen, when designing the class hierarchy of program libraries. After that
we will review what number of services should preferably a class have, and to
implement these services what number of parameters should be chosen (certainly
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considering properties of the given task). Finally, some typical class types will
be introduced based on their place within the class hierarchy and on technical
characteristics.

14.2.1 Class hierarhy

Developing a program library with object-oriented approach also means building
a class hierarchy. In terms of usability the complexity or simplicity of this
hierarchy is not unimportant.

Conforming to object-oriented approach the most generic classes should be
introduced, needed special classes should be defined by using inheritance. Doing
so makes maintenance of the class hierarchy easy.

Generalization

The proper use of generalization is shown in the following example in Objective-
C. The two code snippets illustrate the definition of classes implementing a
generic window and a dialog box.

// WRONG APPROACH!
@interface MainWindow : Object

// . . .
- show;

- moveToX: (int)x Y : (int)y;

- onExit;
@end

@interface DialogBox : Object
// . . .
- show;

- moveToX: (int)x Y : (int)y;

- onOK;

@end

// Proper approach
@interface Window : Object

// . . .
- show;

- moveToX: (int)x Y : (int)y;

@end

@interface MainWindow : Window
// . . .
- onExit;

@end

@interface DialogBox : Window
// . . .
- onOK;

@end

In the first incorrect case, two classes are defined without applying generaliza-
tion, these are similar to each other, since they both are concrete specializations
of the same general concept (window).

As in this case, there is no general window class, certain properties (show and
moveToX:Y : methods) are defined in both places the same way. This results
in the need of changing these services on two different places, if required what
causes on the one hand extra work making maintainability complicated. On the
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other hand if changes are applied only on one place inadvertently, inconsistency
occurs which deteriorates program quality.

In the second code snippet, there is a Window, the other two classes inherit
from this. This means on the one hand the collection of common behavior in one
place which improves maintainability and program quality, on the other hand
this helps reusability, since such a common window type was constructed which
could serve later as a base to any other window classes.

Speialization

The following Smalltalk [GR83] code is also a good example to show how defin-
ing proper generic ancestors make concrete type specification much easier by
specialization, as opposed to implementing each of those independently without
applying inheritance.

class Animal superclass Object

instance variables

color

yearOfBirth

habitat

class methods

new . . .

instance methods

eat . . .

drink . . .

sleep . . .

class Dog superclass Animal

instance variables

DateOfRabiesVaccination

class methods

new . . .

instance methods

walk . . .

class Cow superclass Animal

instance variables

dailyMilkYield

class methods

new . . .

instance methods

chew . . .

This example shows clearly that the resulting code is much shorter, if general-
ization – specialization is used, since if the common part would not be separated,
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it would be defined twofold. Furthermore, if the animal hamster should also be
implemented, separating the common part brings even more, since that must be
coded only once instead of threefold.

Simple or omplex hierarhy

Introducing a new class could make the class hierarchy simpler. This is mostly
of interest when applying multiple inheritance, since introducing an additional
node class results in fewer inheritance relations.

The following Eiffel example will demonstrate this.

−− WRONG APPROACH!
class RADIOBUTTON inherit WINDOW INPUT COMPONENT

−− . . .
end

class CHECKBOX inherit WINDOW INPUT COMPONENT
−− . . .

end

class LISTBOX inherit WINDOW INPUT COMPONENT
−− . . .

end

−− Proper approach
class INPUT COMPONENT WINDOW

inherit WINDOW INPUT COMPONENT
−− . . .

end

class RADIOBUTTON inherit INPUT COMPONENT WINDOW
−− . . .

end

class CHECKBOX inherit INPUT COMPONENT WINDOW
−− . . .

end

class LISTBOX inherit INPUT COMPONENT WINDOW
−− . . .

end

The example is also shown on the UML diagram 14.2. to aid the overview of
class hierarchies.
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Figure 14.2: UML diagram of the two variants of the Eiffel example

The example also shows that the size of the code now is not reduced, but its
transparency increased significantly by having much fewer inheritance relations,
and the program also becomes logically clearer.

This is because that typegroup was aggregated into a separate class which is
used on manyfold as common part, so it is highly probable that it can cope by
itself as an independent notation within the logic of the program.

14.2.2 Size of the lasses

In the following, some notions regarding class size will be discussed, and some
statistical data will be presented to help choose the right size for classes in
program libraries.

Simple, diret and inremental size

The size of a class can be determined the following way:

• Direct size = the count of the newly introduced direct (not abstract and
nor inherited or redefined) services of the class;

• Incremental size = the count of the inherited and redefined services;
• Simple (full) size = the number of all services implemented by the class

= direct + incremental size.
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The following C# [Sch02] example will be analyzed to explain these metrics.

using System;

public class TelephoneSet {

public string telephoneNumber() {

string telephoneNumber;

// Defining telephone number
return telephoneNumber;

}

public void endOfCall() {

telephoneReceiver.putDown();

}

}

public class PortableTelephoneSet : TelephoneSet {

public void endOfCall() {

bigRedButton.push();

}

public int lengthOfAntenna() {

int length;

// Defining length value
return length;

}

}

In this example the direct size of the class PortableTelephoneSet is 1, be-
cause of the newly introduced lengthOfAntenna method. Counting the redefined
endOfCall and the inherited telephoneNumber methods the incremental size is
2, together the simple size gives 3.

Outer and inner size

Another aspect can be if the metric includes exported attributes or not: according
to this the outer and inner sizes are differentiated (the inner includes all, the
outer only public members).

The outer and inner sizes will not differ significantly if public services are
implemented not by private operations, but are delegated to other classes.

Upper limit due to handling

If rules should be given for the class size, the proper metric must be chosen first.
The full size should not be limited, since it greatly depends on the number

of ancestor classes and their complexity. The direct and incremental sizes are
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relevant for the class source. A natural choice could be the incremental size,
since this is what really correlates to complexity.

Below a certain size the class becomes unmanageable. This problem can be
approached in two ways:

• Minimalist approach: a class in a program library contains only the most
basic services, but no redundant ones (those which could be implemented
by using basic ones). This, of course, is better for the writer of the
program library, since this requires less work and it also means simpler
maintenance.

• ”Shopping list” approach: every service should be included in the class
which fulfills the following requirements:

– The service fits into the implementation scheme of the abstract data
type;

– It would not break the correctness of the class, i.e. the class invariant;

– It implements useful functionality;

– It does not duplicate an already existing service;

– It fulfills the requirements of easy usability.

In practice, the standard built in libraries of program languages are expected
to apply the minimalist approach, so every operation should be executed effi-
ciently only in one possible way, designing other program libraries should rather
apply the shopping list approach to ease its usage.

The next example shows the shopping list approach:

(* Objective CAML example *)
module Table :
sig

val cell paint : int int int −> unit
val row paint : int int −> unit
val column paint : int int −> unit
val paint all : int −> unit
(* other functions *)

end =
struct

(* implementation *)
end

The Table type in this example implements a simple spreadsheet model. It
offers methods to color the whole table at once, or just a single row, column or a
specific cell. Input parameters are obviously the row and column numbers, and
the color code.
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Organizing priniples

Too many services negatively affect the learning curve to use the program library,
so the following guiding principles are recommended to avoid this:

• Every service should be specified with a well defined contract, and only
the specification, not the implementation should be used;

• Class documentation should be unified and in an easy to read format, it
should contain the contracts of all services, but should hide implementa-
tion details;

• For the names of services a rigorous convention should be applied;
• Services should be grouped by exactly defined categories, these categories

should be the same for each class, their order in the documentation
should be the same, within each category the services should be listed
in alphabetical order.

Example data

Generally speaking, if a class contains more than 80 services, the class hierarchy
should be considered for splitting.

Number of services Prevalence of classes (%)

0 – 5 40 – 60
6 – 10 10 – 20

11 – 15 5 – 10
16 – 20 5 – 10
21 – 40 5 – 15
41 – 80 5 – 10
81– 0 – 5

Table 14.1: Distribution of class sizes in Eiffel program libraries

Table 14.1 shows the suggested size distribution of classes based on data from
Eiffel program libraries.

14.2.3 Size of servies

As using program libraries means calling their implemented services, it is vital
for the user to know the parameter count, types and order of each service. So
from the aspect of usage, the size of a service can be specified as the parameter
count.

This size strongly depends on the task of the program library, as for example,
methods of a GUI implementation, or for statistical computations numerous
arguments could be required.
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For better handling numerous arguments, they should be divided into the
following two groups:

• Parameter: input argument to specify a value for an operation;

• Option: such an argument which could be even omitted, since it could have
a default value. It only affects the handling of the parameters. During the
development of a service its parameter list should not change, but new
options can be safely added.

Consequently, to reduce the size of a service only parameters should be used in
the argument list. Options further should be represented as separate attributes
with setter and getter services. This is the so called option setting method.
This, of course, raises the question of globality for the representation of the new
attribute, and even also increases the size of the class.

The following PHP example illustrates the option setting method:

<?php

class FileManager { // traditional class
function open($fiℓename ,$mode, $use path) {

return fopen($fiℓename ,$mode, $use path);

}

}

class FileManagerWithOptions { // Option manager class

var $m mode;

var $m path;

function setMode($mode) {

$this->m mode = $mode;

}

function setUsePath($use path) {

$this->m path = $use path;

}

function getMode() {

return $this->m mode;

}

function getUsePath() {

return $this->m path;

}

function open($fiℓename) {

return fopen($fiℓename, $this->m mode, $this->m path);

}

}
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// using traditional class
$fm = new FileManager;

$fm->open("/etc/passwd", "r", 0);

// using option manager class
$fmwo = new FileManagerWithOptions;

$fmwo->setMode("r");

$fmwo->setUsePath(0);

$fmwo->open("/etc/passwd");

?>

In this example the FileManager class has only one method with three
arguments, the same method in the FileManagerWithOptions class has even
only one parameter, the two former arguments became attributes with setter
and getter methods.

Example data

Average parameter count of the services is usually around 0.5. Services with more
than 5 parameters should be considered for splitting. Ratio of queries–commands
within services is approximately 60–40 %.

Table 14.2 shows the suggested size distribution of services based on classes
from Eiffel program libraries.

Argument count Service prevalence (%)

0 50 – 60
1 30 – 35
2 5 – 15
3 0 – 5
4 0 – 5
5– 0 – 5

Table 14.2: Distribution of argument count in class services of the Eiffel program
library

14.2.4 Types of lasses

In the following, some types of classes from program libraries will be character-
ized.

Conrete types

Every program library hierarchy contains types representing basic data struc-
tures (list, string, date, complex number, etc.). These are called concrete types.
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Concrete types can be characterized as follows:

• They fit a concrete notion and mode of implementation;
• Clarity, independent usability;
• They are strongly dependent of, but have efficient implementation, so at

any change all user code must be recompiled;
• They depend only minimally on other classes;
• They can be compiled and used isolated, but cannot be inherited from;
• Being concrete is the opposite of abstract, so they have no generic or

abstract properties, and are usually used in low level programming.

The following example shows the possibility of the Java language which
supports defining classes being so concrete that inheriting from them is explicitly
forbidden. This is done with the use of the final keyword.

In the first codesnippet the whole class is made final.

// concrete class
final class ChessAlgorithm {

// . . .
}

If a class specifies this class as its parent, the following error message will be
shown by the compiler:

ChessAlgorithm.java:6: Can’t subclass final classes: class ChessAlgorithm

class BetterChessAlgorithm extends ChessAlgorithm . . .

^

1 error

In the next example only one method will be made final:

// Ancestor class with final method
class ChessAlgorithm {

// . . .
final void nextStep(ChessMan toMove, TablePosition newPos) {

// . . .
}

}

In this case the class can be specialized, but the method marked as final
cannot be redefined.

Abstrat types

Those classes are called abstract which are needed to represent an important
logical unit within the class hierarchy, but cannot be directly instantiated, only
through their descendants. Their role is to introduce a given interface, such as
a set, list, tree, etc.
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Abstract types can be implemented by the help of concrete, derived types.
Properties of abstract types are:

• For the same access path manifold implementations can exist;
• Efficient memory usage and short running time thanks to virtual methods.

Abstract class definition is supported in many languages by appropriate key-
words. For example, the Java, Ada 95, C# languages include the abstract
keyword, C++ denotes with the = 0 postfix that a member function is purely
virtual, i.e. abstract. Usually it is possible to specify if an operation is abstract
or concrete

The following Ada 95 example shows an abstract set type with a concrete
implementation (hashtable based set type).

package Set is
type TSet is abstract tagged null record;

function Size(h: in TSet) return Integer is abstract;
function IsEmpty(h: in TSet) return Boolean;
procedure Add(h: in out TSet, data: in Float) is abstract;
procedure Remove(h: in out TSet, data: in Float) is abstract;
−− Specifications of other abstract operations.

type THashTableSet is new TSet with private;
function Size(h: in THashTableSet) return Integer ;
procedure Add(h: in out THashTableSet, data: in Float);
procedure Remove(h: in out THashTableSet, data: in Float);
−− Specifications of other abstract operations.

private
−− Implementation of the THashTableSet type.

end Set;

package body Set is
−− Implementation of the operations of the TSet type.
function IsEmpty(h: in TSet) return Boolean is

begin
return Size(h) = 0 ;

end IsEmpty;

−− Implementation of the operations of the THashTableSet type.
function Size(h: in THashTableSet) return Integer is

m : Integer := 0 ;
begin

−− Computing the size.
return m;

end Size;
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procedure Add(h: in out THashTableSet, data: in Float) is
begin

−− Adding an element.
end Add;

procedure Remove(h: in out THashTableSet, data: in Float) is
begin

−− Removing an element.
end Remove;

−− Implementation of other operations.
end Set;

Node types

Node types are located as inner nodes within the inheritance hierarchy. As
already shown (see Section 14.2.1), they play an important role in simplifying
class hierarchy. Characteristics of node types are:

• They implement services of the ancestor classes, meanwhile extending
their interfaces with virtual methods and also giving an implementation
for these;

• They are dependent from their ancestors;
• One can inherit from them;
• They can be instantiated.

An example: in a geometrical application the quadrant type would be a descen-
dant of shape, but also may be refined (parallelogram , trapezoid , etc.).

Fat interfaes

This is a kind of interface type which is independent of other classes, introduces a
lot of services, and gives only for the most important services an implementation.
It declares the more special services as virtual, and for the sake of instantiation
also gives an empty implementation for them, where usually an error message is
thrown signaling that the actual implementation is still missing.

An example: consider the general container classes which implement storage
of the elements by their own, but sorting or enumerating elements for a given
condition is not really their responsibility.

Appliation frames

These abstract classes implement actually a miniature application. Within the
class only the program logic is implemented, every other methods to execute and
parametrize basic operations are virtual.
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An example: consider the filter class which iterates over all elements of an
input data stream and executes a certain operation if a condition is met. Iteration
over the input data stream, checking a given condition and calling a certain
operation, and possible error handling are all implemented by the class itself.

Handler lasses

The connection between an abstract interface and its concrete implementation
during runtime, even the size of the implementing class is constant, but the
need for handling different sized classes through a given interface can arise. This
is what a handler class can be used for. Using it divides the implementation
in two parts: the actual representation and a handler object for accessing this
representation. This can actually be seen as the object-oriented implementation
of the pointer type.

An example: with the help of file handler classes arbitrary sized data files
can be represented.

14.3 New paradigms

In the nineties new theories and methods were introduced for improving pro-
gram language modularity by differentiating or extending the methods of OOP.
Applying these can improve program library quality characteristics.

As an example, consider aspect-oriented programming (AOP) which focuses
on gathering the aspects throughout the class hierarchy into separate modular
units, or the generative programming (GP) which focuses on creating such
program libraries or components after modeling an application domain which
can be used by knowing the concrete problem to simply and as fully as possible
generate code from the plan of the system. This latter is related to intentional
programming (IP) which is capable of generating full code from program libraries
of adequately designed and structured data abstractions.

These theories and their language implementations will be handled in Chap-
ter 17 about aspect-oriented programming.

14.4 Standard program libraries

As stated above, high level languages and development environments usually
offer their services in the form of standard program libraries. The program
language in fact is restricted to its basic statements and keywords which would
be not enough to solve everyday problems on their own. This could also be
expressed as the usability of the program language is strongly determined by
the feature richness of its standard program library. Such a high level program
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language is, for example, Java, which has a well known wide spread standard
library with loads of services.

Considering low level languages – such as assembly – they also use premade
program library services – for example, through interrupts. This is not so obvious,
because the called program library is not stored on a data storage, but is
within the ROM of the computer, so its services are useable without any linking
operations.

Standard program libraries offer in/for a specific program language such
services which would be needed by almost all programmers. A good example for
this is the implementation of the communication between the program and its
user, since without data input and result display only a very few programs could
properly function. Services of a program library can be used also from other
program languages. This could happen on low level, if compiled units would
be called from other languages, but according to its original syntax (when for
example a C program calls an external routine with Pascal signature, or consider
the native feature of the Java language), or the calling of a service could be done
by an interpreter, but the use of CORBA services could also be considered
where thanks to the common description language (IDL) the definition and the
implementation of a given service are completely separated.

14.4.1 Data strutures

One of the basic services a standard library must provide is to offer implemen-
tations of often used complex data types and structures for the programmers to
aid their work. Since the plain program language only supports tools for type
constructs to make more complex types from basic types, but these composite
types are fairly often needed, so this is a good reason to include these in a
program library.

A good example for this is the Java Collection Framework, or the STL library
in C++ which implement ”collections” of objects, so called containers, such as
stack, bag or vector. The main design aspect in this case was the orthogonality
of the element types, the container types and of their possible operations. This
means that every basic type can be grouped in containers, and the elements of
the container can be accessed only in a given way, with the help of so called
iterators. Sorting of container elements is not the responsibility of the container,
an arbitrary external algorithm can be created using the iterators, since the
container only supports the management, access and modification of its elements.

14.4.2 I/O

Another basic programmer task is to support data input and display data output.
This, of course, cannot be expected from the program language itself, since
usually every data output and input is a predefined task of the operating system.
A standard library can also only make easier the usage of these services of
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the operating system. Consider file handling, or reading/writing input/output
channels, or communicating through computer network, every program language
must do this the same way.

14.4.3 Memory management

One of the key questions of program library design is memory management. The
two fundamental problems which require attention:

• Allocating memory for new objects;
• Freeing memory.

Since the first is the task of the operating system, for the second problem two
solution approaches exist:

• Automatic garbage collection (such as in Java, Eiffel, Smalltalk). This
usually implies the introduction of references and the removal of pointer
types. This has the advantage that the programmer need not be concerned
about memory management, but has the disadvantage that because of the
garbage collection mechanism it will surely not be optimal for concrete
applications.

• Freeing objects by hand. This is more efficient, but also much more
dangerous, as all the responsibility lays in the hands of the programmer,
and the smallest inattention can lead to memory ”leaks”, or in worse case
even to unreproducible program errors.

As you can see, the nature of these two problems depends of course also on
the actual program language. It must be emphasize here again how important
it is that a program library should implement a safe and efficient memory
management, since its code will be used overall in many places, so the effects of
a possible error would be multiplied.

14.5 Lifeyle of program libraries

As program libraries are such software products which are used to make program
development easier, the most important aspect to comply with during their whole
lifecycle would be, is reusability. During design such an interface must be defined
which stays stable in long term and also enables further development. After the
initial phase, when the program library is already used in many places, the
question of maintainability gains more and more importance. The problem is
with that that further developments and extensions must not affect the function
of already used services (except changes made for bugfixing). Hereinafter the
lifecycle of program libraries will be seen through, and it will be examined how
to best meet the quality criteria discussed so far.
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14.5.1 Design phase

Beside the basic principles of modular and object-oriented approach discussed
so far, the following must also be considered:

• The problem of data structures is following: data structures are the most
sensitive for changes, mainly for extensions. Consider how troublesome it
is to append a new field to a record causing an increased memory footprint
for the type. That is why extensibility of the data structures must already
considered during design phase, for example, in a way by defining initially
empty, non-used fields which can be used later for further development. Of
course, it should also be considered how to distinguish different versions
of data structures. One possible solution for this is if the user specifies
for every service of the program library the expected version number as
a parameter (this of course decreases efficiency because of the additional
parameter passing), or before using any data structures of the program
library, a special service must be called to set the requested version. In the
latter case it is the responsibility of the program library to keep a record of
the requested versions of possible parallel inquiries which only makes the
implementation of the code more complex. The simplest solution for that
would be if every output data structure stored its own version number,
but this would increase the memory footprint.

• The program library should only allow indirect access to (global) variables
and fields. For this, rather getter and setter services should be introduced,
hiding internal implementation details of data fields and structures and
controlling data access.

• For naming services unique identifiers should be used by specifying for
every name a prefix (for example in PVM, a program library to aid parallel
programming, the name of every service has the pvm prefix), or if the
language supports it, a separate namespace should be introduced (in C++
with the namespace keyword, or in Java by using packages).

• The interface (API) of the program library should specify only the really
public services, so changing internal code used for implementation will
have less effect on the user code.

14.5.2 Implementation phase

In this phase the most important aspect is the efficient and error-free implemen-
tation of the services. The following principles may be of assistance for this:

• Services should be defined in the strictest way. It must be thoroughly
considered if a service should be on the class or object level, and the
modifiers should be specified as strict as possible. For example, services
not reachable from the outside should be marked as private, and it should
also be stated (in Java for example with the final keyword), if a method
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should be finalized. The compiler can only generate optimal code in this
case.

• It follows from the principle before that only those operations should
be made reachable from the outside which are documented services of
the program library. This can assure that nobody uses not documented
functions of the internal implementation.

14.5.3 Maintenane phase

For every bigger program library this is the longest phase. Maintenance could be
done as bugfixing, or in the form of further development. The most important
basic principle of bugfixing is that it must be definitely done, no excuses should
be allowed that maybe some user code could be based exactly on this error prone
behavior. If a programmer finds a bug, it should not be exploited, but reported
to the maker of the program library.

At further development, the most important aspect is the implementation of
version management, and keeping the most possible level of compatibility during
applying modifications. The following principles may be of assistance for this:

• If new services are introduced, programs using these new version should
not even execute with older versions of the program library. For this the
solutions discussed for design phase could be applied.

• If the signature of a service was changed, for compatibility reasons the
old version should also be included. In this case calling the old version
would usually set the new parameters to some default values, and it will
call the newly introduced version. Meanwhile a warning can be issued
which could lead the users to change their code. Some program languages
have support for this mechanism (such as in Java the deprecated keyword:
calling methods marked like this will cause the compiler to issue a warning
message).

• Every new version of the program library should be thoroughly tested.
For this, parallel to development testbeds should always be defined and
managed together with the library. To test new functions the testbed
must also be extended, retesting existing services could protect against
possible side effects.

14.6 Summary

In this chapter we have discussed the question, how to design and develop
program libraries. The requirements and design aspects for program libraries,
as well as needed knowledge for object-oriented library design and also for
designers have been examined in detail. The main features of the standard
program libraries in some prevailing program languages have been introduced.
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In declarative programming languages, programs are
a set of declarations describing a process of
computation. A functional program consists of type,
class, and function declarations and definitions,
together with a start expression. Execution of a
program is virtually the evaluation of the start
expression. The mathematical computation model of
functional programming languages is the λ-calculus.
In this chapter, we provide an overview of the most
important concepts in functional programming,
review its historical and mathematical background,
while we also discuss issues such as expression
power, efficiency, the functional programming style,
language constructs for supporting abstractions, and
readability, modifiability, reliability of programs
written in such languages.



W

hen discussing elements of functional programming, there will be mul-
tiple languages used (such as SML, Miranda, Clean, Haskell) in order
to give an introduction to the functional programming style and

common language constructs employed in contemporary functional programming
languages [Hud89] rather than an extensive study of a single specific language
([CMP95], [Har01], [Tho99] and [Pla99]).1

15.1 Introdution

The mathematical foundation of functional programming is a computation model
described by Church in 1932–33, called λ-calculus [Bar84]. The semantics of
functional programming languages is usually defined by the λ-calculus. Turing
showed that computable functions over non-negative integers expressible in λ-
calculus are exactly the same as the functions that are computable in the model
of imperative languages, called the Turing machine. That is, every problem
that can be solved in the imperative computation domain can be also solved
using functional programming concepts and vice versa. The model of functional
programming is as old as the Turing machine. The first functional programming
language (LISP) was also created around the same time (1956–1962) as were the
first high-level imperative programming languages (FORTRAN, ALGOL 60)
as well. This is not a coincidence as these two approaches do not exclude but
support each other. Solving problems in programming requires one to be able to
think both in imperative and functional concepts.

The growth of computing power and the continuous development of com-
piler techniques used in functional-language implementations has finally enabled
functional programs to achieve the same level of efficiency as their imperative
counterparts. For example, the run time of a binary produced by the Clean,
OCaml or Haskell compilers is just as effective as if it was written using C.

1 The writing of this chapter has been partially funded the OTKA T037742 grant.
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The influence of functional programming languages is on the rise, not least
because their approach suits the object-oriented paradigm. Many software com-
panies use a general-purpose or domain-specific functional language for solving
certain complex problems. Areas of application are telecommunications (Erlang,
Ericsson), trading, networking, cloud computing (OCaml) or natural language
processing, digital signal processing, cryptography, embedded systems, (Haskell,
Lolita), traffic control systems, or building user interfaces (iTask, Clean).

Code written in a functional language is usually shorter, more expressive,
more readable, and easier to modify than their respective versions implemented
in imperative languages. This is due to the fact that the concept of variables
employed does not exist in purely functional languages, hence programs cannot
have implicit side effects. Modifying sections of a program has less effects on the
complete software, therefore it is easier to follow. When using functional lan-
guages for implementation, the complexity of larger programs can substantially
reduced, and the amount of time spent on developing the program may be cut
back significantly, the result is a more reliable and more bug-free program.

Widespread adaptation of functional programming languages is mostly ham-
pered by the lack of educated software developers with good abstraction skills.

15.1.1 The funtional programming style

In the case of functional languages, instead of considering each program execu-
tion step individually, the focus is on the effect of the program which can be
described by program functions (effect relations) or behavioral relations. When
correctness of programs is discussed, the program function or the behavioral
relation is compared to the problem to be solved. A component of the composed
program may have unwanted side effects if subproblems are incorrectly identified
during the program refinement process.2 Side effects make verification of program
correctness very cumbersome, and derivation rules in program construction be-
come harder or impossible to apply. In addition, program synthesis and verifica-
tion techniques based on preconditions and postconditions ([Tho90], [HAKP99]
and [MEP01]) may not be applicable at all. In a broader sense, the functional
programming style refers to the process of systematic program construction using
components free from ”invisible” side effects.

Preconditions and postconditions describing the problem specify constraints
on the values of variables.3 Such constraints often refer to values of function
compositions in the form of equations. Function compositions usually corre-
spond to the structure of the program itself. That is, a solution can be found
by constructing constraints from elementary functions using standard function
compositions. This also indirectly determines how to map states satisfying the
precondition to states characterized by the postcondition. Put it in a different

2 Side effects may appear if the relation solving the problem is not an extended identity or it
is not projection-invariant over the subspace of the subproblem and its complementary.

3 Variables are considered projection functions of the state space.
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way, it specifies how functions given in the postcondition should be computed
through elementary functions. If it is allowed to use higher-order functions, that
is, functions that may have functions as their parameters, it leads to a uniform
functional approach.4

15.1.2 Struture and evaluation of funtional programs

A functional program consists of type, type class and function declarations,
together with function definitions and a start expression. Execution of a program
is technically the evaluation of the start expression. Evaluation can be seen
as gradually rewriting the start expression by textually replacing the referred
functions with their bodies (see Example 15.1.2). The exact meaning of the
rewriting process is determined by the computation model of the language. The
execution model of programs written in functional languages always results in
a confluent reduction or rewriting system. Such a system is called confluent if
the final result is unaffected by the order of the rewriting steps taken, this only
depends on whether the result is finally computed or not. The λ-calculus is a
confluent system, but there are other similar confluent term rewriting systems
and graph rewriting systems.5 In many languages, for example, in SML, Haskell
or Clean it is possible to directly use expressions conforming to the grammar
rules of λ-calculus.

In the case of simple function definitions, the name of the function and the
associated formal parameters appear on the left-hand side (lhs) of the defin-
ing equality, while the expression to calculate the corresponding value, that
is, the body of the function, is placed on the right-hand side (rhs). Together
with the semantics of the functional language and the method of evaluation
chosen, definition of a function determines both the way how function values
are computed and the amount of associated costs. Note that certain functions
considered well-defined in mathematical sense cannot be used with the same
formula in a functional language for reasons of efficiency and computability.

Sample definitions for a few simple functions are presented in Figure 15.1.6

The returned value of function zero does not depend on parameter x, it is a
constant function with value of 0. Function id is the identity function which
returns the value of its argument. Function inc returns a value (of type integer)

4 Based on Hudak [Hud89], it is possible to prove that all the elementary programs, (SKIP,
ABORT, assignment), and program constructions (sequencing, branching, looping) can be
indeed expressed in functional style. For example, assignments can be defined as higher-order
functions over variables.

5 [PvE93] shows an example of translating Miranda programs to λ-calculus. Semantics of
Haskell programs is given in two steps. First, the semantics of the language core is specified in
λ-calculus, then it is given for all the other language constructs based on the core definitions
[PH99]. Semantics of the Clean language is given by a graph rewriting system.

6 For each example there will be always noted which functional language compilers should be
able to accept them. E.g. SML: Moscow ML 2.0; Clean: Clean 2.4; Haskell: any Haskell
98 compiler, unless noted otherwise.



860

•
Elements of funtional programming languages

zero x = 0

id x = x

inc x = x + 1

square x = x * x

squareinc x = square (inc x)

fact n = product [1..n]

Figure 15.1: (Miranda, Clean, and Haskell): Simple function definitions.

greater by one of its argument. Function square computes the square of its
argument, while squareinc is the composition of functions inc and square.
Function fact is the factorial function.

fun square (x) = x * x;

val area = fn r => pi * r * r

fun plus a b = a + b

Figure 15.2: (SML): Simple function definitions.

In Figure 15.2, the same function definitions are given in SML. Arguments
are enclosed by the fn keyword7 and the => symbol in the definition of area.
Function definitions can be made simpler using the fun keyword as illustrated
by the definitions of square and plus. The area function calculates the area of
a circle of radius r, and the plus function adds up its arguments together.

Execution of functional programs is a sequence of reduction or rewriting
steps commencing from a start expression. A reducible subexpression, called
redex , is selected by the applied reduction strategy in each reduction step where
the function application in the chosen redex is replaced with its body while
actual values are assigned to the contained parameters. An expression reaches
its normal form when there are no more reduction steps possible – which then
becomes the final result of the performed reductions.

Start = sqrt 5.0 // Clean

main = product [1..10] -- Haskell

Math.sqrt 5.0; (* SML *)

Let us take a look at the start expressions presented above. The normal forms
are as follows: 2.236068 (Start) and 3628800 (main). In the case of SML, the
normal form is the real number 2.2360679775.8

7 The fn keyword corresponds to the lambda operator of λ-calculus.
8 Square root of the real number 5.0 can only be calculated after the Math module has been

imported in the SML interpreter. Lines must be terminated by the ; symbol, which is the
symbol of evaluation and instructs the interpreter to start evaluating.
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There may be multiple redexes in an expression, which is often the case, and
then the reduction strategy is to determine in what order they are going to be
rewritten. In certain cases, multiple subexpressions may be reduced at the same
time or their reduction may overlap, possibly making the execution faster.

In confluent systems, normal form of expressions do not depend on the actual
reduction order, that is, the normal form is unambiguous[Bar84], though, not
every expression has a normal form. It is determined by the method of evaluation
if it is possible to reach the normal form. Lazy evaluation employed in Miranda,
Clean and Haskell reduces the leftmost outermost redex9 first in the equivalent
λ-expression (that is, it applies the function definition first when the expression
starts with a function symbol), and reduction of the arguments is performed only
on demand. The lazy evaluation is a normalizing reduction strategy (Curry and
Feys, 1958), that is, it always reaches the normal form if it exists. In contrast,
strict evaluation employed in ML or LISP starts reducing with the leftmost
innermost redex,10 that is, it reduces the arguments first. Strict evaluation
is often more efficient but it may not terminate even when a normal form
exists. Thus, strictly evaluated (or just strict for short) languages often contain
syntactical constructs to explicitly add lazy evaluation for certain expressions
(such as the SML, where lazy lists may be used) and lazy languages often
develop methods for the programmers to annotate if it is allowed to evaluate an
expression using the strict strategy (such as Clean, whose compiler implements
strictness analysis and the programmer may introduce strictness declarations).

The two most typical reduction strategies, lazy and strict, are illustrated
below. Definitions of functions given in Figure 15.1will be used at each reduction
step.

Reduction – strict
squareinc 7

-> square (inc 7)

-> square (7 + 1)

-> square 8

-> 8 * 8

-> 64

Reduction – lazy
squareinc 7

-> square (inc 7)

-> (inc 7) * (inc 7)

-> (7 + 1) * (7 + 1)

-> 8 * 8

-> 64

15.1.3 Features of modern funtional languages

A programming language is considered purely functional if it is guaranteed that
constructs of the language do not cause side effects, and there is no way to
destruct the previous state of variables – called destructive updates – or to make
them resemble those of the imperative languages.

Unlike languages such as LISP and SML, Hope, Miranda, Haskell and Clean
are purely functional languages.

9 The leftmost outermost redex is the first redex from the left which is not enclosed by any
other redex.

10 The innermost redex is a redex which does not contain any further redexes inside and it is
the first one from the left.



862

•
Elements of funtional programming languages

Most important features of purely functional languages are summarized below.

Referential transpareny

Values of expressions are independent of their locations in the source code, that
is, the same expression refers to the same value everywhere in the program text.
Function applications do not have side effects, that is, evaluating a function
does not change the value of an expression. Therefore, variables11 of a purely
functional program are, as a matter of fact, constants. Values of variables – like
in mathematics – may not be known in advance, but they are unambiguous and
cannot change during the program execution. This property plays an important
role in verifying correctness of functional programs using equational reasoning,
for example in the code snippet below all free occurrences of x can be textually
replaced by the f a expression in the scope of where and the value of f a

remains always the same.

... x + x ...

where x = f a

Strong stati typing

Although it is not mandatory to use type declarations, it is required for every
expression to have a type determined by the type inference rules of the Hindley-
Milner restricted polymorphic type system. This means that the most generic
type of a given expression can be inferred by the compiler using the types of the
contained subexpressions. This is also possible even if the author of the program
did not declare it. There are also program constructs provided for describing
abstract algebraic data types.

Higher-order funtions

Functions are treated as values like elements of sets of primitive types. Functions
are considered to be higher-order when any of their arguments or their return
value is a function. Higher-order functions heavily contribute to modulariza-
tion of programs and to deepening the functional abstraction. For example:
twice f x = f ( f x )

Application of higher-order functions also influences the process of compu-
tation. For example, evaluation of a function may happen earlier in the case of
strict evaluation if it appears as an argument to a higher-order function. The
process of computation can be clearly divided into sections by using higher-order
functions.

11 For example formal parameters used in a function definition.
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Currying, partial funtion appliation

There is no need for multiparameter functions when functions can return func-
tions. Haskell B. Curry proposed to consider all functions only with a single
parameter. If a function has multiple parameters, Curry’s proposal suggests
applying it to the first argument only. This results in another function which
can be then applied to the next argument and so on. Thus application of a
multiparameter function is implemented as subsequent applications of single-
parameter functions. For example, the operation of addition can be taken as a
single-parameter function where the first operand of addition is considered the
only argument of the + operation and the result is a further function. That is,
the (+) 1 function is the same as the inc function. A multiparameter function
is partially applied if it returns a function after some of its arguments have been
specified from the left to the right.

Reursive funtion appliation

In order to express loops in functional languages, one must use recursion. This
is usually the only way to describe an iterative computation in a functional
language because loops assume the presence of destructive updates. Basically
recursion means that the body of the function refers to the function itself so
that the body becomes the body of a loop. Each time the function may be
invoked with a different set of parameters, which in this way represent the loop
variables. The recursion halts when the function stops calling itself. This can be
implemented by branching on the variables to create a primitive case where the
result does not rely on recursive computations any more. Hence it is possible to
define recursive and mutually recursive functions. Some languages also employ a
so-called tail-call elimination (or tail-call optimization) which allows compilers
to abandon using a stack for storing previous values of variables. As a result,
recursions may be computed in constant space. If the recursive call is placed at
the tail of the function body, it is sufficient to return only the finally computed
value, while the same value would be passed back between the consequent
recursive calls.

Lazy evaluation � Eager, strit evaluation

Semantics of expressions is determined by the lazy evaluation strategy in mod-
ern, purely functional languages. Arguments of functions are evaluated only if
their values are indeed required reaching the normal form. The method of lazy
reduction is applied in Miranda, Clean, and Haskell. It is called strict evaluation
when arguments are always evaluated before applying the associated function.
Such method of evaluation is used in LISP, SML, and Hope. Note that by
adding annotations, it is possible (and sometimes recommended) to use strictly
evaluated elements in lazy languages and vice versa.
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List omprehensions

List comprehensions are used to specify elements of iterative data structures and
their ordering. They correspond to the notation used in mathematics describing
elements of a set, called the Zermelo-Fraenkel set expressions. Infinite data
structures (lists, sets, sequences, vectors, etc.) are lazily evaluated in such cases.

[ x * x | x <- [1..], odd x ]

The expression above defines an infinite list where squares of odd natural num-
bers ([1,3,5 ..]) are enumerated. Termination of the whole program depends
on the demands of the function receiving the given list as an argument (modu-
larity), and the list itself is evaluated lazily, that is, it is gradually unfolded until
more elements are needed.

Pattern mathing on arguments

There can be patterns used for the formal parameters of functions in defini-
tions.12 If the actual parameter matches the given pattern, the value of the
function is computed by the associated function body alternative (for the exact
rule, see Section 15.2.3). Consider the following example:

fac 0 = 1

fac n | n > 0 = n * fac (n - 1)

The first pattern in the definition of fac is 0. If the actual parameter matches
the 0 pattern (it equals zero), the value of the function is 1.

Off-side rule

A group of related expressions can be identified and the scope of declarations can
be limited by changing the level of indentation. The so-called off-side rule is a
language construct introduced to build up a block-like structure for programs, as
proposed by Peter J. Landin. The scope of declarations are local to the preceding
ones if they are indented by one level further. Every language reference specifies
how the off-side rule is to be applied.13 Scopes may be nested by indenting
declarations further to the right. In the following example, the add4 function
contains a local succ function which is different from the add function used in
succ:

add4 = twice succ

where

succ x = x + 2

12 Apart from certain exceptions, only constructors specified in the algebraic type definition of
the formal parameter in question can be used, cf. Section 15.4.2.

13 It is hard to see the scope of declarations when characters are displayed with variable width.
Scopes of declarations may also change when length of identifiers is changed as a result of
editing the program.
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add = ... succ

Modelling I/O

Due to their purity and the lack of destructive updates, interaction with the
real world may be challenging for functional-language programs. In imperative
languages, input/output operations, for example, writing to files or reading from
the standard input, are typically implemented as subprograms with implicit
side effects: their types do not imply if they will do anything apart from the
described relation, nor the type system can enforce that they will not indeed
do. This deficiency clearly works against any effort required to reason about the
correctness of programs. Hence modern functional languages are equipped with
some I/O model. Some examples for this model are the IO monad, the single-
referenced, unique environment, the stream of request, stream of response, or its
semantic equivalent, the continuation model (see Section 15.7).

15.1.4 Brief overview of funtional languages

Between 1956 and 1962, John McCarthy created the first language that used
λ-calculus as the model of computation, called LISP (as LISt Processing) at
MIT. Many LISP variants have come to life since then, including Common LISP
(DARPA, 1981) which mixes procedural and object-oriented elements (CLOS,
Common Lisp Object System), or Scheme (Steele, Sussman, 1975) which is
mostly used at universities and in CAD systems. The first typed functional
language is ML (Meta Language) which was originally designed as a meta
language for the LCF (Logic for Computable Functions) automated theorem
prover developed in Edinburgh. It was designed by Robin Milner in the middle
of 1970s. After the creation of Hope (Burstall, 1980), Milner, Tofte, and Harper
defined SML (Standard ML) between 1983 and 1990. The latest revised standard
of SML was published in 1997 ([MTHM97] and [Har01]). Further ML variants
are Caml (INRIA, 1984–1990, language of the Coq automated theorem prover)
and Objective Caml (OCaml for short, successor to Caml Light, INRIA, 1990–).
These languages are not purely functional, they contain imperative language
constructs (for example, variables with destructive updates). The first lazy pure
functional language was ISWIM (”If You See What I Mean”, Landin, 1966)
which also introduced the off-side rule. David Turner designed many languages
influenced by ISWIM, such as the similarly lazily evaluated SASL (Single As-
signment Language, Turner, 1981), KRC (Kent Recursive Calculator, Turner,
181), and Miranda ([Tur90], [Tur86] and [CMP95]) in 1985–1985. Miranda is
a commercial product, copyrighted by Research Software Ltd. Later, Haskell
(1990) ([PH99], [HFP99] and [Tho99]) utilized many elements of Miranda.

Haskell was born in 1987 at a functional programming conference (FPCA’87),
and it was named after Haskell Brooks Curry. Its latest standard is Haskell 98
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which is about to be superseded by Haskell Prime but the latter is not finished
yet. The design team of Haskell incorporates many researchers from many uni-
versities all around the world (John Hughes, Simon Peyton Jones, Paul Hudak,
Kevin Hammond, Eric Meijer, John Peterson, Philip Wadler, Simon Marlow et
al).

The following requirements were set for Haskell:

• It must be equally suitable for teaching, research and development of
large-scale applications;

• It must have a formal syntax and semantics;
• It must be freely available;
• It must comply with the widely adopted basic principles;
• It must provide a standardized line of development for modern functional

languages with minor and major differences.

Since then, Haskell has become a de-facto standard in contemporary func-
tional programming and unifies many research efforts, especially in the areas
of type systems and advanced compilation techniques. The bleeding edge of its
features is demonstrated by the Glasgow Haskell Compiler. As of version 7.6,
GHC has been abundantly supplementing the original Haskell 98 standard with
many worthy extensions, for example Generalized Algebraic Data Types, multi-
parameter type classes, functional dependencies, type families, templating, type
operators, generalized (SQL-like) and monadic comprehensions, Unicode syntax,
view patterns, safe module imports, and it has been ported to many operating
systems and computer architectures. Functional programs can be easily built
with Haskell by exploiting its package distribution framework, called Haskell
Cabal and the associated public database, HackageDB. There is also a careful
selection of basic tools and libraries recommended for development, the Haskell
Platform.

Concurrent Clean (Plasmeijer, Nijmegen, 1987, [PE01] and [Pla99]) evolved
from an experimental graph rewriting system (called LEAN). It is a purely func-
tional language with lazy evaluation. The syntax of the latest version (Clean 2.4)
is close to Haskell, although it contains many language constructs that are not
featured in Haskell 98. However, recently there has been experimental support
for the Clean compiler to accept Haskell 98 sources[Gro10], together with an ex-
tended version, Haskell* that adds features of Clean 2.1 to the Haskell standard.

Function composition is an associative operation, therefore it can be evalu-
ated in parallel. Normal form of expressions, if it exists at all, is independent of
the evaluation strategy used (at least in confluent rewriting systems), meaning
programs written in a functional language are easy to parallelize. Most of the
languages feature a variant where further language constructs are added to
help the programmer to annotate which subexpressions should be evaluated in
parallel or in a distributed manner, for example Concurrent Clean [Kes96], Eden
(Haskell), Concurrent ML, JoCaml [FFMS01].
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15.2 Simple funtional programs

15.2.1 Definition of simple funtions

A function definition consists of one or more equations with the name of the
function and its formal parameters on the left-hand side and the corresponding
expression, or function body determining the function value and the method of
computation on the right-hand side. This expression may be a single value, a
formal parameter or a function application on its actual parameter (which may
be a formal parameter to the defined function). Function application has the
highest precedence in evaluation of expressions. It is also possible to set guards
and patterns on the arguments that specify how actual and formal parameters
should be matched. Function declarations may include the domain and the range
of the given function, which however may be omitted in simple cases.

Variable names are introduced for describing formal parameters on definition
of functions. Scope of the variable is the equation introducing the given variable.
Function declarations are visible within the containing module by default, but it
may be visible within the whole program in certain cases. Scope of declarations
may be restricted by application of the off-side rule, or keywords introducing
local declarations (where, local, let, # etc.), or by exporting and importing
from one module to the other.

Recursive functions may be given too. For efficiency, it is advantageous to
have only a single self-reference at the end of the body of the function (a
”tail call”). Case distinction must be used to define base cases, otherwise the
evaluation will not end (Figure 15.3).

fact n = if n == 0 then 1 else n * fact (n - 1) -- Haskell

fact n = cond (n = 0) 1 (n * fact (n - 1)) || Miranda

fact n = if (n == 0) 1 (n * fact (n - 1)) // Clean

fun fact n = if n = 0 then 1 else n * fact (n - 1) (* SML *)

Figure 15.3: Recursive function defined with case distinction.

15.2.2 Guards

Case distinction may also be implemented in a more mathematical way, using
guards. Guards are checked by the run-time system in the order they were given
when the containing function is applied, and the equation associated with the
first guard evaluating to true will be processed. If no such equation exists,14

the evaluation will stop with some error message or an exception handler will be
activated (see Section 15.8). Hence the order of guards determines the semantics:

14 This is called a partial function.
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the meaning of the function may change as a result of changing the order of
guards. For example in Clean and Haskell see Figure 15.4.

fact n | n == 0 = 1

| n > 0 = n * fact (n - 1)

Figure 15.4: (Clean and Haskell): Recursive function with guards.

For example in SML see Figure 15.5.

15.2.3 Pattern mathing

Pattern matching is used to implement distinction of cases. For example in
Miranda, Clean and Haskell see Figure 15.6.

For example in SML see Figure 15.7.
For pattern matching, the run-time system checks that the value or structure

of the actual parameter matches the pattern specified on the left-hand side of
the corresponding equation. The result of pattern matching is determined by the
patterns and the order of equations containing them. Changing this order may
change the semantics of the definition as the run-time system selects the first
matching body for evaluation. If no such body exists, it will stop with an error
message.15 Patterns can be replaced by a series of guards but not the other way
around. That is, pattern matching is not required to create a complete functional
language, but it greatly contributes to the simplification of function definitions
and improves the readability of the source code. However, care should be taken

15 Here evaluation of pattern matching is simpler and more efficient than one could find in
logic programming languages because only the constructors mentioned in the algebraic type
definition can be used in patterns (with some minor exceptions), see Section 15.4.2.

gcd a b = gcd (a - b) b, if a > b

= gcd a (b - a), if a < b

= a , otherwise

Figure 15.5: (SML): Recursive function with guards.

fact 0 = 1

fact n = n * fact (n - 1)

Figure 15.6: (Miranda, Clean, and Haskell): Pattern matching.

fun fact 0 = 1

| n = n * fact (n - 1)

Figure 15.7: (SML): Pattern matching.
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because modifying a pattern affects the meaning of the succeeding ones as well.
Note that pattern matching and guards can be combined (see Figure 15.8).

fact 0 = 1

fact n | n > 0 = n * fact (n - 1)

Figure 15.8: (Clean and Haskell): Combination of pattern matching and guards.

15.3 Funtion types, higher-order funtions

Function types are defined by their domain and range. Domain and range are
separated by an -> (arrow) symbol, or in SML, domains can be assigned to
variables in parenthesis separated by a colon, followed by range after a colon, as
shown in Figure 15.9.

twice :: num -> num || Miranda

twice :: Num a => a -> a -- Haskell

fact :: !Int -> Int // Clean

val fact : int -> int (* SML *)

fun fact (x : int) : int (* SML *)

Figure 15.9: Function types.

The num is the common identifier of numeric types in Miranda. Haskell
differentiates between numeric types, but it also provides a way to define a
single function for all a types in Num class of numeric types. Type classes will be
discussed in detail later, see Section 15.4.1.

Every function has at most a single argument in functional languages and
λ-calculus. Multiparameter functions can be defined by using higher-order func-
tions, following the method named after Curry (Schönfinkel, Curry, Feys). This
is presented in Figure 15.10. First-order functions do not have functions either
as parameters or as values.

plus :: num -> num -> num || Miranda

plus :: Num a => a -> a -> a -- Haskell

plus :: Int Int -> Int // Clean

plus a b = a + b

val plus : int -> int -> int = (* SML *)

fn a => fn b => a + b (* SML *)

Figure 15.10: Type of a multiparameter function.
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The only argument of plus is a and the result is a function which adds the
actual parameter of a to the number which is the only argument of the new func-
tion, identified by b. Thus plus :: Int -> Int -> Int has the same meaning
as plus :: Int -> (Int -> Int). plus 5 is a valid function application where
the result is a function of type Int -> Int. plus 5 6 equals to (plus 5) 6.
So type definition of multiparameter functions is right-associative while their
application is left-associative: f :: a -> b -> c. That is, f is a function whose
argument is of type a and whose result is a function with a domain of type b and
a range of type c. According to this, the function application of f x y equals to
(f x) y.

With Curry’s method, it is easy to derive variants from multiparameter
functions where only a few of the arguments are bound (partial application).
Such a function is inc in Figure 15.11.

inc :: num -> num || Miranda

inc :: Num a => a -> a -- Haskell

inc :: Int -> Int // Clean

inc x = (+) 1 x // Miranda, Clean, Haskell

inc = (+) 1 // Clean, Haskell

fun inc (x : int) : int = plus 1 x (* SML *)

val inc : int -> int = secl 1 op+ (* SML *)

Figure 15.11: Partially applied function.

The symbol of addition (+) is usually applied as an infix operation, that is, it is
placed between the two operands. The definition of plus – as function definitions
usually – was given for prefix application. There is the possibility to apply infix
functions as prefix ones and vice versa in most of the languages, for exam-
ple: (+) 2 3 (Clean, Haskell, Miranda), 2 ‘plus‘ 3 (Haskell), 2 $plus 3 (Mi-
randa), op+ (2,3) (SML). Definitions of inc like (+) 1 or secl 1 op+16 rely on
this particular feature, where the first argument of the infix binary + operation
is bound by using its prefix form.

Note that not only the result of a function application may be a function, but
any of its arguments as well. This is demonstrated in Figure 15.12. Parentheses
cannot be omitted in the function type definitions in this example. Omitting
parentheses would imply the application of the associativity rule, which would
result in a completely different definition. Parentheses must be used to denote
that the given argument is not a number but a function.

16 fun secl x f y = f (x,y) is used for binding the leftmost argument of f in SML.
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atZero :: (num -> num) -> num || Miranda

atZero :: Num a => (a -> a) -> a -- Haskell

atZero :: (Int -> Int) -> Int // Clean

atZero f = f 0

fun atZero (f : int -> int) : int

= f 0 (* SML *)

atZero inc

Figure 15.12: Function as argument.

15.3.1 Simple type onstrutions

Cartesian product and iterated type construction are available in functional
languages as well. Tuples, finite and infinite sequences can be created.17 Tuples
are enclosed by brackets (), and sequences are enclosed by square brackets [].

Tuples

Elements of tuples can be accessed by pattern matching or by predefined selector
functions (such as fst, snd, #i). This is shown in Figures 15.13 and 15.14,
respectively.

gcd :: (a,a) -> a | - , < , == a // Clean

gcd :: (Num a, Ord a) => (a,a) -> a -- Haskell

gcd (a,b) | a > b = gcd (a - b, b)

| b > a = gcd (a, b - a)

| a == b = a

Figure 15.13: Greatest common divisor of a tuple.

Zero-tuple has a special meaning among tuples that does not have any
element. The () value is the only value of the unit type in SML.

gcd : int * int -> int

fun gcd (0,b) = b

| gcd (a,b) = gcd (a mod b, b);

Figure 15.14: (SML): Greatest common divisor of a tuple.

17 With regard to their implementation, sequences are discussed as lists in the literature of
functional programming languages. It is possible to have a list with elements of different
types in languages that are not statically typed. However, this is not allowed by either
Miranda, Clean, Haskell or SML.
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Sequenes

The : keyword and the :: constructor can be used to compose a sequence from
an element and an existing sequence where the element becomes the leftmost.
Constructors can be used in patterns so it can be easily decided by pattern
matching whether the sequence is empty ([]) or not ([x:xs]), so as to extract
the first element (x) and the remainder (xs). For an application of this technique,
see Figure 15.15.

fun sum (x::xs) = x + sum xs

| sum [] = 0; (* SML *)

sum [] = 0

sum (x:xs) = x + sum xs -- Haskell

sum [x:xs] = x + sum xs // Clean

sum [1,2,3,4,5,6,7,8,9,10]

sum [1..10] -- Haskell, Clean

Figure 15.15: Sum of a sequence.

Figure 15.16 shows the representation of a sequence as a linked list. Elements
of the list are stored independently, the list itself containing only references to
those elements in its spine.

Figure 15.16: Internal representation of lists.

Some of the common list functions are defined in Clean in Figure 15.17. The
hd returns the first element, last returns the last element of the sequence, and
tl returns the subsequence of the original sequence without the first element.
Functions do not have side effects in purely functional languages, so the subse-
quence of a sequence without the last element (init) is computed by building a
new spine, while preserving the old one. The spine of the original list cannot be
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modified. Thus, the reference to the last element cannot be simply detached18

as it would violate the referential transparency.

hd [a:x] = a tl [a:x] = x

hd [] = abort "hd of []" tl [] = abort "tl of []"

last [a] = a init [] = []

last [a:tl] = last tl init [x] = []

last [] = abort "last of []" init [x:xs] = [x: init xs]

Figure 15.17: (Clean): Implementation of basic list functions.

The map function can be used to process elements of a list. Argument of map

is the function to be applied element-wise. In Figure 15.18, the modseq function
is defined in terms of map: it computes a new list of numbers from an old list
using a number and a binary operation. Note that it is allowed to omit the
last argument, the list, from both sides of the definition (due to the so-called
η-conversion rule from the λ-calculus).

modseq :: (num -> num -> num) -> num -> [num] -> [num] || Miranda

modseq :: Num a => (a -> a -> a) -> a -> [a] -> [a] -- Haskell

modseq :: (Int Int -> Int) Int -> ([Int] -> [Int]) // Clean

modseq f c = map (f c)

modseq : (int -> int -> int) -> int -> int list -> int list;(* SML *)

fun modseq f c = map (f c); (* SML *)

modseq plus 5 [1,2,3] // = [6,7,8]

modseq plus 5 [] // = []

Figure 15.18: Function as argument.

Further sequences can be generated by combining sequences and logical ex-
pressions, called filters. In Figure 15.19, divisors of number n are calculated
by generating all the numbers from 1 to n using the i <- [1..n] generator,
followed by the application of the n mod i == 0 logical expression to filter out
the elements which give 0 remainder when n is divided by them.

divisors n = [ i | i <- [1..n]; n mod i = 0 ] || Miranda

divisors n = [ i | i <- [1..n], n ‘mod‘ i == 0 ] -- Haskell

divisors n = [ i \\ i <- [1..n] | n mod i == 0 ] // Clean

Figure 15.19: Divisors of a number.

18 It is not possible to access the pointers used for the list’s internal representation anyway.
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Finite and infinite arithmetic sequences can be generated by the .. symbol
(dot-dot notation), where the difference is set by the values of the first two
elements. If no second element is specified, the difference becomes 1, and if the
upper bound is omitted, the sequence becomes unbound, that is, infinite.

Therefore lazy evaluation offers replacing recursive calls with infinite se-
quences. An example of this is demonstrated in Figure 15.20. The map function
applies its first argument as function to each of the elements of its second
argument as a sequence. Thus flist contains all the Fibonacci numbers assigned
to natural numbers starting from 0. So the nth Fibonacci number can be easily
calculated as a sum of the n - 1th and n - 2th elements of the flist sequence.
Of course, as a consequence of lazy evaluation, not every element of flist is
computed, only the ones that are needed.

fib :: Int -> Int -- Miranda: num->num

fib 0 = 1 -- optional

fib 1 = 1

fib 2 = 2 -- Miranda: ! instead of !!

fib n = flist !! (n - 2) + flist !! (n - 1)

where flist = map fib [0..]

Figure 15.20: (Miranda, Clean, and Haskell): Fibonacci numbers.

Finally, there are also multiple generators for generating elements in a nested
or parallel fashion, as presented in Figure 15.21.

[ (x,y) \\ x <- [1..4], y <- [1..x] | x + y > 3 ] // nested

[ (x,y) \\ x <- [1..4] & y <- [6..8] ] // parallel

Figure 15.21: (Clean): Generators.

Reords

Besides tuples in Clean and SML, records with fields may also be used. It
becomes cumbersome to access elements of tuples with pattern matching when
the number of the contained elements is large. Hence, the source code is more
readable when the elements of the Cartesian product are identified by dedicated
selector functions. Record types are very similar – both in term syntactical forms
and patterns – to those of Clean and SML. So examples written in Clean will
be shown only (Figure 15.22).

In the record pattern (Figure 15.23), it is sufficient to mention only the fields
utilized in the function body.

The ’.’ (dot) symbol is used to denote selector functions in Clean (Fig-
ure 15.24), similarly to other languages, while record elements are accessed by
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:: Point = { x :: Real

, y :: Real

, visible :: Bool

}

:: Vector = { dx :: Real

, dy :: Real

}

Origo :: Point

Origo = { x = 0.0

, y = 0.0

, visible = True

}

Figure 15.22: (Clean): Record.

IsVisible :: Point -> Bool

IsVisible { visible = True } = True

IsVisible _ = False

Figure 15.23: (Clean): Pattern matching, record pattern.

functions of form #<field name> in SML. Other records can be referenced in
definition of record-type values in Clean, as shown in Figure 15.25 for example.
The hide p is a record whose fields with all their values are the same as of p but
the visible field following the & symbol. The Move function will not displace p

in the two-dimensional space by the translation vector v but derive a new point
from p where all the fields have the same values except the x and y coordinates.

xcoordinate :: Point -> Real

xcoordinate p = p.x

Figure 15.24: (Clean): Accessing field of a record.

hide :: Point -> Point

hide p = { p & visible = False }

Move :: Point Vector -> Vector

Move p v = { p & x = p.x + v.dx, y = p.y + v.dy }

Figure 15.25: (Clean): Record update.
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Arrays

Sequence elements in a linked list can be accessed only by traversing the list until
the given element is reached. On the contrary, as address arithmetics is employed
for arrays by the run-time system, all elements can be accessed in constant time.
Clean and SML – as well as certain extensions of Haskell – feature this language
construct.

Figure 15.26: A boxed array

Arrays are considered imperative constructs in SML, values of elements
may be updated. In Clean, only elements of uniquely referenced arrays may
be updated (for uniqueness, see Section 15.6.1). The referential transparency is
not violated in such cases. Uniqueness is denoted by the * (star) symbol in the
array’s type. Arrays with destructive updates are discussed in Section 15.6.

Figure 15.27: An unboxed array

Clean differentiates between unboxed (Figure 15.29) and boxed arrays (Fig-
ure 15.28) depending on whether the elements are stored in the spine or, similar
to lists, the spine only maintains references to the elements.

Array5 :: *{Int}

Array5 = { 3, 5, 1, 4, 2 }

Figure 15.28: (Clean): Boxed array.

There is a # (hashmark) symbol in the type definition of unboxed arrays.
Array elements can be accessed in imperative fashion.

Unboxed :: {#Int}

Unboxed = { 3, 2, 7, 4, 2 }

Figure 15.29: (Clean): Unboxed array.

The first element of the array is assigned to the 0 index value. This is
summarized in Figure 15.30.

Arrays may also be defined by generators in Clean as it is shown in Fig-
ure 15.31.
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Array5.[1] + Unboxed.[0]

Figure 15.30: (Clean): Accessing elements of an array.

narray = { e \\ e <- [1,2,3] }

nlist = [ e \\ e <-: Array5 ]

Figure 15.31: (Clean): Array comprehensions.

In the first example, elements of the [1,2,3] list are read via a <- list
comprehension and placed to the narrray array. In the second example, elements
of the Array5 array are read via a <-: array comprehension and placed to the
nlist list.

15.3.2 Loal delarations

In Miranda (Figure 15.32), Clean (Figure 15.34) and Haskell (Figure 15.33), local
functions can be introduced by the where keyword. Scope of where is determined
by the off-side rule. In SML (Figure 15.35), local declarations can be assigned to
declarations using the local ... in ... end construct, and local declarations
can be assigned to expressions using the let ... in .. end construct. The let

expressions can be used in both Haskell and Clean. There are many different
syntactical forms for let expressions in Clean with different meanings. For
example, the # (hashmark) symbol introduces a static local declaration for
a function body. Formal parameters of the primary function can be directly
referenced in the local declarations introduced by the where keyword.

quadratic :: num -> num -> num -> [num]

quadratic a b c = error "not quadratic" , if a = 0

= error "complex roots" , if delta < 0

= [ -b / (2 * a) ] , if delta = 0

= [ -b / 2 * a + radix / (2 * a)

, -b / 2 * a + radix / (2 * a) ], otherwise

where

delta = b * b - 4 * a * c

radix = sqrt delta

Figure 15.32: (Miranda): Local declarations.

15.3.3 An interesting example: queens on the hessboard

Place n chess queens on an n by n chessboard so that no two queens attack
each other. Two queens attack each other if they share the same column, row,
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quadratic :: Float -> Float -> Float -> (String,[Float])

quadratic a b c

| a == 0 = ("non quadratic", [])

| delta < 0 = ("complex roots", [])

| delta == 0 = ("one root", [ -b / (2 * a) ])

| delta > 0 = ("two roots",

[ -b / (2 * a) + radix / (2 * a)

, -b / (2 * a) - radix / (2 * a) ])

where

delta = b * b - 4.0 * a * c

radix = sqrt delta

Figure 15.33: (Haskell): Local declarations.

quadratic :: Real Real Real -> (String,[Real])

quadratic a b c

| a == 0.0 = ("non quadratic", [])

| delta < 0.0 = ("complex roots", [])

| delta == 0.0 = ("one root",[ ~b / (2.0 * a) ])

| delta > 0.0 = ("two roots", [ (~b + radix) / (2.0 * a)

, (~b - radix) / (2.0 * a) ])

where

delta = b * b - 4.0 * a * c

radix = sqrt delta

Figure 15.34: (Clean): Local declarations.

fun quadratic a b c =

let

val delta = b * b - 4.0 * a * c;

val radix = Math.sqrt delta;

in

if a = 0.0 then ("non quadratic", [])

else if delta < 0.0 then ("complex roots", [])

else if delta = 0.0 then ("one root", [ ~b / (2.0 * a)])

else ("two roots", [ (~b + radix) / (2.0 * a)

, (~b - radix) / (2.0 * a)])

end

Figure 15.35: (SML): Local declarations.

or diagonal. Find all the solutions (see one in Figure 15.36).

Solutions are given as sequences of sequences with n elements. Each solution
describes in which row the queens should be placed in the columns from the left
to the right. No column should contain two queens.
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Figure 15.36: A possible solution of the eight queens puzzle.

An implementation in SML is given in Figure 15.37, where solutions are searched
in permutations of the List.tabulate(n, fn x => x + 1)19 sequence, that is,
in sequences of form [1,2,...,n], meaning no row can contain two queens.
Thus, the only constraint to be checked for those permutations is whether two
queens share the same diagonal (diag). Valid permutations are collected by
the accuqueens function, and the next permutation is generated by cycle.
The functions accuqueens and cycle are mutually recursive so they are con-
nected by the and keyword. The @ symbol concatenates two sequences, while
the (right as r::rr) as-pattern enables referencing to the whole sequence as
right and its first element as r, and the remainder as rr.

The program in Figure 15.38 gradually extends the solution from left the
right, moving from one column to the other so that the newly placed queen does
not attack any of the previously placed ones. Note that this approach results in
a succinct and very readable source code when generators are used.

The Haskell implementation is listed in Figure 15.38.
The queens function searches for safe places in the succeeding column.

queens n m denotes all the safe spots in the last m columns where b is a valid
placement. The logical expression safe q b is satisfied when the queen placed
to row b does not attack any of those that are in b.

safe :: Int -> [Int] -> Bool

safe q b = and [ not (checks q b i) | i <- [0 .. length b - 1] ]

19 The tabulate function creates a list of n elements, where the values are calculated by
individually applying the given function on elements of the [0 .. n - 1] sequence.
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local

fun diag’ d1 d2 [] = true

| diag’ d1 d2 (q1::qr) =

d1 <> q1 andalso d2 <> q1 andalso

diag’ (d1 + 1) (d2 - 1) qr

fun diag mid right = diag’ (mid + 1) (mid - 1) right

fun accuqueens [] tail res = tail :: res

| accuqueens (x::xr) tail res = cycle [] x xr tail res

and cycle left mid [] tail res =

if diag mid tail then

accuqueens left (mid :: tail) res else res

| cycle left mid (right as r::rr) tail res =

cycle (mid::left) r rr tail

(if diag mid tail then

accuqueens (left@right) (mid :: tail) res

else res)

in

fun queens n = accuqueens (List.tabulate(n, fn x => x + 1)) [] []

end

Figure 15.37: (SML): Solver for the eight queens problem.

doQueens :: Int -> [[Int]]

doQueens n = queens n n -- n queens on an n by n board

queens :: Int -> Int -> [[Int]]

queens n 0 = [[]]

queens n (m + 1) = [ q:b | b <- queens n m, q <- [0..n-1], safe q b ]

Figure 15.38: (Haskell): Solver for the eight queens problem.

The above safe function checks whether the queen placed in row q attacks
any of b. The i iterates over the column indices in b. The checks q b i is
satisfied if a fresh queen of row q in the actual column attacks the queen of row
b in column i. The and function is an element-wise conjuction, and it evaluates
to true if all the sequence elements in its argument are true. The implementation
of the checks function is the following:

checks :: Int -> [Int] -> Int -> Bool

checks q b i = (q == (b !! i)) || (abs (q - (b !! i)) == (i + 1))

The expression of b !! i refers to the ith element of the sequence b, that
is, the place of the ith queen. The || symbol is the binary logical disjunction
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operation, abs is the absolute value function. Finally, the top-level invocation of
the solver follows:

doQueens 8

Implementations in Miranda and Clean are presented in Figures 15.39 and
15.40, respectively.

queens n 0 = [ [] ]

queens n (m + 1) = [ q:b | b <- queens n m; q <- [0..n-1]; safe q b ]

safe q b = and [ ~checks q b i | i <- [0 .. #b - 1 ] ]

checks q b i = (q = b ! i) \/ abs(q - b ! i) = (i + 1)

queens 8 8

Figure 15.39: (Miranda): Solver for the eight queens problem.

queens_ n 0 = [ [] ]

queens_ n m = [ [q:b] \\ b<-queens_ n (m-1), q<-[0..n-1] | safe q b ]

safe q b = and [not (checks q b i) \\ i <- [0 .. (length b) - 1] ]

checks q b i = (q == b !! i) || (abs(q - b !! i) == (i + 1))

queens n = queens_ n n

Start = (length (queens 8), queens 8)

Figure 15.40: (Clean): Solver for the eight queens problem.

15.4 Types and lasses

In this section, functional language constructs for data abstraction are presented,
that is, we look at how abstract algebraic types and type classes may be defined,
or how higher-order types may be applied.

15.4.1 Polymorphism, type lasses

There have been many functions presented earlier that could be applied on values
of many different types. These functions are called polymorphic. An example is
the hd function which returns the first element of a sequence and it may be
applied to an arbitrary (non-empty) list, independently of the type of the list
elements. Implementation of the function does not depend on the type either,
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so it can be defined in a type-independent format as well. A type variable is
introduced in the function type definition to express that the function in question
is polymorphic, that is, it may be applied to any concrete type.

hd :: [*] -> * || Miranda

hd :: [a] -> a // Clean, Haskell

hd (x:xs) = x

Figure 15.41: Example of a polymorphic function.

The + operation can be applied on values of many concrete types too, for
example on integers, reals, or even on Booleans (Figure 15.42). The addition
computes a new value from two values of the same type, and returns a value
of the same type, and this operation is always infix. By contrast, the simple
polymorphism that can be observed in the definition of hd in Figure 15.41, the
implementation varies from type to type. For example, integers and reals have
different binary representations. Hence, polymorphism works differently in this
case – a common name is used for many different functions, that is, the operation
symbol is overloaded (this is called ”ad hoc” polymorphism, or overloading).
Only predefined functions may be overloaded in SML. Overloaded names can be
defined in both Clean and Haskell, although they are required to share the same
properties (number of arguments, fixity, associativity, etc.). In such cases, there
exists a common, type-independent, abstract signature for those operations. See
Figure 15.43 for an example.

Description of types of function arguments and result is called function sig-
nature. Abstract description of the + operation can be composed by introducing
type variables , for example as (+) :: a a -> a (in a simplified version). Types
for each of the overloaded addition operations can be then derived by substituting
the a type variable with a concrete type, which is called instantiation. These
operations may have different implementation so the addition operation must
be defined for each type too. In both Clean and Haskell, abstract signatures
start with the class keyword, and the abstract type instantiations start with
the instance keyword. Language constructs representing abstract signatures
and instantiations are not classes in SML but signatures of the module language
of SML, that is, structures and functors (see Section 15.5).

A class declaration may join many different but related abstract signatures.
A set of instances defined for abstract signatures of a given class declaration
is called a type class.20 In Figure 15.42, the abstract signature defines that the
operation is infix and left-associative, identified by the last letter of the infixl

20 Elements of type classes are functions, different concrete versions of abstract functions.
Perhaps function class would be a more expressive name. Anyway, it is a type class in the
sense that a set of concrete types may also be defined where an instance for each abstract
functions given in the class declaration exists.
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keyword (as in ”left”). The operator precendence is also set, it is 6 for the
addition.

class (+) infixl 6 a : !a !a -> a // abstract (+)

double :: a -> a | + a

double n :== n + n

instance + Bool where

(+) :: !Bool !Bool -> Bool // instance

(+) True b = True

(+) a b = b

Figure 15.42: (Clean): Type class and instantiation.

The double is polymorphic but it does not have to be instantiated. Definition
of double depends on the definition of +, and this is noted in the signature.
The double is a derived function and its interpretation depends on whether an
instance was defined and how it was defined for the + type class.

class Num a where

(+), (-), (*) :: a -> a -> a

negate :: a -> a

abs :: a -> a

signum :: a -> a

fromInteger :: Integer -> a

Figure 15.43: (Haskell): The numeric type class.

The Num type class in Haskell is given in Figure 15.43 as an example for a class
with multiple signatures. The type system of Haskell and Clean distinguishes
type constants from type variables: type variables start with lowercase letters,
so the a is a type variable in this example. Type constants are for example the
Char, Int, Integer, Float, Double and Bool types.

double :: Num a => a -> a -- Haskell

double :: a -> a | + a // Clean

double x = x + x

Figure 15.44: Class context.

Identifiers of classes usually start with uppercase letters. A class context may
be set for type or function declarations to restrict the values of the include type
variables by classes. As Figure 15.44 demonstrates, then the double function
may be applied to values of the Int type as member of the Num type class, but
not to the values of the Char type.
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The c1 class context restricts the a type variable to a t type which is the
member of the c1 class. The concept of type application corresponds to the
function application. If type t1 has form of k1 → k2 and type t2 matches k1

then value of the t1 t2 type expression is the k2 type (type inference). Type
variables are usually implicitly universally quantified.

Type of an expression must be always inferable by the Hindley–Milner type
inference algorithm. The result depends on the type context that determines the
types of free variables, and the class context that restricts the type variables.
Type of the polymorphic double function is more generic than the Int -> Int

type, the most generic type description is of form a a -> a | + a. The most
generic type of the expression is the principal type of the expression that could be
inferred even if function names appearing in the expression are overloaded (that
is, have multiple types). However, in some cases, since the compiler is not capable
of inferring the most generic type, a signature must be provided. Overloading
identifiers is often the cause of an unsuccessful inference. Thus, SML restricts
this feature directly to avoid this problem.

Definition: Most generic type
Let u, v be sets of type variables, c1, c2 be class contexts for these variables, and
t1, t2 be type expressions that contain such type variables. Type (expression)
of ∀u.c1 ⇒ t1 is more generic than ∀w.c2 ⇒ t2 if there exists an S substitution
where type variables in u are substituted in such a way that t2 equals to S(t1)
and if c2 holds then S(c1) holds as well.

Types can be defined as algebraic data types, derived types, or as synonyms
for other types. Type constructor classes will be discussed after introducing the
concept of algebraic data types.

15.4.2 Algebrai data types

A new type (type construction) and its data constructors are defined at the
same time as when declaring algebraic data types. All values of the given type
are exclusively created by one of the data constructor functions specified at
the declaration. Algebraic type definition of the enumeration type is given in
Figure 15.45 below. The Day is a constant (nullary) type constructor, and Mon,
Tue, etc. are constant data constructor functions whose values are of type Day.

:: Day = Mon | Tue | Wed | Thu | Fri | Sat | Sun

Figure 15.45: (Clean): Enumeration type.

The Tree type construction presented in Figure 15.46 makes a binary tree
type out of an arbitrary type. The Tree type constructor has a single argument,
namely, the a type variable. Type constructors may be considered higher-order
types that derive a type from another type. The Node data constructor function
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has three arguments, where the first argument is of type a, and the second and
third ones are of type Tree a. This declaration illustrates that type constructors
may be just as well recursive. Constructors are visible within the whole module
where they have been defined.

:: Tree a

= Node a (Tree a) (Tree a)

| Leaf

aTree = Node 2 (Node 1 Leaf Leaf) (Node 3 Leaf Leaf)

Figure 15.46: (Clean): Recursive parametric type.

Figure 15.47 illustrates the value of aTree.

Figure 15.47: Value of type Tree: aTree.

In Miranda, algebraic data types are defined by the ::= symbol and type
variables are denoted by the * symbol. This is briefly demonstrated below:

bool ::= True | False

nat ::= Zero | Succ nat

list * ::= Nil | Cons * (list *)

color ::= Red | Orange | Yellow | Green | Blue | Indigo | Violet

either * ** ::= Left * | Right **

tree * ::= Nilt | Node * (tree *) (tree *)

Figure 15.48: (Miranda): Algebraic data types.

In Haskell, algebraic data types are defined by the data keyword, in SML
they are defined by the datatype keyword. Algebraic definition of the set type
is given in Haskell together with the types of the associated data constructors
below:

There can be names assigned to each of the fields in the constructors (Fig-
ure 15.49). Therefore, it is possible to define Cartesian products of data types
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data Set a = NilSet | ConsSet a (Set a)

NilSet :: Set a

ConsSet :: a -> Set a -> Set a

data T a b = K1 { f1 :: a, f2 :: b } ...

Figure 15.49: (Haskell): Field name assignments in the constructor.

which resemble records and allow using field names in the associated patterns.
This is actually a variant record (Figure 15.50).

data Person

= Male { name :: String, age :: Int }

| Female { name :: String }

Figure 15.50: (Haskell): Variant record definition.

In this case, even without knowing whether the actual record x of type Person

is a male or female, there may be a value defined with the name "Sam" by a single
case expression, as it is presented in Figure 15.51.

case x of

Male _ age -> Male "Sam" age

Female _ -> Female "Sam"

Figure 15.51: (Haskell): Matching patterns on a variant record.

Note that this syntax also comes with automatic generation of functions
derived from field names. That is, for the type Person, the functions shown
in Figure 15.52 are created. As a consequence, such ”field names” must be
unique per module, otherwise they will cause a compilation error. This feature is
commonly exploited in newtype definitions of various types (see Section 15.4.4),
for example functors, monads, and so on.

name :: Person -> String

name (Male s _) = s

name (Female s) = s

age :: Persont -> Int

age (Male _ x) = x

age _ = error "No match in record selector age"

Figure 15.52: (Haskell): Record selector functions.
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The next example in Figure 15.53 is a possible algebraic definition of the list
type in SML. Type variable identifiers are always preceded by the ’ symbol and
type variables are in front of the type constructor. Data constructors and their
arguments are delimited by the of keyword.

datatype ’a List = Nil | Cons of ’a * ’a List

Figure 15.53: (SML): Algebraic data type.

In Miranda, abstract data types can be defined by the abstype keyword (Fig-
ure 15.54), while in SML, Clean and Haskell, data abstraction is implemented
by the module system (see Section 15.5).

abstype tree *

with mirror :: (tree *) -> (tree *)

empty :: (tree *)

numtree == tree num

Figure 15.54: (SML): Abstract, algebraic data type.

In Figure 15.55, there are altogether two operations for the tree type: empty

which is the empty tree, and mirror which mirrors an arbitrary tree. Algebraic
type definition of the tree type construction is hidden, scope of the data con-
structors is restricted, making them unavailable at other parts of the program.

tree * ::= Nilt | Node * (tree *) (tree *)

mirror Nilt = Nilt

mirror (Node a x y) = Node a (mirror y) (mirror x)

Figure 15.55: (SML): Working with recursive algebraic data types.

15.4.3 Type synonyms

Type synonym declarations (Figure 15.56, Figure 15.57) do not introduce new
types – synonyms equal the original type expressions –, they are to be considered
abbreviations only. Hence, recursion and instantiation are not allowed for type
synonyms.

15.4.4 Derived types

In Haskell, an identically represented but different type can be obtained by
deriving with the newtype keyword (for an example, see Figure 15.58).
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string == [char]

matrix == [[num]]

Figure 15.56: (Miranda): Type synonyms.

type List = []

type Rec a = [Circ a]

type Circ a = Tag [Rec a]

type PredicateOn a = a -> Bool

Figure 15.57: (Haskell): Type synonyms.

newtype Name = Name String

newtype Square = S (Char,Int)

newtype F a b = F (a -> b)

Figure 15.58: (Haskell): Derived types.

Instantiation of type classes is also allowed for derived types. However, this
creates a compile-time distinction as the compiler will drop the types defined this
way and will use them at the static type checking. Therefore, newtype definitions
are restricted to a single data constructor with a single parameter, they behave
like special ”tags” for simple type synonyms. So derived types to exploit the
representation of an already defined type but with different interpretation. Since
such newtype aliases are not kept at run-time, they are more efficient than
introducing a whole new algebraic type.

Types derived by newtype are often applied to resolve problems related to
types, such as the question of how to work around overlapping instances of type
classes, or how to restrict operations to certain types only. This technique is
also commonly used for building the so-called smart constructors that allows
the creation of well-formed elements only or else gives a run-time error.

square :: Char -> Int -> Square

square c n

| (c,n) ‘elem‘ [ (x,y) | x <- [’A’...’H’], y <- [1..8] ] = S (c,n)

| otherwise = error "Invalid square"

Figure 15.59: (Haskell): Smart constructor.

In the example in Figure 15.59, square will only build a new element of
type Square if it is a valid square of a chess board. That is, value of the first
coordinate is between ’A’ and ’H’, and the value of the second coordinate is
between 1 and 8. Note that this is equivalent to using a Square = (Char,Int)

type synonym in terms of performance.
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15.4.5 Type onstrutor lasses

In Clean, it is allowed to create classes whose instances are not defined for types
but for type constructions. Two examples are the length and the map functions,
where the first counts the number of elements, and the second applies a function
to all elements of an arbitrary data type. In the example in Figure 15.60, the
class declaration contains a t type constructor variable which may be either a
list or a tree.21

class map t :: (a -> b) (t a) -> (t b)

instance map [] where

map f l = [ f e \\ e <- l ]

:: MTree a = NNode a [MTree a]

instance map MTree where

map f (NNode el ls) = NNode (f el) (map (map f) ls)

Figure 15.60: (Clean): Type constructor class.

In Haskell, the Functor class generalizes the map function to type construc-
tors, called fmap. The definition of this class can be seen in Figure 15.61.

class Functor f where

fmap :: (a -> b) -> f a -> f b

Figure 15.61: (Haskell): The functor class.

15.5 Modules

While there is only one module type in Haskell, in Clean there may be definition
and implementation modules. Definition modules are usually paired up with
implementation modules so that they together form a whole. Definition module
provides an interface for users of the implementation module – only those ele-
ments are visible from the module to the outside which are specified there. The
pair of definition and implementation modules is the vehicle of data abstraction
in Clean. Modules refer to each other using the import keyword, the import
of modules is transitive. In Haskell, definition modules are replaced by export
lists which determine the functions or data types to be available from outside
the module. Export lists are placed in the module header. Every module that
imports New of Figure 15.62 will not see fn2 but only fn1. Without an export

21 In this example, a new, non-binary tree is used.
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list, everything defined in the module will be visible to the outside world. Neither
of the languages allow importing anything but the elements needed from other
modules.

module New (fn1) where

fn1 x = x

fn2 x = 3 + x

Figure 15.62: (Haskell): A module, export the function fn1.

Haskell and SML support using qualified names , which are useful when
identifiers from other modules are used as well. It may happen that the same
identifiers are defined in multiple imported modules, but with different imple-
mentation. The syntactical form of qualified names is qualifier.identifier where
qualifier is usually the name of the containing module, however modules can
have aliases when imported.

15.5.1 Abstrat algebrai data types

In the example shown in Figure 15.63, it will be shown how an abstract data
type using the module system of Clean may be implemented. Representation of
the stack type is defined in the implementation module as a type synonym. This
representation is not part of the definition module, that is, the list representing
the stack can be only accessed from the implementation module: other modules
can only see the exported abstract operations.

The module system of SML is richer, the language constructs for working with
modules are described by a standalone module language [Har01]. Description of
the whole module language is beyond the scope of this chapter, thus only the
most important elements are discussed.

Signatures correspond to definition modules of Clean,22 and structures cor-
respond to implementation modules. However, an important difference is that
SML features signature expressions and structure expressions whose values can
be passed as arguments.

Signatures can be considered type description of structures. All structures
have a primary, inferable signature which can be matched with a signature
implementing the specification by an (preorder) equivalence relation [Har01].

There are two kinds of inheritance relations for signatures in the SML module
language: a signature can extend (contain) another one, or it can be a special-
ization of another one (see the next example). Extensions are suitable for adding
new operations, and specializations are capable of setting the represenation for

22 Here, the word ”signature” refers to the SML language construct. Signatures in SML the
generalizations of function signatures. They describe interfaces of whole structures.
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definition module Stack

:: Stack a

Push :: a (Stack a) -> Stack a

Pop :: (Stack a) -> Stack a

Top :: (Stack a) -> a

Empty :: Stack a

implementation module Stack

:: Stack a :== [a]

Push :: a (Stack a) -> Stack a

Push e s = [e:s]

Pop :: (Stack a) -> Stack a

Pop [e:s] = s

Top :: (Stack a) -> a

Top [e:s] = e

Empty :: Stack a

Empty = []

module Test

import StdEnv, Stack

Start = Top (Push 1 Empty)

Figure 15.63: (Clean): Modules and abstract data types.

certain abstract types defined as part of the signature. Signature imports are
represented as inheritance between signatures, or contents of structures declared
open automatically become visible in the module where it was imported. Struc-
tures correspond to signatures when the primary signature contains everything
what is prescribed by the signature.

signature QUEUE =

sig

type ’a queue

exception Empty

val empty : ’a queue

val insert : ’a * ’a queue -> ’a queue

val remove : ’a queue -> ’a * ’a queue

end
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signature QUEUE_WITH_EMPTY =

sig

include QUEUE

val is_empty : ’a queue -> bool

end

signature QUEUE_AS_LISTS =

QUEUE where type ’a queue = ’a list * ’a list

The ORDERED SML signature below corresponds to the Ord type class (see Sec-
tion 15.4), whose possible implementation is the LessInt structure. The equiv-
alence relation is expressed by the : notation, which means that the LessInt

structure is of type ORDERED.

signature ORDERED =

sig

type t

val lt : t * t -> bool

val eq : t * t -> bool

end

structure LessInt : ORDERED =

struct

type t = int

val eq = (op =)

val lt = (op <)

end

Like classes can have multiple instances, signatures can also have multiple
implementations at the same time. Some of them can be even nested in other
structures. This is illustrated in Figure 15.64. The :> symbol prescribes in
signature implementations that only those entities should be visible – when
using the structure – which are present in the signature. Structures constructed
this way are the vehicle of data abstraction. The example below demonstrates
the implementation of an abstract queue type [Har01]. The queue is represented
by an ordered pair of queues. The QUEUE_WITH_EMPTY signature (see the example
on page 891)contained the type specification which is now assigned to the Queue

structure by making its internal representation opaque using the :> symbol.
SML also supports parameterization of modules with structures. Parametric

modules are called functors in the language which mostly resembles to tem-
plates in Ada. In the example[Har01] in Figure 15.65, it is shown how the functor
DictFun equivalent to the DICT signature is parameterized by the K structure.
The dict type is a type construction where key-value pairs can be searched by
their key component. The DictFun structure defines the type in the signature by
an algebraic data type where the search operation can be implemented efficiently.
Thus it is set for the K structure parameter – describing the key type – that it
must be equivalent to the ORDERED signature (see its definition on page 892).Both
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structure Queue :> QUEUE_WITH_EMPTY =

struct

type ’a queue = ’a list * ’a list

val empty = (nil, nil)

fun insert (x, (bs, fs)) = (x::bs, fs)

exception Empty

fun remove (nil, nil) = raise Empty

| remove (bs, f::fs) = (f, (bs, fs))

| remove (bs, nil) = remove (nil, rev bs)

end

Figure 15.64: (SML): Modules and abstract data types.

the representation and implementation are opaque because of the :> symbol, so
further details are not given here.

For example, the actual value of K can be the LessInt structure (see page
892)which implements the standard ordering for integers. Note that LessInt

equals the ORDERED signature by keeping the inner representation visible (via
the : symbol). Thus, it is salient that the type of the key (K.t) is implemented
by integers.

The LtIntDict structure becomes an instance of the DictFun functor, where
the type of the key is integer, while the type of the value component in the key-
value pair (parameter of the LtIntDict.dict type constructor) remains free.

15.6 Uniqueness, monads, side effets

Input and output operations necessarily have side effects, for example, they
change the program environment, the contents of the screen, the files stored in
the file system, and so on. Purely functional languages also feature constructs
with side effects, otherwise it would not be possible to write programs that
interact with the outside world. However, side effects in such languages must be
restricted to certain parts of the program and referential transparency must be
maintained as well.

15.6.1 Unique variables

In certain cases, in Clean destructive updates are allowed. That is, unique
objects may be overwritten if and only if they are referenced only once. This
allows changing the value of the object in-place, that is, without copying it,
because it is guaranteed that its previous value will not be accessed, and that
the referential transparency will not be violated. The old instance disappears so
its place can immediately be reassigned to the new one, without invoking the
garbage collector. This is often effective, for example when working with larger
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signature DICT =

sig

structure Key : ORDERED

type ’a dict

val empty : ’a dict

val insert : ’a dict * Key.t * ’a -> ’a dict

val lookup : ’a dict * Key.t -> ’a option

end

functor DictFun (structure K : ORDERED) :> DICT

where type Key.t = K.t =

struct

structure Key : ORDERED = K

datatype ’a dict = ... (* representation *)

val empty = Empty

fun insert ... = ... (* implementation *)

fun lookup ... = ...

end

structure LtIntDict = DictFun (structure K = LessInt)

Figure 15.65: (SML): Functor.

data structures. If there is a need for a new version that only slightly alters from
the original unique data structure, it is allowed to overwrite the corresponding
element, which may therefore be implemented with a minimal overhead. The
same is true for files, when the modified records are changed rather than an
entirely new file is created.

In Clean, contents of arrays with unique spine can be redefined. In Fig-
ure 15.66, mArray5 is an array whose spine is placed to the same memory address
as of the unique array Array5 and its elements are the same as of Array5 except
for the elements with indices 3 and 4, whose new values are given after the &
symbol. Every element in mArray will be different from the element with the
same index in mArray5.23

Array5 :: *{Int}

mArray5 = { Array5 & [3] = 3, [4] = 4 }

mArray = { Array5 & [i] = k \\ i <- [0..4] & k <-[80,70..] }

Figure 15.66: (Clean): Arrays.

The uniqueness of objects is checked by the compiler. A new name must
be given to each fresh instance at each ”assignment” but since there are no

23 Note that after the second & symbol, // is followed by two parallel list comprehensions so
that the generated elements are [80, 70, 60, 50, 40].
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more references to the old instances, the same name may be reused in the
subsequent local definitions. Then the new name will refer to the new instance.
This enables a style similar to imperative programming (when required) without
sacrificing the purity of the language. To introduce destructive updates, it is
important to determine the ordering of object assignments, otherwise it cannot
be decided properly how they are referenced via the reused names. This will be
demonstrated in the Dialogue program on page 900.

15.6.2 Monads

Monad24 is a concept from category theory which describes algebraic properties
of three operations [BW90]. This algebraic concept is implemented in Haskell
to model computation with side effects. Haskell defines three monadic classes:
Functor (15.4.5), Monad and MonadPlus. They can be instantiated by type
constructions like IO (a higher-order type to represent I/O operations), for
example (see 15.7).

There are some axioms for the abstract operations of monadic classes that
should be considered for instantiations. For example, Functor class’ fmap oper-
ation must satisfy the well-known laws for element-wise functions.

fmap id = id

fmap (f . g) = fmap f . fmap g

Basic operations of the Monad and MonadPlus monadic classes implement
binding monadic values or monadic actions.25 When modelling I/O operations,
monadic actions always have to wait for the previous one to complete. Monadic
actions may act as objects. Both the arguments and the return value of the asso-
ciated actions may contain an internal state which is then (implicitly) changed
during the execution of the action. Thus, I/O actions pass this unique implicit
internal state to each other step by step, where the state contains a collection of
elements for the outside world.

class Monad m where

(>>=) :: m a -> (a -> m b) -> m b

(>>) :: m a -> m b -> m b

return :: a -> m a

fail :: String -> m a

Figure 15.67: (Haskell): The Monad class.

The Monad class, presented in Figure 15.67, has two main operations. The
return operation maps its argument to a monadic value by wrapping it, and

24 Sometimes monads are called triples in the literature.
25 Note that there are differences between the three basic monadic operations, monadic values

and monadic actions.
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the »= operation binds two monadic values, that is, two monadic actions – of
the same type – together. The » is a variant of »= which binds monadic actions
by ignoring the result of the first argument. The fail operation is suitable for
error handling, for example when a pattern matching fails within a monadic
computation.

As for functors, there are some axioms here as well, called monad laws to
satisfy in order to get a truly monadic construct.

return a >>= k == k a

m >>= return == m

m >>= (\x -> k x >>= h) == (m >>= k) >>= h

In category theory, monads are also functors, but this is not reflected in the
Haskell implementation. That is, one has to manually define both the Monad and
the Functor instances for a type. In this case, the instances should additionally
satisfy the following law:

fmap f xs == xs >>= return . f

The do syntax helps to concatenate monadic actions in a simpler, more
intuitive form. However, it is often criticized that it makes programmers believe
that monads are just embedded imperative blocks. The scope of do is determined
by the off-side rule:

do e1 ; e2 = e1 >> e2

do p <- e1; e2 = e1 >>= (\v -> case v of p -> e2;

_ -> fail "s")

do let p = e1 ; e2 = let p = e1 in do e2

In Haskell, monads are used to represent side effects, therefore program parts
with side effects can be easily identified by the type system. They are often called
”programmable semicolons”, because the behavior of » and »= operations differ
in each monad. The expressive power of monads is great, meaning many language
constructs can be expressed by them [HFP99]. For example, it is possible to
define semantics for little imperative domain-specific languages and interpret
programs written in them.

Common monads appearing in Haskell programs are the [] (list opera-
tions), Maybe (optional result), Error (track location and causes of errors),
Reader (read-only variables), State (mutable variables), Write (log to a stateful
buffer), Cont (continuations which can be interrupted and resumed), ST (locally-
encapsulated mutable variables) and STM (software transactional memory). Note
that they are different from the IO monad in that they may be ”run”, that is,
their result can be safely obtained within the program itself.

An example of this is the different run functions for the State monad, shown
in Figure 15.68. The State type has two type parameters, the type of the state
(s) and the type of the result (a). So one can simply get the value of the monadic
action by passing an initial state (of type s). The runState function computes
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runState :: State s a -> s -> (a, s)

evalState :: State s a -> s -> a

execState :: State s a -> s -> s

Figure 15.68: (Haskell): Run functions of the State monad.

both the resulting state and the result itself, evalState computes the result
only, while execState computes only the final state.

Monadic effects can be combined by monad transformers. A monad trans-
former is a type constructor which takes a monad as an argument and returns a
monad as a result. Every frequently used monad type has a transformer variant
with a T suffix, for example StateT:

type State s = StateT s Identity

Therefore monads are often defined as a combination of the Identity monad26

and the corresponding monad transformer.
In addition, monads are characterized by dedicated type classes, for example

MonadState which allows combining them in a single monadic block in a layered
fashion:

class Monad m => MonadState s m | m -> s where

get :: m s

put :: s -> m ()

Finally, let us demonstrate the use of monads by solving a classical problem
[Tho99]: ”Given an arbitrary tree, transform it to a tree of integers in which the
original elements are replaced by natural numbers, starting from 0. The same
element has to be replaced by the same number at every occurrence, and when
we meet an as-yet-unvisited element we have to find a ‘new’ number to match it
with.” An implementation with the State monad (and the adapted definition of
the Tree type from Section 15.4.2) is shown in Figure 15.69.

For further demonstration of use of monads and their combinations, see
IO in Section 15.7, Maybe and Either in Section 15.8, or Eval, Par, STM in
Section 15.10.2.

15.6.3 Mutable variables

The ref keyword denotes pointers to mutable variables in SML. After evaluating
the val r = ref 0, val r = !r + 1 SML functions, the r : int ref pointer
points to the 0 : int value first. This value can then be read by the !r explicit
reference resolution. Hence, the new value of the memory cell pointed by r

becomes 1.
26 The Identity is a trivial monad that does not have any side effects or does not contain any

elements.
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numTree :: (Eq a) => Tree a -> Tree Int

numTree t = evalState (numberTree t) []

numberTree :: (Eq a) => Tree a -> State [a] (Tree Int)

numberTree Leaf = return Leaf

numberTree (Node x lt rt) = do

num <- numberNode x

nlt <- numberTree lt

nrt <- numberTree rt

return (Node num nlt nrt)

numberNode :: (Eq a) => a -> State [a] Int

numberNode x = do

table <- get

let (newTable,pos) = nNode x table

put newTable

return pos

nNode :: (Eq a) => a -> [a] -> ([a],Int)

nNode x t =

case (findIndex (== x) t) of

Nothing -> (t ++ [x], length t)

Just i -> (t,i)

Figure 15.69: (Haskell): Labeling elements of a binary tree via using the State

monad.

As it is demonstrated in Figure 15.70, arrays containing mutable elements
can be handled by the Array module. The array function creates an array with
fixed size and sets its initial value, the sub function accesses the ith element,
and the update updates its value.

val m : int array = Array.array (size, initv)

Array.sub (memopad, i)

Array.update (memopad, i, value);

Figure 15.70: (SML): Mutable array.

15.7 Interative funtional programs

Haskell hides its external state in IO monads. This state cannot be accessed
directly by the programmer when working with I/O operations.

The IO monad is defined by instantiating the Monad class for the IO a

type construction. The getChar :: IO Char and putChar :: Char -> IO ()
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operations are both associated with the IO monad. Actually, the base type of
the latter is the zero-tuple type containing the unit element. Although the base
types of these two I/O opertions are different, they can be bound because both
of them are of type IO. The getLine and putLine operations can be expressed
by getChar and putChar. In summary, the following example illustrates how
imperative-style I/O program should be written in Haskell:

helloWorld :: IO ()

helloWorld = putStr "Hello world!"

readTwoLines :: IO ()

readTwoLines = do

linea <- getLine

lineb <- getLine

putStrLn $ reverse lineb

getInt :: IO Int

getInt = do

line <- getLine

return (read line :: Int)

toScreen :: IO ()

toScreen = print 5

The program’s external state is hidden by the *World abstract type in Clean,
whose values are unique. In contrast to the IO monad employed in Haskell,
the programmer must explicitly refer to the external state in Clean, respecting
the uniqueness property (otherwise the compiler issues an error). The type
description below shows that the Start creates a new ”world” from the ”world”
received as argument. The new external environment is generated as the result
of user events, step by step. A new w world is obtained by using the stdio

function,27 where the console is an open state. In the following steps, further
character messages are printed to the console, while the succeeding values of the
console,28 and the name local constant are defined by the user input at the same
time. This is illustrated in Figure 15.71.

SML provides dataflow-based I/O via the modules PRIM_IO, STREAM_IO and
IMPERATIVE_IO. The STREAM_IO interface buffers both input and output. The
IMPERATIVE_IO module allows to dynamically redirect dataflows that are already
opened. The TEXT_IO module is an instance of STREAM_IO for handling character-
based I/O (Figure 15.72).

SML and Haskell do not need a standard graphical I/O library, but the
Object IO library of Clean [AW00] allows to create menus, dialogue windows
and windows. In the next code snippet, notice that user interfaces are described
by values of algebraic types (for example Dialog). For certain user actions, for
example closing a window (WindowClose), functions can be assigned (for example
CloseProcess) which are then evaluated by the event handler of Object IO.

27 The w variable did not get a new value, but w on the left-hand side is a fresh identifier which
shadows the original value of w.

28 The console will not get a new value, but rather a new console is created every time.
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module helloconsole

import StdEnv

Start :: *World -> *World

Start w

# (console,w) = stdio w

console = fwrites "Enter your name:\n" console

(name,console) = freadline console

console = fwrites ("Greetings " +++ name +++ "!") console

(_,console) = freadline console

(ok, nw) = fclose console w

| not ok = abort "error"

| otherwise = nw

Figure 15.71: (Clean): Dialogue.

let

ins = TextIO.stdIn

outs = "output.txt"

in

TextIO.openIn(ins);

TextIO.openOut(outs);

let

line = TextIO.inputLine()

in

TextIO.output(outs,line);

TextIO.output1(outs,#"\n");

TextIO.flushOut(outs);

end

end

Figure 15.72: (SML): Dataflow-based I/O

The interactive process assigned to the user interface is launched by creating a
dialogue window and by starting to evaluate the openDialog function given as
argument for startIO.

module HelloOIO

import StdEnv, StdIO

Start :: *World -> *World

Start world

= startIO NDI Void (snd o openDialog undef hello) [] world

where

hello = Dialog "" (TextControl "Hello world!" [])

[WindowClose (noLS closeProcess)]
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15.8 Error handling

Error handling of Miranda and Clean is essentially based on the error and
abort functions which can be used to display programmed error messages to the
user before interrupting the evaluation of the program.

The Monad and MonadPlus classes of Haskell (see Section 15.6.2) contain a
fail basic operation for implementing error handling in monads. The IO monad
(see Section 15.7) also contains operations for handling errors. In this case, errors
are derived from the built-in IOError abstract type. Each I/O error type can be
handled via the catch function, and the ioError function can be used to pass
the unhandled errors [HFP99]. Due to the lazy evaluation, exceptions in Haskell
can be thrown anywhere, but only caught in the IO monad.

Through the features of rich type systems, it is possible to do ”pure” error
handling where algorithms do not require the IO monad[OGS08]. In many cases,
instead of just throwing an exception on failure, one can employ the Maybe

monad to return Nothing for errors, or else the results wrapped into a Just

data constructor. For example, consider a ”safe” version of the integer division
operator (div) where a result is provided unless the divisor is zero:

safeDiv :: Integral a => a -> a -> Maybe a

safeDiv _ 0 = Nothing

safeDiv x y = Just (x ‘div‘ y)

That is, the possibility of error becomes visible in the signature of the function.
This can be thought of as a monadic effect, which can be conveniently applied
in the construction of monadic blocks thanks to the properties of Maybe’s bind
operator, as illustrated bellow:

averageDeviation :: (Integral a) => [a] -> Maybe a

averageDeviation l = do

let average xs = (sum xs) ‘safeDiv‘ (genericLength xs)

mean <- average l

average [ abs (x - mean) | x <- l ]

The Either type is similar to the Maybe type but it can carry attached data
both for an error (Left values) and for success (Right values). It can be also
used as a monad, or as part of a monad stack built by monad transformers,
through ErrorT. An example of using Either follows:

type Error a = Either String a

safeDiv :: Integral a => a -> a -> Error a

safeDiv _ 0 = Left "Division by zero"

safeDiv x y = Right (x ‘div‘ y)

Error handling in SML is more generic. In fact, its very similar to the imple-
mentation of Ada. There can be exceptions defined for the exn type29 which can

29 The exn type is extendable which means that its data constructors can be defined separately
from the type constructors later.
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be constant functions or constructor functions.30 Declared errors can be thrown
and the caller can answer the thrown messages by evaluating exception handler
functions. In [Har01], an exception is declared for the (partial) factorial function
which is thrown when the argument is negative. The factorial_driver function
handles this exception together with other possible ones.

exception Factorial

local

fun fact 0 = 1

| fact n = n * fact (n-1)

in

fun checked_factorial n =

if n >= 0 then fact n

else raise Factorial

end

fun factorial_driver () =

let

val input = read_integer ()

val result = makestring (checked_factorial input)

val _ = print result

in

factorial_driver ()

end

handle EndOfFile => print "Done.\n"

| SyntaxError =>

let val _ = print "Syntax error.\n" in factorial_driver ()end

| Factorial =>

let val _ = print "Out of range.\n" in factorial_driver ()end

15.9 Dynami types

The strong static type system of Clean is extended by the Dynamic type ([Pil98]
and [PE01]). Using the dynamic function, an arbitrary type31 can be converted
to a Dynamic type, which can be then recovered by matching a type pattern on
the Dynamic value. The sendDynamic and receiveDynamic functions support
sending and receiving constants and mobile code snippets ([PE01] and [HK02]).
The writeDynamic and readDynamic functions are capable of writing and read-
ing values of the Dynamic type.

Figure 15.73 shows how a Clean program builds a tree to store in a file;
another program creates a function that counts the leaves of a tree and writes
it to a file; finally, a third program reads the tree from a file and applies a
function on it which is similary read from a file, and then displays the result.

30 On throwing an exception, the data constructor of type exn wraps a value of a given type.
31 Any type from the TC type class has a type code, and may be converted to a Dynamic type.



15.10 Conurrent, parallel and distributed programs

•
903

The first program builds the tree2 tree, wraps it to a value of type Dynamic by
the dynamic function, which is then written to a file using writeDynamic.

module v

import StdDynamic, StdEnv

:: Tree a = Node a (Tree a) (Tree a) | Leaf

Start world

#! (ok, world) =

writeDynamic (p +++ "value") DynamicDefaultOptions dt world

| not ok = abort "could not write dynamic"

= (dt, world)

where dt = dynamic (Node 99 tree2 tree2)

tree2 = (Node 2 (Node 1 Leaf Leaf) Leaf)

p = "C:\\tmp\\"

module f

import StdDynamic, StdEnv

:: Tree b = Node b (Tree b) (Tree b) | Leaf

Start world

#! (ok,world) =

writeDynamic (p +++ "function") DynamicDefaultOptions dt world

| not ok = abort "could not write dynamic"

= (dt,world)

where dt = dynamic count_leafs

p = "C:\\tmp\\"

Figure 15.73: (Clean): Use of dynamic types.

In Figure 15.74, the apply applies the function read from a file on the tree
read from a file, and displays the result. The expected types of the function and
value read are checked by matching patterns on the corresponding types.

15.10 Conurrent, parallel and distributed programs

In this section, language constructs used for developing functional-style dis-
tributed, parallel programs in Clean, Haskell, and JoCaml will be presented and
illustrated through specific examples. Languages differ in their expressive power,
the abstraction level of the featured constructs may be different. This section
will look at the following issues: annotations at the lowest level, evaluation
strategies based on them, ways of explicit message passing, channels, high-level
coordination, explicit processes, functional implementation of mobile programs,
and agents. There are very different in their efficiency, applicability and im-
plementation, and thus offering a plethora of ways for constructing concurrent,
parallel, and distributed applications, all in line with the requirements of the
problem to be solved.
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module apply

import StdDynamic, StdEnv

:: Tree a = Node a (Tree a) (Tree a) | Leaf

Start world

# (ok,f,world) = readDynamic (p +++ "function") world

| not ok = abort " could not read"

# (ok,v,world) = readDynamic (p +++ "value") world

| not ok = abort " could not read"

# result = apply f v;

= (result, world);

where

apply (f :: (Tree Int) -> Real) (v :: (Tree Int)) = f v

apply _ _ = abort "unmatched"

p = "C:\\tmp\\"

Figure 15.74: (Clean): Pattern matching on dynamic types.

Composition of functions is associative, therefore evaluation of functional
programs can be parallelized well. The most important problem is to decide
which subexpressions should be evaluated in parallel or in a distributed fashion.

There are many trends in the world of parallel and distributed functional
programs: these include introducing new abstractions on the language level,
parallel and distributed evaluation of functions, modifying existing evaluation
strategies, linking mobile programs dynamically together, and using the TCP/IP
communication protocol. Next, these language features will be illustrated with
examples in Concurrent Clean ([Kes96], [PE01], [HZSP03], [SH99] and [AW00]),
Haskell [Mar12], Eden [Loo12] and JoCaml32 [FFMS01].

15.10.1 Parallel and distributed programming in Conurrent Clean

Annotations [Kes96] are one of the oldest functional language constructs used
for expressing parallelism. This will be discussed first in Concurrent Clean. An-
notations can be used to determine which parts of the function or the expression
should be evaluated in parallel. In lazy languages, expressions are usually evalu-
ated on demand. Parallel evaluation makes an exception to this rule. Annotations
offer a speculative way to tell the evaluator which subexpressions ought to be
started in the background, meaning their normal form is already available at the
time when their values are needed. There are three types of annotations:

• I: Merging that enables parallel evaluation of an expression on the same
processor where evaluation of the expression marked with I is already

32 A variant of OCaml, which implements the join-calculus to flexible and type-checked
concurrent and distributed programming.
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in progress. The two evaluation process will work in parallel by time
sharing;33

• P: Parallel annotation that marks parallel evaluation of the same expres-
sion on the same processor or possibly delegated to another processor;

• P at procid: Parallel evaluation on the given processor.

Nfib :: Int -> Int

Nfib n

| n < 2 = 1

= {| P |} Nfib (n - 1) + Nfib (n - 2) + 1

Figure 15.75: (Clean): Annotations.

The function in Figure 15.75 calculates Fibonacci numbers using annota-
tions. Due to the P annotation, a new thread of evaluation is launched, that is,
evaluation of Nfib (n - 1) is done in parallel with Nfib (n - 2).

With the help of annotations, evaluation strategies (or just strategies for
short) can be expressed by higher-order functions [THLP98], [HZSP03]. Based
on two elementary evaluation methods, ’seq’ (sequential evaluation) and ’par’

(parallel evaluation), more complex evaluation methods can be constructed.
For example, parlist might be used for writing a parallel map function that
calculates elements of the resulting list in parallel. The individual elements of
the list are then evaluated by following the strategy passed to parlist as s

(Figure 15.76).

parmap :: (Strategy b) (a -> b) [a] -> [b]

parmap s f x = map f x ’using’ parlist s

Figure 15.76: (Clean): A composed method of evaluation.

Another way of implementing parallel programming in Concurrent Clean is
using channels. There are two types of sending messages: communication between
two standalone programs and exchanging messages between concurrent threads
in the same program [SH99].

In the first approach, two abstract channel types are applied: (SChannel Int)

and (RChannel Int) which denote channels suitable for sending and receiving
values of the base type Int. Messages are stored in a list in chronological
order at the receiver side. Channels are created by the createRChannel34 and
findSChannel functions. The lookupSChannel function searches for an already
created channel by name on the other side. Programs communicate by eval-
uating the send, receive, and available library functions. The program in

33 The result of the evaluation will be determined by the semantics of merging.
34 For local use only – channels are created by the newChannel function.
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Figure 15.77 implements a producer-consumer process by using channels. The
produce function recursively produces 10 data, and the consume function con-
sumes 10 data as well.

// The producer application.

Start :: *World -> *World

Start w

# (sc, w) = findSChannel "Consumer" w

= produce sc 10 1 w

produce :: (SChannel Int) Int Int *World -> *World

produce sc i n w

| i == 10 = w

| otherwise = produce sc (i - 1) (n + 1) (send sc n w)

// The consumer application.

Start :: *World -> (Int, *World)

Start w

# (maybe_rc, w) = createRChannel "Consumer" w

= consumer maybe_rc w

where

consumer Nothing w = abort "already exists"

consumer (Just rc) w = consume rc 10 0 w

consume :: (RChannel Int) Int Int *World -> (Int, *World)

consume rc i r w

# (n, rc, w) = receive rc w

| i == 0 = (r + n, w)

| otherwise = consume rc (i - 1) (r + n) w

Figure 15.77: (Clean): A producer-consumer example.

In the second approach, threads with lazy evaluation can be created for
the same processor by the newThread function. Message passing between the
threads is also implemented by the send, receive and available functions. To
illustrate this, the same producer-consumer program is presented again below,
but this time the producer and consumer processes are represented by separate
threads. Both thread bodies belong to the same program, but a thread may be
launched on a different processor. This can be done by adding newThreadAt pid.

module ProdCons

import StdEnv, StdParallel, StdThread, StdChannel

Start w = startProcessorsW’ myStart w

// Create a channel for the processor with the ‘pid‘ identifier.

// The channel connects the ‘produce‘ and ‘consume‘ functions,
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// running on different threads.

myStart :: (Set ProcId) *World -> (Int, *World)

myStart pids w

# (sc, rc, w) = newChannel w

w = newThreadAt pid (produce sc 10 1) w

= newThread’ (consume rc 10 0) w

where

pid = pickFromSet pids 0

// The producer function.

produce :: (SChannel Int) Int Int *env -> *env | ThreadEnv env

produce sc i n env

| i == 0 = env

| otherwise = produce sc (i - 1) (n + 2) (send’ n sc env)

// The consumer function.

consume :: (RChannel Int) Int Int *env -> (Int, *env) | ThreadEnv env

consume rc i r env

# (n, rc, env) = receive’ rc env

| i == 1 = (r + n, env)

| otherwise = consume rc (i - 1) (r + n) env

Channels are used in parallel functional programming based on TCP/IP
([AW00] and [THH99]) too. Any computer on the network can be identified by
IP address, and they can communicate with each other by sending messages over
the network. After the connection is established between the client and server,
messages can be sent in the way presented in the next example:

// The client sends the "hello server" message through ‘TCP_SChannel‘

clientSend :: TCP_SChannel *World -> (TCP_SChannel, *World)

clientSend sChannel world =

send (toByteSeq "hello server") sChannel world

// The server receives the message through ‘TCP_SChannel‘.

serverReceive :: String TCP_RChannel *World -> (TCP_RChannel, *World)

serverReceive expectedMessage rChannel world

# (message, rChannel, world) = receive rChannel world

| toString message <> expectedMessage = abort "wrong message"

| otherwise = (rChannel, world)

15.10.2 Distributed, parallel and onurrent programming in Haskell

Haskell features many different abstractions for implementing parallel and con-
current programs. Note that this language makes a clear distinction between
these two approaches, though programmers are free to combine them. It is
possible to use the Eval monad (which represents evaluation strategies, see
Section 15.10.1), or the Par monad to develop parallel programs, while there
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are also threads, MVars, asynchronous exceptions and Software Transactional
Memory to work with concurrent ones.

Parallelism

Parallel programs aim to exploit the multiplicity of computational hardware
(for example, processor cores) in order to achieve faster execution. It focuses
on performance but retains the deterministic nature of the original algorithm.
In this scenario, different parts of the computation are delegated to different
computational units to be executed at the same time, in parallel, while testing,
debugging and reasoning can be performed on the sequential version.

Parallel Haskell programs do not explicitly deal with synchronization or
communication, these are handled automatically by the runtime system and the
parallelism libraries. Communication is implicit since all parallel tasks share the
same heap, and can share objects without restriction, this may cause problems
at hardware level leading to contention for the main memory bus.

Thus Parallel Haskell requires the programmer to think about how to divide
a problem into tasks to be executed in parallel. There are two important consid-
erations regarding this: the size of tasks (granularity) and sequentialization due
to data dependencies between the tasks.

Parallel coordination is performed in a monad, this is the Eval monad. It
is because parallel programming fundamentally involves ordering evaluation of
expressions, for example to start evaluating a in parallel, and then b. Monads
(see Section 15.6.2) are excellent tools for expressing such ordering relationships
in a compositional way.

The Eval monad comes with two basic operations, the rpar combinator
for creating parallelism, and the rseq for forcing sequential evaluation, which
evaluates its argument to a weak-head normal form. Weak-head normal form
means that the expression is evaluated until the first constructor is found. For
example, in case of lists, it is only determined whether the list is empty or
non-empty, but the head and tail are left untouched.

parMap :: (NFData b) => (a -> b) -> [a] -> Eval [b]

parMap f xs = do

let (as,bs) = splitAt (length xs ‘div‘ 2) xs

a <- rpar (deep (map f as))

b <- rpar (deep (map f bs))

rseq a

rseq b

return (a ++ b)

Figure 15.78: (Haskell): Use of the Eval monad.

A simple example of using Eval is featured in Figure 15.78. Here we add some
parallelism to make use of two processors for processing a list (xs) with a function
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(f). The initial list is divided into two nearly-equal sub-lists (as and bs). We
use the evaluate function to evaluate the result of runEval. However, without
using deepseq this will evaluate the expression only to weak-head normal form
and will not compute any of the results, since it will only evaluate as far as the
first cell of the list. However, deep evaluates the entire structure of its argument
(”deeply”), reducing it to normal form, before returning the argument itself.
deep is expressed by the deepseq function detailed in Figure 15.79.

deep :: (NFData a) => a -> a

deep x = deepseq x x

Figure 15.79: (Haskell): Implementation of the deep function.

The parMap function above can be run by the combination of the runEval

and the evaluate functions, for example:

evaluate $ runEval $ parMap (+1) [1..10^6]

The GHC runtime system supports automatic distribution of parallel tasks,
called dynamic partitioning. The argument to rpar is called a spark. The runtime
collects sparks in a pool and uses them to share the work between the available
processor by the technique of work stealing. Sparks may be evaluated or not,
depending on the capacity available. Sparks are very cheap to create.

parMapDynamic :: (a -> b) -> [a] -> Eval [b]

parMapDynamic f [] = return []

parMapDynamic f (x:xs) = do

y <- rpar (f x)

ys <- parMapDynamic f xs

return (y:ys)

Figure 15.80: (Haskell): Dynamic partitioning with the Eval monad.

In the version presented in Figure 15.80, parMap runs down the whole list,
eagerly creates sparks for the application of f to each element, and finally returns
the new list. Note that the deep function is not added here, because it will be
applied after the monad is evaluated using runEval, for example:

evaluate $ deep $ runEval $ parMapDynamic (+1) [1..10^6]

Evaluation strategies are an abstraction layer built on top of the Eval monad
in a fashion similar to Section 15.10.1 (Figure 15.81).

In addition to partitioning, sometimes there is a need for being more explicit
about dependencies and task boundaries than Eval can provide. This is where
concurrency could be inserted by forking threads and explicitly assigning them
tasks – however, this approach leads to losing the deterministic behavior. The



910

•
Elements of funtional programming languages

type Strategy a = a -> Eval a

using :: a -> Strategy a -> a

x ‘using‘ s = runEval (s x)

Figure 15.81: (Haskell): Expression of evaluation strategies atop the Eval monad.

runPar :: Par a -> a

Figure 15.82: (Haskell): Run function of the Par monad.

Par monad aims to fill this gap and makes dependencies and boundaries for
tasks explicit without sacrificing determinism. Similarly to the Eval monad,
the Par monad returns a pure result. However, runPar (Figure 15.82) is much
more expensive to use than runEval, because it creates a new worker thread
per processor. Hence, it is more recommended for scheduling large-scale parallel
tasks.

We can create parallel tasks by the fork operation, and there is a way to
communicate the results between the child of fork and its parent, or in general
between two parallel Par computations. This is provided by the IVar type and
its operations. A value of type IVar is like a future or promise. The new operation
creates a new IVar, which is initially empty; put fills an IVar with a value, and
get retrieves the value of an IVar, waiting until a value is available if necessary.

The fork and IVar operations together enable the construction of dataflow
networks. The nodes of the network are created by fork, and edges connect a
put with each get on that IVar.

For example, consider the following four functions (Figure 15.83):

f :: In -> A

g :: A -> B

h :: A -> C

j :: (B,C) -> Out

input output

f

g

h

j
A

B

C

Figure 15.83: A simple dataflow network.
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There are no sequential dependencies between g and h; therefore they may be
run in parallel. This can be expressed as a graph in the Par monad, as shown
below:

do

[ia,ib,ic] <- replicateM 3 new

fork (do

x <- get input

put ia (f x))

fork (do

a <- get ia

put ib (g a))

fork (do

a <- get ia

put ic (h a))

fork (do

b <- get ib

c <- get ic

put output (j b c))

The Par monad can also express other common patterns. For example, it is
possible to build a parMap combinator, similar to the one above. This is imple-
mented through the spawn function of Figure 15.84, which forks a computation
in parallel and returns an IVar that can be used to wait for its result. The parallel
map involves of calling spawn to apply the function to each element of the list,
and then waiting for all the results, as shown in Figure 15.85. This version is
different from the original version based on Eval. The function argument returns
a monadic Par value that allows the computation on each element to produce
more parallel tasks or to manipulate the graph in other ways, while parMapM

waits for all the results.

spawn :: NFData a => Par a -> Par (IVar a)

spawn p = do

i <- new

fork (do x <- p; put i x)

return i

Figure 15.84: (Haskell): Implementation of the spawn function.

parMapM :: NFData b => (a -> Par b) -> [a] -> Par [b]

parMapM f xs = do

iys <- mapM (spawn . f) xs

mapM get iys

Figure 15.85: (Haskell): Parallel map using the Par monad.
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Conurreny

Concurrency is a technique for structuring programs in which there are multiple
threads of control and allows introducing modularity. Such threads are executed
simultaneously but their effects are interleaved, that is, they can be executed on
a single processing unit through interleaving or on multiple physical ones. The
”threads of control” does not make sense for purely functional programs, because
there are no effects to observe, and the evaluation order is not relevant. That is,
concurrency is for structuring effective code, code in the IO monad. Concurrent
programs are necessarily nondeterministic, so it makes programs harder to test
and reason about.

The basic requirement of concurrency is to be able to fork a new thread.
This is implemented by the forkIO operation in Concurrent Haskell. It takes
a computation of type IO (), which is then executed in a new thread that
runs concurrently with the other threads in the system. Threads are extremely
lightweight in GHC, so the runtime system technically supports millions of them,
limited only by the memory available. Memory used by the threads is movable
so they can be packed together tightly to eliminate fragmentation; threads may
also expand or shrink on demand. When using multiple physical processors, the
runtime system automatically migrates threads between cores to balance the
load. A trivial example of a concurrent program written in Haskell is presented
in Figure 15.86.

import Control.Concurrent

import Control.Monad

import System.IO

main = do

hSetBuffering stdout NoBuffering

forkIO (forever (putChar ’A’))

forkIO (forever (putChar ’B’))

threadDelay (10^6)

Figure 15.86: (Haskell): A trivial concurrent program.

Threads can communicate with each other using MVars as the lowest-level
abstraction. An MVar can be thought of as a box that is either empty or full. The
newEmptyMVar operation creates such a new empty box, and newMVar creates a
new full box filled up with the value passed as argument. The putMVar operation
puts a value into the box, but it waits if the box is already filled. For other
direction, the takeMVar operation removes the value from a full box but waits
if the box is empty.

MVars in Haskell are quite versatile: they can be used to protect shared muta-
ble states or critical sections (as a lock), establish asynchronous communication
between threads, or to share a mutable state. For example, we can use them for
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parRead :: [FilePath] -> IO [String]

parRead ps = do

ms <- replicateM (length ps) newEmptyMVar

mapM (\(p,m) -> forkIO (readFile p >>= putMVar m)) (ps ‘zip‘ ms)

mapM takeMVar ms

Figure 15.87: (Haskell): Reading files concurrently.

reading multiple files concurrently, as it can be seen in Figure 15.87. MVars are
also useful for building larger abstractions, for example an unbounded buffered
channel. The current contents of a channel can be represented as a Stream, like
this:

type Stream a = MVar (Item a)

data Item a = Item a (Stream a)

The end of the stream is represented by an empty MVar, which is called
a ”hole”, because it will be filled with a new element. The channel itself is a
pair of MVars, one pointing to the first element of the Stream (read position)
and the other pointing to the hole at the end (write position), as illustrated in
Figure 15.88.

data Chan a = Chan (MVar (Stream a)) (MVar (Stream a))

Item Item Item

Read
end

Write
end

Channel

Hole

Figure 15.88: Structure of a buffered channel.

This implementation allows generalization to multicast channels without
changing the structure. The associated operations can be found in the module
Control.Concurrent.Chan.

Building larger structures with MVars is not always trivial, but they have
valuable properties: no thread can be blocked indefinitely on an MVar unless
another thread holds that MVar indefinitely. That is, if a thread T is blocked in
takeMVar, and there are regular putMVar operations on the same MVar, then
it is guaranteed that T ’s takeMVar will return. In the implementation, this
is achieved by atomically waking up the blocked thread and performing the
blocked operation. A consequence of such fairness is that when multiple threads
are blocked, only a single one is needed to be woken up. This ”single wakeup”
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property greatly contributes to efficiency when a large number of threads are
contending for a single MVar.

For interactive applications, it is often important for one thread to be able
to interrupt the execution of another thread on some particular condition, for
example, in a web browser, the thread pulling data from the web server and
thread rendering the page need to be interrupted when the user requests to stop.
As most of the code is purely functional, it can be safely aborted or suspended,
and later resumed, without affecting correctness. Therefore, Haskell employs
fully-asynchronous exceptions for threads to implement cancellation.

To initiate an asynchronous exception, there is the throwTo primitive pro-
vided which throws an exception from one thread to another. By using throwTo,
we can derive simple cancel and wait operations for interruptible threads. A
possible implementation for them can be seen in Figure 15.89.

The throwTo and cancel functions could be supplemented with the async

operation (Figure 15.90) to catch exceptions in the thread body and store them
in the MVar.

data Async a = Async ThreadId (MVar (Either a SomeException))

cancel :: Async a -> IO ()

cancel (Async t _) = throwTo t ThreadKilled

wait :: Async a -> IO a

wait (Async _ m) = readMVar m

Figure 15.89: (Haskell): Implementation of the cancel and wait operations.

async :: IO a -> IO (Async a)

async io = do

m <- newEmptyMVar

t <- forkIO ((do r <- io; putMVar m (Right r))

‘catch‘ \e -> putMVar m (Left e))

return (Async t m)

Figure 15.90: (Haskell): Implementation of the async operation.

Asynchronous exceptions can be masked in order to protect critical sections
using the mask combinator. It defers the delivery of exceptions for the duration
of its argument. Inside mask, exceptions are no longer asynchronous, but they
can still be raised by certain operations, that is, they become synchronous. So
a bracket wrapper may be defined with mask to make operations safe from
asynchronous exceptions. This is demonstrated in Figure 15.91.

Many exceptional conditions map naturally onto asynchronous exceptions,
for example stack overflow or user interrupts. Threads never just stop and
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bracket :: IO a -> (a -> IO b) -> (a -> IO c) -> IO c

bracket before after during =

mask (\restore -> do

a <- before

r <- restore (during a) ‘catch‘ \e -> after a; throw e

_ <- after a

return r)

Figure 15.91: (Haskell): Implementation of the bracket wrapper function.

disappear, it is guaranteed that a thread always gets a chance to clean up and
run its exception handlers.

Software Transactional Memory (STM) is a technique for making concurrent
programming simpler by grouping multiple operations over state and performing
them as a single atomic operation, a transaction. STM provides a way to avoid
deadlocks without imposing a requirement for ordering on concurrent accesses.
It is just enough to replace MVars with TVars, and wrap the sequence of grouped
operations in atomically. TVar stands for ”transactional variable”, and it is a
mutable variable that can only be read or written within a transaction.

atomically :: STM a -> IO a

The atomically function is the associated run function of the STM monad,
which is to execute the contents of the monadic block as an atomic operation.
This happens invisibly as far as the rest of the program is concerned. No other
thread can observe an intermediate state, the operation has either completed, or
it has not started yet. This approach scales to any number of TVars. In addition
to that, STM operations are composable: any operation of type STM a can be
composed with other operations to form a larger atomic transaction. As a result
of this, STM operations are usually provided without the atomically wrapper.
Thus, one can compose them as necessary, before finally wrapping the entire
operation in atomically.

An important part of concurrent programming is dealing with blocking when
one needs to wait for some condition to be true, or to acquire a particular
resource. STM also provides an elegant way to achieve this, with the retry

operation. This means ”running the current transaction again”. This is so because
contents of certain TVars involved in the transaction may have been changed
by another thread, and thus re-running the transaction may yield different
results. The runtime system knows if something has changed in the block, so
retry waits until a TVar that was read in the current transaction has been
written to, and then triggers a re-run of the current transaction. Until that
happens, the current thread is blocked. Without retry, a complex logic should
have been implemented, including the signals between threads. This would be
against modularity, since operations modifying the state have to know about
the potential observers that need to act on changes. This also rises the most
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frequent problem: lost wakeups. As woken threads were supposed to complete
some operation on which other threads are waiting, such events often lead to
deadlocks.

STM allows composition of blocking operations by the orElse operation. It
takes two STM blocks: a and b. First a is executed. If a returns a result, the
result is immediately returned. If a calls retry, a’s effects are discarded, and b

is executed instead.
The STM monad supports exceptions similarly to the IO monad, with the

throwSTM and catchSTM operations. The main difference is that catchSTM dis-
cards all the effects of the guarded block, and calls the associated handler.
If there is no enclosing catchSTM operation, all of the effects of the entire
transaction are discarded and the exception is propagated out of atomically.
This is particularly useful in the case of asynchronous exceptions, because there
are no locks to replace, no need for exception handlers, and no need to worry
about which critical sections to protect with mask.

Distributed exeution

Eden [Loo12] is a parallel functional programming language which enhances
Haskell with constructs for definition and instantiation of parallel processes.
The processes evaluate function applications remotely in parallel. While the pro-
grammer has control over process granularity, data distribution, communication
topology and site of evaluation, there is no need to care about synchronization
and data exchange between processes as it is performed by the runtime system. In
addition to this, common patterns of communication and topologies are provided
in the form of ”algorithmic skeletons” – higher-order functions that could be
extended by the user. Eden is aimed toward distributed computing as processes
do not share any data, but it is also suitable for programming multi-core systems
as well.

The underlying idea of Eden is to specify process networks in a declarative
way, where processes evaluate functions. The function parameters are the process
inputs and the function result is the process output. Input and output are
automatically transferred via unidirectional one-to-one channels between parent
and child processes, meaning that they are always fully evaluated before sending,
and due to lack of sharing, the same expression may be redundantly evaluated
by several processes.

Since only hierarchical communication topologies are supported automati-
cally, Eden provides explicit channel management. A receiver process can create
a new input channel and pass its name to another process. Then the target
process can directly send data to the original process using the received channel
name.

There is also the remote data concept where data can be released by a process
to be fetched by a remote process. In this case, a handle is transferred from the
owner to the receiver process, which can then be used to directly send data from
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the producer to the receiver. Furthermore, many-to-one communication can be
modeled using a pre-defined (necessarily non-deterministic) merge function.

Arbitrary parallel computation schemes, like master-worker systems or cyclic
communication topologies like rings and tori, can be defined in an elegant way.
Eden supports an equational programming style where recursive process nets
can simply be defined using recursive equations. Using the PA (parallel action)
monad, it is also possible to adopt a monadic programming style, when it is
necessary to ensure that series of parallel activities are executed in a given order.

As an example, calculate digits of π by approximating the integral

π =
∫ 1

0

f(x)dx where f(x) =
4

1 + x2

in the following way:

π = lim
n→∞

pi(n) where pi(n) =
1
n

n
∑

i=1

f

(

i − 0.5
n

)

The corresponding program is presented in Figure 15.92. This is based on a
simplified map-reduce scheme that can be given in Haskell easily as it is shown
in Figure 15.93.

import Control.Parallel.Eden

import Control.Parallel.Eden.EdenSkel.MapRedSkels

cpi :: Integer -> Double

cpi n = offline_parMapRedr (+) 0 (f . index) [1..n] / fromInteger n

where

f :: Double -> Double

f x = 4 / (1 + x * x)

index :: Integer -> Double

index i = (fromInteger i - 0.5) / fromInteger n

Figure 15.92: (Haskell): Eden function for the calculation of π.

mapRedr :: (b -> c -> c) -> c -> (a -> b) -> [a] -> c

mapRedr g e f = (foldr g e) . (map f)

Figure 15.93: (Haskell): Implementation of the mapRedr function.
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distribute
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reduce

z2
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f f f f f

reduce

z

Figure 15.94: The parallel map-reduce scheme in Eden.

If the parameter function g is associative with type b -> b -> b and the
neutral element e, reduction may also be performed in parallel by splitting the
list into sublists and pre-reducing them within the parallel processes. Afterwards
only the subresults from the processes have to be combined by a main process
(Figure 15.94). So the parMapRedr function can be used instead of mapRedr,
which is listed in Figure 15.95.

parMapRedr :: (Trans a, Trans b)

=> (b -> b -> b) -> b -> (a -> b) -> [a] -> b

parMapRedr g e f xs =

if noPe == 1

then mapRedr g e f xs

else (foldr g e) . (parMap (mapRedr g e f)) . (splitIntoN noPe)

Figure 15.95: (Haskell): Parallel implementation of the mapRedr function.

Note that parallel processes are only created if there at least 2 processors
present in the system. On a single processor the original mapRedr sequential
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scheme is executed. This is determined from the value of the noPe constant
which gives the number of available processors.

This solution uses the parMap skeleton where a separate process is created for
each function application, that is, as many processes be created as the number
of list elements. The input parameter as well as the result of each process will
be transmitted via communication channels between the generator process and
the process created by parMap.

parMap :: (Trans a, Trans b) => (a -> b) -> [a] -> [b]

In the signature of parMap, the Eden-specific type context – containing the
Trans type class – indicates that both types are transmissible values. The another
skeleton employed here is splitIntoN:

splitIntoN :: Int -> [a] -> [[a]]

This function distributes the input list blockwise into as many sublists as the
first parameter determines. The length of the output lists differs by the most
one. The inverse function of splitIntoN is the standard Haskell function concat

which simply concatenates all lists in the given list of lists.
The input lists of the processes are evaluated by the parent process and then

communicated via automatically created communication channels between the
parent and the parMap processes. In Eden, lists are transmitted as streams where
each element is sent in a separate message. This causes a severe overhead for very
long lists. The offline_parMapRedr variant in Figure 15.96 avoids the stream
communication. Only the process identification number is communicated and
used to select the appropriate part of the input list. The whole (unevaluated) list
is incorporated in the worker function which is mapped onto the identification
numbers. This may cause redundancy in the input evaluation, but overall it
substantially reduces communication overhead.

offline_parMapRedr :: (Trans a, Trans b)

=> (b -> b -> b) -> b -> (a -> b) -> [a] -> b

offline_parMapRedr g e f xs =

if noPe == 1

then mapRedr g e f xs

else foldr g e (parMap worker [0 .. (noPe - 1)])

where

worker i = mapRedr g e f ((splitIntoN noPe xs) !! i)

Figure 15.96: (Haskell): Offline parallel implementation of mapRedr function.

15.10.3 Parallel and distributed language onstruts of JoCaml

JoCaml [FFMS01] is not a purely functional language – it contains imperative
and object-oriented elements as well. In JoCaml, mobile code is represented
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by agents. Design of the language is based on three main demands: to provide
tools for creating secure agents, to express complex distributed computations,
and to describe semantics of the abstract language constructs precisely. The
two most important abstract language constructs are the concepts of channel
and abstract place. Synchronous and asynchronous channels are created by
the let def statement, identifiers of asynchronous channels are followed by a !

(bang) symbol. Data for asynchronous channels is handled by assigned processes.

let def echo! X = print_int x;

val echo : <<int>>

Figure 15.97: (JoCaml): Definition of a trivial asynchronous channel.

The spawn keyword creates an expression out of process instances assigned to
an asynchronous channel, whose evaluation leads to the launching of a concurrent
process. Message passing is demonstrated in Figure 15.98, where values of
channels assigned to concurrent processes are printed – that is, the 1, 2, 3 integer
values – in an undefined order.

spawn{

let x = 1 in

{let y = x + 1 in echo y | echo (y + 1)} | echo x }

Figure 15.98: (JoCaml): Message passing.

Complex control and data handler patterns of concurrent programming are
described by synchronization patterns. This way it is possible to express synchro-
nization or conflicts between communication events associated with channel sets.
Synchronization patterns (Figure 15.99) always refer to channels defined by the
same let def statement in parallel. Patterns can be declared by the | parallel
composition operation; multiple alternative patterns associated with channel
subsets can be joined by the or operator. An example of concurrent counters
is the count asynchronous channel, whose received messages are synchronized
with messages sent to the inc and get synchronous channels. After the initial
count 0 message, the concurrent system created this way increases the counter
when an inc message is received by sending itself a new count message storing
the counter’s new value there. When a get message is received, the counter sends
itself a count message, warranting that the operation remains correct.

Distributed programs can be also written in JoCaml. Processes may migrate
from one machine to another. In the beginning, there is no connection between
the processes running on different machines in the beginning, they find each
other by using a name server.

Concept of abstract place incorporates both the agent and its actual physical
location. This way JoCaml offers abstract tools for handling composition and
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let def count! n | inc () = count (n + 1) | reply to inc

or count! n | get () = count n | reply n to get

spawn {count 0}

Figure 15.99: (JoCaml): Synchronization patterns.

communication independently of the actual place where the internal state is
stored during migration of code, and for calling remote procedures. Components
of agents migrate together with the containing parent agent; communication
channels remain established between agents changing their locations over time,
and agents resume their activities from their post-migration state.

In the next code, one of the processes registers the f shared resource under
the name square, and another finds and uses it.

spawn {

let def f x = reply x * x in

Ns.register "square" f vartype;

}

spawn {

let sqr = Ns.lookup "square" vartype in

print_int(sqr 2);

exit 0;

}

Abstract places can be created by the let loc 〈identifier 〉 do {} construc-
tion. Physical places can be identified as actual values of abstract places, that is,
as actual physical places of agents. The here empty agent is used for this purpose.
The mobile agent queries data of the here agent from the name server, then it
migrates itself to the actual physical place of here and performs computations
as a sub-agent. Downloadable agents can have a parameter to learn where to
migrate when activated, but data-driven migration can be also implemented.

let loc here do {

Ns.register "here" here vartype;

Join.server ();

}

let loc mobile

do {

let here = Ns.loopkup "here" vartype in

go here;

let sqr = Ns.lookup "square" vartype in

let def sum (s,n) =

reply (if n = 0 then s else sum(s + sqr n, n - 1)) in

let result = sum (0,5) in

print_string ("q: sum 5 = " ^ string_of_int result ^ "\n");

flush stdout;
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}

15.11 Summary

In this chapter, we have offered a brief overview of the features of contemporary
functional languages. In conjunction with this, the functional programming style
has been introduced to show the major differences between the functional pro-
gramming paradigm and the imperative program development. We have looked
at issues such as the referential transparency, strong static typing, use of higher-
order functions, partial application of functions, recursive functions and data
structures, lazy evaluation and working with infinite lists, list comprehensions,
pattern matching, algebraic data types, module systems, various I/O models, and
the application of the so-called off-side rule. To demonstrate all these features, we
have used source code examples written in some of the most influential languages,
such as SML, Miranda, Clean, and Haskell.

During this presentation, we have considered some of the current challenges
of the real world. We have also shown examples for how error are dealt with
in functional programs, how dynamically-typed expressions may be inserted in
the strong statically typed environment, and for how parallel, concurrent, and
distributed software are developed. We believe that the discussed solutions have
revealed that research on functional programming has not stopped and it is a
thriving field of research, highly fruitful topic for both the academia and industry.
Functional languages have always had influence on mainstream programming
languages and they have greatly contributed to the evolution of the most popular
programming concepts and techniques. Hence, the knowledge of the functional
programming approach should not be an optional but a must-have tool in the
toolkit of a professional programmer.

15.12 Exerises

Exercise 15.1. Determine prime factors for an integer.

Exercise 15.2. Determine if a given integer is a perfect number or not.

Exercise 15.3. Sort elements of a sequence in ascending order.

Exercise 15.4. Find the smallest element in a sequence. The ordering relation
has to be an argument of the function.

Exercise 15.5. Determine the average of elements of a sequence.

Exercise 15.6. Determine if a string is contained by another one.

Exercise 15.7. Define an abstract algebraic data type to represent the ”bag”
data structure.
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Exercise 15.8. Write an interactive functional program that displays a menu on
the top of the screen and opens a dialog window from one of the pull-down
submenus. The dialog window has to contain two editable input boxes, a label
to display the result, and a button. Read two integers in the input boxes and
render the result of their addition when the button is pressed.

15.13 Useful tips

General advice. Try to break the solutions into smaller, well-characterized prob-
lems, and give a function definition for each of them. It may help if the types
for these functions can be given.

Tip 15.1. Try to generate the list of all integers first and then keep only the
ones that are considered primes. The resulting list then may be used to test
its elements for divisibility with the parameter. Store the ones that divide the
parameter, while keep it decrementing with the values of the stored integers.

Tip 15.2. Generate the list of proper divisors, sum its elements and determine
if this is equal to the number itself. The sum can be calculated in a recursive
fashion where the head of the list is added to the sum of the tail. (Bear in mind
that the tail of the list is a list itself, so the function can be applied it, thus
making it recursive.)

Tip 15.3. Pick a sorting algorithm and implement it. For functional languages,
a good choice would be Quicksort because it is recursive, and makes it easier to
implement it. While here, try to create a polymorphic function that works with
all the ordered types.

Tip 15.4. Since the ordering relation has to be an argument to the function, this
assumes implementation of a higher-order function. That is, the ordering relation
can be taken as a function that takes two elements of the same type and returns
some value that indicates their relation to each other (for example, negative
number: the first is lesser than the second, zero: they are equal, positive number:
the first is greater than the second). Try to make this function polymorphic, that
is, make it work with all types that are ordered.

Place the elements of the sequence in a list, and use the relation function to
walk the elements of the list recursively. Note that the list can be split into a
”head” and a ”tail” section, so finding the minimum element likely becomes a
comparison (via the relation function) between the head and the minimum of
the tail. (Bear in mind that the tail of the list is a list itself, so the function can
be applied to it, hence making it recursive.) The recursion should stop when the
list has only a single element – in this case, the minimum is the element itself.
The function should not be defined for empty lists.
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Tip 15.5. Place the elements of the sequence in a list and add them up. The
sum can be calculated in a recursive fashion where the head of the list is added
to the sum of the tail. (Do not forget that the tail of the list is a list itself, so
the function can be applied it, hence it becomes recursive.)

Determine the length of the list which technically corresponds to the number
of elements in the sequence. Length can be calculated by recursively walking the
list and adding one to the length of the ”tail” each time when a ”head” is found.
The length of the empty list is zero by definition.

Finally, divide the sum of the elements with the length. Bear in mind that
some of the languages strictly distinguish between integer and floating-point
division.

Tip 15.6. Take the strings as a list of characters. Generate all the possible suffixes
for the second string. This can be implemented by recursively generating a list
of lists where the ”head” of the resulting sublists is always dropped.

Write a function that checks if a string is a prefix to another one. This can
be done by recursively walking the two lists in parallel and comparing elements
with the same indices. If the first list is fully consumed and all the elements
match, the result is true, otherwise it must be false.

Finally, combine the previous two functions: generate all the possible suffixes
for the second string and check if the first string is a prefix for any of them.

Tip 15.7. Define a data type to represent the bag. For example, this can be a
list that stores pairs of elements and their quantity. Implement the following
operations on this data structure: create an empty bag, convert a list of pairs of
elements and quantities to a bag and vice versa, insert the element into a bag,
delete the element from a bag, check if an element is in the bag, determine if all
elements of a bag contained by another bag, count the number of bag elements,
scale values of elements by a given natural number, union of bags.

Tip 15.8. Find a GUI library that helps with building the graphical application.
For Clean, this is the Object IO library, or in case of Haskell, these are wxHaskell
and Gtk2Hs, there may be other libraries. In order to write the program, it is
recommended to be familiar with programming with side effects.

15.14 Solutions

Please note that all the solutions have been given in Haskell, but there are
many other solutions as well, the collection of applicable techniques is growing
continuously. Feel free to experiment with other languages as well.

Solution 15.1. import Prelude hiding (null)

-- Determine prime factors for an integer.

primeFactors :: Integer -> [Integer]
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primeFactors n | n > 1 = f n primes
where

f n ps@(x:xs)

| x^2 > n = [n]
| x ‘divides‘ n = x : f (n ‘div‘ x) ps

| otherwise = f n xs
primeFactors _ = []

x ‘divides‘ y = y ‘mod‘ x == 0

iSqrt = round . sqrt . fromIntegral

isPrime n = null [ x | x <- [3..(iSqrt n)], x ‘divides‘ n ]
where

null :: [a] -> Bool

null [] = True
null _ = False

primes = 2 : [ x | x <- [3,5..], isPrime x ]

Solution 15.2. import Prelude hiding (sum)

-- Determine if a given integer is a perfect number or not.

isPerfectNumber :: Integer -> Bool
isPerfectNumber n

| n > 0 = sum (properDivisors n) == n
isPerfectNumber _ = error "isPerfectNumber: not a positive integer"

x ‘divides‘ y = y ‘mod‘ x == 0

properDivisors n = 1 : [ x | x <- [2 .. (n ‘div‘ 2)], x ‘divides‘ n]

sum :: [Integer] -> Integer

sum [] = 0
sum (x:xs) = x + sum xs

Solution 15.3. -- Sort elements of a sequence in ascending order.
-- (Implemented by the "quick sort" algorithm, although Data.List.sort

-- provides a standard sorting function for Haskell.)
sortAscending :: Ord a => [a] -> [a]
sortAscending (x:xs) = (sortAscending left) ++ [x] ++ (sortAscending right)

where
left = [ y | y <- xs, y <= x ]

right = [ y | y <- xs, y > x ]
sortAscending [] = []

Solution 15.4. -- Find the smallest element in a sequence. The ordering relation has to be

-- an argument to the function.

-- This function uses the standard definition of ‘Ordering‘ in Haskell:
-- data Ordering = LT | EQ | GT

-- (This is implemented by the ‘Data.List.minimumBy‘ function.)
minimumBy :: (a -> a -> Ordering) -> [a] -> a
minimumBy f [x] = x

minimumBy f (x:xs) =
case (x ‘f‘ minimumBy f xs) of

LT -> x
_ -> minimumBy f xs

minimumBy _ [] = error "minimumBy: empty list"

Solution 15.5. import Prelude hiding (sum, length)

-- Determine the average of elements of a sequence.
average :: Fractional a => [a] -> a

average [] = error "average: empty list"
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average xs = sum xs / fromIntegral (length xs)

sum :: Num a => [a] -> a

sum [] = 0
sum (x:xs) = x + sum xs

length :: [a] -> Int
length [] = 0

length (x:xs) = 1 + length xs

Solution 15.6. import Prelude hiding (any)

-- Determine if a string is contained by another one.

-- (This is implemented by the ‘Data.List.infixOf‘ function.)
isSubstringOf :: String -> String -> Bool

x ‘isSubstringOf‘ y = any (isPrefixOf x) (tails y)

tails :: [a] -> [[a]]
tails [] = [[]]
tails xs = xs : tails (tail xs)

[] ‘isPrefixOf‘ _ = True

_ ‘isPrefixOf‘ [] = False
(x:xs) ‘isPrefixOf‘ (y:ys) = (x == y) && (xs ‘isPrefixOf‘ ys)

any :: (a -> Bool) -> [a] -> Bool
any _ [] = False

any p (x:xs) = p x || any p xs

Solution 15.7. -- Define an abstract algebraic data type to represent the ‘‘bag’’ data

-- structure.

-- (This is implemented by Data.MultiSet, here a simplified implementation
-- is given.)

module Bag
( Bag

, empty
, insert

, delete
, contains
, isSubBag

, count
, scaledBy

, union
, fromList
, toList

) where

data Bag a = Empty | Cons a Integer (Bag a)

instance (Eq a) => Eq (Bag a) where
x == y = (x ‘isSubBag‘ y) && (y ‘isSubBag‘ x)

instance (Eq a) => Ord (Bag a) where
x ‘compare‘ y

| x == y = EQ
| (x ‘isSubBag‘ y) = LT
| otherwise = GT

fromList :: (Eq a) => [(a,Integer)] -> Bag a

fromList [] = Empty
fromList ((x,n):xs) = Cons x n (fromList xs)

toList :: Bag a -> [(a,Integer)]



15.14 Solutions

•
927

toList Empty = []
toList (Cons x n xs) = (x,n):(toList xs)

-- An empty bag.
empty :: Bag a

empty = Empty

-- Insertion of a new element (with multiplicity of 1) or increasing the

-- multiplicity of an already stored element.
insert :: (Ord a) => a -> Bag a -> Bag a

x ‘insert‘ Empty = Cons x 1 Empty
x ‘insert‘ (Cons y n ys)

| x == y = Cons y (n + 1) ys
| x > y = Cons y n (x ‘insert‘ ys)
| otherwise = Cons x 1 (Cons y n ys)

-- Removal of an occurence for an element, removing it completely if

-- occurence falls below 1.
delete :: (Eq a) => Bag a -> a -> Bag a

delete Empty _ = Empty
delete (Cons y n ys) x

| (x == y) && (n > 1) = Cons y (n - 1) ys

| x == y = ys
| otherwise = Cons y n (delete ys x)

-- Check whether the element is present (at least once) in the bag.
contains :: (Eq a) => Bag a -> a -> Bool

b ‘contains‘ x = (count b x) > 0

-- Checks whether each element in the first bag occurs no more often
-- than it occurs in the second bag.

isSubBag :: (Eq a) => Bag a -> Bag a -> Bool
Empty ‘isSubBag‘ _ = True
_ ‘isSubBag‘ Empty = False

(Cons x n xs) ‘isSubBag‘ b = (n <= count b x) && (xs ‘isSubBag‘ b)

-- Return the number of times that the element occurs in the bag
count :: (Eq a) => Bag a -> a -> Integer
count Empty _ = 0

count (Cons y n ys) x
| x == y = n

| otherwise = count ys x

-- Given a natural number n, return a bag which contains the same elements as
-- the bag, except that every element that occurs in the bag occurs n times
-- more in the resulting bag.

scaledBy :: Bag a -> Integer -> Bag a
Empty ‘scaledBy‘ _ = Empty

(Cons x n xs) ‘scaledBy‘ m = Cons x (n * m) (xs ‘scaledBy‘ m)

-- Return a bag that containing just those values that occur in either the

-- first or the second bag, except that the number of times a value occurs in
-- the resulting bag is equal to sum of occurences in both bags.

union :: (Ord a) => Bag a -> Bag a -> Bag a
Empty ‘union‘ ys = ys

xs ‘union‘ Empty = xs
xs@(Cons x n xs’) ‘union‘ ys@(Cons y m ys’)

| x == y = Cons x (n + m) (xs’ ‘union‘ ys’)

| x < y = Cons x n (xs’ ‘union‘ ys)
| otherwise = Cons y m (xs ‘union‘ ys’)

Solution 15.8. -- Write an interactive functional program that displays a menu on the top of
-- the screen and opens a dialog window from one of the pull-down submenus.

-- The dialog window has to contain two editable input boxes, a label to
-- display the result, and a button. Read two integers in the input boxes and
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-- render the result of their addition when then button is pressed.

-- This solution uses the Gtk2Hs toolkit, available at

-- http://haskell.org/gtk2hs/

import Control.Applicative
import Control.Monad
import Data.Maybe

import Graphics.UI.Gtk

-- This function represents the entry point for the entire application. It
-- creates a main window that contains some (stub) menus and the adder window.

main :: IO ()
main = do

initGUI

-- Contents of the main window

window <- windowNew
set window

[ windowTitle := "Main Window"
, windowDefaultWidth := 450
, windowDefaultHeight := 200

]

box <- vBoxNew False 0
containerAdd window box

-- Menus
fma <- actionNew "FMA" "File" Nothing Nothing

ema <- actionNew "EMA" "Edit" Nothing Nothing
oma <- actionNew "OMA" "Operations" Nothing Nothing

hma <- actionNew "HMA" "Help" Nothing Nothing

-- Menu items

newa <- actionNew "NEWA" "New" (Just "Just a Stub") (Just stockNew)
opna <- actionNew "OPNA" "Open" (Just "Just a Stub") (Just stockOpen)

sava <- actionNew "SAVA" "Save" (Just "Just a Stub") (Just stockSave)
svaa <- actionNew "SVAA" "Save As" (Just "Just a Stub") (Just stockSaveAs)
exia <- actionNew "EXIA" "Exit" (Just "Just a Stub") (Just stockQuit)

cuta <- actionNew "CUTA" "Cut" (Just "Just a Stub") (Just stockCut)

copa <- actionNew "COPA" "Copy" (Just "Just a Stub") (Just stockCopy)
psta <- actionNew "PSTA" "Paste" (Just "Just a Stub") (Just stockPaste)

hlpa <- actionNew "HLPA" "Help" (Just "Just a Stub") (Just stockHelp)
adda <- actionNew "ADDA" "Adder" (Just "Calls the adder") Nothing

agr <- actionGroupNew "AGR"

forM_ [fma, ema, oma, hma] $ actionGroupAddAction agr
forM_ [newa,opna,sava,svaa,cuta,copa,psta,hlpa,adda] $ \act ->

actionGroupAddActionWithAccel agr act Nothing

actionGroupAddActionWithAccel agr exia (Just "<Control>e")

ui <- uiManagerNew

uiManagerAddUiFromString ui uiDecl
uiManagerInsertActionGroup ui agr 0

maybeMenubar <- uiManagerGetWidget ui "/ui/menubar"
let menubar = case maybeMenubar of

Just x -> x
Nothing -> error "Cannot get menubar from string."

boxPackStart box menubar PackNatural 0

maybeToolbar <- uiManagerGetWidget ui "/ui/toolbar"
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let toolbar = case maybeToolbar of
Just x -> x
Nothing -> error "Cannot get toolbar from string."

boxPackStart box toolbar PackNatural 0

actionSetSensitive cuta False
onActionActivate exia (widgetDestroy window)
forM_ [fma,ema,hma,newa,opna,sava,svaa,cuta,copa,psta,hlpa] $ \a ->

onActionActivate a $ do
name <- actionGetName a

putStrLn ("Action Name: " ++ name)

onActionActivate adda (newAdderWindow >> return ())

widgetShowAll window

onDestroy window mainQuit
mainGUI

-- Creates a new window with a simple adder application in it.

newAdderWindow :: IO Window
newAdderWindow = do

window <- windowNew

set window [windowTitle := "Adder", containerBorderWidth := 10]

vb <- vBoxNew False 0
containerAdd window vb

hb <- hBoxNew False 0
boxPackStart vb hb PackNatural 5

-- Text entry fields.

n1s <- entryNew
n2s <- entryNew
boxPackStart hb n1s PackRepel 5

boxPackStart hb n2s PackRepel 5
button <- buttonNewWithLabel "Add"

boxPackStart vb button PackNatural 5
-- A label as response.
response <- labelNew (Just "No result.")

boxPackStart vb response PackNatural 5

widgetShowAll window

onPressed button (addNumbers n1s n2s response)
return window

-- Add contents of two text entries. If the corresponding strings cannot

-- be parsed then it displays that the input is invalid.
addNumbers :: Entry -> Entry -> Label -> IO ()

addNumbers e1 e2 r = do
[str1,str2] <- entryGetText ‘mapM‘ [e1,e2]
let result = (+) <$> maybeRead str1 <*> maybeRead str2

let answer =
case result of

Just n -> "Result: " ++ show n
_ -> "Invalid input."

labelSetText r answer
return ()

-- A helper function for parsing types from the Read class to Maybe values.

maybeRead :: (Read t) => String -> Maybe t
maybeRead = fmap fst . listToMaybe . reads

-- GUI structure of the main window (as XML).
uiDecl = "<ui>\
\ <menubar>\

\ <menu action=\"FMA\">\
\ <menuitem action=\"NEWA\" />\
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\ <menuitem action=\"OPNA\" />\
\ <menuitem action=\"SAVA\" />\
\ <menuitem action=\"SVAA\" />\

\ <separator />\
\ <menuitem action=\"EXIA\" />\

\ </menu>\
\ <menu action=\"EMA\">\
\ <menuitem action=\"CUTA\" />\

\ <menuitem action=\"COPA\" />\
\ <menuitem action=\"PSTA\" />\

\ </menu>\
\ <menu action=\"OMA\">\

\ <menuitem action=\"ADDA\" />\
\ </menu>\
\ <separator />\

\ <menu action=\"HMA\">\
\ <menuitem action=\"HLPA\" />\

\ </menu>\
\ </menubar>\

\ <toolbar>\
\ <toolitem action=\"NEWA\" />\
\ <toolitem action=\"OPNA\" />\

\ <toolitem action=\"SAVA\" />\
\ <toolitem action=\"EXIA\" />\

\ <separator />\
\ <toolitem action=\"CUTA\" />\
\ <toolitem action=\"COPA\" />\

\ <toolitem action=\"PSTA\" />\
\ <separator />\

\ <toolitem action=\"HLPA\" />\
\ </toolbar>\

\ </ui>"





Logi programming and

Prolog

16

Provided that our knowledge about a problem is
modeled by axioms, we can pose queries in the form
of statements to be proved, in order to find objects
satisfying these statements to be proved. The
process of formal, constructive proof or deduction is
some kind of computation. If this computation is
controlled by an algorithm, then our statements
together with the algorithm form a program, and
writing such programs is logic programming (LP).
In other words, a logic program is a set of axioms
and a statement to be proved + a machine
controlling deduction. It is similar to an automated
theorem prover. The main difference is the
simplicity of the control component of logic
programs: the process of computing is trackable,
controllable, predictable. Its termination can be
ensured. Its time and space complexity can be
calculated: an LP language is a general purpose
programming language, and effectivity is a main
point.
In this chapter we survey the development of logic
programming, its key concepts, and its (up till now)
most important realization: the Prolog language. We
discuss the programming methodology of Prolog,
give examples, consider some extensions, and new
trends. We emphasize the practical methods of
Prolog programming; how to write valid and
effective programs.



16.1 Introdution

The roots of logic programming (LP) reach as far as Hilbert, who proclaimed
his program to axiomatize mathematics because the naive set theory had been
found burdened with contradictions. Also he proposed to work out the methods
of automated theorem proving.

The birth of the resolution algorithm [Rob65] is an important milestone
of research, because we can extract answers from the run of the algorithm.
Therefore it is a tool for constructive proof, and the deduction is a program
searching or computing objects with given properties.1

Provided an automated theorem prover, the algorithm of proof or computa-
tion consists of two components:

1. The logical (declarative) description of the problem;

2. And the control component of the deduction or computation.

Shortly:

Algorithm = Logic + Control.

After some unsuccessful american efforts, in the beginning of the seventies Robert
Kowalski realized that a general purpose programming language can be based
on these principles [Kow79]. Alain Colmerauer and his colleagues designed and
implemented the first LP language with acceptable performance in Marseille,
1972. This was the first version of Prolog. It was implemented as an interpreter.

The practical purpose of the developers was a natural language interface for a
data base handler, and this became the first practical application of Prolog.2

1 Familiarity with first order logic, and with resolution algorithm ([Nil82] and [Kow79]) is
supposed, although the main flow of this chapter is understandable even without them.

2 The name Prolog is an abbreviation of the French expession Programmation en logique.
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The first effective Prolog compiler was developed by David H. D. Warren and
his colleagues at Edinborough in the second half of the seventies. Considering
effectivity, it was comparable with best Lisp implementations of the time. It
became a de facto standard of Prolog, determined the direction of its later
development, and indirectly even its ISO standard, which was developed in the
middle of nineties. Unfortunately, still there are compatibility problems between
the module systems of the major Prolog compilers. And there are the extensions
of the language allowed by the standard. Consequently, program code written on
one Prolog compiler will not necessarily work on others, except if only the core
of the language is used. Whenever we go beyond this, we sign it and we follow
SICStus Prolog 4 [Car12], because nowdays this is one of the most popular
implementations, and it follows closely the standard. (Our example programs
have been tested in SICStus Prolog 4.2.3.)

Up till now, Prolog is the most widely used LP language. Its designers proved
a practical sensibility. The compromises they made were theoretically criticized.
Nevertheless, Prolog helps us in a good programming style, and in the fast
development of programs with just a few errors, producing effective codes. This
is the secret of its relative success.

Maybe there is no other language in which good programming style is so
basic from the point of view of producing robust and effective code. Therefore,
in this short chapter we concentrate on the basic features of the Prolog language,
and on its programming methodology. We prefer this to a general introduction
to LP, because we believe that this approach gives more to the newcomer. And
we hope, at the end of the chapter we give good pointers to the reader yearning
for wider knowledge.

16.2 Logi programs

A logic program is a set of logic axioms referring to a model, and a query referring
to this model. The axioms describe the properties and relations of the objects of
this model. For example, given statements defining who is who’s father. These
axioms describe the relation father with arity two. If we tell who are male, the
appropriate axioms describe the relation male with arity one (16.2.1).

A subset of axioms describing a relation is called a predicate. The run of
a program is a constructive proof of a theorem being the consequence of the
axioms. In other words, the run of the program computes an answer to a query
or goal. During this computation or proof the predicates work as procedures.

In today’s LP languages, any axiom is a fact or a rule. The axioms and queries
(i.e. goals) are called sentences (although the queries may not be part of the
source program). In some LP languages, the sentences can also be declarations
referring to the predicates, and directives to be performed while loading the
program. The declarations modify the run of the predicates, i.e. procedures,
while the directives may modify the workspace of the program. The declarations
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describe special properties of the predicates they refer to, while the directives
are goals containing predicate invocations.

In Prolog, the declarations and the directives have the same form:
: −goal.
Each sentence is terminated by a dot, and at least one whitespace character.

The axioms of a logic program are also called definite clauses. The state-
ments (the axioms and queries together) of a logic program are also called Horn
clauses, but we will simply use the word clauses, because we will speak just about
Horn clauses, and this abbreviation is quite common in logic programming.

16.2.1 Fats

The simplest logic programs consist of facts only.
The facts are formally atomic formulas. In the next example father(x, y)

means that x is the father of y, while male(x) means that x is a male.

father(’Abraham’,’Isaac’). father(’Abraham’,’Ishmael’).

father(’Abraham’,’Anon’).

father(’Isaac’,’Jacob’). father(’Isaac’,’Esau’).

mother(’Sarah’,’Isaac’). mother(’Hagar’,’Ishmael’).

mother(’Rebeka’,’Jacob’). mother(’Rebeka’,’Esau’).

male(’Abraham’). male(’Isaac’). male(’Ishmael’).

male(’Jacob’). male(’Esau’).

female(’Sarah’). female(’Hagar’). female(’Rebeka’).

female(’Anon’).

These facts express simple properties and relations of objects. The objects or
entities are represented by their names: an identifier starting with a lower-case
letter, or any sequence of characters delimited by single quotes or by single
back-quotes. The name of a relation follows the same syntax.

Examples for the simplest queries:3

| ?- father(’Abraham’,’Isaac’).

yes

| ?- mother(’Sarah’,’Jacob’).

no

3 The | ?- is the Prolog prompt: the Prolog environment waits for our query. We can type
our commands and queries to this prompt. A command or query is always finished by a
dot and <Enter>. The response of the Prolog system is yes, if it finds that our query as a
statement is implied by the program, but its response is no if it finds that it is not implied
by it. The proof is just one step here: either we find the fact identical to the query or not.
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If you want to ask: Is there some X, whose father is Isaac? – then you receive
two solutions according to the program above. X indicates the unknown entity
in the query, i.e. an existentially quantified logical variable:

| ?- father(’Isaac’,X).

X = ’Jacob’ ? ; X = ’Esau’ ? ;

no

| ?-

Note: The names of logic variables are written as identifiers starting with an
upper-case letter or underscore character.

The results above come from matching goal father(′Isaac′, X) against the
appropriate facts.4 During the process of matching, the variables of the goal
are substituted by the appropriate nonvariables of the fact. Such substitutions
represent the solutions of the goals.

Up till now we posed atomic goals, that is atomic queries to the Prolog en-
vironment. We can form compound goals as conjunctions of atomic ones. An
atomic query in a compound goal is called its subgoal. For example, let us find
Abraham’s daughters:

| ?- father(’Abraham’,X), female(X).

X = ’Anon’ ? ;

no

The solutions of a goal are the common solutions of its subgoals. We can say,
a subgoal solved later provides a selection on the solutions of a subgoal solved
earlier (iff they have common logic variable(s)).5

In logic programming, the variables are always logic variables. They stand
for unknown objects. They may be universally or existentially quantified. The
variables of goals are always existentially quantified. The run of the program
produces constructive answers to the query, that is, it computes possible values
of its variables.

Warning: Because a logic variable stands for an unknown object, destructive
assignment statements like X := X + 1 do not have stand in pure logic program-
ming. (For example, in X := X + 1, which value of X stands for the unknown
object?)

16.2.2 Rules

A proper conjunction of subgoals defines a new relation. For example, the con-
junction ”father(′Abraham′, X), female(X)” refers to the daughters of Abraham.
4 The question marks refer to the questions of the SICStus Prolog environment, whether we

ask for another solution. Our response ; means that we ask for that. (If we do not need
further solution, we press <Enter>. Then the system finishes the current conversation with
yes.) In the example above, the finishing no abbreviates no more solutions.

5 The word iff abbreviates the expression if and only if.
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Assigning a name to this new relation, we receive a rule. Beside facts, rules form
the second class of axioms in LP (logic programming).

‘Abraham’s daughter‘(X) :- father(’Abraham’,X), female(X).

This reads: X is Abraham’s daughter if Abraham is father of X and X is female.
(This rule does not contain the information that no one has more fathers.) The
logical variables of a rule are universally quantified, as it is with the rule above.
The general form of a rule:

A : − B1, B2, ... , Bn. (n > 0)
(A, B1, . . . , Bn are atomic formulas.)

The consequence part of a rule (above A) is the head of the rule. The condition
part of a rule (above B1,. . . ,Bn) is the body of the rule.

Note: The facts have only head. A fact can be considered a rule with empty body
or a rule with the condition part true. A proper rule is a rule which is not a
fact.

Even a fact may contain (universally quantified) logic variables. Then it is called
a universal fact. For example, the next fact says that everybody likes Sarah.

likes( anybody,’Sarah’).

And the next one says that anything is equal to itself. (Note that this predicate,
i.e. ′ =′ /2 is a standard built-in of Prolog. Notice also that its name can be
written between its parameters. This is posible, if infix operator notation (16.9)
is defined to the name.)

X=X.

In such a way, we do not have to repeat the appropriate axiom for each element of
the universe of the program. Anyway, the universe of a practical logic program
is usually infinite, so we are not able to do this. There is another important
difference between a set of facts and the appropriate universal fact. If you ask,
who likes Sarah:

| ?- likes(Who,’Sarah’).

true ? ;

no

The answer true means that the solution found did not substitute the logical
variable Who. We may interpret this as a generic answer:

The statement likes(Who,′ Sarah′) is true for each element of the universe,
that is, the unsubstituted variable can be substituted by any element ”x” of
the universe, and the statement likes(x,′ Sarah′) still remains true. It is quite
natural that the Prolog machine did not find any other answer, just this generic
one.
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A relation and the predicate defining it can be specified by its name and arity,
in the form name/arity. (The arity is the number arguments (i.e. parameters) of
a predicate. An argument is a position in the program text, where a parameter
is written.)

A relation is often defined by more axioms or rules. (Remember that facts
can be considered as special rules with empty or true body.) In such a case,
this relation is the union of the relations defined by the individual rules. The
scope of a logical variable is the sentence containing it. It is visible in the whole
sentence, because there are neither more local, nor more global variables. (It
is visible exacly in its scope, because it cannot be hidden by other variables:
there is no hierarchy of scopes, unlike in first-order logic, or in block-structured
languages.) For example, in the next program the relation parent/2 is the union
of the relations mother/2 and father/2:

parent(X,Y) :- mother(X,Y).

parent(X,Y) :- father(X,Y).

son(X,Y) :- parent(Y,X), male(X).

daughter(X,Y) :- parent(Y,X), female(X).

grandparent(X,Y) :- parent(X,Z), parent(Z,Y).

On the other hand, the relation son/2 is the intersection of parent/2 and
male/1, and we receive similarly relation daughter/2, too. The last rule differs
from the others, because it contains a new logical variable in the rule body. In
this way, it has two different, but equivalent readings:

• For each X, Y, Z, grandparent(X, Y), if
parent(X, Z) and parent(Z, Y).

• For each X, Y, grandparent(X, Y), if
there exists a Z so that parent(X, Z) and parent(Z, Y) hold.

16.2.3 Computing the answer

The above readings of rules correspond to the declarative meaning of them. This
is contrasted by the procedural meaning, which corresponds to the run of logic
programs, i.e. to the process of the constructive proof of goals. In each case
we pose a query. This is the goal to be proved. Now the Prolog system has to
prove the subgoals, i.e. it has to eliminate them. The proof is finished when
each subgoal has been eliminated (proved), and so just an empty conjunction of
goals has been remained. The goal may be proved in top-down, or in a bottom-up
manner. There are still other strategies that can be studied in [Kow79]. In each
cases, the elementary step is the unification of two atomic formulas. Unification
means the calculation and application of the most general unifier substitution
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(mgu) of the atomic formulas. This is a substitution of the variables of the
formulas, making them identical. Not each pair of atomic formulas are unifiable.
In order to unify them, it is necessary, but insufficient, that they must refer to
the same relation (same name and arity), and they must not contain different
constants (or functors) at the same position. For example, the mgu of the atomic
formulas p(a, b) and p(X, Y ) is {X = a, Y = b}. The mgu of p(a, Y ) and p(X, b)
is also {X = a, Y = b}. The mgu of p(a, Y ) and p(X, Z) is {X = a, Y = Z},
although {X = a, Y = b, Z = b} and {X = a, Y = a, Z = a} unify them, too.
But the first one is more general than the others: {X = a, Y = b, Z = b} = {X =
a, Y = Z}{Z = b} and {X = a, Y = a, Z = a} = {X = a, Y = Z}{Z = a}.
Next, p(a, b) and p(b, Y ) do not have mgu: a substitution like {a = b, Y = b}
is NOT possible, because only variables can be substituted. (We do not know
anything about the identity of two constants.) Similarly p(a, b) and p(Y, Y ) do
not have mgu, because {Y = a, Y = b} is not a substitution: a variable like Y
denotes something unknown entity of the universe, but cannot refer to two or
more of them. (More details about unification can be found in any introductory
material about first-order logic.) Now let us consider the top-down, and the
bottom-up proofs of goals.

1. The bottom-up proof means that the conditions of the rules are unified
with facts, and so they are eliminated one by one. In this way we receive
new facts from the rules, until the facts unify with the subgoals of the
original goal. When each subgoals have been eliminated the original goal
have been proved. However, using this bottom-up method it is hard to
direct the proof to the goal. Therefore in practice the top-down method
is more often used. Here we start from the goal and go to the facts. This
approach has been adopted up till now in most of the logic programming
systems, for example in Prolog.

2. Shortly, the top-down proof consists of steps of reduction. One step of
reduction means that one of the atomic formulas (i.e. subgoals) of the goal
is unified with a fact or with a head of a rule. (Just like in resolution, the
sentences taking part in the unification must not share common variables.
This can be ensured by the appropriate renaming of the variables of the
rule [i.e. fact or proper rule] taking part in the unification.) If we unify a
fact, the appropriate subgoal is eliminated from the goal. If we unify the
head of a proper rule, the appropriate subgoal is substituted by the rule
body. In both cases, the unifying substitution is applied to the resulting
conjunction of subgoals. This is a step of reduction. If a sequence of such
steps of reduction, i.e. a top-down proof results in an empty conjunction
of subgoals, then the original goal has been proved. This is a constructive
proof. During the process, substitutions of the logical variables of the
clauses have been performed. The results of these substitutions referring
to the variables of the original goal provide for us the objects (terms)
satisfying the conditions defined by the original goal.
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For example, let us suppose that given a goal which is a Q1, Q2, . . . , Qn

conjunction of subgoals. And given a fact A sharing no common variable
with this goal. Now, if Q1θ = Aθ, where θ is the mgu of the atomic
formulas A and Q1, then it is enough to prove (Q2, . . . , Qn)θ in order to
prove the original goal. This is the first case of a step of reduction referring
to the goal to be proved.
The other case goes as follows: Consider our original goal Q1, Q2, . . . , Qn,
and rule A: −B1, . . . , Bm sharing no common variable with this goal. Let
us suppose that θ is the mgu of A and Q1. Then it is enough to prove
(B1, . . . , Bm, Q2, . . . , Qn)θ in order to prove the original goal. This is the
second case of a step of reduction referring to the goal to be proved.
In both cases, if the result of the step of reduction is a C conjunction
of subgoals, which we prove by the substitution ϕ, that is Cϕ is proved
to be true, then (Q1, Q2, . . . , Qn)θϕ is proved, too. This means that the
substitution θϕ is a solution of the original query.

There is a theorem that both of the top-down and the bottom-up method of
proof is correct and complete, i.e. exactly the goals following from the program
can be proved if one of these strategies is used.

However, we will prefer the top-down method here, because it is easier to
control, and it is preferred by logic programming languages, too. Corresponding
to this method, there is a procedural reading of rules, i.e. facts and proper rules:

• The fact A means that subgoal A can be directly solved.
• The proper rule A : − B1, B2, ... , Bn means that subgoal A can be solved

by solving the subgoals B1, B2, ... , Bn.

Note that the subgoal, and the fact or rule head are rarely identical in practice.
However, they must refer to the same relation (same name and arity). They must
be unifiable as well. Let us suppose, that θ is the mgu of the atomic formulas A
and Q. Then

• the fact A means that subgoal Q can be directly solved by the substitution
θ, and

• the rule A : − B1, B2, ... , Bn means that subgoal Q can be solved by
solving the subgoals B1θ, B2θ, ... , Bnθ. Provided that the substitution
ϕ is their common solution, θϕ is a solution of Q.

For example, the rule ”grandparent(X, Y) : − parent(X, Z), parent(Z, Y).” has
the following procedural meaning: In order to solve goal grandparent(X, Y), solve
goals parent(X, Z), and parent(Z, Y).

16.2.4 Searh trees

A subgoal may be unifiable by many facts and/or rule heads of our program.
Therefore the possible goal reductions may have many branches forming a tree.
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The root of this tree is the original goal, its nodes are conjunctions of subgoals
derived through the top-down proof processes, its edges are the steps of different
reductions, and its leaves are the empty conjunctions of subgoals, the solution
leaves, and those nodes, where the subgoal selected for reduction cannot be
reduced: these are the fail leaves. The solutions of the original goal correspond
to the solution leaves. This tree is called derivation tree, proof tree, search tree
or search space.

In the example in Figure 16.1 the levels of this tree are shown by the
indentation. In each step we select the first subgoal for reduction. We try to
eliminate it then, unifying it with a fact, or substitute it with the body of an
appropriate rule (after unifying the subgoal with the head of the rule). This
is the leftmost subgoal selection strategy. In the search tree we show only the
substitutions referring to the variables of the actual goal. They are called output
substitutions. They are shown in the form variable< −substituting_term.

For simplicity, if during the unification of a subgoal and a rule head or fact
two variables must be unified, we always substitute the variable of the subgoal
into the variable of the rule head or fact.

It is clear that in the steps of reduction where we select the first subgoal of
the actual goal, we could choose another subgoal, and we would receive different
search trees, if we applied different subgoal selection strategies.

The question is this: Whether we would receive different solutions or not?
Fortunately, it is true that although the different subgoal selection strategies
lead to different search trees, but each search tree contains the same solutions.
Unfortunately, the different search trees usually have different sizes, as it can be
checked easily by the reader, if he or she selects another subgoal selection strategy
in the example in Figure 16.1. (Therefore the effectivity of the computation can
be different, if our subgoal selection strategy is changed.)

The leftmost subgoal selection strategy has produced a search tree with minimal
size here. However, if we posed the query grandparent(X,′ Jacob′), the minimal
search tree would be produced by a strategy selecting always the rightmost
subgoal.

Notice that if we pose a query of the kind grandparent(X, Y), after the first
step of reduction we receive a goal like parent(X, Z), parent(Z, Y). Next it is
better to choose the subgoal containing less variables. This method is often
useful, even in other programs, because a subgoal containing less variables often
leads to a search tree with fewer branches. But this is just heuristics.

In general, (when we allow recursive rules) it may happen that one search
tree of the same query is finite, while the other is infinite. (We will see examples
later.) In this case the search may go to an infinite branch, which leads to infinite
computation. This means that we should choose a subgoal selection strategy
producing finite search trees, if it were possible. Fortunately, if our rules are
nonrecursive, the search tree is clearly finite.
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?- grandparent(’Abraham’,X).

parent(’Abraham’,Z),parent(Z,X).

mother(’Abraham’,Z),parent(Z,X). % fails
father(’Abraham’,Z),parent(Z,X).

{ Z <- ’Isaac’ }

parent(’Isaac’,X).

mother(’Isaac’,X). % fails
father(’Isaac’,X).

{ X <- ’Jacob’ } % 1. solution
{ X <- ’Esau’ } % 2. solution

{ Z <- ’Ishmael’ }

parent(’Ishmael’,X).

mother(’Ishmael’,X). % fails
father(’Ishmael’,X). % fails

{ Z <- ’Anon’ }

parent(’Anon’,X).

mother(’Anon’,X). % fails
father(’Anon’,X). % fails

Figure 16.1: search tree of query grandparent(’Abraham’,X)

16.2.5 Reursive rules

Let us suppose that we want to describe the following relation.

ancestor(X,Y) :- X is ancestor of Y.

It is clear that this new relation is a generalization of the union of the relations
parent/2, grandparent/2, ′great − gandparent′/2, and so on:

parent(X,Y) :- mother(X,Y).

parent(X,Y) :- father(X,Y).

grandparent(X,Y) :- parent(X,Z), parent(Z,Y).

’great-grandparent’(X,Y) :- parent(X,Z), grandparent(Z,Y).

After all, X is ancestor of Y iff X is parent of Y or X is parent of some ancestor of
Y. This means that there are two cases and the second one is recursive. Therefore
this may be expressed by a non-recursive and a recursive rule:

ancestor(X,Y) :- parent(X,Y).

ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).

This is declaratively simple, but the question is, if there are infinite search trees
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or not. And how to select the appropriate subgoal selection strategy to ensure
the finiteness of the search tree.

For example, let us suppose temporarily, that the next fact (and only the
next fact) defines the relation parent/2.

parent(’First’,’First’).

Now let us ask about the descendants of First, and look at the rightmost branch
of the search tree (applying the leftmost subgoal selection strategy):

?- ancestor(’First’,X).

parent(’First’,Z1), ancestor(Z1,X).

{ Z1 <- ’First’ }

ancestor(’First’,X).

parent(’First’,Z2), ancestor(Z2,X).

{ Z2 <- ’First’ }

ancestor(’First’,X).

. . .

Clearly, it is infinite. And it is infinite with any subgoal selection strategy.
Now, let us reconsider the relation parent/2. We either consider the original

relation or the temporary one, it defines a directed, finite graph. Its edges are
given by the relation parent/2, and its nodes are the endpoints of the edges. The
temporary graph consists of a trivial loop, but the original one is acyclic. Then
the relation ancestor/2 corresponds to nonempty, finite paths in the graph.
These paths in the temporary graph are looping, but in the original one they
contain no cycle, and their length has an upper limit. (These later properties of
the original graph are based on the earthly nature of relation parent/2.) Now,
let us omit the temporary definition of parent/2.

And let us consider the query ancestor(′Abraham′, X). It is easy to see, that
it is useful to apply the leftmost subgoal selection strategy: In this case in the
subgoals of the form parent(X, Y) the first parameter will be always known. This
property makes the search tree more slim. And it is more important, that the
search tree will be finite, because in each recursive call we process one additional
edge of a directed, finite path starting from node ′Abraham′.

Now let us consider the query ancestor(X,′ Isaac′). In order to generate
the search tree, it may seem useful to choose the rightmost subgoal selection
strategy, because the second parameter of the rightmost subgoal will be always
a constant. However, the rightmost subgoal will be always a recursive call, and
we generate an infinite search tree. If we prefer the second rule in goal reduction,
we find its infinite branch immediately. If we prefer the first rule, first we find the
solutions, and then go to the infinite branch. In general, a computation does not
know, when it has found the last solution. Therefore this can be troublesome.

However, if we reconsider the query ancestor(X,′ Isaac′), and we prefer the
leftmost subgoal selection strategy, then the first parent(X, Y) call selects an edge
from the graph, and then the searching of the path to the node ′Isaac′ goes on
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from its right endpoint. Therefore, the search tree remains finite, although it will
be probably fatter, than with the previous query. And it can be seen similarly,
that here, the search tree of any query of the form ancestor(X, Y) is finite.

One might suggest another subgoal selection strategy now: given a conjunc-
tion of subgoals, we should select a subgoal defined by a nonrecursive predicate.
This strategy is often useful, but there are some cases, when it does not help:

ancestor00(X,Y) :- parent(X,Y).

ancestor00(X,Y) :- ancestor00(X,Z), ancestor00(Z,Y).

This definition of relation ancestor00/2 is logically equivalent with predicate
ancestor/2. However, a query of the form ancestor00(X, Y) always has an
infinite search tree, regardless of the actual parameter values, regardless of the
subgoal selection strategy.

In addition, the more complex a subgoal selection strategy is, the harder it
is to follow its behavior, to prove the finiteness of the corresponding search tree,
and to calculate the effectivity of our logic program.

After all, we can conclude that good formulation is more essential than
sophisticated subgoal selection strategy. The formulation of a logic program
must match the expectable queries, and ensuring this is easier if the subgoal
selection strategy is simple.

16.3 Introdution to the Prolog programming language

Therefore the invertors of the Prolog programming language decided in favor
of the leftmost subgoal selection strategy.

The program is performed by the Prolog machine, which is a virtual ma-
chine. It may work as an interpreter or emulator, but it may be built into an
independent, executable file, too.

The search tree is traversed by backtracking, but its branches are not built up
in advance, and the actual branch is always destroyed when Prolog backtracks
from it. In such a way, always just one branch of the search tree is stored in the
call stack containing the call frames of the predicate invocations and the choice
points for the alternative branches. In this way, Prolog tries to minimize the
memory needed by the run of the program. The facts and rules are tried in their
order.

Prolog serves for Programming in logic. In reality, Prolog is a very high
level, general purpose programming language, and it is not a tool for automated
theorem proving. Its logic formulas and its inference machine are too simple for
the later purpose. Yes, the Prolog machine is simple enough to be controlled by
the programmer, so that he or she can prove the finiteness of the search tree,
and calculate the time and space complexity of the program.

The correctness of a Prolog program is always related to goals to be solved.
Partial correctness simply means correct formalization. In order to prove the
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termination of the program it is enough to prove, that the search trees of the
possible goals are finite.

If there is no (directly or indirectly) recursive rule in the program, then the
finiteness of the search trees is a trivial statement. If there is a (directly or
indirectly) recursive predicate, then we consider the possible goals invoking it,
and prove the finiteness of the related search trees: usually we define a terminator
function whose value is a nonnegative integer for each node of the tree, and its
values are strictly decreasing while going down in the tree. These properties
make sure that value of the function at the predicate invocation is an upper
bound of the depth of the related search tree.

For example, in the case of the predicate ancestor/2 the length of the
unprocessed path is an appropriate terminator function (16.2.5). Surely, this
is decreasing by processing a subgoal of the form parent(X, Z), and it cannot
be negative. Therefore, the search tree is finite, and the predicate invocation
terminates.

However, in the case of the predicate ancestor00/2 the search tree is infinite
(16.2.5), and there is no terminator function.

A Prolog system normally offers the user an interactive programming environ-
ment, using an internal or external text editor.

It is typical that the Prolog system and a standard text editor (for example
Emacs) communicates through an interface supported by both of them, and the
Prolog environment starts inside the text editor, benefiting from the services of
it, like automatic indentation and text coloring of the source code, highlighting
the match of different kinds of brackets, compiling and loading programs, source
level debugging, and so on.

The Prolog environment normally starts in a special console window (al-
though it may have a GUI). We type our commands and queries at the Prolog
prompt of this console, and we can read the standard output of the Prolog
system on it. If we want to make an executable file [Car12], the program must
contain at least one directive (a goal to be performed while loading the program).
This or these provide a primary control of its execution. A source program may
consist of many files. We can variously load the program files into the Prolog
environment. If we want to run the program in an interpreted way we can use
the consult(File) command: we can type it at the Prolog prompt (?−), where
File must be a Prolog source file. (Traditionally, .pl is the de facto standard
extension of Prolog sources, and this extension can be omitted.) Any predicate
of the program loaded can be queried.

For example, let us suppose that the Prolog predicates defined in this book
are in the source file lpp.pl.
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| ?- consult(lpp).

% consulting c:/documents and settings/pl/book/lpp.pl. . .
% consulted c:/documents and settings/pl/book/lpp.pl
% in module user, 0 msec 8 bytes
yes

| ?- grandparent(’Sarah’,GrandChild).

GrandChild = ’Jacob’ ? ;

GrandChild = ’Esau’ ? ;

no

| ?- ancestor(A,’Jacob’).

A = ’Rebeka’ ? ;

A = ’Isaac’ ? ;

A = ’Sarah’ ? ;

A = ’Abraham’ ? ;

no

Therefore, any predicate of the program loaded can be directly tested. We need
no testbed.6

16.4 The data strutures of a logi program

The data structures of a logic program are called terms (like in mathematical
logic). According to ISO Prolog, a Prolog term can be a logical variable called
var (referring to an unknown term) or a partially or properly known term called
nonvar.

A nonvar can be a constant called atomic, or a structured term called
compound.

An atomic term can be a name constant called atom, or it can be a number.
A number can be an integer or a float. (The syntax of numbers will be

familiar to C, C++ or Java programmers.)
A name constant or atom is syntactically an identifier starting with a lower-

case letter, a sequence of characters between quotes or backquotes, special char-
acter sequences of the characters + − ∗/\∧ <>= : .?@#&$ (for example: =<,
@ >=, ?−, ∗$, etc.), or one of the following extras: ; (called or, else, or elsif), !
(called cut), [] (called nil), and {} (called empty).

The name of a variable is syntactically an identifier starting with an upper-
case letter or underscore sign. A variable denotes an unknown entity, like the
variables of mathematical equations and formulas. They are very different from
the variables of procedural (OOP) languages like Pascal, C, C++, and Java.
The aim of the computations is the determination of the possible values of the
variables of the queries, like in the case of the mathematical equations. Therefore

6 In LP languages, like Prolog, any data structure can be described at the source code level,
and even the private predicates of a module can be accessed.
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it is not reasonable, and it is not possible to write assignment statements. When
a logical variable has been subtituted by a nonvar term, then it cannot be
distinguished from the substituting term, except if the program backtracks before
the substitution, when the variable looses its value. This may be strange for a
programmer used to procedural programming languages, but after some practice
in logic programming it becomes natural. As we work with variable substitutions
instead of assignment statements, we get rid of the most dangerous source of
programming mistakes.

Summary: A var is a logical variable which has not been substituted by a nonvar

(on the actual branch of the search tree).

It is a tradition that a variable the value of which is important is denoted by an
identifier starting with an upper-case letter, but a variable the value of which is
not important is denoted by an identifier starting with an underscore sign:

father(SomeBody) :- father(SomeBody, Child).

If there is a sentence in a source file of a logic program, and a variable of this
sentence has just one occurence in this sentence, then the value of this variable
is not important, because there is no place where to pass its value.

Note: Therefore, many Prolog environments suppose that an identifier starting
with an upper-case letter denotes an important variable. If there is a sentence
in the source code with just one occurence of such a variable, then it sends a
warning, in order to help us to get rid of typing mistakes.

On the other hand, if we type a query at the Prolog prompt, and it contains
a variable starting with an underscore sign, then its value is not automatically
printed when the query has been solved:

| ?- grandparent(GrandParent,GrandChild), male(GrandParent).

GrandChild = ’Jacob’, GrandParent = ’Abraham’ ? ;

GrandChild = ’Esau’, GrandParent = ’Abraham’ ? ;

no

| ?- grandparent(GrandParent, GrandChild), male(GrandParent).

GrandParent = ’Abraham’ ? ;

GrandParent = ’Abraham’ ? ;

no

There is the anonymous variable consisting of just an underscore sign, the
occurrences of which are different logical variables, even inside a single sentence.
Therefore it can denote only unimportant variables. The scope of any other
variable is the sentence containing it. For example:

father and son(SomeBody) :-

father(SomeBody, ), parent( ,SomeBody).
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In order to store structured information we can use compound terms of the
form f(t1, ..., tn), where f is an atom, t1, ..., tn are arbitrary terms, and the
function symbol or functor is f/n, which unites the terms t1, ..., tn into a single
compound term (although this strict form is sometimes relaxed by so called
syntactic sugars). Therefore the functors are specified by their name/arity pairs,
like relations and predicates. Any parameter ti may be atomic, var, or compound,
too.

A term which is not compound, is called a simple term. This means that a simple
term is atomic or var.

A callable term is a compound or an atom, because these terms may represent
the goals (queries) of a program.

A ground term is a term containing no var. Recursively, a ground term is an
atomic, or a compound with ground term parameters.

Therefore the compound terms may represent recursive data structures like
lists and trees. For example, an empty tree may be represented by the atom [],
and a nonempty tree by the compound term .( root, t1, ... , tn ),
where each ti denotes a direct subtree.

Now a list is a unary tree. For example, a list of the numbers 1, 2, and 3
is .(1, .(2, .(3, []))). (Syntactic sugars will make the notation more convenient,
especially here.)

And the tree .(4, .(2, .(1, [], []), .(3, [], [])), .(5, [], [])) is a binary search tree with
depth two.

Surely, we may choose any other notation. The important thing is to apply
it consistently. For example, the empty tree may be denoted by the atom o.
The functor name of the nonempty trees may be the atom t, and, especially in
binary trees, it may be convenient to put the root in the middle, in the form t(
leftSubTree, root, rightSubTree).
Using this notation, the previous binary seach tree looks like
t(t(t(o, 1, o), 2, t(o, 3, o)), 4, t(o, 5, o)).

16.5 List handling with reursive logi programs

We have seen, that we can represent lists as unary trees. Now, before discussing
the basic list handling predicates, let us see the different kinds of lists and list-like
structures.

A list may be proper or partial. A non-list is a term which is not a list. A
proper list may be empty or nonempty. The standard representation of the empty
list is the atom [] read as nil. The standard constructor of a nonempty list is
′.′/2. A term .(X, Xs) is proper list iff Xs is proper list.7

7 In this chapter, the two-letter identifiers As, Bs, Cs, ..., Xs, Ys, Zs usually refer to lists.
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According to this, the list [1, 2, 3] can be written as .(1, .(2, .(3, []))). For-
tunately, we have three standard syntactic sugars to allow an easier-to-read
notation. (The notation convention implied may seem too complicated at the
first glance, but it is easy to learn and useful.)

In order to introduce these syntactic sugars, still we need some definitions:
X == Y means that the terms X and Y are identical. (Actually, ′ ==′ /2 is a

built-in predicate in Prolog with the same meaning.)
A list-term is a compound term with the main functor ′.′/2. (Therefore, the

notion of list-term is a generalization of the notion of nonempty list: The list
.(1, .(2, .(3, []))) is a list-term, and the non-list .(1, .(2, .(3, non_nil))) is a list-
term, too.)

X is the (first) head and Ys is the (first) tail of the term T, iff T == .(X, Ys).
X is the (i+1)th head and Ys is the (i+1)th tail of term T, iff T == .(A, Bs),

and X is the ith head and Ys is the ith tail of term Bs, where i is a positive integer
number. The ith head of a term is also called its ith element.

Now let us see the standard syntactic sugars allowing the easier-to-read notation.

1. A list-term .(X, Xs) can be written as [X|Xs].

2. The front elements of a list-term T can be separated by commas:
if X1, X2, ..., Xn are the first n heads of T, and Ys is its nth tail,
then T == [X1, X2, ..., Xn|Ys].

3. ”|[]” may be omitted in [X1, X2, ..., Xn|[]].

In this way

| ?- .(X,Xs)==[X|Xs], [X1|[X2|Xs]]==[X1,X2|Xs],

[X1,X2,X3|[]]==[X1,X2,X3],

.(1,.(2,.(3,[])))==[1,2,3].

true

An element of a list is an arbitrary term. It may be even a variable or a list. For
example, [a|[_]] is a proper list, and [[_]|[_]] is also a proper list, but [[_]|a] is
not a list, because the atom a is not a list.

A term is partial list, iff it is a var or it is a term of the form [X|Xs], where
Xs is a partial list. A var is an empty partial list.

Therefore a nonempty partial list always has the form
T == [X1, X2, ..., Xn|Vs], where Vs is a var. And a term is partial list, iff it is
not a proper list but after an appropriate substitution it becomes a proper list.
Actually, if the var at the end of a partial list is substituted by a proper list,
then the partial list becomes a proper list. If the var at the end of a partial
list is substituted by another partial list, then the first partial list still remains a
partial list. If the var at the end of a partial list is substituted by a non-list, then
the partial list becomes a non-list, because a list-term is a non-list, iff at its end
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there is a nonvar different from the empty proper list, that is []. No substitution
maps a non-list to a list.

Conventionally, iterative data structures are represented by lists in Prolog,
and there are a lot of built-in and library predicates supporting list handling in
the different implementations.

At last, a ground list is a variable free list, i.e. a list which is a ground term.
Therefore the ground lists form a proper subset of proper lists.

For example, let us suppose that Xs is a var. Now Xs and [1, 2|Xs] are partial
lists, but [Xs] and [1, 2, Xs] are proper lists of one and three elements. Neither of
these four lists is a ground list. However, if Xs == 3, then neither Xs nor [1, 2|Xs]
is list, but [Xs] and [1, 2, Xs] are ground lists.

Consider the next predicate.

list([ ]).

list([ X|Xs]) :- list(Xs).

If the goal list(Ys) is parameterized by a proper list, it will be successful with no
variable substitution. Parameterized by a partial list, this goal will have infinite
search tree, and infinite number of solutions. These solutions will be the most
general proper list samples of Ys. For example:

| ?- list(Ys).

Ys = [ ] ? ; Ys = [ A] ? ; Ys = [ A, B] ? ;

Ys = [ A, B, C] ? ; Ys = [ A, B, C, D] ? <Enter>

yes

The goal list(Ys) parameterized with a non-list will fail.
Now, using the notations above, let us consider some list handling predicates.

And we discuss some useful programming methods used in logic programs which
handle lists and recursive data structures in general.

We need a definition: The precondition of a predicate specifies the set of goals
allowed to invoke that predicate. For example, we may prescribe that the first
parameter must be a proper list, the second parameter must be positive integer,
and so on.

16.5.1 Reursive searh

First let us consider the classic predicate member_/2.8 ,9

% PreCond: Xs is a proper list.
% member (X,Xs) :- X is a member of list Xs.
member (X,[X| Xs]).

member (X,[ X|Xs]) :- member (X,Xs).

8 The character % followed by any sequence of characters up to the end of the line is comment.
9 member/2 and append/3 are the built-in counterparts of our member_/2 and append_/3

(16.5.2) in many Prolog implementations. Therefore we cannot redefine them.
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So the members of a list are its head, and the members of its tail. Invoking
this predicate, the appropriate item is found directly, or through recursive calls.
Therefore this programming method is called recursive search.

Let us consider the precondition of member_(X, Xs): If Xs were a partial list,
the search tree of the query would be infinite. If it is a proper list, its length
is strictly decreasing throughout the recursion. This guarantees the finiteness of
the search tree. For example:

| ?- member (X,[1,2,3]).

X = 1 ? ; X = 2 ? ; X = 3 ? ; no

| ?- member (2,[1,2,3,X,4]).

true ? ; X = 2 ? ; no

Notice that also ancestor/2 applies recursive search.

16.5.2 Step-by-step approximation of the output

The next predicate is the standard predicate for appending or splitting lists.
Notice that we have two rules: One of them refers to the case when the first
parameter is an empty list, and the other handles nonempty lists in the first
argument, recursively, while the length of a proper list parameter is strictly
decreasing through the recursion, guaranteeing the finiteness of the search tree.
Therefore this is quite a usual way of organizing list handling predicates in
Prolog.

% PreCond: Xs or XsYs is a proper list,
% the other two parameters are lists.
% append (Xs,Ys,XsYs) :-
% appending lists Xs and Ys we receive list XsYs.
append ([ ],Ys,Ys).

append ([X|Xs],Ys,[X|Zs]) :- append (Xs,Ys,Zs).

Appending the empty list and any other lists we receive the other list. Appending
a nonempty list [X|Xs] and another list Ys, the head of the connected list is X,
while the tail of the connected list is the result of appending Xs and Ys. Notice
that in the recursion the length of the first parameter, and the length of the
third parameter is also decreasing. Therefore, the precondition above is strong
enough: If one of the first and third parameters is a proper list, the search tree
is finite. (However, if both of them are partial lists, the search tree is clearly
infinite.) The second parameter may be proper or partial list. Notice that if the
first parameter is a non-list, the call will surely fail: this case is not handled.
And if the second or third parameter is a non-list, we may fail or receive non-list
results.

Consider now the search tree of query append_([1, 2], [3, 4], Zs) in Figure
16.2. (We suppose that the LP system renames each variable V of a rule to Vi,
where i is the sequence number of the actual step of the goal reductions.)
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append ([1,2],[3,4],Zs)

{ Zs <- [1|Zs1] }

append ([2],[3,4],Zs1)

{ Zs1 <- [2|Zs2] }

append ([ ],[3,4],Zs2)

{ Zs2 <- [3,4] } % (solution)

% After all:
Zs=[1|Zs1]=[1|[2|Zs2]]=[1,2|Zs2]=[1,2|[3,4]]=[1,2,3,4]

Figure 16.2: Search tree of query append_([1,2],[3,4],Zs)

| ?- append ([1,2],Ys,Zs).

Zs = [1,2|Ys] ? ;

no

| ?- append (Xs,Ys,[1,2,3]).

Xs = [ ], Ys = [1,2,3] ? ;

Xs = [1], Ys = [2,3] ? ;

Xs = [1,2], Ys = [3] ? ;

Xs = [1,2,3], Ys = [ ] ? ;

no

Figure 16.3: Queries of append_/3

Notice that the search tree is linear (unary) tree here. Everywhere just the
head of one of the rules have unified the goal. On the other hand, the appended
proper list has been approximated in more steps, through partial lists. In each
steps, we substituted the var tail of the actual partial list, computing bigger and
bigger part of the output list, until we received the appended proper list as a
result.

Here we have built up the result data structure in a top-down manner.
First, we built its topmost level, but we left some details undefined. Then these
details were refined by variable substitutions in the same manner again and
again. Therefore, this way of computing the result is called the step-by-step
approximation of the output.

Exercise: Try to draw the search tree of both of the queries in Figure 16.3.
Observe the process of the approximation of the output.

In the first query the result is a partial list: its front is equal to the first
parameter, and its tail is the second parameter, whatever it may be.
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In the second query we receive a search tree with branches, and the results
(at the leaves of the tree) are the possible cuts of the list (in the third parameter)
into two parts.

16.5.3 Aumulator pairs

Accumulators are used to build the result in a bottom-up manner. Their usage
is shown through the following example.

% PreCond: Xs is a proper list, Ys and Zs are lists.
% rev app(Xs,Ys,Zs) :-
% Xs reversed and appended before Ys provides Zs.
rev app([ ],Ys,Ys).

rev app([X|Xs],Ys,Zs) :- rev app(Xs,[X|Ys],Zs).

The empty list reversed and appended before another list provides this other list.
The nonempty list [X|Xs] reversed and appended before another list provides Xs
reversed and appended before [X|Ys].

The length of the first parameter strictly decreases through the recursion.
Therefore, if Xs is a proper list, the search tree of the query rev_app(Xs, Ys, Zs)
is finite. If Xs is a partial list, the search tree is clearly infinite. Both of Ys and
Zs may be proper or partial list, especially var. Let us consider the search tree
of the query rev_app([1, 2], [3, 4], Zs).

rev app([1,2],[3,4],Zs)

rev app([2],[1,3,4],Zs)

rev app([ ],[2,1,3,4],Zs)

{ Zs <- [2,1,3,4] } % solution

The resulting data structure is built up in the second argument, in bottom-up
manner, through the recursion. Therefore the second argument is an accumula-
tor. The result is completed at the bottom of the recursion. In order to return
the result we need a third argument, a tunel: it is passed through the recursion
without change, and it is substituted by the result at its bottom. An accumulator
and a tunel argument form an accumulator pair, because they are found in the
logic programs always in pair.

In practice, we often write a predicate containing more accumulator pairs,
and/or parameters calculated by step-by-step approximation.

For example, notice that in the query ? − append_(Xs, Ys, [1, 2, 3]) the first
parameter is calculated by step-by-step approximation. The second argument is a
tunel, while the third one behaves like a so called negative accumulator: the data
structure to be returned through the tunnel is not built up, but appropriately
pulled down in it.
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16.5.4 The method of generalization

The next predicate is an example of generalization. In such a case the problem is
generalized, solved, and its program is used to handle the original, more specific
problem. This method is often used in human problem solving, especially in
programming, and even more specially in LP. It is often used when we write
a recursive procedure: It is able to solve a more general problem, and it is
appropriately parameterized when it is called:

% PreCond: Xs is a proper list.
% reverse(Xs,Ys) :- the reverse of Xs is Ys.
reverse(Xs,Ys) :- rev app(Xs,[],Ys).

The reverse of list Xs is Ys, if Xs reversed and appended before the empty list
provides Ys.

Therefore, this predicate inherits the condition of finiteness from rev_app/3:
If the first parameter of goal reverse(Xs, Ys) is a proper list, then the search
tree of this goal is finite. But if Xs is a partial list, then this search tree is infinite.

For example, if Xs is a var, then the invocation reverse([1, 2, 3], Xs) calcu-
lates its only solution Xs = [3, 2, 1], and its search tree is finite. Naturally, the
query reverse(Xs, [1, 2, 3]) has the same, only solution. But its search tree is
infinite.

Especially, in the Prolog predicate rev_app/3, the fact finishing the recursion
precedes the recursive rule. Therefore, we will find the solution of the query
reverse(Xs, [1, 2, 3]). Nonetheless if we instruct the Prolog environment to find
another solution, it always backtracks, and tries to unify longer and longer lists
of vars with the second parameter of the goal, but fails.

Let the reader explain the following behavior now.

| ?- reverse([X,Y,Z],[1,2,3]).

X = 3, Y = 2, Z = 1 ? ;

no

The four methods discussed above are used while handling recursive data struc-
tures in LP, especially lists and trees.

16.6 The Prolog mahine

Full Prolog contains meta-logical and extra-logical constructs, too. Up till now
we have omitted these extensions and concentrated on pure Prolog, which is the
core of the language: it is based on pure mathematical logic. In this section
we provide a detailed explanation of the abstract interpreter performing pure
Prolog programs. However, we remain mainly at the abstract level, and explain
just a few implementation details. We try to help Prolog programmers rather
than Prolog implementers.
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A pure Prolog program is a set of the Prolog programmer’s predicates, and a
query or goal to be answered or solved: the predicates manifest our knowledge in
the topic. Each predicate is a set of rules at the declarative level, and a sequence
of rules at the procedural level. Each rule is a fact or a proper rule. No rule body
or query contains any subgoals referring to a built-in predicate.

16.6.1 Exeuting pure Prolog programs

Executing a program, the Prolog machine performs preorder traversal of the
search tree (16.2.4) of the query. During the traversal just the actual branch of
the tree is stored. This branch is the path from the root to the actual node. A
node of this branch is labeled by the appropriate goal, by the predicate its first
subgoal refers to, and by the untried rules of this predicate in their original order.
The edges of the actual branch represent the goal reduction steps leading to the

actual goal. An edge is labeled by the rule used in this step of reduction, and by
the variables of the parent goal substituted in the connected unification. Notice
that we do not have to remember the unifying substitutions. See the algorithm
of the execution of Prolog programs coming here. We use the word matching
instead of unifying. This will be explained in (16.6.2).

1. In the beginning, the root of the search tree is labeled only by the original
query (goal). Now, the root is the actual node, and only this root is stored.
(Each time the node furthest from the root on the actual branch is the
actual node.)

2. If the actual node is labeled by the empty conjunction of subgoals, we
have found a solution: this is the actual substitution of the variables of
the original query. In this case we print the solution, and ask the user,
whether he or she asks for another solution.
If so, we continue from (9). (Backtracking.)
If not, we have finished the search successfully.

3. If the actual node is labeled by a nonempty goal, let us consider its first
subgoal. Let us label this node also with the predicate referred to by this
subgoal, and with the list rules of this predicate. (Note that if this list
contains two or more rules, it forms a choice point, which remains living
while it is nonempty.) Now let us rename the variables of the rules, so that
they share no variable with the goal. (It is the most effective to generate
completely new variable names.)

4. If the actual list of clauses is empty, we have arrived at a dead end, that
is, at a fail node, and we continue form (9). (Backtracking.)

5. Let q be the first item of the actual list of rules. Delete q from this list. (If
the list becomes empty, the choice point possibly generated above lives
no more.)

6. Try to match the first subgoal of the actual goal with the head of q (see
16.6.2).
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7. If this matching fails, we continue from (4).

8. If this matching is successful, we perform a step of reduction: The vari-
ables substituted during the matching are appropriately substituted ev-
erywhere in the goal and in the rule. (This is usually ensured by a linked
representation of the variables.) The actually stored branch of the search
tree is extended by a new node. The edge leading to this node is labeled
by the actually substituted variables of the actual node, and by q. In
order to compute the first label of the new node, we substitute the first
subgoal of the actual goal with the (possibly empty) body of q, where the
matching substitution has already been performed on each participants.
Next the new node becomes the actual node. Then we continue from (2).

9. Backtracking: If the actual node is the root of the tree, then the execution
of the program finishes with fail.
Otherwise, we delete the actual node of the actually stored branch of
the search tree, and its parent will be the actual node. During this the
substitution of the variables labeling the edge between this two nodes are
also deleted. Then we continue from (4).

16.6.2 Pattern mathing

We have seen that the basic operations of the Prolog machine are goal reduction
and backtracking. And the key of a step of reduction is the unification of the
actual subgoal and rule head. Theoretically, the Prolog machine should compute
the mgu of them (see Section 16.2.3); it should try to unify atomic formulas with
the same name and arity. Therefore, it should unify two sequences of formulas of
the same length. Procedurally, a predicate is a procedure, and this unification is
a kind of parameter passing. Now, we face the problem that computing the mgu
is too expensive to be used as parameter passing. Provided that it is adopted,
logic programs become unacceptably slow. Therefore, a simplified unification
called pattern matching is adopted in Prolog:

1. If the too sequences of terms are empty, We are ready. Otherwise, we
match the pair of the first elements of the two sequences according to (2).
Then we continue with matching the rests of the two sequences according
to (1).

2. Provided that we have two atomic terms (see 16.4), they match, iff
they are identical. If they are identical, they match without variable
substitution. If they are different, then this algorithm of pattern matching
fails.

3. If one of the terms is atomic, but the other one is compound, then this
algorithm of pattern matching fails.

4. If both of them are compound terms, and their functor names and arities
are the same, then their sequences of parameters are matched according
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to (1). If both of them are compound terms, but their functornames or
arities are different, then this algorithm of pattern matching fails.

5. Provided that we have two var terms, any of them may be substituted
by the other one. (However, in our examples, we will always substitute
the var term of the rule head with the var term of the goal, because it is
easier to follow, and it usually allows a more effective implementation.)

6. If just one of the terms is a var, then we substitute it with the other
term, which is an atomic or a compound.

The variable substitutions of the algorithm above are performed on each
occurrence of these variables in the goal and rule taking part in the actual step
of reduction.

We keep a record of each substitution of the variables of the goal. If the
pattern matching eventually fails, the substitutions of the variables of the goal
are deleted according to our records. If the pattern matching succeeds, then
the appropriate edge of the actual branch of the search tree is labeled by this
recorded set of variables (16.6.1).

In the first point of this algorithm, the pattern matching of the appropriate
term pairs of the two term sequences may be performed in arbitrary order, or
even in parallel.

Notice that in point (6) of the algorithm of pattern matching above we substitute
a var with a compound unconditionally. Nonetheless in the original algorithm
of unification, this is allowed iff the compound does not contain the var. The
obligatory check of this condition before a var is substituted by a compound is
called occurs check ([FGN90], [Kow79], [DEDC96], [ISO95] and [SS94]). The
Prolog machine omits the occurs check for reasons of efficiency, because its
operational complexity is O(size(compound)), and the size of the compound may
be extremely large in practice.

For example, consider the built-in predicate ′ =′ /2 (see Section 16.2.2, i.e.
fact ”X = X.”). Query Y = f(Y) should fail, at least according to mathematical
logic. However, according to a typical Prolog implementation the solution of the
query is the substitution {X < −f(Y), Y < −f(Y)}. According to mathematical
logic, this is not a unifying substitution. According to the Prolog standard, the
result is undefined, if during the pattern matching a var faces a compound

containing it ([DEDC96] and [ISO95]). Our algorithm of pattern matching is
more special than that of the Prolog standard ([DEDC96] and [ISO95]), wich
may even abort or go to an infinite loop in this situation. First we substitute
X with Y, and then Y with f(Y). Therefore, we avoid the explicit computation
of the unifying substitution. In this way, we avoid infinite loops and program
aborts, and we may say (following Colmerauer [Col82]), that the substitution
{Y < −f(Y)} generates a cyclic term Y = f(Y). Some Prolog implementations
even give us tools to handle cyclic terms [Car12]. However, we will not take
benefit of such tools here, and even try to avoid generating cyclic terms, because
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it may be difficult to port a program working with cyclic terms between Prolog
platforms.

After all, in programming practice it is extremely rare that we face the
problem that Prolog omits occurs check. Most of the applications work well even
if we are not aware of the possibility of the unhappy situations following this
omission. One must admit that this omission is one of those brilliant compromises
which make Prolog a practical programming language: Without this compromise
the cost of unifying a var and a compound would be proportional to the size of
the compound, and this cost would arise in each predicate invocation where we
work with structured terms. Many applications work with long lists and/or big
trees. Then the cost of a simple procedure call would be proportional to the
length of the list or size of the tree. However, in a typical Prolog environment a
var and a structured term are matched with constant cost which is independent
from the size of the structure.

After all, the Prolog standard handles the occurs check problem in an elegant
and effective manner. And now we are going to discuss this topic.

16.6.3 NSTO programs

In NSTO programs the occurs check can be omitted safely. Now, we consider
how to write programs where even the original algorithm of unification would
perform no successful occurs check. Such predicate invocations, that is subgoals
are called NSTO (Not Subject To Occurs check), otherwise we speak of STO
subgoals. If each of the subgoals of a program is NSTO, then the program is also
NSTO. Otherwise the program is STO.

Note that these subgoals may occur in the query at the Prolog prompt, in
the bodies of the rules of the program, and in the directives of the program. A
subgoal may refer to a programmer’s predicate, or to a built-in predicate, too.

Based on [DM93], the following simple, sufficient condition of the NSTO
property of a subgoal is suggested here, which is sophisticated enough for most
practical cases.
If a subgoal g referring to a predicate p satisfies any of the following conditions,
then this subgoal is NSTO.

1. g does not contain double var (a var with more than one occurrence).
2. No head of any rule of p contains double variable.
3. The actual parameters of g are simple terms, and each rule head of p

- contains just simple terms in its formal parameters,
- or does not contain double variable.

Provided that we want to write an NSTO program, the conditions above call our
attention to the critical rule heads. If a head of a rule contains double variable,
and some subgoal referring to it contains double var, and the rule head or this
subgoal contains compound parameter, then this goal may be STO, and then the
whole program may be STO.
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If we find a rule head like this, we may still prove the NSTO property of
the goals referring to it, considering their special features. Or we can follow the
method shown in the next example. Let us suppose that we coded the predicate
member_/2 in the usual way:

% member (X,Xs) :- X is member of list Xs (?NSTO?).
member (X,[X| Xs]).

member (X,[ X|Xs]) :- member (X,Xs).

Clearly, the first rule may imply STO property. Its head contains the double
variable X, and even the compound [X|_Xs]. Considering programming practice,
in this case the first sufficient condition of the NSTO property is almost always
satisfied, as the subgoals of the form member_(Y, Ys) contain no double var.

However, if some goal of this form might contain double var, and we cannot
prove that this goal is NSTO (or it is surely STO), we can produce a safe version
of member_/2, and make this goal refer to it:

% safe member(X,Xs) :- X is member of list Xs (NSTO)
safe member(X,[Z| Xs]) :- unify with occurs check(X,Z).

safe member(X,[ X|Xs]) :- safe member(X,Xs).

In predicate safe_member/2 goal unify_with_occurs_check(X, Z) invokes
the appropriate built-in predicate of Prolog, which calculates the mgu of X and
Z. (If they do not have unifier, it fails.) For example:

| ?- member (X,[f(Y,Y),f(X)]).

X = f(Y,Y) ? ;

X = f(f(f(f(f(f(f(f(f(f(.. .)))))))))) ? ;

no

| ?- safe member(X,[f(Y,Y),f(X)]).

X = f(Y,Y) ? ;

no

| ?- member (f(X,X),[f(Y,g(Z)),f(Y,g(Y))]).

X = g(Z), Y = g(Z) ? ;

X = g(g(g(g(g(g(g(g(g(g(.. .)))))))))),

Y = g(g(g(g(g(g(g(g(g(g(.. .)))))))))) ? ;

no

| ?- safe member(f(X,X),[f(Y,g(Z)),f(Y,g(Y))]).

X = g(Z), Y = g(Z) ? ;

no

In general, if we use compound terms together with a predicate, then we consider
the rules containing double variables in their head. If we cannot prove the
NSTO property of the goals referring to them, we make the following trans-
formation on these rules: while we find double variable (critical from the point
of NSTO property) in the head of the rule (let it be X), we rename one of its
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occurrences to a fresh variable (let it be Z), and then we insert the subgoal
unify_with_occurs_check(X, Z) as the first subgoal of the body of the rule.

In this way each predicate invocation of our program becomes NSTO, except
the subgoals of the form unify_with_occurs_check(X, Z) generated by the
program transformation above. Then our Prolog program works as if every-
where mathematical unification were used, but it runs much faster, because
mathematical unification is used only when it is necessary. Otherwise, we use its
much simpler and much more effective version: pattern matching.
Note: Considering the built-in predicates of Prolog, in most cases the subgoals
referring to them are automatically NSTO. Selecting those mentioned in this
work, the list of exceptions is the following: (=)/2 and (\ =)/2 (16.7), arg/3
(16.8.3), read/2 (16.10.2), retract/1 and retractall/1 (16.10.3), findall/3
(16.11), and catch/3 (16.12).

The NSTO property of the subgoals referring to the built-in predicates listed
here can be checked and handled with a method similar to the one shown
here. For example, if built_in(X, X) is an unsafe subgoal, in many cases it
can be replaced by built_in(X, Z), unify_with_occurs_check(X, Z), where
Z is a fresh variable. (It might cause a problem that the search tree of the call
built_in(X, Z) may be (much) bigger than that of built_in(X, X).)

In the next two subsections we go on with two de facto standard optimizations of
the Prolog machine. Taking them into consideration, we can significantly reduce
the runtime and memory needs of our Prolog programs.

16.6.4 First argument indexing

During goal reduction, first argument indexing may significantly reduce the costs
of searching through the rules of the appropriate predicate. According to a rough
criteria it selects a subset of the rules of a predicate, appropriately narrowing the
search tree. It often selects just one rule, so increases the efficiency dramatically,
as generating a choice point and handling it is quite expensive.

However, the predicate invocations of the Prolog programs are often de-
terministic. This means that just one rule head matches the goal.10 Provided
that the Prolog machine recognizes the determinism of a predicate invocation,
it generates no choice point. First argument indexing supports it to recognize
determinism. Let us see the details: Consider point (3) of the abstract Prolog
interpreter described in (16.6.1). We labeled the actual node of the search tree
with the list of each of the rules of the predicate to be invoked there. Provided
that this list contains more than a single rule, we generate a choice point there,

10 A predicate invocation is called nondeterministic, iff more rule heads match it, because in
this case the run of a logic program can continue on the different branches of the search tree,
although a standard Prolog environment resolves this nondeterminism with backtracking on
these branches.
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where the search tree branches according to rule heads possibly matching the
predicate invocation.

Clearly, it would be enough to put the rules whose head match the subgoal
onto this list. However, it would be too expensive to produce this list before we
try the branches. Therefore, most Prolog implementations apply a compromise
here. This is called first argument indexing:

1. Provided that the first actual parameter of the predicate invocation is
atomic term, only those rules are put onto the list, where the first formal
parameter of the rule head is the same atomic or a var.

2. Provided that the first actual parameter of this invocation is compound

term, only those rules are put onto the list, where the first formal param-
eter of the rule head is a var, or a compound whose functor is identical
with the functor of the first actual parameter of the subgoal.

3. Provided that the first actual parameter of this invocation is a var, each
rule of the predicate to be invoked is put onto the list.

The possible lists of rules are usually generated compile time, and a table is
made of them. Then the run time selection of the appropriate list needs minimal,
constant time. The variable renaming of the rules is solved like in the case of
procedural languages. On the other hand, multiple argument indexing is rarely
used, because the size of the table to be generated becomes too large.
Let us suppose that any of the predicates list/1, append/3, rev_app/3 (16.5)
is called with proper list actual parameter in its first argument. Then neither
its call nor its recursive calls generate any choice point while it runs. Namely, if
the first actual parameter is an empty list, we will index on the first rule; and
if it is a nonempty list, we will index on the second rule. The run of predicate
member_/2 is not affected by first argument indexing, because the first formal
parameters of its rules are variables.

16.6.5 Last all optimization

Normally, each predicate invocation needs some space in the call stack. However,
when this optimization is applied, the called predicate can reuse the memory
needed by the caller. Eventually, a constant size of memory may be enough to
run a recursive procedure.

In order to understand how it works, consider point (5) of the abstract Prolog
interpreter described in (16.6.1). If the actual list has contained just one rule
there, then after removing this single rule, an empty list of clauses remains. This
means that a later backtracking to this node results in another backtracking from
here. Therefore in point (8), instead of extending the momentarily represented
part of the actual branch of the search tree, the actual node may be overwritten.
The set of variables labeling the edge pointing to this node is extended by the set
of variables which would label the edge pointing to the new node in the original
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algorithm. Therefore, in this case the actually represented branch of the search
tree does not become longer.

Therefore, given the last subgoal of a rule body, consider the call of this
subgoal. If there is no living choice point from the node and time, where and
when the predicate containing this rule was invoked, than that node of the
optimized representation of the search tree is equal to the node which is the result
of invoking this last subgoal. Therefore, in this case this last subgoal can reuse
the memory needed by its parent subgoal (i.e. the invocation of the predicate
containing this last call). This memory reuse is called last call optimization.

Especially, if this last subgoal invokes the predicate containing it, this is tail
recursion, and it can work like a loop in procedural languages. Then last call
optimization can be simplified to the so called tail recursion optimization.
For example, because during the run of the predicates
list/1, member_/2, append_/3, and rev_app/3 (16.5)
there is no living choice point when they are called recursively, in each case
tail recursion optimization can be applied. However, when predicate reverse/2
invokes rev_app/3, last call optimization can be applied.

16.7 Modifying the default ontrol in Prolog

Language pure Prolog contains no possibility to express any form of negation. For
example, it is easy to express that two terms can be matched (A = B), because we
can define it with the universal fact X = X. However, we have no tool to express
its negation (A\ = B).11

Similarly, we have defined predicate member_/2 in (16.5.1), but we have no
tool to define predicate nonmember_/2. Now it follows, that still we are not able
to phrase the union or intersection of two unsorted lists, because we should say
what to do when an element of one of the lists is not found on the other list.

In general, our rules are not suitable to derive negative information from our
programs. At best, we can decide if a statement follows from our program or not.
For example, if the search tree of a query is finite, then we can decide, whether
it follows from the program.

For example, given a ground term X, and a ground list Xs, the search tree
of the query member_(X, Xs) is finite. Therefore we can decide, if the statement
member_(X, Xs) follows from our program or not. But this statement is true, iff
it follows from the program. In practice, there are many similar statements. (For
example, consider the queries referring to the list handling predicates of (16.5).)
Therefore, if we could tell what to do when a goal were successful, and what to
do when it failed, we would have a limited but practical tool to manage negation.

11 In fact, (=)/2, and (\=)/2 are built-in predicates ([DEDC96] and [ISO95]) of standard
Prolog, and we cannot overdefine them. When we use them, we can write them in infix
manner, i.e. between their parameters (16.9).
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16.7.1 Disjuntions

To define this limited but practical negation, the first step is to introduce
disjunctions. We already have implicit disjunction:

sibling(X,Y) :- sister(X,Y).

sibling(X,Y) :- brother(X,Y).

However, in Prolog we have explicit disjunction, too:

sibling(X,Y) :- sister(X,Y) ; brother(X,Y).

There is a strong tradition here: the ”;” sign used to express explicit disjunction
is written with French spacing, i.e. there is a blank before it. In addition, it is
never put at the end of a line, but at the beginning of the next line.

Both of conjunction ”,”, and disjunction ”;” are right associative. Conjunction
”,” binds stronger than disjunction ”;”, so the parentheses in the next example
are essential.

son(Y,X) :- ( mother(X,Y) ; father(X,Y) ), male(Y).

However, the overuse of disjunctions is discouraged in Prolog. A rule should be
as simple as possible. The earlier definition in (16.2.2) is more structured, and
in many implementations it performs a bit better.

16.7.2 Conditional goals and loal uts

Perhaps the most important control structures are the conditional goals. They
support structured programming, and define negation as failure. Their basic
form is the following:

( if − > then
; else
)

Here the if, the then, and the else parts are arbitrary Prolog goals. The if
part is the decisive condition. If goal if is successful, then the solutions of the
conditional goal are the solutions of goal then. Otherwise the solutions of the
conditional goal are the solutions of goal else.
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It follows that it is not possible to backtrack into goal if. If it is successful,
the Prolog machine will calculate just its first solution. For example:

% PreCond: Xs and Ys are ground lists.
% union(Xs,Ys,Zs) :-
% Those members of Xs which are not members of Ys
% concatenated in order before Ys produce list Zs.
union([],Ys,Ys).

union([X|Xs],Ys,Zs) :-

( member (X,Ys) -> union(Xs,Ys,Zs)

; Zs = [X|Us], union(Xs,Ys,Us)

).

| ?- union([1,2,3,4,5],[1,3,5],Us).

Us = [2,4,1,3,5] ? ;

no

| ?- union([1,2,3],[1,1,3,3,5],Us).

Us = [2,1,1,3,3,5] ? ;

no

The second test shows that just the first solution of condition
member_(X, Ys) is considered. If we forget the arrow, this happens:

malfunctioning union([ ],Ys,Ys).

malfunctioning union([X|Xs],Ys,Zs) :-

( member (X,Ys), malfunctioning union(Xs,Ys,Zs)

; Zs = [X|Us], malfunctioning union(Xs,Ys,Us)

).

| ?- malfunctioning union([2,3],[1,3,3,5],Us).

Us = [2,1,3,3,5] ? ;

Us = [2,1,3,3,5] ? ;

Us = [2,3,1,3,3,5] ? ;

no

The first solution is found twice, because goal member_(3, [1, 3, 3, 5]) finds num-
ber 3 on list [1, 3, 3, 5] twice. The second solution was found, because goal
member_(X, Ys) is not a decisive condition here. Instead of a conditional goal,
we coded just a disjunction.

In the conditional goals, the arrow ”− >” is a local cut, and the semicolon is
the operator of disjunction. Considering the three operators forming compound
Prolog goals, their (decreasing) priority order is ”, − > ;”. And each of them is
right associative. Procedurally speaking, when a disjunction of the form
( if − > then ; else )
is called, a choice point with two alternatives is generated. Its first alternative
is goal if − > then containing the local cut, and its second alternative is goal
else. Provided that goal if succeeds, the local cut is performed, and it cuts the
choice points (if any) left by goal if, and the choice point left by the disjunction.
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Then goal then is called, and there is no possibility to backtrack neither into goal
if nor to goal else. Provided that goal if fails, we backtrack, remove the choice
point left by the disjunction, and call goal else. However, if any of goals then
or else succeeds, it is still possible to backtrack into it, and find its alternative
solutions. Because the operator ”;” is right associative, goals
( if1 − > then1 ; if2 − > then2 ; else ), and
( if1 − > then1 ; ( if2 − > then2 ; else ) ) are equivalent.
We may also omit the ” ; else ” part. Then ” ; fail ” is the default, where
fail/0 is a standard built-in predicate of Prolog, and it always fails. Similar is
true/0, but it always succeeds.

Now we can solve the problems posed at the beginning of this section (16.7):

% /+=(X,Y) :- X does not match Y.
/+=(X,Y) :- ( X=Y -> fail ; true ).

% PreCond: Xs is a proper list.
% does not have(Xs,Y) :- no member of Xs matches Y.
does not have([ ], Y).

does not have([X|Xs],Y) :-

( X = Y -> fail

; does not have(Xs,Y)

).

% nonmember (X,Xs) :- does not have(Xs,X).
nonmember (X,Xs) :- ( member (X,Xs) -> fail ; true ).

% PreCond: Xs and Ys are gound lists.
% intersection(Xs,Ys,Zs) :-
% those members of Xs which are found also on Ys,
% form in order proper list Zs.
intersection([], Ys,[ ]).

intersection([X|Xs],Ys,Zs) :-

( member (X,Ys) ->

Zs = [X|Ms], intersection(Xs,Ys,Ms)

; intersection(Xs,Ys,Zs)

).

Notice that the order of the arguments of the recursive predicates
does_not_have/2, intersection/3, and union/3

is chosen to exploit first argument indexing (16.6.4). Tail recursion optimization
can be applied to each recursive call (16.6.5).
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Note on assignment statements

In predicates intersection/3, and union/3 any goal of the form Zs = [X|Vs]
tries to match its two parameters. Namely, standard Prolog does not have any
form of assignment statement, because any logic variable refers to an unknown
term (16.4), [DEDC96], [ISO95], [O’K90] and [SS94]: it refers to an object
unknown when the program is coded, but it refers to an object to be computed
while the program is being executed. Therefore, when a variable is substituted
by a nonvar, its value (determined by the relation coded in our program) is
computed, and it does not have sense to overwrite it. (If there were an assignment
statement like Xs := [Y|Xs], which occurence of Xs would stand for the unknown
object?)

A typical error of a programmer starting to study logic programming is the
use of Prolog goals like Xs = [Y|Xs]. This goal will surely fail to perform the
assignment desired. For example, if Xs is a proper list, the pattern matching
between Xs and [Y|Xs] will clearly fail. If Xs is a var, the goal is STO, and a
cyclic list will be generated, which is not the desired case now. If Xs is a partial
list, it may fail or generate a cyclic term wich is not the behaviour desired.

How to get just one solution from a query?

At last we show two solutions for checking whether a term is member of a
list. Namely, goal member_(X, Xs) may have many solutions, even if X, and
Xs are ground terms (provided that Xs has multiple occurrences of X). After
producing a solution, goal member_(X, Xs) always leaves a choice point which
needs extra memory, and may prevent last call optimization. However, if we
need just member checking, we need a goal with at most one solution which
does not leave choice points.

Our first solution, predicate member1/2 shows that a conditional goal can
help us even to get rid of unwanted choice points. The second one, predicate
member_check/2 shows that failing rules should not be programmed explicitly.
If we want to emphasize that we have not forgotten those cases, it is better to
put the failing rules into comment, in order to keep efficiency.

member1(X,Xs) :- ( member (X,Xs) -> true ).

% member check( X,[ ]) :- fail.
member check(X,[Y|Ys]) :-

( X = Y -> true

; member check(X,Ys)

).
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16.7.3 Negation and meta-goals

Let us suppose that predicates student/1, and married/1 are given, and we
want to define predicate unmarried_student/1. Based on the previous subsec-
tion, the following solution springs up.

unmarried student(X) :- student(X), unmarried(X).

unmarried(X) :- ( married(X) -> fail ; true ).

student(’Peter’). student(’John’).

student(’James’).

married(’Peter’). married(’Joseph’).

Notice that the common scheme of predicates
(\ =)/2, nonmember_/2, and unmarried/1 follows.

not(P) :- ( P -> fail ; true ).

The question is, whether this more general scheme of negation is a Prolog
predicate or not.

Considering it in a context free manner a Prolog goal is a callable term, i.e.
a compound term or an atom. This makes it possible to compute and call it with
the program: The program part computing it handles it just like any compound

or atom. Then it is called like a meta-goal. A trivial example: goal X = p(Y), X

is equivalent with goal p(Y).
Considering a meta-goal in the source code in context-free manner, it is a

logical variable. But in context-dependent manner, it is a goal: it is part of the
body of a rule, query, or directive. The important thing is that by the time it is
invoked, it must be substituted by a callable term which can be interpreted as
a valid goal of the program. (The appropriate predicates must be defined.)

A meta-goal appearing in the body of a rule may be formal parameter of the
head of the rule, like in predicate not/1 above. The appropriate argument of
the head of that rule is a meta-argument. A predicate consisting of such rules
is a meta-predicate. When a meta-predicate is invoked, its meta-arguments can
be parameterized by goals. The parameter in a meta-argument is called meta-
parameter.

For example, predicate unmarried_student/1 can also be defined as follows.

unmarried student(X) :- student(X), not(married(X)).

The only formal parameter of meta-predicate not/1 above is P which is invoked
in the rule body as a meta-goal. If P (for example married(X) in the previous
example) is successful, the local cut cuts its choice points (if any), and also
cuts the else branch of the conditional goal. Then on the then branch goal
fail is performed and invocation not(P) (for example not(married(X))) fails.
If P (for example married(X)) fails, we backtrack to the else branch of the
conditional goal, goal true succeeds, and also invocation not(P) (for example
not(married(X))) succeeds. Summarizing this, goal not(P) succeeds, iff goal P
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fails (and therefore there is no solution of goal P). And goal not(P) fails, iff goal
P succeeds.

This is negation as failure. It is not a logical negation, but it can be imple-
mented quite effectively,and usually it can be used instead of that, if applied by
some care.12

Notice the first four properties of goal not(P):

1. It never leaves any choice points.

2. Independently from goal P, goal not(P) never substitutes its variables.

3. not(P) succeeds, iff the search tree of P is finite, and it contains no
solution.

4. not(P) fails, iff the search tree of P contains some solution, but there is
no infinite branch before the first solution.

(Notice that these observations are valid even if the negation is implicit, when it
is programmed with conditional goals like in the like in the cases of predicates
(\ =)/2, nonmember_/2, and unmarried/1.)

It is clear from (2) that a negated goal produces no solution. One cannot
use them to produce any (partial) solution, just to test and validate (partial)
solutions. According to this, it is not all the same, where the negated goal is inside
a compound goal: the desired behavior of the negated goal usually assumes that
its variables have been substituted. For example:

| ?- unmarried student(X).

X = ’John’ ? ; X = ’James’ ? ; no

This is the desired behavior, independently from the actual one of the two
definitions of predicate unmarried_student/1 above. However, if we exchange
the order of the subgoals in its body:

| ?- unmarried student(X).

no

Namely, in this case goal unmarried(X) or not(married(X)) fails, because
married(X) succeeds (provided that X is still var).

In general, it is a sufficient condition of the logical soundness of Prolog
negation that the negated goal must be ground when it is invoked, and its search
tree must be finite.13

12 Let us note that although goals not(married(X)), and unmarried(X) mean the same, in
today’s Prolog implementations usually not(married(X)) is the less effective one, because
most often the metagoals cannot be optimized while we compile the Prolog source code.

13 Considering negation we adopt the closed world assumption. This means, we suppose that
we have enough information: each statement of the actual model which does not follow from
our axioms is false.
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This negation defined with predicate not/1 is implemented in Prolog more
effectively with the built-in predicate (\+)/1. It can be used as a prefix operator
like in the next version of predicate married_student/1.

unmarried student(X) :- student(X), /+ married(X).

16.7.4 The ordinary ut

The local cut introduced in Subsection (16.7.2) is considered usually a better
alternative of the more traditional ordinary cut to be discussed here. However,
there are millions of lines of Prolog code with ordinary cuts around. In order to
allow the reader to understand such code, we are going to present them through
a simple example now.

Let us suppose that we want to define the relation max(X, Y, Z), where X and Y are
integer values given in advance, and it is true iff Z matches their maximum. Pro-
cedurally speaking, if X and Y are integer numbers, the invocation max(X, Y, Z)
tries to match Z with the maximal one. Let us suppose that the arithmetic
relations ′ >′ /2 and ′ =<′ /2 are given as usual. Our ”zeroth” solution does not
use any cuts:

max0(X,Y,X) :- X > Y.

max0(X,Y,Y) :- X =< Y.

Notice that in the first rule we have condition X > Y instead of X >= Y in order to
avoid duplicated solutions. Clearly, this program is correct. But it is not effective:
if X and Y are integers, X is greater than Y, Z matches X, and max0(X, Y, Z) is
invoked, the query will be successful with the first rule of the predicate, and it
leaves a choice point referring to the second rule.14 Thus, if this call is element of
a sequence of invocations, and we backtrack to it from a later one, we know that
it will fail. Therefore, in this case the subgoal max0(X, Y, Z) leaves an unnecessary
choice point which needs extra space, its handling eats extra runtime, and it may
prevent last call optimization(s) in the program using this predicate.

In order to solve the problem of unnecessary choice points, the inventors of
Prolog introduced a control tool, the (ordinary) cut statement into the language.
It is denoted by ”!”. Let us see the improved version of predicate max/3:

max1(X,Y,X) :- X > Y, !. % green cut after test selects the rule
max1(X,Y,Y) :- X =< Y. % contra test

The cut (i.e. ”!”) statement is a procedural construction: a predicate is considered
as a procedure. When it is called, and while it runs, it may generate many choice
points, many branches of the program. When the cut is invoked, it tells Prolog
that the actual branch of the predicate containing it is the only possible winner.
Therefore, the other branches are pruned. We inform Prolog that if any, the rule

14 For example, consider the subgoal max0(3,2,M) where M is a var.
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containing the cut will perform the calculation associated by the predicate, and
in the rule body the subgoals before the cut serve to test this selection. Prolog
replies and prunes each choice point generated since the call of the predicate:

1. If a choice point was left when the predicate containing the cut was
invoked, and it exists, then it is pruned.

2. All the choice points left by the subgoals preceding the cut in the actual
rule body or query are pruned.

Let us consider predicate invocation max1(X, Y, Z) where X and Y are integers
and Z is a var. If X > Y, the cut is called, and it prunes the choice point left
by invoking the max1/3. The test X > Y did not leave a choice point. But if
it left any choice point, the cut would prune it, too. If the test X > Y fails,
Prolog backtracks from the first rule, automatically prunes the choice point left
by the predicate invocation, and selects the second rule. Then the contra test
X =< Y succeeds. There is no cut statement after the contra test, because there
is no choice point to be pruned. In both cases the predicate invocation succeeds,
and it does not leave any choice point, reflecting the fact that there is just one
maximum of two numbers.

However, this cut has been inserted into a correct predicate, and it does not
alter its semantics. It only implies some optimization in the code. Therefore, it is
called a green cut. We remain close to ”pure logic programming”: first we write
the program without cuts, and then we insert the green cuts necessary to prune
the redundant choice points.

Let us reconsider the predicate invocation max1(X, Y, Z) where X and Y are
integers. Notice that the first rule fails even if X > Y, provided that Z is a
nonvar different from X. The second rule fails even if X =< Y, provided that Z
is a nonvar different from Y.

Nevertheless, some Prolog predicates contain red cuts modifying their seman-
tics. Considering the code of predicate max1/3, one may think that the contra
test is superfluous: ”if X > Y fails, and we go to the second rule, it is just
waisting time to test whether X =< Y stands, because it is surely true”. Then
the following solution may be proposed.

max2(X,Y,X) :- X > Y, !. % red cut
max2( X,Y,Y). % contra test omitted, procedural code

This is a red cut: without the cut, even goal max2(3, 2, M) (where M is a var)
would have two solutions, namely M = 3 and M = 2. With the cut, the only
solution is M = 3. Therefore, predicate max2/3 is no more a logic program, just a
procedure written in Prolog. There is one even more serious problem. Provided
that X and Y are integers, goal max2(X, Y, Z) should succeed iff Z matches their
maximum. However, the reasoning which is the base of predicate max2/3 implic-
itly supposes that condition X > Y is always evaluated. Nonetheless it is true
only if Z is a var or Z is identical with X. Otherwise query max2(X, Y, Z) tries the
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first rule, but its head does not match it and fails.15 Then it tries the second rule
without evaluating X > Y. For example, goal max2(3, 2, 2) succeeds. In general,
simply omitting the contra test is dangerous.

Clearly, if we want to spare the contra test, we can use a conditional goal:

max3(X,Y,Z) :-

( X > Y -> Z = X

; Z = Y

).

Unlike here, the contra test is often expensive, and such solutions can save run-
time. Fortunately, if one uses a conditional goal, rules representing different cases
are melted into a single one, and the programmer must have formal parameters
general enough to cover each case. In this way, the condition is evaluated, and
the contra test can be safely omitted, except if the condition part contains more
than the condition selecting the appropriate branch of the conditional:

max4(X,Y,Z) :-

( X > Y, Z = X -> true. % WRONG SOLUTION!!!
; Z = Y

).

This predicate tries to match the output before the local cut, and this matching
becomes part of the condition. So we have the same problem with the predicates
max2/3 and max4/3: if Z does not match X, the second alternative is tried,
independently from condition X > Y (although there is no early failure here).

But this kind of error is quite rare. Even beginners intuitively use the con-
ditional goals in the correct way. The main disadvantage of using conditionals
is that we have to restructure the ”pure logic programs” in order to include the
local cuts. Although most programmers do not feel this to be a problem.

Nevertheless, sometimes ordinary cuts can be preferred. Therefore, we will
show the safe use of ordinary red cuts. Reconsidering the conditional goals used
here and in (16.7.2) it is easy to see that the local cuts are usually red cuts: the
control test in the next branch of the disjunction is normally omitted. And the
output matching is done normally after the local cut. This is useful even with
ordinary cuts. Therefore let us see the correct use of ordinary red cuts:

max5(X,Y,Z) :- X > Y, !, Z = X. % output matching after the cut.
max5( X,Y,Y). % contra test omitted: procedural, but safe.

Clearly, this solution prevents early failure. Condition X > Y really selects the
appropriate clause. The method can be used in any ”deterministic” predicate
for pruning unnecessary choice points while avoiding redundant contra tests. (A
predicate is called deterministic iff for any given data just one branch of it can
succeed.)

15 This is called early failure.
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The general rule of inserting cuts is this: cut as early as possible, i.e. where it
is already known that the actual branch of the program is the only candidate to
perform the actual computation. If we cut earlier, we select that branch before
the tests necessary to select it have been completed. If we cut later, we may try
alternative branches of the program, even when these branches should not run.

16.8 The meta-logial prediates of Prolog

In practical Prolog programming we often need information about the actual
state of the variables and other components of our program, but such questions
cannot be formulated with the tools we already have. We often have to compute
the numeric value of an expression, but numeric computations still cannot be
performed effectively with these tools. Also we have to make symbolic computa-
tions on terms with unknown functors, i.e. terms coming from external sources,
but we are able to formulate rules on terms with known functors only. In order
to solve such problems, we need meta-logical predicates.

16.8.1 Arithmeti

The usual symbols of arithmetic operations, like +, −, ∗, /, ∗∗ etc., are only
function symbols in Prolog, and these symbols can be written especially in
infix or prefix mode. Therefore they are only constructors of compound data
structures, and they force no computation. This is necessary because Prolog
supports symbolic computations, for example, the derivation or integration of
polynomials like −x2 + 3 ∗ x − 4. It follows that, for example, the expression
2 + 3 means just the Prolog term +(2, 3), and the Prolog environment does not
evaluate it, except if it occurs in an arithmetic argument of an invocation of an
arithmetic predicate. These are:

• The right-hand side argument of the built-in predicate is/2;

• And both arguments of the arithmetic comparison predicates
. (=:=)/2, (= \ =)/2, (<)/2, (>)/2, (=<)/2, (>=)/2.

When we invoke any of these predicates its name can be used with infix notation.
Goal Term is Exp first evaluates the arithmetic expression Exp, next it tries to
match the result with Term. An arithmetic comparison compares the arithmetic
values of its parameters.

An arithmetic expression is a number (integer or float), or a compound
term with arithmetic functor, and arithmetic expressions in the arguments. (The
arithmetic functors are the usual arithmetic operators, logarithmic, trigonomet-
ric function symbols etc. [Car12], [DEDC96] and [ISO95]) This means that the
variables of the arithmetic arguments of a Prolog goal must be appropriately
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substituted by the time of invoking this goal. For example (// denotes the integer
divison, floor denotes the integer part):

| ?- X is -2**4, Y is floor(cos(0))+3*(8-7//2), Z is -2+1.0.

X = 16.0, Y = 16, Z = -1.0

| ?- X = -2**4, Y = floor(cos(0))+3*(8-7//2), Z = -2+1.0.

X = -2**4, Y = floor(cos(0))+3*(8-7//2), Z = -2+1.0

| ?- 5 is 2+3, 5.0 =:= 2+3, -4+1 =< -2-1.0.

yes

| ?- 2+3 is 2+3.

no % 5 does not match 2+3 which is a compound.
| ?- 5.0 is 2+3.

no % 5 does not match 5.0 although they are arithmetically equal

A typical error of Prolog beginners is the goal ”X is X + 1”. Nonetheless this goal
never performs the operation desired. If X has been substituted by a number, the
value of X + 1 does not match X, because these are two different constants. If X is
a compound arithmetic expression, the value of X + 1 does not match X, because
a constant never matches a compound. If X is not an arithmetic expression (for
example, X is a var or atom), the evaluation of X + 1 raises the appropriate
exception (16.12).

Note that the arithmetic comparisons just compare the values of proper
arithmetic expressions. For example, goal Y =:= X + 1 cannot be used to get
the result of X + 1. A goal like Y is X + 1 serves for this purpose:

| ?- Y is 6+1.

Y = 7

| ?- Y =:= 6+1.

{INSTANTIATION ERROR: 157=:=6+1 - arg 1}

Finally, we consider some classic arithmetic computations. The next two predi-
cates calculate the sum and scalar product of two vectors represented by lists of
numbers of the same length.

% add(V1,V2,V) :-
% Vector V is the sum of vectors V1 and V2.
add([ ],[ ],[ ]).

add([X|Xs],[Y|Ys],[Z|Zs]) :-

Z is X+Y, add(Xs,Ys,Zs).

% mult(V1,V2,S) :-
% S is the scalar product of vectors V1 and V2.
mult([ ],[ ],0).

mult([X|Xs],[Y|Ys],S) :-

mult(Xs,Ys,S0), S is S0+X*Y.
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The predicates above are deterministic according to first argument indexing. In
case of add/3 even tail recursion optimization can be applied, and it is not hard
to transform mult/3 accordingly: we introduce an accumulator in order to collect
the partial sums, that is, we generalize the original problem in order to add the
scalar product to some initial value.

mult(V1,V2,S) :- mult(V1,V2,0,S).

% mult(V1,V2,A,S) :- S = A+V1*V2.
mult([ ],[ ],A,A).

mult([X|Xs],[Y|Ys],A0,S) :-

A1 is A0+X*Y, mult(Xs,Ys,A1,S).

16.8.2 Type and omparison of terms

The standard types of Prolog terms are organized according to the hierarchy of
the different kinds of terms introduced in (16.4).

The list of standard types: var, nonvar, atomic, number, float, integer,
atom, compound.

The names of these types are the names of the standard type-checking predi-
cates, too. Each of them has arity 1. For example, the following test is successful.

| ?- var(X), var(Y), var(Z), var(U), X=1, Y=1.0, Z=a, U=f(a),

nonvar(X), nonvar(Y), nonvar(Z), nonvar(U), compound(U),

atomic(X), atomic(Y), atomic(Z), atom(Z),

number(X), number(Y), integer(X), float(Y).

In the next example the effectivity of predicate grandparent/2 (16.2.2) is in-
creased: If the grandson is known, and the grandparent is to be computed, we
exchange the order of the subgoals, in order to narrow the search tree. Otherwise,
we leave the original order and take advantage of first argument indexing.

grandparent(X,Y) :-

( var(X), nonvar(Y) -> parent(Z,Y), parent(X,Z)

; parent(X,Z), parent(Z,Y)

).

In Prolog two arbitrary terms are comparable. The identity of two terms can
be tested with the built-in (==)/2 and (\ ==)/2. For example, the following
test is successful, because the two logical variables are originally different, but
having matched them they are identical: | ? − X \ == Y, X = Y, X == Y.

In the standard order of terms a var is smaller than a float, this is smaller
than an integer, this is smaller than an atom, and this is smaller than a
compound. goal A @ < B is successful iff A precedes B in the standard order
of terms, that is A is smaller than B
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In the standard order, the floats are compared arithmetically, and the inte-
gers, too. But do not forget that a float is always smaller than an integer:

| ?- 5 < 5.1, 5.1 @< 5, 9.9e99 @< -999999999.

yes

The names or atoms are compared lexicographically. And their characters
are compared according to their code values, in the actual coding system (for
example, latin-1, utf-8, etc.). The structures or compounds are compared first
according to their arities, next according to their functor names, and at last
according to their parameter lists, lexicographically. The parameter pairs are
compared according to the standard order of terms, recursively.

The standard order of the variables is implementation defined. The standard
order of two terms may be changed by substitution, if any of them is a var, or
any of them is a compound containing some var(s). For example, the following
test is successful.

| ?- X@<10.0, X=1, X@>10.0.

According to their standard order the terms can be compared with the built-ins
(@ >)/2, (@ <)/2, (@ >=)/2, (@ =<)/2. For example:

% PreCond: Ys is a proper list sorted increasingly
% according to the standard order.
% sorted insert(Ys,X,Zs) :-
% Zs is received by the sorted insert of X into Ys.
sorted insert([],X,[X]).

sorted insert([Y|Ys],X,Zs) :-

( X @=< Y -> Zs = [X,Y|Ys]

; Zs = [Y|Us], sorted insert(Ys,X,Us)

).

| ?- sorted insert([b(z(1,2)),a(X,Y),a(2,1)],a(2,3.14),Zs).

Zs = [b(z(1,2)),a(X,Y),a(2,3.14),a(2,1)]

16.8.3 Term manipulation

Up till now we have supposed that the functors, i.e. constructors of the terms
processed by our programs are known in advance. However, in many applications
this is not true (for example, when we process Prolog terms coming from an input
file or channel). In such cases the input terms can be analized and new terms
can be synthetised using the built-in predicates manipulating terms.

In order to handle compound terms constructed with unknown functors, the
most important built-ins are functor/3, and arg/3.

If Term is a nonvar, we can determine or test the functorname and/or arity
of Term using the invocation functor(Term, Functorname, Arity). (The arity of
an atomic is zero.) If Term is a var, Functorname is an atom, and Arity is a
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positive integer, the invocation generates an appropriate compound term with
fresh variables in its arguments and substitutes it into Term:

| ?- functor(t(a,b),F,N), functor(T,F,N).

F = t, N = 2, T = t( A, B)

The goal arg(I, Structure, Arg) matches Arg with the Ith parameter of the
compound term Structure, where 1 =< I =< Arity. Therefore this predicate
can read and/or fill the parameters of a compound:

% substitute(T0,X,Y,T) :-
% T is a copy of T0 except that each occurence of X in T0
% has a corresponding occurence of Y in T.
substitute(T0,X,Y,T) :-

( T0 == X -> T = Y

; compound(T0) ->

functor(T0,F,N), functor(T,F,N),

substitute args(N,T0,X,Y,T)

; T = T0

).

substitute args(N,T0,X,Y,T) :-

( N > 0 ->

arg(N,T0,A), substitute(A,X,Y,B), arg(N,T,B),

N1 is N-1, substitute args(N1,T0,X,Y,T)

; true

).

% Test:
| ?- substitute(a(X,nil,b(nil,2,B,nil)),nil,[],T).

T = a(X,[ ],b([ ],2,B,[]))

Constants, i.e. atomic terms can be taken into pieces and put together using the
built-in predicates
atom_codes(Atom, ListOfCharacterCodes), and
number_codes(Number, ListOfCharacterCodes).
(Further term manipulators in [DEDC96], [ISO95] and [Car12].) Using these
predicates, any textual manipulation of a constant can be reduced to manipu-
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lating the appropriate list of character codes. For example:

% aA(A,B) :- B is a copy of atom A except that
% each lower-case letter in A is substituted
% by the appropriate upper-case letter in B.
aA(A,B) :-

atom codes(A,Cs), cC(Cs,Ds), atom codes(B,Ds).

cC([ ],[ ]).

cC([C|Cs],[D|Ds]) :- bB(C,D), cC(Cs,Ds).

bB(C,D) :- % the code of character a is 0’a
( 0’a=<C, C=<0’z -> D is C-0’a+0’A

; D = C

).

% Test:
| ?- aA(’How beautiful is She!’,Unknown).

Unknown = ’HOW BEAUTIFUL IS SHE!’

16.9 Operator symbols in Prolog

We have mentioned that the names of some predicates (like the names of arith-
metic comparisons) can be written in infix mode. Built-in negation can be
written like a prefix operator (16.7.3). And some arithmetic function symbols
(like +, −, ∗, /) can be written as operator symbols. However, considering these
predicate names and function symbols in a context-free manner, they are just
functors of compound terms. This means that the notion of operator (symbol)
in Prolog is just notational convenience. It is a completely syntactic category.
A Prolog operator does not do anything, unlike the operators of the procedural
(C,C++, etc.) and functional (Lisp, Haskell, etc.) languages. It is just a syntactic
sugar, an optional notation, like the list notation, although it is very important:
without operators it is hard to write easy-to-read Prolog programs.
An operator symbol is predefined or user-defined, and it has three basic properties:
priority, mode, and name. Its name is a Prolog atom.

There are 1200 priority levels. The operators of the 1st level bind the strongest
and those of the 1200th level bind the weakest. For example, the infix operators
+, and ∗ have priorities 500 and 400. Therefore a + b ∗ c == +(a, ∗(b, c)).
Each Prolog expression has priority, which is zero, if it is a var or atomic, it is
directly in brackets, it is written with list notation, or it is a compound written
in the standard functional notation in the form f(t1, . . . , tn). The priority of an
expression is equal to the priority of its main functor, if this functor is written as
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operator, and the expression is not directly in brackets. For example, the priority
of a + b ∗ c is 500.

Considering roughly the mode, an operator can be infix (if it is written
between the operands), prefix (if it is put before the operand), or suffix (if it
comes after the operand). At the same time two operators may exist with the
same name. In this case, one of them is infix, and the other is prefix or suffix.

Let us consider first the infix operators. And let us suppose that p and q are two
infix operators where pr(p) and pr(q) are their priority levels, respectively. Let us
consider the expression apbqc. If pr(p) < pr(q) then apbqc = (apb)qc, because p
binds stronger. If pr(p) > pr(q) then apbqc = ap(bqc), because q binds stronger.
If pr(p) = pr(q), the interpretation of apbqc depends on the associativity of the
operators. There are three different associativities.

The exact mode or associativity of an infix operator is
yfx (left-associative, for example a − b − c == (a − b) − c), or
xfy (right-associative, for example (a; b; c) == (a; (b; c))), or
xfx (non-associative: a = b = c must be parenthesized explicitly).

In this notation f symbolizes the functor (i.e. operator) name, x and y
symbolize the parameters; y=yes: on this side of the operator there must be
an expression with the same or smaller priority level. x=no: on this side of
the operator there must be an expression with smaller priority level, and an
expression with the same priority level is not allowed. However, there are some
ambiguous expressions yet: if the right side of the first operator and the left
side of the second one are denoted by y, too. In these cases, the expression is
considered right-associative.

Based on these rules, this is the default bracketing of apbqc, provided that
pr(p) = pr(q), m(p) denotes the mode or associativity of operator p, and ? stands
for x or y:

• apbqc = (apb)qc if m(q) = yfx ∧ (m(p) = yfx ∨ m(p) = xfx),
• apbqc = ap(bqc) if m(p) = xfy ∧ m(q) =?f?,
• apbqc must be explicitly bracketed in any other case.

The exact mode or associativity of a prefix operator is fx or fy. And that of a
suffix operator is xf or yf . The meaning of f , x, and y is the same as before.

It follows that if pr(p) = pr(q),

• pbq = (pb)q if m(q) = yf ∧ m(p) = fx,
• pbq = p(bq) if m(p) = fy ∧ m(q) =?f ,
• pbq must be explicitly bracketed if m(p) = fx ∧ m(q) = xf .

The default bracketing of expressions like apbq, pbqc, etc. goes in a similar way.
A new operator is created by the statement op(Priority, Mode, Name), or it

can be overdefined in the same way.16 (Name can be an atom , or a proper list

16 op/3 is an example of extra-logical predicates (16.10).
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of atoms.) If Priority == 0, the operator with the given name and mode is
deleted. This statement is most often used in directives (see 16.2). For example:

:- op( 1200, xfx, [ :-, –> ]).

:- op( 1200, fx, [ :-, ?- ]).

:- op( 1100, xfy, [ ; ]).

:- op( 1050, xfy, [ -> ]).

:- op( 1000, xfy, [ ’,’ ]). % The priority of ’,’ is 1000.
:- op( 900, fy, /+ ).

:- op( 700, xfx, [ =, /=, ==, /==, @<, @>, @=<, @>=,

=. ., is, =:=, = /=, <, >, =<, >= ]).

:- op( 500, yfx, [ +, -, / /, // ]).

:- op( 400, yfx, [ *, /, //, mod, rem, «, » ]).

:- op( 200, xfx, ** ). :- op( 200, xfy, ^ ).

:- op( 200, fy, [ -, /]).

Now we have introduced the predefined operators of Prolog according to the
ISO standard ([DEDC96] and [ISO95]).

Notice that the comma symbol is a predefined right-associative infix operator,
too. An extra rule: if it is used as infix operator, it must be written without
apostrophes. However, commas separate the elements of a list-like term, and
the expressions of a parameter list, too. Therefore, in order to know the right
interpretation of the operator and separator commas in a Prolog expression, the
priority of an element of a (parameter) list must be less then 1000. (If the priority
of such an element is greater or equal to 1000, it must be put between brackets.

We have already known that each parameter of any atomic formula is a
term in mathematical logic, logic programming, and Prolog. Notice now that
the signs used to formulate the Prolog sentences (′ : −′, ′,′, ′;′, ′− >′, and ′\+′)
are predefined operators. This means that the goals, queries, heads and bodies of
rules, and even the sentences (rules, directives, and declarations) of the Prolog
programs are terms besides the parameters of atomic formulas. For example,
term p(X) can be a piece of data, a query, a head or body of a rule, or a fact of
a program depending on its context.

Another example: if negation were not a built-in predicate, we could define
it with the following rule.

/+ Goal :-

( Goal -> fail

; true

).

In this rule, the first occurrence of logical variable Goal means a piece of data,
especially a formal parameter, but its second occurrence denotes a Prolog goal.
(Notice that in this case the brackets of the conditional goal can be omitted,
but in order to increase the readability of the programs, we will always use such
brackets.) Because a rule considered in a context-free manner is just a term,
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using the functional notation of compound terms, the previous rule could be
written as follows (although this notation would destroy readability).

:-( /+(Goal),;(->(Goal,fail),true)).

We can conclude that in Prolog there is no strict difference between program
and data. This property of the language helps us to write language processors,
programs manipulating other programs like interpreters, compilers, program
transformators, intelligent programs which are able to learn and forget things,
and so on. Surely, it is the easier case of the language processors when the
sentences of the source and target languages are also fitting the term notion of
Prolog ([SB04] and [War80]). (If this is not the case, we can help us with logic
grammars [DM93], [Car12], [SS94], [SB04] and [War80].)

16.10 Extra-logial prediates of Prolog

These predicates do not have declarative reading like pure Prolog programs.
These have only operational semantics. Theoretically, they lie outside the logic
programming model [SS94]. The predicates of pure Prolog, and the meta-logical
predicates communicate with their programming environment only through their
parameters, and their effects are backtrackable. The extra-logical predicates
access global information, usually have side-effects, and typically these side-
effects are not backtrackable. Therefore they allow us to pass information among
the different branches of the search tree of a Prolog query, so we need them, if
we want to write practical applications. They are responsible for the program
interfaces, and for the access and manipulation of the Prolog environment.
The different kinds of the interface predicates are those loading (and saving)
programs, the I/O predicates, the foreign language interfaces (C/C++, Java,
.NET, Tcl/Tk, etc.), data base handler, GUI, operating system, web, and other
interfaces ([Car12] and [SB04]).

In this chapter we consider only loading programs, I/O predicates, and
manipulating the program loaded.

16.10.1 Loading Prolog programfiles

Loading a program means loading a Prolog source or object code into the Prolog
environment (where it is activated through queries).

The only standard predicate of this category is ensure_loaded/1, whose
actual parameter can be a filename, or a proper list of filenames. For each file
it checks the time of its last modification, and loads it only if necessary. Some
Prolog implementations may allow the use of this predicate only in directives,
but usually it can be invoked without restrictions, even during the run of a query.
It compiles the loaded code into the memory.
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Most Prolog environments still provide the traditional predicates of loading
in interpreted mode (consult/1), and in compiled mode (compile/1); file-to-
file compilation producing object code, loading object code; there are special
predicates for loading module files (use_module/2 . . . (16.13.1)), etc. ([Car12]
and [SB04]).

The run of the predicates loaded in interpreted mode can traced (trace/0,
notrace/0, etc.), while loading in compiled mode results optimized code 5-20
times faster ([Car12] and [SB04]).

16.10.2 Input and output

We consider only the handling of sequential textfiles, and only its basic predicates
([DEDC96], [ISO95] and [Car12]). A textfile can be opened in read, write, or
append mode, using the query open(File, Mode, Stream). Then our operations
refer to the Stream, until we close it using close(Stream). The standard I/O
streams should not, and must not be closed. They can be referred to through
the name user. The I/O predicates read or write a single character or a whole
term with no restriction on the complexity of that term.

Consider first the character I/O. The goal peek_code(S, C) is true if the code
of the actual character of stream S is C (it tries to match it with C). The goal
get_code(S, C) is similar, but as a side-effect, the actual character becomes the
next one, even if the code of the old actual character does not match C, and
get_code(S, C) fails. The goal at_end_of_stream(S) is true, if stream S has
already been read until its end (S\ = user). The goal put_code(S, C) writes the
character with code C on stream S, while nl(S) sends a newline onto S. E.g.:

% PreCond: F1 and F2 are textfiles with appropriate access.
% appf(F1,F2) :- the content of F2 is inserted at the end of F1.
appf(F1,F2) :-

open(F1,append,A), open(F2,read,R),

af(A,R),

close(A), close(R).

af(A,R) :-

get code(R,C),

( C == -1 -> true % end of R
; put code(A,C), af(A,R)

).

Consider now the term I/O. The goal read(S, T) reads a whole term from stream
S. Then it tries to match it with T. Because any term can be continued with an
infix operator and a connected term, the term to be read must be terminated with
a dot, and at least one whitespace character (like the sentences of a program):



982

•
Logi programming and Prolog

| ?- read(user,X), read(user,Y).

|: 12. a+b*c.

X = 12, Y = a+b*c

The goal write(S, T) writes term T on stream S without the terminating dot.
(Term T can be any term, even a whole list.) But the atoms are never put between
quotes or backquotes, because these usually represent messages to be printed:

| ?- write(user,’Value of Pi = ’), read(user,Pi).

Value of Pi = 3.14159265358979323846.

Pi = 3.141592653589793

If we need an output readable for other Prolog programs, we use writeq(S, T):

| ?- writeq(user,father(’Isaac’,’Jacob’)), write(user,’. /n’).

father(’Isaac’,’Jacob’).

16.10.3 Dynami prediates

Up till now we have considered only static Prolog predicates: a predicate is
static by default, i.e. its code cannot change when it has been loaded. However,
a predicate may be defined dynamic. For example, if we have the following
declaration: : −dynamic(p/2). predicate p/2 will be dynamic, i.e. its code will
be variable even while the program runs. In this way, the running program can
dynamically learn new rules and forget obsolete ones.

A decaration must precede the first rule of the predicate referred to. But a
declared (and therefore existing) predicate does not necessarily have any rule.
If there is a predicate with no rule, each goal invoking this predicate silently
fails. But any goal invoking a non-existing predicate raises an exception called
existence_error (16.12).
We can add new rules to a dynamic predicate. Goal asserta(R) adds a fresh
copy of rule R to the predicate identified by the head of R as its new first rule,
while assertz(R) adds this copy of R to that predicate as its new last rule.17

Let us notice that this making a fresh copy of R is necessary because the further
run of the program may substitute some logical variables of term R, and later
backtracking may also delete some actual variable bindings in term R. Clearly
such modifications of term R must not modify the rule added to the program.

Consider now a simple example of dynamic predicates: let us suppose that
file lpp.pl contains predicate connected/2:

17 A fresh copy is a copy of the term where the variables are substituted by fresh (i.e. new)
variables. If a variable has more occurrences, the same fresh variable is used for each
occurrence, but the different variables are substituted with different fresh ones. And the
variable bindings to nonvar terms (i.e. variables substituted by nonvar terms) inside the
original term are substituted with direct references to the appropriate terms in the fresh
copy.
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:- dynamic(connected/2).

connected(X,X).

and it is processed as follows. (We suppose that predicate edge/2 defines an
acyclic directed graph.)

| ?- consult(lpp).

% consulting c:/documents and settings/pl/book/lpp.pl. . .
% consulted c:/documents and settings/pl/book/lpp.pl
% in module user, 0 msec 1536 bytes
yes

| ?- assertz((connected(X,Y):-edge(X,Z),connected(Z,Y))).

yes

| ?- listing(connected/2). % print the clauses of the predicate
connected(X, X).

connected(A, B) :-

edge(A, C),

connected(C, B).

A dynamic rule may be deleted by a goal like retract(RulePattern) where
the head part of RulePatternmust be a Prolog atom or compound identifying the
dynamic predicate referred to by the retract statement. This goal deletes the
first rule of the predicate referred to which matches term RulePattern. Forcing
backtracking even each rule matching RulePattern can be deleted:

| ?- retract((connected(X,Y):-Body)).

Y = X, Body = true ? ;

Body = edge(X, A),connected( A,Y) ? ;

no

Based on this example – if it were not a built-in predicate – we could define
predicate retractall/1 as follows.

retractall(P) :- retract((P:- )), fail.

retractall( P).

If we call any of the program manipulating predicates above, and it refers to a
non-existing predicate, then this predicate is created as a dynamic one:
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% my consult(F) :- read the sentences of file F,
% omit the declarations and directives, and
% create dynamic predicates from the rules.
my consult(F) :-

open(F,read,S),

consulting loop(S),

close(S).

consulting loop(S) :-

read(S,Sentence),

( Sentence == end of file -> true % end of S
; Sentence = :-( ) -> consulting loop(S)

; assertz(Sentence), consulting loop(S)

).

Dynamic predicates are typically used to memorize lemmas and negative lemmas
derivable from the actual run of a program, in order to avoid recomputing this
information ([SS94], [O’K90] and [SB04]).

For example, if predicate edge/2 defines a graph with complex structure, and
we are interested, which nodes can be reached from a given one, the following
program may be useful, because it remembers the visited nodes, it avoids infinite
looping, and if it fails to achieve goal from an internal node, after backtracking
and arriving at it again it does not recompute the paths going out from that
node. (Note: ground/1 may not be a built-in in your Prolog, but it is easy to
program it: see Exercise 16.7 in Section 16.7.)

% Z can be reached form a given A.
reach from(A,Z) :-

ground(A), % A must be ground term
retractall(visited( )), asserta(visited(A)),

reach 2(A,Z).

% do not call directly:
reach 2(A,A).

reach 2(A,Z) :-

edge(A,B), /+ visited(B),

asserta(visited(B)), reach 2(B,Z).

However, we cannot encourage the use of dynamic predicates to emulate global
variables, especially if their usage can be avoided. This can lead to procedural
programming style. And the overuse of dynamic predicates implies high runtime
costs. For example, each modification of a dynamic predicate forces rebuilding
the tables used for first argument indexing, each assert call makes a fresh copy of
the whole rule to be inserted, independently from the size of the data structures
stored in it, etc.
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Especially in our previous problem, if we need even the paths going form
node A to Z, or the structure of the graph is not so complex, or node A may not
be given in the query, the next solution is suggested.

% Example graph:
edge(a,b). edge(b,c). edge(b,d).

edge(c,a). edge(c,e). edge(d,e).

__________

/ \

V \

a----->b----->c

| |

| |

V V

d----->e

% path(A,Z,Path) :-
% Path is an acyclic list of nodes from A to Z.
path(A,Z,Path) :- path 2(A,[ ],Z,Path).

path 2(A,Ancestors,A,Path) :-

reverse([A|Ancestors],Path).

path 2(A,Ancestors,Z,Path) :-

edge(A,B), B /=A, /+member(B,Ancestors),

path 2(B,[A|Ancestors],Z,Path).

16.11 Colleting solutions of queries

A Prolog query may have many solutions, but these are at leaves of different
branches of the search tree of the query. Therefore, we can receive these solu-
tions through backtracking, and the Prolog environment forgets one, when it
backtracks to search for another. So we would never have them all together, but
Prolog has built-in predicates ([DEDC96], [ISO95], [O’K90], [Car12], [SS94] and
[SB04]) for collecting the solutions. The most important, and also the simplest
one is findall(Solution, Goal, Results), where Goal is any query (if it is a
conjunction or disjunction, it must be bracketed), Solution is the term to be
collected from the solutions of Goal, and Results is the list of the collected
terms. Usually Goal and Solution shares variables. Typically Solution is one
of the variables of Goal or it is a compound consisting of some variables of Goal.
Procedurally speaking, the following algorithm computes Results.
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Results := [ ];

while( still there is (another) solution of Goal )

{ solve Goal; % substituting some vars of Solution
append a copy of Solution to the end of Results;

backtrack Goal; % deleting the bindings of its vars
}

For example, using the example programs in the previous subsection (16.10.3):

| ?- findall(X,edge(X,Y),Xs).

Xs = [a,b,b,c,c,d]

| ?- findall(e(X,Y),edge(X,Y),XYs).

XYs = [e(a,b),e(b,c),e(b,d),e(c,a),e(c,e),e(d,e)]

| ?- findall(Z,reach from(a,Z),Zs).

Zs = [a,b,c,e,d]

| ?- findall(Z,reach from(d,Z),Zs).

Zs = [d,e]

| ?- findall(Path,path( , ,Path),Ps).

Ps = [ [ A],[a,b],[a,b,c],[a,b,c,e],[a,b,d],[a,b,d,e],

[b,c],[b,c,a],[b,c,e],[b,d],[b,d,e],

[c,a],[c,a,b],[c,a,b,d],[c,a,b,d,e],[c,e],[d,e] ]

Considering the first test of findall(Solution, Goal, Results), we can see that
the multiple solutions of Goal are put on the list Results in general. If we want
to eliminate the duplications, we need something like predicate sort(Xs, Ys)
which sorts list Xs into strictly increasing order according to (@ <)/2 (removing
duplications) and try to match the result with Ys. (It is a built-in of most
Prolog implementations. Anyway, it is not hard to write our own version: see
unionsort/2 in Section 16.6 in the solution of Exercise 16.6. sort(Xs, Ys) is very
effective: its computational complexity is Θ(n ∗ log(n)) where n is the length of
Xs.) Predicate collect/3 is similar to findall/3 except that it removes the
multiplications of the solutions:

% collect(Solution,Goal,Results) :- Result is a
% strictly increasing proper list of the Solutions of Goal.
collect(Solution,Goal,Results) :-

findall(Solution,Goal,ListOfSols), sort(ListOfSols,Results).

Considering the directed graph defined by predicate edge/2 we can compute the
set of nodes having successor as follows (compare to the first test of findall/3):

| ?- collect(X,edge(X, Y),Xs).

Xs = [a,b,c,d]
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16.12 Exeption handling in Prolog

Error and exception handling is standard part of modern programming lan-
guages. Therefore, it is also important part of the ISO Prolog standard.

In Prolog a query typically fails, succeeds (possibly leaving one or more choice
points) or goes into infinite recursion. However, sometimes a predicate invocation
cannot be interpreted. For example, this is the case with an invocation referring
to a non-existing predicate (in the given scope), the query arg(I, T, A) if I is
a negative integer or T is a simple term (see Section 16.4), the goal X is Exp

where Exp is not an arithmetic expression, and goal read(S, X) if it finds a non-
term in S. In such cases the invocation raises the appropriate exception like in
other high-level programming languages. And the call finishes with this exception
instead of success or fail.

A Prolog exception can be represented with an atomic or compound (i.e. a
nonvar). It can be raised also with the call throw(exception). The unhandled ex-
ceptions become runtime errors. However, the Prolog development environment
handles these errors (at the level of its interactive shell) printing the appropriate
error message, and the Prolog prompt (| ?− ).

If a Prolog goal raises an exception but does not handle it, we say that the
goal propagates the exception. Therefore, we can say that runtime errors are
exceptions propagated to the Prolog shell.

Exceptions can be handled with the built-in predicate
catch(Goal,ExceptionPattern,HandlerGoal).

A catch invocation may handle just the exceptions raised (but not handled)
during the evaluation of the Goal in its first argument. Therefore, the first actual
parameter of a catch invocation is a protected goal.

A catch invocation first calls its first parameter.

If Goal propagates no exception, then it works as if it were called bare
(without the catch protecting it).

However, if Goal propagates an exception E, first a fresh copy F of E is
made. Next, each variable bindings performed through the evaluation of Goal
are deleted, together with each choice point, each call frame pushed into the call
stack, and each backtrackable events. (However, the side-effects of the extra-
logical predicates are not deleted.)

Next F and ExceptionPattern are matched.

If this pattern matching is successful, then HanderGoal is called, and its
evaluation is equal to the further evaluation of the catch invocation.

Otherwise the catch invocation propagates exception F.
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The standard built-in predicates always raise exceptions of the form
error(IsoErr, ImpErr) where term IsoErr is defined by the standard,
while ImpErr is implementation dependent. For example:

| ?- catch( X is a, error(IsoErr,ImpErr), true ).

ImpErr = domain error( A is a,2,expression,a),

IsoErr = type error(evaluable,a/0)

In the next example, predicate read1term(Term) can read any term (terminated
by a dot and a whitespace character) from the standard input, and skips the
remainder of the actual input line. Nonetheless if the standard input starts with
a non-term (a term with syntax error), it prints the error-term defined by the
ISO standard, and repeats reading.

read1term(Term) :-

catch( ( read(user,Term), skip line(user) ) ,

error(Err, ), ( write1term(Err), read1term(Term) )

).

write1term(Term) :- writeq(user,Term), nl(user).

| ?- read1term(Term).

|: a*(b+ .

syntax error(’. cannot start an expression’)

|: a*(b+c.

syntax error(’) or operator expected’)

|: a*(b+c).

Term = a*(b+c)

16.13 Prolog modules

Although the ”general core” of ISO Prolog ([DEDC96] and [ISO95]) is widely
accepted and supported by Prolog implementers, and there is also an ISO stan-
dard for Prolog modules [ISO00], this latter is considered a failure, and as far
as we know, there is no implementation of this part of the standard. Therefore,
here we introduce only the module system of SICStus Prolog [Car12] which is
flat and predicate-based: it is widely accepted, and it is a starting point of many
new developments.

16.13.1 Flat, prediate-based module system

Predicate-based module system means that the Prolog terms are global, and
visible in each module. But each module has its own predicate space, and the
predicates are local to their module by default. However, they can be defined as
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public predicates, and then they can be imported (from their module) into other
modules, becoming part of these modules, and accessed directly in them.

Flat module system means that there is no hierarchy, and all the modules of
a program are at the same level. One file may contain just one module, but one
module may be spread into several files.

There is a default module called user. Each source file is loaded into it by
default. The default type-in module of the queries at the Prolog prompt is also
module user. Therefore, if one does not want to use the module system, one
does not have to use it. However, programming in large makes it necessary.

The first sentence of a module file must be a module declaration in the
following form.
: − module( ModuleName, PublicPredicates ).
ModuleName must be a Prolog atom. PublicPredicates must be a proper list
of predicate specifications in the form name/arity. The predicates encountered
here are the public predicates of the module. The predicates of a module may be
defined in that module. Or these may be imported into it, using, for example,
one of the the built-in predicates
use_module( ModuleFileName, ImportList )
use_module( ModuleFileName )
called typically in a directive (16.2). ImportList must represent a subset of the
public predicates of the module defined in file ModuleFileName. If we invoke
use_module(MFN) in module M, each of the public predicates of the module
defined in file MFN is imported into module M. These calls load the file iff it is
necessary.

For example, let us suppose that we have the module file graph.pl with the
module graph_of_edges in it. The only public predicate of this module is
edge/2 defining the edges of the graph. We also suppose that goal edge(X, Y)
can check or return an edge, that is, there is no restriction on its use. For example:

:- module( graph of edges, [edge/2] ).

edge(a,b). edge(b,c). edge(b,d).

edge(c,a). edge(c,e). edge(d,e).

Let us write module search with the only public predicate path/3 which is able
to find simple paths (i.e. paths without loops) on a graph defined by predicate
edge/2. (Predicate path/3 has already been defined at the end of (16.10.3), and
tested in (16.11).)

:- module( search, [ path/3 ] ).

:- use module( graph, [edge/2] ).

:- use module( library(lists), [reverse/2] ).
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% path(A,Z,Path) :-
% Path is an acyclic list of nodes from A to Z.
. . .

In order to define the file containing the graph dynamically, we have to change
only the first two sentences of the module:

:- module( search, [ new graph/1, path/3 ] ).

new graph(File) :- use module( File, [edge/2] ).

. . .

We suppose that the latter version of module search is defined in the module
file called search_path.pl. Now we can initialize this module with any module
file defining the graph through the public predicate edge/2:

| ?- use module(search path).

% . . .module search imported into user. . .
yes

| ?- new graph(’../book/graph’).

% . . .module graph of edges imported into search. . .
yes

| ?- findall(Path,path( ,e,Path),Pathes).

Pathes = [ [e],[a,b,c,e],[a,b,d,e],

[b,c,e],[b,d,e],[c,a,b,d,e],[c,e],[d,e] ]

16.13.2 Module prefixing

The strict module system outlined above implies some basic problems.

First, it prevents us from testing our program without altering it, because we
cannot directly invoke the local predicates of a module. This problem is simply
solved: any goal can be prefixed with a module name in the form module:goal
overriding the source module of goal to module (op(550, xfy, :)). We can similarly
override the source module of a predicate specification, rule head or sentence
[Car12].

For example, predicate search : path_2/4 in the previous subsection (16.13.1)
can be invoked from any module using the prefix ”search :”:

| ?- search:path 2(d,[b,a],E,Path).

E = d, Path = [a,b,d] ? ;

E = e, Path = [a,b,d,e] ? ;

no

If there are more module prefixes of some query, rule head or sentence, just the
rightmost one has effect. For example, goal k : m : n : p(X) is equivalent to goal
n : p(X).
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If you consult a module file (load it in interpreted mode: see (16.10.1)), even
the local predicates of the module loaded can be listed using module prefix. For
example:

| ?- listing(search:path 2/4).

search:path 2(A, Ancestors, A, Path) :-

lists:reverse([A|Ancestors], Path).

search:path 2(A, Ancestors, Z, Path) :-

graph of edges:edge(A, B),

B /=A,

/+member(B,Ancestors),

search:path 2(B, [A|Ancestors], Z, Path).

This means that this module system cannot really hide a predicate, but it can
prevent conflicts of predicates with the same name and arity in different modules.

Note that module prefixing used without sensible control may destroy the
module structure of our program.

16.13.3 Modules and meta-prediates

The problem shown through the next example is related to the interactions of
meta-predicates and modules. Predicate forall(P, Q) (below) enumerates the
solutions of goal P and for each solution it tries to find the first solution of goal
Q: if Q fails, forall(P, Q) also fails immediately. It does not collect the solutions.
It is used to check whether P implies Q, or it is invoked to force side-effect Q for
each solution of P:

% forall(P,Q) :- for each solution of P, Q can be solved,
% that is P implies Q.
forall(P,Q) :- /+ ( P, /+Q ).

?- forall(path(b, ,Path),(write(Path),write(’ ’))).

[b] [b,c] [b,c,a] [b,c,e] [b,d] [b,d,e]

The forall/2 form is a meta-predicate and its arguments are meta-arguments
parameterized with meta-goals. If that forall/2 is a public predicate of module
m and we invoke forall(path(b, _, Path), (write(Path), write(′ ′))) in module
h. Probably we want to use predicate path/3 visible in module h. But the
body of forall/2 is invoked in module m. Therefore, path(b, _, Path) is invoked
also in module m. But path/3 may not be visible in module m, or even worse,
m : path/3 may differ form h : path/3. (It follows that in the first case goal
path(b, _, Path) raises existence_error, in the second case it silently invokes
another predicate.)

One possible solution is to prefix the meta-parameters of a meta-predicate
invocation with the name of the calling module (notice that in general each meta-
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parameter needs module prefix, but in the next example the second parameter
refers only to built-in predicates and so this qualification may be omitted):

?- forall(h:path(b, ,Path),(write(Path),write(’ ’))).

Nevertheless, this manual qualification is inconvenient, and error-prone: one may
forget the qualification, and it may lead even to silent errors; or one may rename
the calling module, but forget to rename the module prefix with it. Therefore,
it is better if this qualification of the meta-parameters with the calling module
is automatic. This automatic qualification is called module name expansion.

Therefore, we can declare module name expansion for the meta-arguments
of the public predicates of the modules. In such a meta-predicate declaration
a meta-argument must be indicated with a colon (or an integer) [Car12]; a

non-meta-argument can be indicated with any ground term except the colon
and the integers. Then the meta-parameters of an invocation to the meta-
predicate are automatically prefixed with the calling module, while the other
actual parameters are not expanded:

:- module( m, [ forall/2, collect/3 ] ).

:- meta predicate forall(:,:), collect(?,:,?).

forall(P,Q) :- /+ ( P, /+Q ).

collect(Solution,Goal,Results) :-

findall(Solution,Goal,ListOfSols), sort(ListOfSols,Results).

The Prolog compiler expands the predicate invocation forall(C, D) into
forall(h : C, h : D) provided that h is its calling module. Similarly, the predicate
invocation collect(X, G, Xs) is expanded into collect(X, h : G, Xs) if h is its
calling module.

There is the same case when we call predicates loading program files like
compile(F) or consult(F), e.g. from module h. They must also know that
program code F must be imported into module h. Similarly, if module m is defined
in file lpp.pl, and use_module(lpp, [forall/2] is invoked in module user, this
invocation must also know that predicate forall/2 must be imported into
module user. And there are the predicates dynamically modifying the program
like asserta/1, assertz/1, retract/1, etc. They must know, into which module
to assert, or from which module to delete the rules.

Actually, the built-in predicates of SICStus Prolog are defined in the prede-
fined module prolog, and they are its public predicates. They are automatically
imported into each module. The predicates loading program files, those dynami-
cally accessing (and possibly modifying) the loaded program, and those working
with Prolog goals (like findall(Sol, Goal, Solutions)) are defined as meta-
predicates specifying the arguments waiting for Prolog goals, rules, file names
(or blackboard keys: see [Car12]) as meta-arguments, that is, arguments to which
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module name expansion is due. Then these invocations are informed about the
module they have to operate on.

16.14 Conlusion

Clearly, it is over the scope of this short introduction to discuss the whole field
of logic progamming or even to discuss the full language of Prolog and/or the
details of its programming methodology. Nevertheless, we hope we can give you
a hand if you want to start a detailed study.

16.14.1 Some lassial literature

There are easy-to-read introductions to the logical basis in [FGN90] and [Nil82].
There is a more general introduction to the topic in [Fla94] and [Kow79]. The
theoretical aspects of logic programming are detailed in [Llo87].

Originally published in 1981, the first textbook on programming in Prolog
was that of Clocksin and Mellish. It became popular because of its compre-
hensive, tutorial approach, and general programming examples. An updated,
extended version is [CM03]. The book of Sterling and Saphiro is considered
one of the best handbooks on the programming methodology of Prolog [SS94]
which is suggested for students at beginner, and intermediate level. For advanced
students we suggest [O’K90], and still some chapters of [SS94].

There is a good description of the Prolog standard in the book of Deransart,
Ed-Dbali, and Cervoni ([DEDC96], [ISO95] and [ISO00]). The programs of
this chapter were tested in SICStus Prolog 4.2.3. The User’s Manual, and more
documentation is available at [Car12]. Finally, the Prolog 1000 database includes
more than 500 Prolog application entries, and it is available on the Internet.

16.14.2 Extensions of Prolog

Logic programming is not separated from other branches of programming. There
have been several attempts to unify LP with functional programming, which is
the other main declarative programming paradigm. Some of them led to well
functioning systems, like implementations of ALF, λP rolog, Curry, Mercury,
etc. ([DL86], [Han94] and [Car13]). However, the practical use of the functional
logic programming (FLP) languages is extremely rare, maybe because of the lack
of a (de facto) standard, and the lack of the programmers properly trained.

There are interesting attempts to extend Prolog with object-oriented features
([Mos94] and [Car12]). These extensions are useful in building simulator pro-
grams, and expert systems.

Phil Vasey’s flex is a frame based extension of LPA, and Quintus Prolog.
Frames are similar to classes of OOP, but they are specialized for building expert
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systems. There are important business applications, intelligent query, registering,
diagnostics, and scheduling systems.

Prolog implementations typically know the definite clause grammar (DCG)
formalism as a built-in extension. The DCG formalism is strong enough to
define any language described with a Chomsky grammar, Turing automaton, or
attribute grammar. Their application makes it much easier to develop parsers,
compilers, text generators of formal and natural languages, and intelligent inter-
faces processing the texts of such languages, although these application areas
well fit Prolog in general. When we load a DCG into Prolog, its rules are
transformed one by one into Prolog rules using an algorithm of simple syntactic
transformations. In this way, the DCG notation is just a de facto standard
syntactic sugar in Prolog. Because of its comprehensiveness, it is very popular,
and in the Prolog folklore it is used even in application areas seemingly far from
text processing, for example in list handling utilities.

16.14.3 Problems with Prolog

Prolog, and library modules of C++, Java, etc. implementations containing
parts of Prolog are often used in practice.

It is an important problem that only the standard of the core of Prolog is
widely accepted ([DEDC96], [ISO95] and [ISO00]). But there is no de facto stan-
dard of modules, no standard of C/C++, Java, Oracle interfaces, no standard of
GUI, etc.; although these are part of any serious Prolog implementation. Clearly,
the developers of software packages do not want to depend on a particular Prolog
implementation, because any time it may disappear from the market. Therefore,
only half a dozen Prolog implementators are present in the business world and
they have been there for more than twenty years now, although their number is
much higher.

In many Prolog implementations, program tracing and debugging cannot go
through the foreign language interface. Therefore, C++, Java, etc. programmers
often switch from Prolog to a local package of their own language. (However,
logic programming studies are needed to use effectively also these packages.) On
the other hand, these local packages rarely have the effectivity and robustness
of a professional Prolog implementation.

There is a myth that the Prolog programs are slow. Astonishingly, it is based
partly on an unsuccessful USA project in the sixties of the last century which
was trying to build an effective LP language [SS94]. The key of the successful
European projects in the seventies was adopting pattern matching instead of
unification in goal reduction, especially in parameter passing.18 On the other
hand, a good Prolog programmer needs special programming experiences, and
studies. The reputation of the language does not benefit from the fact that it is
misused by Prolog hackers.

18 See the occurs check problem in (16.6.2,16.6.3).
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16.14.4 Fifth generation omputers and their programs

Maybe Japan’s Fifth Generation Computer Systems project (FGCS) of the
eighties was the most famous initiative applying some kind of ”Prolog” as its
main language. It aimed to develop highly parallel computers with many CPUs
instead of increasing the complexity of a single CPU. Some prototype computers
were created. They can be programmed with a committed choice concurrent
constraint logic programming language: its predicates consist of guarded Horn
clauses where each rule contains a guard which is similar to a Prolog cut. When
a predicate has been invoked, the rules matching the invocation start to work in
parallel, and when one of them arrives at the guard, it cuts the others. Therefore,
there are no search trees like in LP in general, and there is no possibility to find
the different solutions satisfying a query while traversing its search tree with
backtracking or other strategy.

So it has turned out that the committed choice feature conflicts with the
fundamental strength of logic programming compared to functional programming:
the applications needing intelligent search cannot take advantage of search trees.
And the prototype machines of the FGCS project were soon outperformed by
general purpose computers. (The same had happened before to the Lisp Machine
and to the Thinking Machine.) But in spite of these failures, for example ”multi-
core architectures at the low-end and massively parallel processing at the high
end” seem to be winner ideas of the FGCS Project now.19

16.14.5 Newer trends

Mercury is a promising FLP language (16.14.2) developed at the University Of
Melbourne under the supervision of Zoltán Somogyi. The core of the language is
similar to pure Prolog; and a query is evaluated through backtracking traversal
of its search tree. But it is purely declarative with strict, static type and mode
system (in a predicate invocation one parameter can be only purely input or
purely output), which allows the highest level of compile-time checks and code
optimization while prevents the use of some effective and elegant programming
techniques, that is the organisation of data with partial lists and trees ([SS94]
and [O’K90]), and therefore the step-by-step, top-down approximation of the
output (16.5.2). Probably these later features imply that it could not become
the successor of Prolog, although its strong, polymorphic type system, and its
module system allow the development of high quality, standard libraries.

The development of effective, parallel Prolog systems retaining backtracking
search and in general, the support of conventional Prolog programs so that the
goals and/or the branches of the program run in parallel without forcing the
programmer to organize parallelism, this is a strong trend of the search in the
field of LP. There are two basic approaches. If some branches of the search tree
are evaluated in parallel, the system is or-parallel (for example, the Aurora Prolog

19 See http://en.wikipedia.org/wiki/Fifth_generation_computer.
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by Warren; Gigalips project). If some goals of a goal sequence are reduced in
parallel, this Prolog is and-parallel (for example, the Muse version of SICStus
Prolog). Warren’s Andorra-I unifies both approaches. However, the best sequen-
tial Prolog implementations still often overperform these implementations.

Constraint Logic Programming (CLP) originates from the end of the eighties.
Today this is one of the most successful areas of LP ([Hen86], [MS98], [SB04] and
[Car12]). It is typically used to solve optimization problems. The program code
is similar to that of standard Prolog but it is more declarative than that and the
search is more intelligent: performing special computations it takes advantage
of the problem solving methods of other scientific areas. Beside Prolog goals
we have special goals called constraints behaving like demons. The variables of
these constraints have predefined domains (for example, X :: [1..5] means that
the domain of X is the integer range 1..5). The run of the program means
the backtracking traversal of the search tree, like in Prolog, but there is also
a constraint store. When the constraints are encountered during the run of
the program they are put into the constraint store. When any parameter of
a constraint in this store is modified (for example, it is substituted by a value
or its domain narrows), the consistency of the constraint store is checked, and
if it is found inconsistent, the search backtracks. For example, the consistency
check may find that a modification of a variable of a constraint implies the
modifications of other variables, and if the domain of some variable contains
just one element, it is substituted. Any modification implies further check. If
some domain becomes empty, the search backtracks.

For example, SICStus Prolog contains three different constraint solvers im-
plemented in libary modules [Car12]. There are also constraint programming
packages built on OO languages, for example the ILOG Solver of IBM imple-
mented as a C++ library.

We mention that other newer trends are Abductive, Answer Set, and Induc-
tive Logic Programming.

16.15 Summary

Today – as a result of successes and failures – the place of LP seems to be
in the ”thinking” components of multiagent systems. Using LP we can effec-
tively develop intelligent data base interfaces, packages needing intelligent search
(even on the Internet), text processors, translator programs, natural language
interfaces, expert systems, programs of logic puzzles, programs with symbolic
computations, optimizations, etc.

The approaches of the problems are different with LP, and different with
more traditional programming paradigms. Therefore, LP helps you to find new,
elegant solutions.



16.16 Exerises

•
997

Hagar Abraham Sarah

|------| |-----|

| |

| |-------|

Ishmael Anon Isaac Rebeka

|---------|

|---------------------|

| |

Leah Jacob Rachel Esau

|---------| |-----------|

| |

|-----|------|----|-------|-------| |

Reuben,Simeon,Levi,Judah,Issachar,Zebulun |

|--------|

Asenath Joseph Benjamin

|----------|

|----------|

Manasseh Ephraim

Figure 16.4: family/3 in Exercise 16.2

16.16 Exerises

Exercise 16.1. Apply the algorithm of goal reduction (16.6.1) to this query tested
in (16.5.2): append_(Xs, Ys, [1, 2, 3]). Draw the corresponding search tree.

Exercise 16.2. Let us suppose that we have facts of the form
”family(Father, Mother, Children).”. For example:

family(’Abraham’,’Sarah’,[’Isaac’,’Anon’]).

family(’Abraham’,’Hagar’,[’Ishmael’]).

family(’Isaac’,’Rebeka’,[’Jacob’,’Esau’]).

family(’Jacob’,’Rachel’,[’Joseph’,’Benjamin’]).

family(’Jacob’,’Leah’,[’Reuben’,’Simeon’,’Levi’,’Judah’,

’Issachar’,’Zebulun’]).

family(’Joseph’,’Asenath’,[’Manasseh’,’Ephraim’]).

Define predicates brother_or_sister/2, aunt_or_uncle/2, and
parent_in_law/2 based on family/3 with the usual meaning. (In order to help
their test, Figure 16.4 illustrates predicate family/3.)

Exercise 16.3. Write list handling predicates to receive the prefixes, suffixes,
continuous sublists, and possibly discontinuous subsequences of a proper list.
Write predicate divide(Xs, Odds, Evens) which takes proper list Xs; puts the
first, third, fifth, etc. items into Odds, and the second, fourth, sixth, etc. items
into Evens, thus generating two subsequences of Xs of approximately equal
length. Write predicate sorted_union(Xs, Ys, Us) producing the sorted union of
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Xs, and Ys in Us where Xs, and Ys are strictly increasing proper lists according
to the standard order; and Us will have the same properties. Each predicate
must be able to check the appropriate property, and it must be able to generate
the lists satisfying that property. Take advantage of the programming methods
(step-by-step approximation of the output, accumulator pairs, etc.) while coding
a predicate. Verify the finiteness of the search tree of each corresponding query.

Exercise 16.4. Consider the representation suggested for binary trees introduced
at the very end of Section 16.4 , page 948.Using this representation (o is the
empty tree, and t( leftSubTree, root, rightSubTree ) is the scheme of a nonempty
tree), define predicate inorder(Tree, List) where List contains the inorder
traversal of Tree.

Exercise 16.5. Use the representation suggested above for binary search trees
(sorted according to the standard order of the Prolog terms). Write the usual
operations of such search trees (creating an empty tree, inserting a given piece
of data, checking for it, deleting it: the tree must not contain duplications).

Be careful: do not mix the notion of binary search tree with the notion of
the search tree of a Prolog query.

Exercise 16.6. Implement the well-known algorithms of sorting lists like Insert-
sort and Mergesort in Prolog. Be careful that the computational complexity
of the Prolog programs should not be higher than that of the corresponding
algorithm. (For example, the computational complexity of Insertsort is O(n2),
and that of Mergesort is Θ(n ∗ log(n)) where n is the length of the proper list
to be sorted.)

Note: The computational complexity (i.e. operational or time complexity) of
a Prolog program is measured in LI (number of Logical Inferences) which means
the number of predicate invocations performed during the run of the program.

Exercise 16.7. Try to implement your own version of ground/1: ground(Term)
is true, iff Term is a ground term (see Section 16.4).

Exercise 16.8. Try to implement your own version of predicate findall/3.
It can be called find_all/3. Put it into a module.

Exercise 16.9. Find the description of the standard Prolog predicate setof/3
([DEDC96], [ISO95], [Car12], [SS94] and [SB04]).
Compare it to predicate collect/3 in (16.11).

Exercise 16.10. Implement the standard operations of queues in a module.
empty(Q): Q is empty queue (create and check);
add(Q, X, QX): add X to the end of Q;
rem(XQ, X, Q): remove the first item of queue XQ.
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Exercise 16.11. In Subsection (16.13.1) we defined predicate path/3, which is
able to traverse a graph in depth-first (backtracking) manner. Write another
predicate which implements breadth-first-search on a graph computing a shortest
path between a given start and goal node. Use the queue handling predicates
defined in Exercise 16.10. (A shortest path is a path consisting of the least
number of nodes here.)

Exercise 16.12. Implement the well-known algorithm of Quicksort on Prolog
lists: Quicksort selects an arbitrary item X of a nonempty list, and separates
the remainder of the list into two lists. The first list contains the items smaller
than X. The second list contains the items greater than X. (The items equal
to X can go into either of them.) Then the two lists are sorted recursively. The
resulting list is generated from the two sorted lists with X as a middle element:
these are concatenated together.

16.17 Useful tips

Tip 16.1. Consider now a search tree of query append_(Xs, Ys, [1, 2, 3]) referring
to predicate append_/3:

append_([],Ys,Ys). % a1

append_([X|Xs],Ys,[X|Zs]) :- append_(Xs,Ys,Zs). % a2

In the solution of Exercise 1 we use the following notations. The two rules of
append_/3 are called a1, and a2. If the depth of a goal in the search tree is i,
then it is denoted with gi. If there is a goal gi, a goal reduction is applied to
it, and rule aj is involved in it, then the goal reduction is denoted with a(i,j). If
rule aj is involved in a goal reduction a(i,j), then we suppose that the LP system
renames each variable V of rule aj to Vi. The kth solution is called sk. Only the
output substitutions (see Section 16.2.4) are shown.

Tip 16.2. You can choose a child using member/2.

Tip 16.3. Take care of the base cases and of the recursive cases of the predicates.
For each predicate, give a sufficient condition of the finiteness of the search tree
(”PreCond”). The finiteness of the search tree of each corresponding query can
be based on two facts:

1. The input is proper list;
2. And its length is decreasing through the recursion.

Tip 16.4. A straightforward solution contains two rules: the inorder traversal of
the empty tree is empty list, while that of a nonempty tree is that of the left
subtree, the root, and that of the right subtree concatenated into a single list.
(Try to solve it with single append/3 call in the rule body.) A more refined version
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avoids the append/3 calls, and it has linear time complexity: we generalize the
problem to append the inorder traversal of a tree before a list. (Consider the
note of Exercise 16.6.)

Tip 16.5. The time complexity of the solutions should be proportional to the
height of the search tree. (Consider the note of Exercise 16.6.) This effectivity
can be achieved by distinguishing the cases of empty and nonempty trees: the
recursive cases go down into the appropriate subtree.

Tip 16.6. Generalize Insertsort to sorted_inserts(Xs, As, Ys) inserting the el-
ements of Xs into the sorted list As. Try to give tail recursive solutions. In
Mergesort the base cases are the empty list, and the lists of a single item. Longer
lists are divided into two lists of approximately equal lengths. (Use divide/3
from Exercise 16.3 to divide a list.) The two lists are sorted with Mergesort, and
then results are merged in a sorted way. The code of this sorted merge is similar
to the code of sorted_union/3 from Exercise 16.3, except that the duplicates
are preserved.

Note: If we use sorted_union/3 in Mergesort instead of sorted merge, we
receive unionsort/2 which is equivalent to sort/2 in Section 16.11.

Tip 16.7. Recursively, a ground term is an atomic or a compound with ground
arguments. Note: Although predicate ground/1 is not part of the Prolog stan-
dard, many implementations contain it with the obvious meaning.

Tip 16.8. As a first try, one may assert the first parameter of find_all/3 for
each solution of the second argument (the parameterizing goal) into a dynamic
predicate local to the module. You may use assertz/1 for this purpose. Then
(using retract/1) you can retract the asserted facts while collecting the param-
eters into a list applying step-by-step approximation of the output (16.5.2).

It is a useful initialization of find_all/3 to delete each possible clauses of
the dynamic predicate used for collecting the solutions. In this way one gets rid
of the garbage left by any previous run propagating an exception.

Another problem is risen if one wants to embed a call to find_all/3 into
another invocation to it. Let us see a simple example of the appropriate be-
haviour (the example is a bit artificial, because Xs = Zs, but hopefully easy to
understand):

| ?- find_all( Zs+Ys,

( append(Xs,Ys,[1,2,3]),

find_all(Z,member(Z,Xs),Zs) ),

As ).

As = [[]+[1,2,3],[1]+[2,3],[1,2]+[3],[1,2,3]+[]]

Unfortunately, if the method above were programmed in a straightforward way,
the inner invocation of find_all/3 could modify the partial results of the outer
one, because they use the same dynamic predicate to collect their solutions. In or-
der to solve this problem we have to identify levels of the embedded find_all/3
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invocations, and each invocation works only at its level. In addition, if a goal
parameterizing a find_all/3 call propagates an exception, still we have to
restore the outer level.

Tip 16.9. They have similar parameters to those of findall/3, and both of them
collects (the) solutions of the parameterizing goal into a strictly increasing list
omitting multiple solutions. But consider the role of variable quantification in
setof/3. You may also try to use alternatively collect/3, and setof/3 instead
of findall/3 in Exercise 16.11. Be careful, because in some cases setof/3 may
fail (but it is easy to overcome this difficulty). You may also try to measure
the the effeciency of the different solutions. Unfortunately, the way of these
measurements is implementation dependent in Prolog.

Tip 16.10. Using the trivial proper list representation, the maximal and average
computational complexity of the operations add(Q, X, QX), and rem(XQ, X, Q) are
O(n) where n is the length of the queue. (We suppose that the frequency of
these operations is the same.) For example, one may use the trivial proper
list representation where a nonempty queue has the form [X1, X2, ..., XN] and
[] represents the empty one. Then the computational complexity of add is linear,
and that of rem is constant, therefore the average computational complexity of
add and rem is also linear. (If a nonempty queue had the form [XN, ..., X2, X1],
the computational complexity of add would be constant, but that of rem would
be linear.)

If we use a clever double-stack representation, the average computational
complexity of these operations become Θ(1).

In this representation d([X1, ..., XM], [YN, ..., Y1]) represents the abstract queue
< X1, ..., XM, Y1, ..., YN >; add pushes a new item into the second stack (as the new
first item of the list representing the second stack) with constant computational
complexity; rem removes the topmost item of the first stack (that is the first
item of the list representing it) also with constant computational complexity,
provided that the first stack is nonempty. But if that first stack (i.e. list) is
empty, we have to check the second one. If it is empty, the operation fails. If
it is nonempty, we can reverse this second list and move it into the first one.
Then we can remove its first item as before. The problem is that the compu-
tational complexity of the reverse operation is linear, and therefore sometimes
the computational complexity of the rem operation is also linear. Besides this,
the average computational complexity of these operations is still Θ(1), because
considering

rem( d( [], [Y|Ys] ), FirstItem, ResultQueue )

[Y|Ys] is as long as the number of add calls before the actual reverse call inside
rem (but not before any previous reverse call inside rem). Therefore, the cost of
the actual reverse call can be scattered among those add calls when we calculate
the average computational complexity of add and rem, and so it is Θ(1).
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If we use a pair of partial lists where the second component is the logical
variable at the end of the first partial list, we are able to succeed in reducing
the maximal computational complexity of these operations to Θ(1). Using this
representation an empty queue has this form: Z − Z, and a nonempty queue
has this form: [P1, P2, ..., PN|Z] − Z (var(Z) must be true in both cases). If one
checks the solution, one finds that the implementation is somewhat tricky and
considering a queue which is the input of an add operation, its second component
is better to be a var. But after the add call this property of the input queue
does not stand. Therefore, it does not clearly fit any add operations any more.
A rem operation does not change the second component of the queue. Therefore,
if a rem is performed on queue Q resulting in queue Qr, and then an add is
performed on queue Q resulting in queue Qa, then even the second component
of Qr is a nonvar, and it should not be used for subsequent queue operations.
However, for practical purposes it is usually enough that in a linear sequence of
queue operations the output queue of any operation can be used as the input
queue of the next operation.

Tip 16.11. A breadth-first-search (BFS) of a graph begins with a chosen start
node.20 Then it explores the children of the start node, then the nodes available
through at least two arcs (edges), then those available through at least three
arcs, and so on. BFS may have goal node(s). If yes, it stops when a goal node
is achieved. Otherwise it goes on until each node accessible from the start node
is explored. (Therefore, it terminates iff the number of nodes accessible from
the start node is finite or there is a goal node accessible from the start node.)
In BFS the parent of a node is defined as the node from which it was found
first. During the search for each node visited BFS usually records a reference to
its parent, in order to record a shortest path from the start node to the actual
node through these backward references (and the parent reference of the start
node is somewhat extremal). The key operation of BFS is expanding a node
which means collecting its children. Also we need the set of visited nodes, and a
queue containing the nodes already visited but still not expanded. The algorithm
initializes the queue with the start node. In each step it removes the first element
of the queue, expands it, and puts its unvisited children at the end of the queue.
If it is relevant, the goal property of a node is checked immediately before it is
put into the queue. Instead of booking the parent references of the visited nodes,
in Prolog the queue of BFS may contain nonempty lists: the first element of such
a list is the node to be expanded, the second element is its parent, the third one
is its grandparent, and so on, the last element of the list is always the start node.
Therefore, such a list with a given first node always contains a shortest path to
this node.

Tip 16.12. The solution is straightforward. However, one may get rid of the costs
of appending the parts of the result at each level of recursion, and this is not

20 We suppose that the graph is locally finite, i.e. there is no node with infinitely many children.
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trivial. One may use the so called d-lists, i.e. pairs of (partial or proper) lists
where the second list is a suffix of the first one.

16.18 Solutions

Solution 16.1. The search tree of append (Xs,Ys,[1,2,3])

%% append_(Xs,Ys,[1,2,3]): apply the algorithm of
%% goal reduction to this query.

%% Draw the corresponding search tree.
%% (explanation of notations at Section "Clues")

?- append_(Xs,Ys,[1,2,3]). % g0

{ Xs <- [], Ys <- [1,2,3] } % a(0,1)
Xs = [], Ys = [1,2,3] % s1

{ Xs <- [1|Xs0] } % a(0,2)

append_(Xs0,Ys,[2,3]). % g1
{ Xs0 <- [], Ys <- [2,3] } % a(1,1)

Xs = [1|Xs0] = [1|[]] = [1], Ys = [2,3] % s2
{ Xs0 <- [2|Xs1] } % a(1,2)
append_(Xs1,Ys,[3]). % g2

{ Xs1 <- [], Ys <- [3] } % a(2,1)
Xs = [1|Xs0] = [1,2|Xs1] = [1,2], Ys = [3] % s3

{ Xs1 <- [3|Xs2] } % a(2,2)
append_(Xs2,Ys,[]). % g3

{ Xs2 <- [], Ys <- [] } % a(3,1)
Xs = [1,2|Xs1] = [1,2,3|Xs2] = [1,2,3], Ys = [] % s4

{ match([],[X3|Zs3]) fails } % a(3,2)

Solution 16.2. Family relationships
family(’Abraham’,’Sarah’,[’Isaac’,’Anon’]).
family(’Abraham’,’Hagar’,[’Ishmael’]).

family(’Isaac’,’Rebeka’,[’Jacob’,’Esau’]).
family(’Jacob’,’Rachel’,[’Joseph’,’Benjamin’]).
family(’Jacob’,’Leah’,[’Reuben’,’Simeon’,’Levi’,’Judah’,

’Issachar’,’Zebulun’]).
family(’Joseph’,’Asenath’,[’Manasseh’,’Ephraim’]).

brother_or_sister(X,Y) :-
family(_,_,Xs),

member(X,Xs), member(Y,Xs), X \== Y.

aunt_or_uncle(X,Y) :-
brother_or_sister(X,Z),
( family(Z,_,Cs) ; family(_,Z,Cs) ),

member(Y,Cs).

parent_in_law(X,Y) :-
( family(X,_,Cs) ; family(_,X,Cs) ),
member(C,Cs),

( family(C,Y,_) ; family(Y,C,_) ).

Solution 16.3. Basic operations on lists
%% PreCond: Xs or Ys is proper list.

%% prefix(Xs,Ys) :- Ys is a prefix of Xs.
prefix(_Xs,[]).
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prefix([X|Xs],[X|Ys]) :- prefix(Xs,Ys).

%% PreCond: Xs is proper list.

%% suffix(Xs,Ys) :- Ys is a suffix of Xs.
suffix(Xs,Xs).

suffix([_X|Xs],Ys) :- suffix(Xs,Ys).

%% PreCond: Xs is proper list.

%% sublist_x(Xs,Ys) :- Ys is a continuous sublist of Xs.

%% a: Suffix of a prefix
sublist_a(Xs,Ys) :- prefix(Xs,Ps), suffix(Ps,Ys).

%% b: Prefix of a suffix
sublist_b(Xs,Ys) :- suffix(Xs,Ss), prefix(Ss,Ys).

%% c: Recursive definition of a sublist

sublist_c(Xs,Ys) :- prefix(Xs,Ys).
sublist_c([_X|Xs],Ys) :- sublist_c(Xs,Ys).

%% PreCond: Xs is proper list.
%% subseq(Xs,Ys) :-

%% Ys is a possibly discontinuous subsequence of Xs.
subseq([],[]).

subseq([X|Xs],[X|Ys]) :- subseq(Xs,Ys).
subseq([_X|Xs],Ys) :- subseq(Xs,Ys).

%% PreCond: Xs is proper list.
%% divide(Xs,Odds,Evens) :- in their original order, the

%% first, third, fifth, etc. items of Xs are in Odds, the
%% second, fourth, sixth, etc. items of Xs are in Evens.

divide([],[],[]).
divide([X|Xs],[X|Ys],Zs) :- divide(Xs,Zs,Ys).

%% PreCond: Xs and Ys are proper lists, sorted strictly
%% increasingly according to the standard order.

%% sorted_union(Xs,Ys,Us) :-
%% Us contains the sorted union of Xs and Ys.
sorted_union([],Ys,Ys).

sorted_union([X|Xs],[],Us) :- !, Us = [X|Xs].
sorted_union([X|Xs],[Y|Ys],Us) :-

( X @< Y -> Us = [X|Zs], sorted_union(Xs,[Y|Ys],Zs)
; X @> Y -> Us = [Y|Zs], sorted_union([X|Xs],Ys,Zs)

; Us = [X|Zs], sorted_union(Xs,Ys,Zs)
).

Solution 16.4. Inorder traversals of a binary tree
%% PreCond: Tree is a binary tree represented as follows.

%% o - empty tree
%% t( LeftSubTree, Root, RightSubTree ) - nonempty tree
%% inorder(Tree,Is) :- the inorder traversal of the data

%% in Tree results proper list Is.
inorder(o,[]).

inorder(t(Lt,X,Rt),Xs) :-
inorder(Lt,Ls), inorder(Rt,Rs), append(Ls,[X|Rs],Xs).

%% The optimized version of predicate inorder/2.
%% Without appends, linear time complexity.

inorder_opt(T,Is) :- inorder_app(T,[],Is).

%% inorder_app(Tree,List,Is) :- the inorder traversal
%% of Tree appended before List results Is.
inorder_app(o,Xs,Xs).

inorder_app(t(Lt,X,Rt),Xs,Is) :-
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inorder_app(Rt,Xs,Ys), inorder_app(Lt,[X|Ys],Is).

Solution 16.5. Basic operations on binary search trees
%% The usual operations of proper binary search trees
%% (creating an empty tree, inserting a given piece of data,

%% checking for it, deleting it:
%% the search trees must not contain duplications).

%% empty_tree(T) :- T is an empty tree.
empty_tree(o).

%% PreCond: T is proper binary search tree.

%% tree_ins(T,X,TX) :- TX proper binary search tree is
%% received by the sorted insert of X into T.
tree_ins(o,X,t(o,X,o)).

tree_ins(t(Lt,Root,Rt),X,TX) :-
( X @< Root -> TX = t(LXt,Root,Rt), tree_ins(Lt,X,LXt)

; X @> Root -> TX = t(Lt,Root,RXt), tree_ins(Rt,X,RXt)
; TX = t(Lt,Root,Rt)

).

%% PreCond: T is proper binary search tree.

%% tree_has(T,X) :- T contains item X.
tree_has(t(Lt,Root,Rt),X) :-

( X @< Root -> tree_has(Lt,X)
; X @> Root -> tree_has(Rt,X)
; true

).
%% Queries like tree_has(o,X) automatically fail.

%% PreCond: TX is proper binary search tree.

%% tree_del(TX,X,T) :- T proper binary search tree is
%% received by the sorted delete of X from TX.
tree_del(t(Lt,Root,Rt),X,T) :-

( X @< Root -> T = t(Ldt,Root,Rt), tree_del(Lt,X,Ldt)
; X @> Root -> T = t(Lt,Root,Rdt), tree_del(Rt,X,Rdt)

; Rt == o -> T = Lt
; Lt == o -> T = Rt
; T = t(Lt,Min,Rmt), Rt = t(L,Y,R),

out_min(L,Y,R,Min,Rmt)
).

%% PreCond: t(L,X,R) is a proper binary search tree.

%% out_min(L,X,R,Min,Tm) :-
%% the leftmost element of the proper binary tree
%% t(L,X,R) is Min, the remaining tree is Tm.

out_min(o,Min,Rt,Min,Rt).
out_min(t(L,X,R),Y,Rt,Min,t(Lm,Y,Rt)) :-

out_min(L,X,R,Min,Lm).

Solution 16.6. Sorting lists
%% PreCond: Xs is a proper list.
%% insertsort(Xs,Ys) :- proper list Ys contains

%% the items of Xs increasingly sorted according to the
%% standard order of Prolog terms.

insertsort(Xs,Ys) :- sorted_inserts(Xs,[],Ys).

%% PreCond: Xs is a proper list.

%% sorted_inserts(Xs,As,Ys) :- sorted insert of
%% the items of proper list Xs into the sorted

%% proper list As results sorted proper list Ys.
sorted_inserts([],Ys,Ys).

sorted_inserts([X|Xs],As,Ys) :-
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insert_sorted(As,X,Bs), sorted_inserts(Xs,Bs,Ys).

%% PreCond: As is an increasingly sorted proper list.

%% insert_sorted(As,X,Bs) :- sorted insert of X
%% into As results the increasingly

%% sorted proper list Ys.
insert_sorted([],X,[X]).
insert_sorted([Y|Ys],X,Zs) :-

( X @=< Y -> Zs = [X,Y|Ys]
; Zs = [Y|Us], insert_sorted(Ys,X,Us)

).

%% PreCond: Xs is a proper list.
%% mergesort(Xs,Ys) :- proper list Ys contains
%% the items of Xs increasingly sorted

%% according to the standard order of Prolog terms.
mergesort([],[]).

mergesort([X|Xs],Ys) :- mergesort(Xs,X,Ys).

%% PreCond: Xs is a proper list.
%% mergesort(Xs,X,Ys) :- proper list Ys contains
%% the items of [X|Xs] increasingly sorted

%% according to the standard order of Prolog terms.
mergesort([],X,[X]).

mergesort([Y|Ys],X,Zs) :-
divide(Ys,As,Bs),
mergesort(As,X,Es), mergesort(Bs,Y,Fs),

sorted_merge(Es,Fs,Zs).

%% PreCond: Xs,Ys: increasingly sorted proper lists.
%% sorted_merge(Xs,Ys,Zs) :- proper list Zs is

%% the result of the sorted merge of Xs and Ys.
sorted_merge([],Ys,Ys).
sorted_merge([X|Xs],[],Ms) :- !, Ms = [X|Xs].

sorted_merge([X|Xs],[Y|Ys],Ms) :-
( X @< Y -> Ms = [X|Zs], sorted_merge(Xs,[Y|Ys],Zs)

; X @> Y -> Ms = [Y|Zs], sorted_merge([X|Xs],Ys,Zs)
; Ms = [X,Y|Zs], sorted_merge(Xs,Ys,Zs)
).

%% Note: if we use sorted_union/3 instead of sorted_merge/3,

%% we receive a strictly increasing list, duplicates removed:

unionsort([],[]).
unionsort([X|Xs],Ys) :- unionsort(Xs,X,Ys).

unionsort([],X,[X]).
unionsort([Y|Ys],X,Zs) :-

divide(Ys,As,Bs), % See Exercise 3.
unionsort(As,X,Es), unionsort(Bs,Y,Fs),
sorted_union(Es,Fs,Zs). % See Exercise 3.

Solution 16.7. Checking, whether a term is ground or not
%% ground_(Term) :- Term is a ground.
ground_(Term) :-

( atomic(Term) -> true
; compound(Term),

functor(Term,_F,N), ground_args(N,Term)

).

ground_args(N,Term) :- N>1,
arg(N,Term,A), ground_(A),
N1 is N-1, ground_args(N1,Term).

ground_args(1,Term) :-



16.18 Solutions

•
1007

arg(1,Term,A), ground_(A).

Solution 16.8. Implementing the predefined predicate findall/3

%% find_all(X,Goal,Xs) :- findall(X,Goal,Xs).

:- module( findall, [ find_all/3 ] ).

:- meta_predicate find_all(?,:,?).

:- dynamic((solution/2, counter/1)).

set_counter(C) :-

retractall(counter(_)),
asserta(counter(C)).

:- set_counter(1).

find_all(X,Goal,Xs) :-
counter(I),

%% to handle embedded calls to find_all/3:
I1 is I+1, set_counter(I1),
catch(

(
%% clear things, if an old goal crashed:

retractall(solution(I,_)),
%% assert solutions at the Ith level:
Goal, assertz(solution(I,X)), fail

;
collect_solutions(I,Xs),

set_counter(I)
),

Error,
( set_counter(I),

throw(Error)

)
).

collect_solutions(I,Ys) :-
( retract(solution(I,X)) ->

Ys = [X|Xs], collect_solutions(I,Xs)
; Ys = []

).

Solution 16.9. Collecting solutions without duplications
.
%% Compare the standard Prolog predicate setof/3

%% to our predicate collect/3.
Predicate setof/3 is less effective than collect/3, but it is more complex

and it has more expressive power: it may produce more sets of solutions through
backtracking depending on the variable quantifications of the goal parameteriz-
ing setof/3. However, this extra expressive power is useless in many practical
applications. Also, collect/3 never fails, and produces exactly one set of solu-
tions, but setof/3 fails iff the parameterizing goal has no (more) solutions.

Solution 16.10. Queue handling and Prolog modules
%% Implement the standard operations of queues in a module.

%% empty(Q): Q is empty queue (create and check).
%% add(Q,X,QX): add X to the end of Q.

%% rem(XQ,X,Q): remove the first item of queue XQ.
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:- module( queue3,
[ empty0/1, add0/3, rem0/3,

empty/1, add/3, rem/3,
emptyq/1, addq/3, remq/3 ] ).

%% proper list representation:
%% A queue has the form: [X1,X2,...,XN]

empty0([]).

%% add0/3 has linear computational complexity:

add0([],X,[X]).
add0([Y|Ys],X,[Y|Zs]) :- add0(Ys,X,Zs).

rem0([X|Xs],X,Xs).

%% double-stack representation:

%% d([X1,...,XM],[YN,...,Y1]) represents
%% the abstract queue <X1,...,XM,Y1,...,YN>

empty(d([],[])).

add(d(Xs,Ys),E,d(Xs,[E|Ys])).

rem(d(Xs,Ys),E,ResultQueue) :-

( Xs = [Z|Zs] -> E = Z, ResultQueue = d(Zs,Ys)
; % Xs == [], Ys \== [],

reverse(Ys,[E|Us]), ResultQueue = d(Us,[])
).

:- use_module( library(lists), [reverse/2] ).

%% Queue represented with a pair of partial lists
%% where the second component is the logical variable

%% at the end of the first partial list:
%% a nonempty queue has this form: [P1,P2,...,PN|Z]-Z
%% and an empty queue has this form: Z-Z

%% where var(Z) must be true.

emptyq(Q-Q) :- var(Q).

addq(Q1-[ITEM|Y],ITEM,Q1-Y).

%% A call: addq([P1,P2,...,PN|Z]-Z,ITEM,R).

%% After the call: Q1 = [P1,P2,...,PN|Z],
%% Z = [ITEM|Y], R = Q1-Y.

%% Therefore: R = [P1,P2,...,PN,ITEM|Y]-Y.

remq([H|T]-Z,H,T-Z) :-

[H|T]\==Z. % the input queue was nonempty

%% Using this last representation
%% each single operation needs a constant number of LI

%% (Logical Inferences = predicate invocations).

Solution 16.11. Shortest path
%% Graph-search with breadth-first-search strategy.

%% breadth_first_search(Start,Goal,SolPath) :-
%% SolPath is a proper list of nodes representing a path
%% of the minimal length (i.e.optimal) from Start to Goal.
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breadth_first_search(Start,Goal,SolPath) :-
ground(Start), ground(Goal),
( Start == Goal -> SolPath = [Start]

; empty(InitQueue), add(InitQueue,[Start],Queue),
bfs(Queue,[Start],Goal,SolPath)

).

:- use_module( solution10_lp, [ empty/1, add/3, rem/3 ] ).

%% Queue is a queue of lists of the form [Node|Ancestors]

%% where Node\=Goal, and to Node we have found an optimal
%% path but Node has not been expanded. Ancestors consists

%% of the ancestors of Node on this optimal path starting
%% with its parent. Visited contains the visited nodes.

bfs(Queue,Visited,Goal,SolPath) :-
rem(Queue,[Node|Ancestors],RemainderQueue),

children(Node,Children,Visited),
( has(Children,Goal) ->

reverse([Goal,Node|Ancestors],SolPath)
; process_children(Children,[Node|Ancestors],

RemainderQueue,ResultQueue),

append(Children,Visited,NewVisited),
bfs(ResultQueue,NewVisited,Goal,SolPath)

).

:- use_module( library(lists), [ reverse/2 ] ).

%% expansion: Children is the list of

%% the unvisited children of Node.

children(Node,Children,Visited) :-
findall(Child,child(Node,Child,Visited),Children).

%% Child is an unvisited child of Node.

child(Node,Child,Visited) :-
arc(Node,Child), \+ has(Visited,Child).

has([X|Xs],Y) :-
( X == Y -> true

; has(Xs,Y)
).

%% Add the children with their ancestors to RemainderQueue.

process_children( [FirstChild|Children], Ancestors,
RemainderQueue, ResultQueue ) :-

add(RemainderQueue,[FirstChild|Ancestors],TempQueue),
process_children(Children,Ancestors,TempQueue,

ResultQueue).

process_children([],_Ancestors,ResultQueue,ResultQueue).

/* Test data */

%% Acyclic component
arc(a,b). arc(a,c). arc(a,d). arc(a,e).

arc(b,f). arc(b,i).
arc(c,f). arc(c,g).

arc(d,j).
arc(e,k).
arc(f,h). arc(f,i).

arc(g,h).
arc(j,g).
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arc(k,j).

%% Cyclic component

arc(x,y). arc(y,z). arc(z,x).
arc(y,u). arc(z,t).

/*
a------>b-------->i

/|\ \ /
| | \ \ / __________

| | \ \ / / \
| V V V/ V \

| d c------>f---->h x----->y----->z
| \ \ / | |
| \ \ / | |

| \ \ / V V
| \ \ / u t

| \ \ /
V V V/

e-->k-->j-->g
*/

%% | ?- breadth_first_search(a,g,Sol).
%% Sol = [a,c,g]

%% | ?- breadth_first_search(a,i,Sol).
%% Sol = [a,b,i]
%% | ?- breadth_first_search(x,t,Sol).

%% Sol = [x,y,z,t]

Solution 16.12. Quicksort and d-lists
%% PreCond: Xs is a proper list.

%% quicksort(Xs,Ys) :- proper list Ys contains
%% the items of Xs increasingly sorted according to the
%% standard order of Prolog terms.

%% Note:
%% Our quicksort selects the first item X of a nonempty list,

%% and separates the remainder of the list into two lists.
%% The first list contains the items smaller than X.
%% The second list contains the items greater than X.

%% (The items equal to X can go into either of them.)
%% Then the two lists are sorted recursively.

%% The resulting list is generated from the two sorted lists
%% with X as a middle element: these are concatenated together.

quicksort0([],[]).
quicksort0([X|Xs],Ys) :-

separate(Xs,X,Smallers,Greaters),

quicksort0(Smallers,Littles),
quicksort0(Greaters,Bigs),

append(Littles,[X|Bigs],Ys).
separate([],_X,[],[]).
separate([Y|Ys],X,Ss,Gs) :-

( Y @< X -> Ss = [Y|Ls], separate(Ys,X,Ls,Gs)
; Gs = [Y|Bs], separate(Ys,X,Ss,Bs)

).
%% One may use d-lists to get rid of the costs of append/3:

quicksort(Xs,Ys) :- quicksort(Xs,Ys,[]).
%% quicksort(Xs,Ys,Zs) :-
%% d-list Ys-Zs represents the sorted Xs

%% where list Zs is a suffix of list Ys.
%% Note: d-list [Y1,...,Yn|Zs]-Zs represents

%% sequence <Y1,...,Yn>, and
%% d-list Zs-Zs represents sequence <>.
quicksort([],Zs,Zs).

quicksort([X|Xs],Ys,Zs) :-
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separate(Xs,X,Smallers,Greaters),
quicksort(Smallers,Ys,[X|Bigs]),
quicksort(Greaters,Bigs,Zs).

Final remark: Remember to TEST, what happens, if

you force BACKTRACKING into your Prolog program?
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The main goal of this chapter is to present
aspect-oriented programming as a new programming
paradigm. After presenting the main reasons which
lead to the creation and spreading of this new
approach, its novelty will be described. Afterward
some programming languages will be discussed
which support this method, amongst these the
AspectJ language will be introduced in more details.
Finally, we look at some software development
approaches related to aspect-oriented programming.



I

n the 70’s the so called software crisis fundamentally changed the approach
and methods of computer programming, propagating the structured, mod-
ular and object-oriented programming. Similarly, nowadays it is more and

more noticeable that the developers of the programs are not able to adapt in
speed and quality on the one hand, to Moore’s law,1 on the other hand, to the
increasing rate of spreading of IT equipment in the public.

Object-oriented programming in that time was perhaps the best possible
answer to the demands for clear and in that way, safer programming and for
code reusability. These reason its widespread and de facto monopoly. This all
was backed up by the standardization process introduced in modeling by UML.

As a general method and a programming language oriented approach, the
OOP (and the UML) could not solve two problems. On the one hand, as it
only helps general software modeling, in its original form it is only marginally
suitable to solve the abstraction of application areas (such as business logic, 3D
graphical modeling, controlling of telecommunications protocols, bank account
management) and of software development aspects (such as logging, managing
security services, network communication) or to support their standardization.

On the other hand, the UML based round-trip engineering solutions are
only partially suitable for integrating legacy systems with new programs and for
designing and generating complex software systems written in different languages
and on various platforms.

For these problems numerous new methodologies try to find a solution. Such
a methodology is, for example, the aspect-oriented programming [Kicz97], the
multi-dimensional separation of concerns, the intentional programming ([IP-
faq03] and [Sim99]), or the generative programming [CE00]. Amongst all of
these methodologies the most mature and widely used is the aspect-oriented
programming.

1 Gordon Moore, the co-founder of Intel discovered in the 70’s the regularity that the
computational capacity of IT equipment is doubled in every 18 months. His thesis is
confirmed, and this law is expected a few more decades to be valid.
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Aspect-oriented programming is a programming paradigm that was born in
the middle of the nineties. Nowadays, it is in the center of programming language
research, and for sure, in the near future it will spread widely. About related
methodologies, languages and features (even those discussed in this chapter) to
the aspect-oriented programming, the research following [AOSD12] provides a
detailed reference list.

The aspects are such functionally coherent program parts which can be
found scattered2 throughout the various parts of the source code in a program
without the possibilities of AOP. In this way, the aspects implement a new
kind of modularization feature which can make the separation of the various
concerns [Dij76] of the software more perfect.

There are numerous aspect-oriented methods and constructs nowadays. The
best known amongst these is the AspectJ for Java which will be discussed later
in detail.

17.1 Overview of AOP

Software design methods and the programming languages mutually support each
other. The modeling and designing methodologies brake down systems gradually
into smaller and smaller units. The programming languages apply solutions in the
opposite direction: they allow the developers to create abstractions representing
subunits of the system, and by combining these in various ways to assemble the
ready software product.

A design method and a programming language can efficiently work together,
if the language offers such abstraction and composition services which support
in an easily usable and natural way those elemental units to which the design
method decomposes the systems.

In this regard, most of the object-oriented the procedural and the functional
programming languages (described these as traditional programming languages
for the sake of simplicity) function in a similar way. Those system design methods
which were developed together with the traditional programming languages
decompose the program based on behavior or functionality. This approach is
usually called as functional decomposition. Of course, the kind of decompositions
can greatly differ according to the languages and paradigms, but the language
elements (function, procedure, module, object) are always the functional units
of the big systems.

The last statement may seem too obvious, but becomes significant, since the
aspect-oriented programming discussed in this chapter does this “orthogonally”
to the above mentioned functional decomposition.

2 The technical literature uses the notions scattered code and tangling code. The first means
the scattering of the functionally coherent code parts and inadequate modularization, the
last is a consequence of this: “tangling” refers to the increased complexity of the program
product.
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17.1.1 Aspets and omponents

Every program has parts which exist independently of the currently analyzed
functionality in every subprogram, object or module resulting from the functional
decomposition. Such elements are often program codes for synchronization, error
handling, network communication or logging.

These details appear on many locations in nearly or exactly the same way, so
they increase the size of the code unnecessarily, but during the design based on
the traditional functional decomposition they are usually not grouped together
into a separate program unit, because they do not represent separate elements in
the functional logical structure of the system. If something changes in the above
mentioned functionality, this leads to program modification demands on many
locations at the same time which decreases the maintainability of the program.

For the proper handling of this situation aspect-oriented programming was
introduced which could be defined the following way:

• Components are those program units which are the natural results of the
functional decomposition of the system. (Object, method, procedure etc.)

• Aspects are those program parts which are not a natural result of the
functional decomposition, but influence the behavior and efficiency of the
system in some other systematic manner.

• After this, the goal of the aspect-oriented programming can be defined
the following way: the components and aspects within the system should
be separated with such methods and constructs which enable proper
abstraction and the efficient composition of the system.

According to the above definition the AOP languages differ from the tra-
ditional programming languages mostly in two things. On the one hand, they
support the decomposition of the programs by the abstraction of the components
and aspects (so for example everything about logging could be described as a
separate program unit), on the other hand, they also enable the natural and easy
merging of the components and the aspect.3 The latter is called by the technical
literature as weaving which could be done by a precompiler or a compiler (like
in AspectJ), or even in runtime (like in JMangler or PROSE).

17.1.2 Aspet desription languages

In order for the aspect-oriented solutions to be able to live together with the
existing languages in a natural way, such languages are usually defined which are

3 Also the traditional programming languages contain isolated aspect-like elements. Amongst
these the most obvious analogy could be the aspect-oriented interpretation of the exception
handling. For example, in Java the behavior of the various exceptions can be described in
separate modular units (Exception classes), the functionality and the exception handlers
can be combined by explicit statements (try, catch). Of course the AOP is capable of more
complex things than this (since the programmer here has to explicitly give instructions for
the decomposition yet).
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built into traditional languages extending them with the capability to define as-
pects and connect these aspects with the traditional parts of the program. These
language extensions are called aspect description languages. Aspect description
languages can be either specific, or for general use. Amongst the former can
be found, for example, synchronization languages, languages aiding distributed
programming or enabling monitoring (see e.g. [Lop97] and [GK99]), but this
might include also the deployment descriptors from the nowadays so popular
Enterprise JavaBeans technology which enables to specify the transaction as-
pects of the EJB business methods [Sun03]. General purpose aspect description
languages are not specialized for a given kind of aspect description, but enable
to specify and compose aspects implementing arbitrary functionality. Such a
language is, for example, the AspectJ.

Considering the above, the requirements for the aspect-oriented implemen-
tation of an application are the following:

• – There must be a traditional language suitable for component de-
scription.

– There must also be one or more aspect description language(s).
• To combine these languages, appropriate weaver programs must exist.
• – The components must be written in the traditional language, focus-

ing on their functional role.

– The aspects must be written using the appropriate aspect description
language(s).

Aspect description languages differ from traditional languages usually in a visible
way, since according to their nature they often contain declarative and imperative
parts equally. The role of the imperative parts is obvious: these contain the
operations which will form the implementation of each aspects. The declarative
parts are usually made of rules which control the weaver program how and with
which part of which components written in the traditional language have the
behavior of the aspects to be connected with. This will be discussed in the next
section in more detail.

17.1.3 Aspet weavers

The task of the aspect weavers is to assemble the whole system using the program
parts written in the traditional and in the aspect description languages. The
operation of the weavers is controlled by so called join points. The join points
specify – based on the semantics of the traditional languages – where the aspects
can join into the functioning of the components.

Join points can be, for example, the data streams between components or
the entry points of the methods. These two examples also show that join points
are not always explicitly defined by syntactical language elements, but also by
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knowing the semantics (visibility and scope rules of variables, polymorphism and
dynamic linking, etc.) of the language.

Due to the above the aspect weavers function in such a way that they first
explore the (possible) join points of the component program, then they match
these with the behavior of the aspects.

17.2 Introdution to AspetJ

The AspectJ [Kicz01] is a natural extension to the Java language: every Java
program is also an AspectJ program, the programs produced by AspectJ can be
executed by every JVM, the Java development tools can be naturally extended
to AspectJ development tools, and the syntax of AspectJ is extending Java in a
way that the Java programmers can consider it as a natural part of the language.

AspectJ was originally developed by XEROX PARC (Palo Alto Research
Center) led by Gregor Kiczales. Today the development of AspectJ is coordinated
by the Eclipse project [Ecl03].

To give a complete description of them is not our goal here, we would only
like to demonstrate the approach, the particular aspect-oriented perception of
the AspectJ.

17.2.1 Elements and main features of AspetJ

The main elements of the language: dynamic join points, pointcuts, advices, and
introductions which could be combined into aspects.

• The dynamic join points refer to such events of the program execution, like
a method call, receiving a method call, execution of the method, getting
the attribute values, throwing exceptions, initialization of the classes and
objects etc.

• The pointcuts specify sets of dynamic join points. From these pointcuts
newer ones may be formed by the use of various set operations.

• The advices are such method-like operations which describe the opera-
tions assigned to a pointcut (executed before and/or after the event).

• The introductions enable to introduce required members (auxiliary vari-
ables and methods) for the implementation of the aspects.

• The aspects are modular units consisting of the three elements above.

In order to be able to clearly decide in what order the advices (even from multiple
aspects) matched to a join point should be executed during run time, between
and within the aspects there are well defined precedence relations. Beside this
an inheritance relation can also be defined between the aspects.
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17.2.2 A short AspetJ example

The next example shows how logging could be implemented using the construc-
tions of the AspectJ.

The SimpleErrorLogging aspect below specifies that throwing an Error ex-
ception in any public method of all the classes of the package hu.elte.inf should
cause its logging.

aspect SimpleErrorLogging {

Log log = new Log();

pointcut publicCalls():
receptions(public * hu.elte.inf.*.*(. .));

after() throwing (Error e): publicCalls() {

log.log(e);

}

}

The declaration and initialization of the log variable is an introduction which
is a traditional member variable declaration in its form. The new variable is not
a member of an object or of a class, but of the SimpleErrorLogging aspect.
AspectJ also supports introductions, for instance, or class level members for one
or multiple classes.

The publicCalls pointcut specifies a set of method calls: this is signaled by
the receptions keyword. After this keyword follow the descriptions of the desired
methods where joker characters can also be used. The specified methods in
this pointcut are public, and from the package hu.elte.inf . The class from this
package is not specified: this is indicated by the second * joker character. The
third * joker character allows any method names, the first and the (. .) symbols
mean any return values and any formal parameter lists.

The last element within the aspect is the advice which implements the
behavior (logging), and specifies when this behavior should be executed for
the method calls defined by the above mentioned publicCalls pointcut (after
throwing an Error exception). The aspect weaver will match the logging to those
dynamic join points where the given exception is thrown in a given method.

17.2.3 Development tools and related languages

Nowadays there are AspectJ extensions for many development tools (such as
Eclipse, JBuilder, Forte 4J, SunOne Studio, Emacs) and support for other tools
will keep coming. There is also a “native” development tool for AspectJ called
AspectJ Browser. This allows to browse the language elements of the program
in the usual way. For Java subprograms the joining aspects can be shown, and
vice versa.
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There are AspectJ-like extensions also for other languages. Such languages
are, for example, the C, C++, C#, Perl, Python, Ruby or Smalltalk. These
extensions have not reached the level of development, support and penetration,
as AspectJ does.

17.3 Paradigms related to AOP and their implementations

Following are some related paradigms to AOP. There are some amongst them
which could be seen as the predecessor of AOP (adaptive programming), or
as a special case of it (multi-dimensional separation of concerns, generative
programming), and there are others born with similar reasons, but based on
different principles.

17.3.1 Multi-dimensional separation of onerns (MDSC)

This methodology can be seen as a generalization of the aspect-oriented pro-
gramming, it was developed by IBM led by Harold Ossher and Peri Tarr. The
MDSC [MDSC02] is such a paradigm which tries to break the tyranny of the
dominant decomposition. This means that during the design of the system the
subsystem should, even must be constructed not only in a single way, but in
multiple ways according to multiple reference systems (dimensions). The former
mentioned functional decomposition breaks down the system into components
only in a single way (in one dimension of the references). Besides this to get
clear, easy modifiable code with little complexity, also decomposition according
to other dimensions is necessary. For example, by applying the object-oriented
methodology the decomposition results in classes having operations describing
various activities. Besides it would be needed that the same system should be
decomposed by other methods “orthogonally” to the first. This will be shown in
the following example [OT99].

Assume that we would like to develop a program, handling arithmetic ex-
pressions which can check the syntactical correctness of expressions and eval-
uate them, displaying the result. The model resulting from the object-oriented
approach will contain classes in various relations (inheritance, aggregation, as-
sociation) with each other, for example Expression, Literal, Variable, Operator,
Unary Operator, Binary Operator etc. These classes will have the specialized
versions of the operations Check, Evaluate and Print for the given class. A
possible alternative decomposition would break down the system towards exactly
these three tasks. Other aspects of the system (synchronization, logging, etc.)
can be additional dimensions of the decomposition.

According to the principle of the multi-dimensional separation of concerns,
to aid software development the decompositions based on different dimensions
should be deemed to be equal, and during the lifecycle of the software the
components created by them (the so called concerns) must be independently
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manageable and separable. This goal can be reached with proper programming
language and tool support.

A possible implementation of the above mentioned principles is the usage of
hyperspaces. This is the basis of the HyperJ language which is an MDSC based
extension of the Java language.

Subjet-oriented programming (SOP)

The methodology of the subject-oriented programming [SOP03] was also devel-
oped by IBM (W. Harrison, H. Ossher). This method was the direct predecessor
of the MDSC. The central notion of the methodology is the subject which is
a collection of classes and class parts. Code parts needed for the solution of a
subtask can be defined in form of a subject. The subject can be assembled into
an application according to various composition rules. After all a subject could
be seen as an aspect.

In a system built according to the object-oriented principles the objects model
the objects from the real world. As a result, an object can participate in the
solution of multiple problems (or program functions). A certain part of the data
stored within the objects and certain operations are needed to solve one task,
and other data and operations for another task. This can also be formulated
that the same object can be examined according to multiple functions and
angles that is it can play a role in defining multiple subjects. The subject is
then a partial object model which contains the relevant parts (data members,
operations) and connections (inheritance, aggregation, association) of the classes
needed to implement a given functionality. (A similar notion is the ”mixin” which
represents a class part implementing a well defined, usually smaller functionality.
The mixins are usually composed with other mixins and classes to produce
objects with multilayered functionality.)

Subject-oriented programming is language independent, yet it was formed to
an object-oriented approach. There is an implementation for the C++ language,
and for the IBM VisualAge for C++ development tool.

17.3.2 Adaptive programming (AP)

This paradigm is a predecessor of AOP, and can be seen as a special case of it. It
was developed on the Northeastern University of Boston led by Karl Lieberherr
[AP80]. The principle of the adaptive programming is that the code of an activity
should be made independently working form the structure, on which it would be
applied. This is how the functionality and the structure (as the two important
aspects of the system) can be separated.

This approach corresponds to Demeter ’ s law which is a general object-
oriented design principle (see 10.8.4), stating that the operations should use
only minimal information about the structure of the system. For example, in an
object-oriented program the class hierarchy is not burnt in into the code of the
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methods, but is written so that it adapts to the structure. The methodology of the
adaptive programming suggests that the methods doing the actual computations
should be implemented in the traditional way (for example, in the given object-
oriented language), but the code searching for objects for the above methods to
execute on, should be defined using traversal strategies. The traversal strategies
enable the searching for nodes with certain properties of the graph describing
the connections between objects (inheritance, aggregation, association).

The principles of the adaptive programming are implemented, for example,
by the Demeter/C++, or in Java by DemeterJ or its successor, by DJ.

17.3.3 Composition filters (CF)

Another methodology trying to overcome the deficiency of the object-oriented
paradigm is the use of composition filters. They intervene with the delivery of
messages between objects, extending the system so with a newer functionality,
newer aspects of the operations. With these filters certain aspects of the behavior
of the program can be defined in a modular way. The filters modify the incoming
and outgoing messages of the objects that is, using aspect-oriented terminology,
their join points are the messages sent and received. Beside defining aspects the
composition filters can be used to implement other techniques, such as delegation
and dynamic linking.

The composition filters were developed by Mehmet Aksit from the University
of Twente [CF01]. There are already multiple implementations, such as the
Sina language, or the extensions for the C++ language and for CORBA. Other
interesting tries are for the Java language ConcernJ and ComposeJ.

Please note that the Enterprise JavaBeans technology [Sun03] is in close
relation with the composition filters [CE00]. EJB-s can be used to define server
side components which can rely on the services of the J2EE framework through
standard interfaces. The code of the bean consists of the implementation of the
business logic in the Java language, and a so called assembly descriptor which
describes various other aspects (persistence, transaction handling, concurrency,
security, shared communication) of the component. At the installation of the
component, according to this assembly descriptor, the framework will generate
wrapping objects (substantially composition filters) which will implement the
above mentioned aspects of the component.

17.3.4 Generative programming (GP)

Generative programming is a quite new approach, its standard book was pub-
lished with the same title in 2000 [CE00]. The essence of the paradigm is
that it tries to automate software development on a big scale. That is why
generative programming is a collection of methods and tools which aid in the
design, building, configuration and assembly of the components of the system.
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aspect-oriented programming is only one of these methods. Generic program-
ming, metaprogramming, and intentional programming etc. can also be named
here. The following few sentences summarize what generative programming can
offer for software developers in the field of system analysis and design, and
programming (implementation).

Generic programming is an implementation technique, on which the gen-
erative programming builds significantly. This technology supports the abstract
composition of algorithms and data structures (enabling so the most abstraction
from uninteresting details at building system components), besides, it ensures
the configuration possibilities and interaction management of the so created
abstract components. A beautiful example for generic programming is C++
Standard Template Library which uses besides parametrization with types and
polymorphism (see Chapter 11.) also other techniques – iterators, adapters,
function objects, traits.

Metaprogramming, which is another important feature of generative pro-
gramming, means that programs are manipulated (configured, adapted), instru-
mented (for testing or profiling) or generated pragmatically. The last includes
the usage of macros and also the aspect-oriented techniques. The compilers and
precompilers are such metaprograms. Reflective programs which examine (intro-
spection) or modify (intercession) themselves, are also metaprograms. (Smalltalk
and the CLOS languages, for example, widely support reflective programming,
the Java language only offers introspection.) Finally, another interesting example
of metaprogramming is the C++ template metaprogramming based on the
C++ template which enables to execute certain parts of the C++ program in
compilation time [Ale01].

The methodology of the generative programming suggests that the knowledge
of the application domains should be described in flexible parametrizable and
combinable standard libraries (”active libraries”), and the system developers
(designers) should have the possibility to use the best modeling languages for
the given field (in contrast to the too general UML), and to use code generators
heavily utilizing the services of these active libraries. In this way the state could
be best approached, when the program code is generated (this is where the name
of the paradigm comes) from the system plan in 100%.

17.3.5 Intentional programming (IP)

Intentional programming was started as a Microsoft Research project in the
beginning of the 90’-es led by Charles Simonyi. The goal of this approach is
on the one hand to vanish the sharp boundaries between the program plan
and the code, on the other hand to be able to describe the abstractions of any
kinds of fields and combine these abstractions flexibly and efficiently. That is
why intentional programming is also seen as a specialization of the generative
programming.
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The name ”intentional programming” comes from cognitive psychology, and
is intended to formulate that thanks to the ideal symbiosis of the abstraction
and the representation, the original intention of the program creator will vanish
less, as in the case of the traditional methods.

After Microsoft had stopped the IP project, not much later Charles Simonyi
and Gregor Kiczales founded Intentional Software Corporation which tries to
implement the idea of the IP in form of a complete development tool.4 The
participation of Kiczales in the project signals that this new approach aims
primarily for the users of AOP, as IP is capable of describing aspect-orientation.

17.3.6 Further promising initiatives

The following are some initiatives which were created for the goals similar to the
above.

Elipse Universal Modeler

The goal of the IBM Research is to extend the Eclipse universal development
tool to support arbitrary abstraction mechanisms and notation systems [Ecl03].

This tool uses standard (OMG that is Object Management Group and W3C
that is WorldWide Web Consortium) protocols and basic infrastructure (XMI
that is XML Metadata Interchange, MOF that is Meta-Object Factory, SVG
that is Scalable Vector Graphics) to describe the metadata and to represent the
diagrams.

Jakpot

This project also aims, like the EUM, for the development of an universal
modeling tool, based on the NetBeans tool. The leader of this project is James
Gosling at Sun Microsystems, one of the creators of Java, who also participated
in the development of Emacs.

The development of UML

UML is also developing in the direction that it could generate a more complete
program code from the resulting model of the design. Such oriented initiative
is the UML behavior semantics, the plan for a completely UML based software
platform. To quote Ivar Jacobson (the author of Objectory, one of the three basic
object-oriented modeling notion systems): ”in a few years everyone will program
in UML, without the present programming languages. This closely resembles the
goals of the IP.”

4 A significant part of the development of the IP was done in Hungary in cooperation with
NETvisor Ltd. and ELTE Faculty of Informatics.
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Also the result of Ivar Jacobson is the WayPointer system which uses intelli-
gent agents5 in a new way to help system designers and developers on the various
fields of UML modeling [GT99], using Rational Rose (a UML modeler, designer
and code generator tool) and RUP (Rational Unified Process, a methodology
base on the UML, covering the full lifecycle of the software development). Using
this help the designers could produce such UML models which enable to utilize
the code generation capabilities to the fullest, optimal extent.

17.4 Summary

In this chapter we tried to present aspect-oriented programming as a new pro-
gramming paradigm. We described the novelty of this new approach. After
presenting this some programming languages were discussed which support this
method, amongst these the AspectJ language was introduced in more details.
Finally, some software development approaches related to aspect-oriented pro-
gramming were described.

5 The agents – by a possible definition – are such independent program components which
react to the state and behavior of their environment, and are able to behave intelligently in
a set manner by their controlling rules, intentions and emotions. In this concrete situation
such agents are meant which are controlled by the knowledge base and rule system of the
valid and complete usage of the possibilities of the UML, and make actual suggestions to
the system designers, trying to ”figure out” the next or the missing steps.
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18.1 Short desriptions of programming languages

In this section we will try to give a short description of today’s most widely
used programming languages. We do not attempt to be comprehensive, our goal
is only to show the diversity of the programming languages and to emphasize
the approach not to implement everything on a single, currently trendy and
widespread language, as the possibility is there to choose the ideal solution for
any given problem and environment.

18.1.1 Ada

The programming language Ada was designed by an international team, the CII-
Honeywell Bull on the order of the DoD (Department of Defense, USA). The
leader of the group was the Frenchman Jean Ichbiah, who also designed the LIS
programming language. The name of the language came from Lady Ada Augusta
Byron, who is said to be the world’s first programmer. Pascal was chosen as the
starting language for the design, but some aspects from other languages – such
as Modula-2, ALGOL 68, SIMULA 67, Alphard and CLU – were also taken.

The criteria of the design were the following:

• Reliability;

• Expandability;

• Consistency;

• Strongly typed.

The ANSI acknowledged the Ada standard in 1983, and it became an ISO
standard in 1987. The revision of this standard resulted in the Ada 95 [Nyek98].

The Ada programming language – especially in designing larger software
systems – proved to be very successful. Although it was meant for developing
military systems, it was soon spread also to other fields of usage (commerce,
telecommunication). The broader field of usage resulted in new requests and
requirements for this programming language.

In 1988 the revision of the standard was started, following these recommen-
dations of the Ada Board:

• Support of object-oriented programming;

• Possible interface to other programming languages;

• Hierarchical library structure;

• More advanced task scheduling, easier and reliable usage of shared ob-
jects;

• Extended parameter possibilities for templates.
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By forming the new standard, backward compatibility with Ada 83 was very
important (which is succeeded with some rare exceptions), and to preserve its
great achievements (safety, reliability, etc.). It was important for this extension
to be simple, so six new keywords were introduced in all.

So in 1995, Ada 95 was born, the worthy successor of Ada 83, which of course
also became an ISO standard. Similar extensions and revisions were made and
introduced in 2007 and in 2012. The actual standard Ada 2012 enhanced safe,
secure and reliable software engineering to the next level with following features
and benefits:

• Contract-based programming, where pre- and postconditions define the
expectations and obligations of a subprogram, type invariants specify
boundary constraints for objects of an encapsulated (private) type and
subtype predicates capture general constraints on data objects;

• Concurrency and multicore support, where task affinities and dispatching
domains allow tasks to be mapped to specific CPUs or cores and Raven-
scar for multiprocessor systems adapts a safe and widely used tasking
profile to modern architectures;

• Increased Expressiveness, where expression functions offer a convenient
way to express simple functions, conditional expressions provide a com-
pact notation for a common idiom and quantified expressions for universal
and existential forms specify predicates over arrays and containers;

• Container Enhancements, where bounded containers use stack alloca-
tion and do not incur the overhead of dynamic memory management,
task-safe queues and priority queues provide efficient implementations of
synchronized structures, holder containers create singleton structures for
objects of an unconstrained type, and iterators provide familiar idioms
with uniform syntax to search and manipulate arrays and containers.

The central homepage of the language:
http://www.ada2012.org/

18.1.2 ALGOL 60

ALGOL (ALGOrithmic Language) is one of the languages which were designed
to support scientific computations.

ALGOL-60 introduced the feature of block structures, the structured control
transfer statements and the language implementation of recursion. This was the
first language which offered the possibility for the users to introduce their own
data types, and where the keywords were also reserved words.

This was the first language of which syntax was formally defined with the
notation since known as BNF by John Backus and Peter Naur.

The central homepage of the language:
http://www.engin.umd.umich.edu/CIS/course.des/cis400/algol/algol.html
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18.1.3 ALGOL 68

ALGOL 68 is an improvement of ALGOL 60. The designers of ALGOL 68 applied
a new kind of grammar: the language was defined by a context-independent,
two-level (so called Wijngaarden) grammar which was also suitable to describe
not only the syntax, but also part of the semantics. So for example the rules
of declarations and automatic type conversions were also defined by the help
of the grammar. A new terminology was introduced for the notations, maybe
this was also a reason that this language could not spread widely, today it is
almost extinct. Meanwhile numerous features of it influenced the designers of
later languages (for example Bjarne Stroustrup, the designer of C++).

The central homepage of the language:
http://www.algol68.org/

18.1.4 BASIC

BASIC (Beginner’s All Purpose Symbolic Instruction Code) was developed in
1964 in Dartmouth led by John G. Kemény and Tom Kurtz, with the goal ”to
make the computer for every student accessible”.1 The biggest achievement of the
language was to allow computer usage for everyone – not only for mathematicians
and engineers – leading for the wide acceptance of computers in everyday life.

The central homepage of the language:
http://www.fys.ruu.nl/~bergmann/basic.html

18.1.5 BETA

The language BETA was designed by Bent Bruun Kristensen, Ole Lehrmann
Madsen, Birger Moller-Pedersen and Kristen Nygaard, based on SIMULA 67.

This modern object-oriented language introduces an important abstraction:
the ”pattern”. In BETA everything is a ”pattern”: the class, the procedure, the
function, the parallel tasks and also the exceptions. There is pattern inheritance,
so it can be applied in a broader range than simple inheritance in other languages
(see [MMPN93]).

The central homepage of the language:
http://www.daimi.au.dk/~beta/

18.1.6 C

The language C was developed by Dennis Ritchie at the AT&TBell Labs in
the beginning of the 70’s [KR89]. The main reason for creating this language
was that the UNIX operating system could be written in such a programming
language, which is high level enough to greatly support the portability of the
programs written in it, but also low level enough for developing operating systems

1 Quote from John G. Kemény, presented by George Marx, see [Mar93]
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and applications, which could fully utilize all the possibilities of the hardware
resources.

According to the above criteria the C language supports all features, which
were typical to the most modern high level – that is structured, procedural
and modular – programming languages that time. At the same time low level
resource access is also offered for the C developers. To be concrete, the flexible
management of memory locations (pointers), the quite loose type system and
the nearly totally omitted runtime checks assure the key to efficiency.

These also harbor the most dangers of the application of this language, since
using C without proper understanding and omitting rigorous testing can easily
result in unreliable and buggy program code.

Opposed to the common languages with ”talkative” syntax in the 60’s and
70’s, C has an unusually dense syntax (for example { and } instead of the begin
and end keywords). This feature – despite rendering the C source code to be hard
readable – was quickly adopted by the programmers, and even caused numerous
later programming languages to introduce C-like language elements.

C had a major role in spreading UNIX, and afterwards many other operating
systems, system programs and applications were written in this language.

The central homepage of the language:
http://cm.bell-labs.com/cm/cs/cbook/

18.1.7 C++

The programming language C++ was developed by Bjarne Stroustrup at the
AT&TBell Labs in the beginning of the 80’s [Str00], as a further development
of the language C.

The main reason for the creation of this language was the more and more
widespread object-oriented paradigm in that time. According to this C++ ex-
tended the C language with some important features:

• Data abstraction;
• Object-oriented programming with multiple inheritance;
• Operator overloading;
• Templates;
• Exception handling;
• Data streams;
• Standard Library.

Besides all of these C++ kept the simplicity and efficiency of C by being
backward compatible with it, for the design of the new constructs the same
main aspects were used – the goal is to apply the highest level of constructs by
fully utilizing the hardware resources. According to this every syntactical correct
C program is also a syntactical correct C++ program.

Because the C++ language introduced the object-oriented concept not for
its own sake, but by extending C, a language known and recognized by many,
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this greatly contributed to the fact that the object-oriented approach became so
dominant in the 90’s.

The significance of C++ is also indicated by being the ancestor of the most
widely used programming language in the beginning of the 21st century, Java
(and its wraith, C#), which was developed in a very similar way.

The central homepage of the language:
http://www.research.att.com/~bs/C++.html

18.1.8 C#

C# is an all purpose imperative programming language developed by Microsoft
[Sch02].

The language tries to combine the expressive power of C++ with the easy
usage of Visual Basic. The syntactical bases come from C++, the simplicity from
Visual Basic. C# is compared by many with Java, not completely without reason.
The language supports object-oriented program development, and includes most
of the capabilities of the C++ programming language, introducing some novel
features. One of the major shortcomings of C# is that it does not support
templates.

The central homepage of the language:
http://msdn.microsoft.com/vcsharp/

18.1.9 Clean

The Concurrent Clean (Plasmeijer, Nijmegen, 1987, [PE01] and [Pla99]) was
developed from an experimental graph rewriting language (the LEAN) as a clean
functional language using basically a lazy evaluation. Its current version (2.4) is
very close to Haskell [HHZ02], but includes more language features.

The central homepage of the language:
http://www.cs.kun.nl/~clean/

18.1.10 CLU

The CLU language was designed and developed in the 1970’s on the MIT led by
Barbara Liskov, primarily for supporting the teaching of programming method-
ology. This was the first implemented programming language which offered
language constructs for data abstraction by supporting the implementation of
compilation units which make only the type specification accessible and hide
other implementation relevant information. These compilation units are called
clusters, that is where the name of the language comes from (see [LG96]).
CLU introduced significant innovations in the areas such as exception handling,
iterators and templates, and though the language is not widespread, designers
of numerous programming languages took ideas from it.
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The central homepage of the language:
http://www.pmg.lcs.mit.edu/CLU.html

18.1.11 COBOL

In 1959 the opinion was formulated on the Pennsylvanian University that a ma-
chine independent, data processing-oriented programming language was needed
that is also suitable for handling registers. A language was requested in which
only the task should be formulated (!), the computation should be done by the
machine.

A joint taskforce referred to as the ”Short Range Committee” was established,
whose goal was to evaluate all the existing languages and create the ”minimal
program” of the new language. The name COBOL (COmmon Business-Oriented
Language) was agreed on, and in 1968 the specification titled as USA Standard
COBOL was published, then in 1974 a slightly modified version appeared which
is still the most widespread COBOL version. The standard COBOL-85 intro-
duced object-oriented constructs into the language. Most of the already existing
COBOL programs are made according to the COBOL-74 standard, the majority
of the compilers also support this version (see [Bak74]).

The developers of the language reached their goals. Concentrating on the task
instead of the algorithm resulted in a particular, but for given tasks very appli-
cable programming language. In many aspects, such as for types the portability
of COBOL programs is much better than in most of the other languages – even
for those developed a decade later –; the hardware independence of its language
constructs is clearly shown by not requiring the programmer – as opposed to
FORTRAN [LV77] – to know the machine code the compiler will produce from
the program.

The central homepage of the language:
http://www.cobolreport.com/

18.1.12 Delphi

By the appereance of graphical applications the demand was raised to have
such development environments on the software market which support the quick
implementation of GUIs. The Borland company introduced the first version of
Delphi in 1995 for this kind of support [Lis00]. Benefits include the form-centered
IDE, quick compiler, simple database management, wide support of the Windows
environment, high level access of operating system capabilities, and last but not
least component based application development.

The programming language of Delphi is Object Pascal, basically an enhanced
version of the Turbo Pascal 7.0 language. The creators of Delphi focused on the
following points during language design:

• Simple and quick development of Windows applicaitons;
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• Support of object-oriented properties;
• The possibility of client/server database management.

Later the Linux based version of Delphi, Kylix was also introduced.
The central homepage of the language:

http://www.borland.com/delphi/

18.1.13 Eiffel

The programming language Eiffel was designed in the 1980’s led by Bertrand
Meyer [Mey91]. Eiffel is an object-oriented language recommended in production
environments for quality software design and implementation. The aspects of the
creation of the language were: support for reusable, expandable, correct, safe,
portable and effective programming. All of these were attempted to be solved in
a simple, elegant and easy to handle way.

The ascendants of the Eiffel language are: SIMULA 67, ALGOL W, Alphard,
CLU, Ada and the Z specification language. Besides a number of new aspects
were considered in the field of inheritance, type and exception handling, asser-
tions, and the constructs taken from the above languages were unified.

The Eiffel language was designed to be practically inseparable from its en-
vironment provided around it. Its usage is unthinkable without the comprehen-
sive system of library classes. It is tightly integrated with the LACE language
(Language for Assembling Classes in Eiffel) which describes the restrictions for
the compilation and execution in a makefile-like way. The Eiffel development
environment offers more tools to make the effective usage of the language easy.

The central homepage of the language:
http://www.eiffel.com/

18.1.14 FORTRAN

FORTRAN is the first language used for numerical computation and still the
most widespread nowadays. Its name is originated from that: FORTRAN =
FORmula TRANslator. The design of the first version started in 1954 by John
Backus at IBM, the compiler was finished in 1957. In 1964 the first standard
of the FORTRAN language was introduced by the ASA (American Standards
Association) followed by many versions. The definition of FORTRAN 90 is worth
being mentioned which, among others, introduced the possibility of recursion.
For the standardization of the extensions supporting parallelism the HPF (High
Performance Fortran) language was born. The modern FORTRAN 2003/2008
standards extend the language with exception handling and object-oriented
possibilities and improves the cooperation with the C language (see [Fort03]).

As FORTRAN was developed for scientific purposes, its text processing
capabilities are strongly limited. Thanks to its newer versions it is still a living
language: some physical, statistical, sociological, weather forecast etc. computa-
tions are still done in FORTRAN today.
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The central homepage of the language:
http://www.fortran.com/

18.1.15 Haskell

The creation of Haskell was decided in 1987 on a conference on functional
programming (FPCA ’87). The language was named after the mathematician
Haskell Brooks Curry. Its newest definition is the Haskell’2010 standard.

Amongst the members of the designer group researchers from universities
and institutes from all over the world can be found (J. Hughes, S. Peyton Jones,
P. Hudak, K. Hammond, E. Meijer, J. Peterson, P. Wadler and others). For
Haskell the following basic requirements were formulated:

• It should be suitable for education and research and for developing large
scale application programs;

• The syntax and semantics should be formally defined;
• It should be freely accessible;
• The widely accepted basic principles should be complied with;
• It should serve as a guiding direction for the modern functional languages

differing in greater or lesser extent from each other.

The central homepage of the language:
http://www.haskell.org/

18.1.16 Java

Java [Nyek08] started as an object-oriented language for programming tiny
embedded digital TV controllers. This project actually died, but the language –
thanks to the foreseeing of some developers – survived.

At the time of the birth of WWW Netscape took the fancy of the new lan-
guage (not least because it enabled to fill static webpages with life) and started
to include it into their browser. Seeing the intention of Netscape, Microsoft also
built in Java support into their browser, which also helped the spreading of the
Java language as a side effect.

The main characteristics of the language are the following:

• Object-orientation. In Java actually everything is an object (class). There
are no global variables outside every class, like in C++.

• Inheritance. Every class has a well defined location within an inheritance
tree rooted by the Object class. There is no multiple inheritance between
classes, but there are interfaces.

• Parallelism. Java supports the parallel execution of the program on mul-
tiple threads. These threads can be prioritized and grouped together.
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• Easy learning. The language borrowed many constructs from other lan-
guages (mainly from C/C++), so the understanding of its syntax is not
hard.

• Safety. The language tries to prevent the coding of incorrect programs
with its structure. There is for example no pointer arithmetic (references
are used instead).

• Exception handling. Thanks to its well developed exception handling the
language enables the efficient handling of errors and exceptions helping
so the software development process and safety.

• Automatic memory handling. The program can allocate memory, but
cannot directly free it – this is the job of the built in GC (Garbage
Collector). In this way referencing already freed objects can be avoided
which also increases safety.

• Virtual machine. The Java programs are executed by a so called virtual
machine, this makes the language totally portable.

• Standard class libraries. The Java programmers can rely on many built
in services and functions (such as GUI, I/O, etc.) which makes the devel-
opment much easier.

The central homepage of the language:
http://java.sun.com/

18.1.17 LISP

LISP is the first functional language. It was developed in the end of the 1950’s
by John McCarthy and his team on MIT. After the hardware boom in the
1970’s it quickly gained enormous popularity, especially in artificial intelligence
applications.

There are many variations; the near-standard Common Lisp (see [Ste90])
became widespread quite late. There is an object-oriented extension to Common
Lisp called CLOS. This step was quite important, as frameworks – a precursor
of object-oriented programming – have long been used successfully in artificial
intelligence applications.

It is important to note, that LISP is an interpreted language.
The central homepage of the language:

http://www.lisp.org/

18.1.18 Maple

An old dream of people dealing with applied mathematics is the intelligent
calculator which cannot only handle numbers, but also formulas. One of the
tools for symbolic computation is Maple V. This language is one of the best
usable formula manipulation systems.
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The possibilities of Maple V spread from the functions as an intelligent calcu-
lator until the professional programming of the system, from the usage of basic
calculus until the definition of numeric differential equations solving functions.
It helps to handle different algebraic structures, function approximation and
linear algebraic computations. The display of the results is supported graphically
making it more visible and easier to understand.

The central homepage of the language:
http://www.maplesoft.com/

18.1.19 Modula-2

The language Modula-2 was developed by Niklaus Wirth, the designer of the
ALGOL W, Pascal and Oberon in the 1970’s in Zürich.

This language is easy to learn, meanwhile it is sophisticated enough for the
development of large systems and also of realtime embedded systems.

The central homepage of the language:
http://www.modula2.org/

18.1.20 Modula-3

Modula-3 was developed in the end of the 1980’s by DEC (Digital Equipment
Corporation) and Olivetti in a joint venture based on Modula-2. The language
supports module based software design, single inheritance, exception handling
and parallelism. Modules can be parameterized with interfaces, so templates can
be created.

The central homepage of the language:
http://modula3.org/

18.1.21 Objetive-C

The programming language Objective-C is an object-oriented extension of the
language C, just like C++. It was developed in the middle of the 1980’s with
the goal to extend the C language for objects but with the least amount of new
language elements, and to support dynamic software development by enabling
the programmer to disable some error checkings of the compiler at his/her own
risk, resulting a more efficient code this way. Objective-C follows the object-
oriented school of Smalltalk as opposed to C++, which follows those of SIMULA
67. It is a superset of the C programming language and provides object-oriented
capabilities and a dynamic runtime. Objective-C inherits the syntax, primitive
types, and flow control statements of C and adds syntax for defining classes
and methods. It also adds language-level support for object graph management
and object literals while providing dynamic typing and binding, deferring many
responsibilities until runtime.
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Like C++, Objective-C is also one of the ancestors of Java that is illustrated
by the notion of protocol which was adopted by Java as interface to solve the
problem of multiple inheritance.

The central homepage of the language:
https://developer.apple.com/library/mac/documentation

/Cocoa/Conceptual/ProgrammingWithObjectiveC/

18.1.22 Pasal

The language Pascal was developed by Niklaus Wirth in 1970 based on ALGOL.
The language is easy to learn and supports well structured programming. It was
spread worldwide pretty quickly, it is an efficient tool for programming education.

The central homepage of the language:
http://www.merlyn.demon.co.uk/pascal.htm

18.1.23 Perl

The first version of the language Perl [SP01] was created by Larry Wall in 1991
supported by NASA. The language was intended to be mainly used for text
processing. Its efficiency in writing the code and executing the program was
considered more important than its beauty. The name of the language suggests
also this idea meaning ”Practical Extraction and Report Language”. But at first
it was also called by Larry Wall as ”Pathologically Eclectic Rubbish Lister”.

A big advantage of the language is its platform independence: it exists for
all variants of UNIX, Linux, VMS, OS/2 and Microsoft products.

Perl is an interpreted language compiled at loadtime. Originally it was created
by Larry Wall for supporting system administration tasks, and to overcome the
limitations of the existing tools. So the language is based on the following existing
tools: C, sed, awk and sh. Knowledge of the LISP language can also help a lot
to understand the list handling.

In Perl only the hardware limitations of the computer apply: a whole file can
be read into a string variable (if there is enough memory), recursion depth is
also unlimited (if having enough patient and memory). The access of associative
arrays is accelerated by hashtables (which results in pretty efficient code). There
is a very quick and flexible pattern searching algorithm for finding and replacing
text. Binary data are also supported which can be composed into complex data
structures. To support administrative task, database files can be associated to
arrays whose structure can be defined by any skilled programmers. From the
version nr. 5 on language constructs for modular programming and object-
orientation are also supported.

The central homepage of the language:
http://www.cpan.org/
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18.1.24 PHP

The official name was ”PHP: Hypertext Preprocessor”, however this suffix has
long been outgrown. Today PHP is the most widespread content generator for
HTML pages, the number of sites using PHP is over multiple millions. The
reason for its popularity is due to the fact that this language (as reflected by its
name) was from the beginning designed to be embedded into HTML pages, and
the development environments are also designed to connect to web servers and
run the programs through them, the result are shown as web pages.

As a result of its wide area of usage there is a great deal of extensions from
database handling through image conversions up to GUI programming.

PHP is based on the Java, C and Perl languages. The similarity with the Perl
language in its syntax and forming is very conspicuous (it could be characterized
as a slightly modified Perl – there is also a similar Perl extension called Embedded
Perl).

The central homepage of the language:
http://www.php.net/

18.1.25 PL/I

In the beginning of the 1960’s PL/I was designed by combining the beneficial
properties of ALGOL, FORTRAN and COBOL in the hope to become the
Programming Language No. 1. The language has the block structure of AL-
GOL 60 and its control statements, the FORMAT input-output from FORTRAN,
and the portable types and file handling from COBOL. Besides, pointers for
dynamic data structures were introduced, as also flexible string operations and
an error handling mechanism. The compilation of procedures on their own is
also supported (see [Koz92]. The sequence of expanding subsets of the language
was also defined (these were the SP/k, where k=1..8) to support the teaching of
programming.

The central homepage of the language:
http://www-03.ibm.com/software/products/us/en/plicompfami

18.1.26 Python

The language Phyton, an efficient object-oriented script language is worth being
mentioned because of its dynamic type system is being developed since 1991 by
Guido van Rossum and team.

The central homepage of the language:
http://www.python.org/

18.1.27 Ruby

Ruby’s creator, Yukihiro ”Matz” Matsumoto carefully blended parts of his fa-
vorite languages (Perl, Smalltalk, Eiffel, Ada, and Lisp) to form a new language
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that balanced functional programming with imperative programming. The result
is a scripting language that is more powerful than Perl, and more object-oriented
than Python.

In Ruby, everything – even numbers and other primitive types – is an object.
Every bit of information and code can be given their own properties and actions
following a pure object-oriented approach.

Ruby is seen as a flexible language, since it allows its users to freely alter its
parts. Essential parts of it can be removed or redefined at will, existing parts
can be added upon. The operators are syntactic sugar for methods and can be
redefined as well.

Ruby has a wealth of other features, such as Java-like exception handling, a
true mark-and-sweep garbage collector for all Ruby objects, dynamic extension
library support if the OS allows, OS independent threading and is highly portable
by being supported on all major operating systems.

The central homepage of the language:
http://www.ruby-lang.org/

18.1.28 SIMULA 67

SIMULA 67 (SIMUlation LAnguage) was designed by Dahl, Myhrhaug and
Nygaard (see [DMN70]). By enhancing ALGOL 60 a language was created for
efficient simulation of complex interactive systems.

This was the first object-oriented language, introducing the notions of the
class and inheritance – or in SIMULA terminology: prefixing –, polymorphism
and dynamic binding.

The central role in the implementation of simulations is played by the stan-
dard SIMSET class managing two way cyclic lists, and by its descendant, the
SIMULATION class.

The central homepage of the language:
http://www.engin.umd.umich.edu/CIS/course.des/cis400/simula/simula.html

18.1.29 Smalltalk

In the beginning of the 1970’s in the Xerox Palo Alto Research Center laborato-
ries a team lead by Alan Kay, Daniel H. Ingalls and Adele Goldberg was working
on a system to enable people an efficient and easy working with the computer.
So Smalltalk was born, the second object-oriented language after SIMULA 67,
but the first being completely designed according to this paradigm. In Smalltalk
everything is an object – even classes, code blocks and the compiler itself. The
object independent part of the language is minimal, even traditional control
structures (branching, loops) are implemented as messages sent to objects; al-
most the assignment is the only operation not being treated like this.

Smalltalk was the first language with an integrated development environ-
ment, which was the base for developing later windowing systems.
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The central homepage of the language:
http://www.smalltalk.org/

18.1.30 SML

The first typed functional language was ML (Meta Language). Originally it
was the meta language of the LCF (Logic for Computable Functions) system
designed for theorem proving in Edinburgh. The ML language was designed
by R. Milner in the middle of the 70’s, the SML (Standard ML) was created
after Hope (Burstall, 1980) by Milner, Tofte and Harper between 1983 and
1990. The most recent version of the SML standard was introduced in 1997
([MTHM97], [Har01] and [Han00]). Some variants of ML are Caml (INRIA,
1984-1990, the base language of the Coq theorem prover) and Objective Caml
(the enhanced version of Caml Light, INRIA, 1990-). These ML variants are
not purely functional languages, they also contain imperative language features
(such as modifiable variables).

The central homepage of the language:
http://www.standardml.org/

18.1.31 SQL

Relational database handling and with it SQL were spread in the 80’s. SQL is
standing for Structured Query Language. This naming also shows, how crucial
it is for relational database handling to have efficient queries on database tables.

The language SQL is divided into two parts: DML (Data Manipulation
Language) for querying data and inserting, updating and deleting rows; and
DDL (Data Definition Language) to create, modify and delete tables, views,
indexes and other related database objects.

The (ANSI) standard SQL language only contains basic declarative elements;
it does not support the implementation of complex algorithms. That is why
numerous extensions and integrations with other languages were born to merge
the benefits of imperative and procedural languages with the capabilities of SQL.
This type of solutions is called embedded SQL.

There are two main types of embedded SQL: in one of them the SQL state-
ments are contained in so called stored procedures within the database man-
agement system (Oracle PL/SQL, Microsoft Transact-SQL); the other approach
connects to the database and uses SQL statements through an external API
from a general purpose language (Pro C, ODBC, JDBC).

Because of the spreading of object relational and object-oriented database
systems SQL was enhanced and served as a basis for newer database handling
languages. Despite of this SQL is still the most widespread language for querying
and manipulation data stored in databases.

The central homepage of the language:
http://www.sql.org/
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18.1.32 Tl

Tcl (Tool command language) is a simple interpreted language based on a few
but versatile elements. It combines some elements from LISP, C and the unix
C-shell.

Being a high level language it enables rapid and comfortable program devel-
opment. All of this does not go at the expense of efficiency since Tcl lives in tight
symbioses with C. If the basic functionality of an application is written in C,
the higher level parts and GUI in Tcl, it could also be used as a macro language
providing a great level of flexibility.

The most important extension of Tcl is the Tk toolkit, which enables Tcl
applications to have GUIs.

Features not supported by this language: abstract data types, operator over-
loading, OOP, correctness proving, parallelism, persistence.

The central homepage of the language:
http://www.tcl.tk/



1042

•
Appendix

18.2 Codetables

18.2.1 The ASCII harater table

Dec Hex Chr Dec Hex Chr Dec Hex Chr Dec Hex Chr

0 0x00 NUL Null 32 0x20 Space 64 0x40 @ 96 0x60 ‘

1 0x01 SOH Start of heading 33 0x21 ! 65 0x41 A 97 0x61 a

2 0x02 STX Start of text 34 0x22 " 66 0x42 B 98 0x62 b

3 0x03 ETX End of text 35 0x23 # 67 0x43 C 99 0x63 c

4 0x04 EOT End of transmission 36 0x24 $ 68 0x44 D 100 0x64 d

5 0x05 ENQ Enquiry 37 0x25 % 69 0x45 E 101 0x65 e

6 0x06 ACK Acknowledge 38 0x26 & 70 0x46 F 102 0x66 f

7 0x07 BEL Bell 39 0x27 ’ 71 0x47 G 103 0x67 g

8 0x08 BS Backspace 40 0x28 ( 72 0x48 H 104 0x68 h

9 0x09 HT Horizontal tab 41 0x29 ) 73 0x49 I 105 0x69 i

10 0x0a LF Line feed, new line 42 0x2a * 74 0x4a J 106 0x6a j

11 0x0b VT Vertical tab 43 0x2b + 75 0x4b K 107 0x6b k

12 0x0c FF Form feed, new page 44 0x2c , 76 0x4c L 108 0x6c l

13 0x0d CR Carriage return 45 0x2d - 77 0x4d M 109 0x6d m

14 0x0e SO Shift out 46 0x2e . 78 0x4e N 110 0x6e n

15 0x0f SI Shift in 47 0x2f / 79 0x4f O 111 0x6f o

16 0x10 DLE Data link escape 48 0x30 0 80 0x50 P 112 0x70 p

17 0x11 DC1 Device control 1 49 0x31 1 81 0x51 Q 113 0x71 q

18 0x12 DC2 Device control 2 50 0x32 2 82 0x52 R 114 0x72 r

19 0x13 DC3 Device control 3 51 0x33 3 83 0x53 S 115 0x73 s

20 0x14 DC4 Device control 4 52 0x34 4 84 0x54 T 116 0x74 t

21 0x15 NAK Negative acknowledge 53 0x35 5 85 0x55 U 117 0x75 u

22 0x16 SYN Synchronous idle 54 0x36 6 86 0x56 V 118 0x76 v

23 0x17 ETB End of trans. block 55 0x37 7 87 0x57 W 119 0x77 w

24 0x18 CAN Cancel 56 0x38 8 88 0x58 X 120 0x78 x

25 0x19 EM End of medium 57 0x39 9 89 0x59 Y 121 0x79 y

26 0x1a SUB Substitute 58 0x3a : 90 0x5a Z 122 0x7a z

27 0x1b ESC Escape 59 0x3b ; 91 0x5b [ 123 0x7b {

28 0x1c FS File separator 60 0x3c < 92 0x5c / 124 0x7c |

29 0x1d GS Group separator 61 0x3d = 93 0x5d ] 125 0x7d }

30 0x1e RS Record separator 62 0x3e > 94 0x5e ˆ 126 0x7e ˜

31 0x1f US Unit separator 63 0x3f ? 95 0x5f _ 127 0x7f DEL

Table 18.1: The ASCII character table
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18.2.2 The ISO 8859-1 (Latin-1) printable harater table

Figure 18.1: The printable characters in ISO 8859-1 (Latin-1) table missing from
the ASCII table

18.2.3 The ISO 8859-2 (Latin-2) printable harater table

Figure 18.2: The printable characters in ISO 8859-2 (Latin-2) table missing from
the ASCII table
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18.2.4 The IBM Codepage 437

Figure 18.3: The characters in IBM Codepage 437 from the position 128
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18.2.5 The EBCDIC harater table

Figure 18.4: The EBCDIC character table
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Dec Hex Chr Dec Hex Chr Dec Hex Chr Dec Hex Chr

32 0x20 DS Digit select 96 0x60 - 160 0xa0 224 0xe0 /

33 0x21 SOS Start of significance 97 0x61 / 161 0xa1 ˜ 225 0xe1
34 0x22 FS Field separator 98 0x62 162 0xa2 s 226 0xe2 S

35 0x23 99 0x63 163 0xa3 t 227 0xe3 T

36 0x24 BYP Bypass 100 0x64 164 0xa4 u 228 0xe4 U

37 0x25 LF Line feed 101 0x65 165 0xa5 v 229 0xe5 V

38 0x26 ETB End of transmission block 102 0x66 166 0xa6 w 230 0xe6 W

39 0x27 ESC Escape 103 0x67 167 0xa7 x 231 0xe7 X

40 0x28 104 0x68 168 0xa8 y 232 0xe8 Y

41 0x29 105 0x69 169 0xa9 z 233 0xe9 Z

42 0x2a SM Set mode 106 0x6a 170 0xaa 234 0xea
43 0x2b CU2 Customer use 2 107 0x6b , 171 0xab 235 0xeb
44 0x2c 108 0x6c % 172 0xac 236 0xec
45 0x2d ENQ Enquiry 109 0x6d _ 173 0xad 237 0xed
46 0x2e ACK Acknowledge 110 0x6e > 174 0xae 238 0xee
47 0x2f BEL Bell 111 0x6f ? 175 0xaf 239 0xef

48 0x30 112 0x70 176 0xb0 240 0xf0 0

49 0x31 113 0x71 177 0xb1 241 0xf1 1

50 0x32 SYN Synchronous idle 114 0x72 178 0xb2 242 0xf2 2

51 0x33 115 0x73 179 0xb3 243 0xf3 3

52 0x34 PN Punch on 116 0x74 180 0xb4 244 0xf4 4

53 0x35 RS Reader stop 117 0x75 181 0xb5 245 0xf5 5

54 0x36 UC Upper case 118 0x76 182 0xb6 246 0xf6 6

55 0x37 EOT End of transmission 119 0x77 183 0xb7 247 0xf7 7

56 0x38 120 0x78 184 0xb8 248 0xf8 8

57 0x39 121 0x79 185 0xb9 249 0xf9 9

58 0x3a 122 0x7a : 186 0xba 250 0xfa |

59 0x3b CU3 Customer use 3 123 0x7b # 187 0xbb 251 0xfb
60 0x3c DC4 Device control 4 124 0x7c @ 188 0xbc 252 0xfc
61 0x3d NAK Negative acknowledge 125 0x7d ’ 189 0xbd 253 0xfd
62 0x3e 126 0x7e = 190 0xbe 254 0xfe
63 0x3f SUB Substitute 127 0x7f " 191 0xbf 255 0xff EO

Table 18.2: The EBCDIC character table (continued)
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ctime, 140

Current, 296, 483
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Currying, 863
currying, 295

D
D-diagrams, 66
dangling ELSE, 100
data

abstraction, 881, 889, 892
Data Abstraction, 567
data abstraction, 269, 337, 417
data driven language, 729
data hiding, 485, 486, 505
data segment, 319
data type, 158, 159

definition, 159
specification, 160

dataflow, 900
deallocator, 190
declaration, 287, 297, 320, 864

forward, 298
scope, see scope

declaration part, 90, 134, 380
declarative languages, 77
declarative programming language, 856
deep binding, 335
definition, 273
definition module, 299
delay, 758
delete expression, 131
delimiter, 49
Delphi, 1032
demand driven language, 730
Demeter’s law, 1020
Demeter/C++ language, 1021
DemeterJ, 1021
dependency

circular, 724
dependent type, 283
dereference, 197, 198, 201
dereferencing, 318
derived type, 209
destructing automatic variables, 139
destructor, 136, 137, 139, 141, 190, 288,

383, 442, 477, 478
name, 137

discriminant, 244, 446, 750
display, 333
DJ, 1021

documentation, 836
internal, 836

dynamic
binding, 189, 576
link, 332
linking, 444, 446
memory, 438, 441
scope, 323, 334
storage area, 190, 195, 196
variable, 189

dynamic binding, 497, 508
dynamic join point, 1017
dynamic type, 238

E
EBCDIC

table, 1045
EBCDIC code, 44, 45
Eclipse, 1018
efficiency, 832
Eiffel, 1033
Emacs, 1018
empty statement, 87
encapsulation, 127, 298, 418, 436, 484,

592
encoding, 160
end, 338
Enterprise JavaBeans, 1016
entry, 746

family, 755, 766
point, 737, 753

entry point, 293
enum, 173
equality, 198
equality check, 235, 255, 258
equational reasoning, 862
errno, 375
error handling, 900
Euclidean algorithm, 64, 68
EVAL, 272
evaluation, 859, 862, 863, 867

dynamic, 231
lazy, 861, 863, 864, 866, 874, 904
method, 859

complex, 905
order, 862
parallel, 866, 904

annotation, 904
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speculative, 904
strategy, 866
strict, 861

evaluation order, 273, 329
event, 78
event driven programming, 77
exception, 139, 141, 271, 286, 367

checked, 286, 388, 391
execution after, 375
grouping, 375
handler, 368, 867, 901

predefined, 386
handling, 288, 366

disable, 377
dynamic, 378
enable, 377

hierarchy, 375
parameter, 375
predefined, 368, 377, 379, 380, 384
propagation, 368, 375
raise, 368
safety, 141, 369
signal, 368
specification, 368, 376
throw, 368
trigger, 368

exception handling
in tasks, 761

execution approaches, 77, 78
execution thread, 77
expanded, 167
exponent, 185
expression, 202, 207, 270, 378, 862, 867

case, 886
evaluation, 205
start, 856
structure, 203
tree, 205

evaluation, 205
expression-statement, 85
extended, 167
extensibility, 420, 833

F
factory, 136
feature, 167
Fibonacci series, 131
field, 230, 234, 236, 244

file, 247, 368
descriptor, 368

filter, 873
finalize, 137
finally, 142, 369, 372, 375

finally, 288
first, 337
first-order predicate Logic, 625
flow diagrams, 65
for in, 336

formal parameter (of function), see
function

FORTRAN, 1033
forward declaration, 193

fountain design model, 269
free function, 131
free list, 190, 195
free occurrence, see variable
free union, 239

friend, 136, 488
from_to, 336, 339
function, 269, 450

application, 863, 867, 870

partial, 863, 870
argument, 860, 861, 863, 867, 869,

870, 873
body, 859, 860, 864, 867, 877
class, see type class

composition, 860
declaration, 859, 867
definition, 859–862, 864, 867
derived, 883

domain, 867, 869, 870
first-order, 869
higher-oder, 859
higher-order, 859, 862, 869
multiparameter, 863, 869, 870

parameter, 860
actual, 864, 867, 868
formal, 859, 862, 864, 867, 877

partial, 902
range, 867, 869, 870

recursive, 863, 867
signature, 133
type, 869, 882
value, 864, 867, 869

function call, 63
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function object, 199, 446
functional

abstraction, 862
program, 856, 859
programming style, 857, 858
purely, 861, 866, 894, 895

functional languages, 77, 740
functor, 199, 882, 889, 892, 895
future object, 723

G
garbage collected heap, 137
garbage collection, 137, 139, 190, 195, 442

automatic, 386
garbage collector, 137, 190
generalization, 838
generator, 336, 873, 879

array, 876
nested, 874
parallel, 874

generic
contract model, 584
parameter

actual, 594
formal, 594
module, 592
object, 591
subprogram, 591

generic, 580
global, 189, 322, 332
goroutine, 398
GOTO

computed, 92
problem of, 91

goto statement, 370
GP, 1021
guard, 757, 867, 868

H
handling

error, 369
hashtable, 247, 256, 260
Haskell, 1034
header, 280
header file, 134, 320, 425, 441, 443
heap, 190
hiding, 444
high level programming languages, 68

Hold-and-wait locking, 724
Hope, 1040
HPF, 1033
HyperJ, 1020

I
I/O

operation, 895, 898
identifier, 49
IEEE 754, 185
immutable, 318
imperative programming languages, 76
implementation

hiding, 298
module, 299

implementation part, 134
Import, 291
import, see module
in, 316
in out, 316
include, 425
include, 320
incomplete messages, 741
independent compilation, 320
index

interval, 248, 250–253, 259
type, 248, 253, 259

index function, 277
induction, 297
infinite data structure, 864
infix, 203, 206, 329, 445, see operation
information

hiding, 127
information hiding, 422
inheritance, 242, 446, 496, 497, 500, 505,

506, 647
interface, 541
join, 531
multiple, 528
repeated, 520

initialization
of static member, 138

Inline, 300
inline subprogram, 299
inner class, 136
input/output operation, 894
instance, 466
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instantiation, 446, 594–598, 882, 883, 887,
892, 895

eager, 594
explicit, 594–596
lazy, 594, 595
on-demand, 594, 595
specialization, 597

integer
signed, 176
unsigned, 176

interactive functional program, 898
interconnection, 421

weak, 421
interface, 422, 541, 544, 587
interface, 279
interpretation, 165
interpreter, 391
interrupt, 368
invariant

class, 385, 386
loop, 384
specification, 160
subtyping, 601
type, 161, 162

invec, 337
IP, 1022
ISO 10646, 46, 172, 182
ISO 8859, 44

-1..8, 46
ISO 8859-1

table, 1043
ISO 8859-2

table, 1043
ISO 9001, 831
iterated, 246
iterator, 111, 335

loop, 103, 109, 111
iterator, 338

J
Jackpot, 1023
Java, 1034
Java Virtual Machine, 291, 402
java.util.Enumeration, 337
java.util.Iterator, 337
JBuilder, 1018
jgnat, 291
JML, 686

join, 531
join point, 1016
JVM, 1017

K
keyword, 52
Kylix, 1033

L
L-value, 230, 249
label, 91, 279, 376
LACE, 1033
lambda calculus, see λ-calculus
late binding, 577
Latin-1, 182
Latin-1 table, 1043
Latin-1..4 code, 46
Latin-2 table, 1043
LCF, 1040
length, 275
lexical

elements, 42
lexical scope, see static scope
life, 127
lifespan, 127, 136

static, 137
lifetime, 189, 326

static, 326, 331
limited, 258
Linda, 741

Program Builder, 742
link

process, 392
linkage, 424
LISP, 1035
list, 247, 871, 872, 874, 877, 881, 887, 889,

905
comprehension, 894
generator, 877
infinite, 864
lazy, 861
linked, 876

literal, 231, 258, 301
array, 251
numeric, 53

LMC, 69
local, 322, 331
lock, 727
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locking, 727

logic programming, 740, 932–1011

accumulator argument, 953

accumulator pairs, 953

applications, 933, 996

argument, 938

arity, 934, 938

axiom, 934, 937, 938

body of rule, see rule body

clause, see statement, 935

conjunction of subgoals, 936, 938–
941, 943, 944

constraint logic programming, 996

declaration, 934

definite clause, 935

extensions, 993

fact, 934–937, 939–941

fifth generation computers, 995

goal, 932, 934–936, 938–941, 943,
944

head of rule, see rule head

Horn clause, 935

leftmost subgoal selection strategy,
941, 943, 944

list, 948

logic grammar, 994

Mercury, 995

method of generalization, 954

mgu, 938, 939

parallelism, 995

predicate, see relation, 934, 938, 944,
950, 951, 953, 954

predicate invocation, see goal

proof tree, see search tree

query, see goal

recursive search, 951

reduction, 939–941

reduction of a goal, see reduction

relation, see predicate, 934, 936, 938

Robert Kowalski, 933

rule, 934, 936–942, 951, 999

rule body, 937

rule head, 937, 939

search space, see search tree

search tree, 941, 943, 944, 951–954

statement, see clause, 935

step-by-step approximation of the
output, 952

subgoal, see goal
term, 946

logical languages, 77
longjmp, 94, 367, 370
loop, 102, 333, 335

body, 104
counting, 103
safe, 106
traversing, 103
variable, 103, 107

value range, 103, 108
low level programming languages, 68
LP, see logic programming

M
macro, 299, 307, 323, 446
main, 285
main program, 284, 368, 380, 383, 386,

391
main segment, 319
maintainability, 269, 420, 833
malloc function, 131
mantissa, 185
Maple, 1035
Mathematica, 56
MDSC, 1019
me, 296
member, 230
memory

allocation, 136
dynamic, 139
storage, 128

memory leak, 190
memory management, 189, 212

garbage collection, 193, 195, 229
message passing, 732, 737, 738, see

communication
metaprogramming, 598, 1022
method, 160, 295, 466

friend, 488
virtual, 510

method call, 63
mixin, 1020
ML, see SML
ML language, 163
mnemonic, 424
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mobile
code, 902, 919, 921
program, 904

modul, 135, 294
Modula-2, 1036
Modula-3, 1036
modular

composition, 420
continuity, 420
decomposition, 420
design, 419
intelligibility, 420
protection, 421

modularity, 418, 419, 862
modularization, 449
module, 298, 418, 419, 439, 440, 443, 449,

867, 885, 887, 889, 890, 1014
closed, 422
definition, 889, 890
dependency, 419, 443, 449
export list, 889
implementation, 889, 890
import, 889

qualified name, 890
open, 422, 428
parametric, 892
signature, 890

MOF, 1023
monad, 895, 901

basic operation, 895
IO, 897, 899, 901
transformer, 897

monadic
action, 895

bind, 896
class, 895, 898
operation

bind, 895, 898
monitor, 392, 739
MPI, 742
multiple inheritance, 528
multithreaded environment, 374, 376
mutable, 318
mutual exclusion, 724, 761

N
name

predefined, 52

name binding, 594
named array aggregate, 251
namespace, 433

unnamed, 135
NaN, 185
native, 291
nested class, 326
nesting, 319, 321
.NET

contracts, 678
.NET, 291
new expression, 131
No preemption, 724
non-local, 322, 332
NONE class, 584
normal form, 860, 861, 863, 866, 904
not a number, 185

O
object, 465, 466, 895

creation, 136
destruction, 137
diagram, 477

object-oriented, 919
object-oriented programming, 465
octet, 43
oneof, 242
opaque

structure (SML), see structure
operating system, 77, 367
operation, 176, 186, 194, 238, 255

abstract, 591
bit, 176
bit-wise, 183
infix, 870, 882
prefix, 870
primitive, 436
reference, 201

operator, 169, 177–179, 186, 188, 200,
203, 329, 438

associativity, 204, 207
boolean, 183
conversion, 164, 170, 172, 180, 187,

209, 439
dereference, 197, 249
equality, 232
evaluation order, 273
free, 203, 445, 450
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greedy, 212
infix, 204
lazy, 212
left associative, 207
mixfix, 204
overload, 203
overloading, 231, 250, 329, 338, 444,

450
postfix, 203
precedence, 204, 206, 273, 329, 883
prefix, 203
reference, 195, 213
relational, 171
right associative, 207
unary, 204

operator-overloading, 112
optimalization, 300
optimization of tail-recursion, 333
Optimize, 300
option, 845
Oracle Designer, 831
ordinal types, 172
out, 316, 317
overlay, 79
overload

operator, 203
overloading, 133, 327, 444, 450, 580, 583,

882
operator, 231, 250, 444, 450

override, 444
overriding

contravariant, 511
covariant, 511
novariant, 511

own keyword, 135

P
package, 428, 433, 443
padding, 235
Paradigm+, 831
parallel

composition, 920, 921
parallel clause, 734
parallelism, 77

apparent, 339
parameter, 331, 845

actual, 273
contravariant, 602

count, 283
covariant, 602
default value, 284, 293
formal, 273
in- and output, 302
inout, 302
input, 270, 302
label, 279

list, 273, 292
variable length, 283

matching, 273
matching by name, 285, 293
matching by position, 285, 293
mode, 316
multidimensional array, 275

out, 400
output, 270, 302
profile, 285
subprogram, 311
subprogram parameter, 278
textual substitution, 307, 323
type, 280, 281, 446
unconstrained array, 274

value, 274
parameter passing, 322

by copy, 307
by name, 309, 323
by need, 319
by reference, 303
by result, 305
by sharing, 317

by value, 302
by value/result, 306
data transfer, 312
mode, 302

Pascal, 1037
Object, 1032
Turbo, 1032

pattern, 864, 867, 868, 872, 1029

as-pattern, 879
matching, 864, 867, 871, 872, 874

type, 902, 903
record pattern, 874
supervisor, 392

pattern matching, 769
Perl, 1037

PHP, 1038
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Piranha, 742
PL/I, 1038
point of instantiation, 595
pointcut, 1017

pointer, 188, 191, 193, 195, 197, 198, 201,
249, 250, 374, 438, 441, 446,
448, 897

arithmetic, 277
arithmetics, 200, 249
hiding value, 139

smart, 143
to constructor, 137

Polish notation, 203

polymorph, 137
polymorphism, 163, 189, 282, 311, 329,

446, 497, 508, 512, 516, 563, see
type, 881, 883, 884

ad hoc, 882
ad-hoc, 572–573, 580–583
coercion, 573, 581

inclusion, 573, 576
overloading, 573
parametric, 573, 576

simple, 882
syntactic, 575, 584
universal, 572–580
variable, 508

portability, 273, 836
positional array aggregate, 251
postcondition, 635

postfix, 203
precedence, 273, 329, 444, 867, 883

level, 329

precision
double, 185, 186
single, 185

precompiler, 299, 441

precondition, 635
predicate

built-in, 988

prefix, 203, 329, 445
prefixing, 1039
primitive

operation, 436
printf, 271
private, 440

private, 287, 438

procedural programming, 76
procedure, 269, 450
procedure, 272
procedure call, 63
process, 732, 737, 920

concurrent, 920
instance, 920
interactive, 900
migration, 921

data-driven, 921

producers-consumers execution model,
733

program
compatibility, 3

construction, 859
correctness, 2
maintainability, 2
reliability, 2
reusability, 3

self-modifying, 92
state, 76
unit, 273

PROGRAM_ERROR, 380

programming languages
object-oriented, 136

Prolog, 932
Prolog language, see logic programming

applications, 933, 993, 994

arithmetic, 972
arithmetic argument, 972
arithmetic expression, 972
arithmetic predicate, 972
arity, 956, 975, 989

backtracking, 956
choice point, 955
collecting solutions, 985
Colmerauer, Alain, 933
comparison of terms, 974

compound term, 948
conditional goal, 963, 979
conditional structure, see conditional

goal

constant, 946
cut, see cut statement
DCG, 994
declaration, 934, 935, 982, 989

deterministic goal, 960
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directive, 934, 935, 979, 980, 989
Edinborough Prolog, 934
exception

catch, 987
handling, 987

raise, 987
extensions, 993
fact, 955
function symbol, 948
functor, 948

goal, 944, 945, 955, 957, 960
ground list, 950
ground term, 948
indeterministic goal, 960

infix operator, 978
input-output, 981
ISO standard, 934, 946, 956, 979,

987, 988, 993
last call optimization, 961

leftmost subgoal selection strategy,
944

list, 948, 950
list of clauses, 961

loading programs, 980, 992
logic variable, 946, 973
Marseille Prolog, 933
meta-argument, 967
meta-goal, 967

meta-logical predicates, 972
meta-parameter, 967
meta-predicate, 967, 991, 992

declaration, 992

module
declaration, 989
flat, 989
predicate-based, 988
prefixing, 990

module name expansion, 992
modules, 988
name, 946
name constant, see atom
negation, 967, 979

number, 946
operator

create, 978
delete, 979

overdefine, 978

predefined, 979
operator symbols, 977
parenthizing operators, 978
partial list, 949

pattern matching, 956, 957, 960
predicate, 945, 946, 955, 959–963,

965, 967, 972, 974–976, 979,
981, 985, 998

catch, 987
dynamic, 982, 983, 992

extra-logical, 980
loading programs, 980
static, 982

without rule, 982
predicate fail/0, 965
predicate true/0, 965
prefix operator, 978

priority levels, 977
procedure, see predicate
pure Prolog, 954, 962, 987

query, 955
reduction, 955, 956
rule, 944, 945, 955, 957, 959, 960,

962, 967, 979, 982–984, 992
rule body, 959, 962
rule head, 956–960
search tree, 944, 945, 955, 957, 960,

962, 968, 980, 985
SICStus Prolog, 934, 988, 993, 996
simple term, 948

standard order of terms, 974
structure, see compound term
suffix operator, 978

tail recursion optimization, 962
term, 946, 974

standard order, 986
term manipulation, 975

type of term, 974
unification, 957, 959, 960
Warren, David H. D., 934

proof of correctness, 91
property, 470
protected, 440

object, 764, 767
type, 767

protected, 287

protocol, 285
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prototype, 281, 299
public, 440
public, 287
purely

functional, 862
purely functional, see functional
PVM, 742
Python, 1038

Q
qualified name, 327, see module import
qualified reference, 230
queue, 247

R
RAII, 141, 142
RATFOR, 299
Rational Rose, 831
Rational Unified Process, 1024
raw type, 600
read-modify-write, 725
readability, 268, 273, 329
READONLY, 316
real time control, 116
record, see cartesian product, 233, 234,

236, 373, 874, 886
discriminated, 244
field, 874, 886
pattern, 874
update, 875
variant, 243, 886

record, 236
recursion, 115, 297, 331

direct, 297, 299
recursive, 867

algorithms, 115
call

replacing, 874
mutual, 879
mutually, 863

recursively bounded quantification, 588
redex, 860, 861

lefmost innermost, 861
leftmost outermost, 861

reduction, see rewriting, 860
order, 861
step, 861
strategy, 860, 861

normalizing, 861
reentrancy, 755
ref, 317
reference, 166, 171, 188, 191, 195, 197,

198, 201, 229, 249, 250, 252, 442
count, 442
counter, 190

level, 188, 197
qualified, 444

reference resolution, 897

referential transparency, 872, 876, 894
register, 331
reliability, 366, 832

rendezvous, 746, 753, 759
representation, 161, 164, 166–168, 170,

233, 246, 254, 255, 258, 417,
418, 436, 438–442, 448

BCD, 181
clause, 235
fixed point, 172, 184, 187

floating point, 172, 185, 187
function, 161
two’s complement, 176, 177

rescue
clause, 384

reserved word, 52
resolution, 933

resource, 369
external, 137
handling with objects, 142

resource acquisition is initialization, 383,
389

Result, 290

return, 94
value, 270, 280, 288

multiple, 280
return, 288

reusability, 268, 319, 420, 423, 834, 836
rewriting, 859–861

process, 859

reduction step, 860
system, 859

confluent, 866

graph rewriting system, 866
role of semicolon, 90
round-trip engineering, 831

row-major order, 254
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Ruby, 1038
runtime

stack, 330
runtime error, 367
RUP, 831, see Rational Unified Process

S
scheduling, 77
scope, 127, 132, 319, 862, 867, 877, 885,

896
where, 867, 877
compilation unit, 134
dynamic, 323, 334
function and block, 135
global, 134
local constant, 899
local declaration, 877
local definition, 894
off-side rule, 864, 877, 896
operator, 134
restricted, 887
static, 323, 335
type, as, 135

scope of the loop variable, 109
script language, 283
section, 79
segment, 425
select, 756

closed, 757, 759
delay, 761
delay alternative, 759
else, 760
else alternative, 759
else alternative, 759
open, 757, 759
terminate alternative, 759

selection
hashtable, 257
union, 238
vector, 249

selective wait, 756
selector, 229, 230, 234, 236–240, 242, 244,

249, 252, 253, 258
cartesian product, 230

selector function, 871, 874
selector statement, 96
Self, 483
self, 296

self-invoking, 115
algorithms, 115

semantics, 160
semaphore, 726, 736

Ada language, 762
Ada, with discriminant, 768
binary, 727
strict, 727

sentence-like description, 64
separate, 734
sequence, 87, 871, 872

arithmetic, 874
element, 880
generator, see generator
infinite, 874

sequence, 248, 251
sequential

control, 63
number, 91

set, 247, 254, 255, 260
setjmp, 367, 370
shared variables, 732
shared_ptr, 143

short circuiting, 311
side effect, 269–273, 300, 374, 861, 862
signal

exit, 392
signature, 327, 434, 882, 884, 890, 892

abstract, 882
expression, 890
extension, 890

inheritance, 890, 891
primary, 890, 891
specialization, 890

significant digits, 185
SIMULA 67, 1039
simulation, 340
Sina, 1021
size, 160

slicing, 251
Smalltalk, 1039
SML, 1040
Software Through Pictures, 831
SOP, 1020
specialization, 839
specification, 77, 273, 280, 297, 327

SPICE, 831
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SQL, 1040
stack, 129, 189

runtime, 330
standard form, 185
standard library, 143
Standard ML, see SML
Standard Template Library, 338
start

expression, 859
state space, 76
state-transitions, 76
statement, 270, 287, 375

raise, 390
throw, 391
arithmetical, 376

die, 396
eval, 396
exit, 379
goto, 367, 371, 378, 400
raise, 380, 385, 386
retry, 385
SIGNAL, 377
signal, 379

throw, 382, 388, 390
throws, 396

statement body, 90
static, 134, 137

buffer, 140
class member, 135
lifetime, 326, 331
link, 333

linking, 444
memory, 189, 331
modifier, 135
scope, 323, 335
variable, 189, 194, 195, 213

static, 287, 295, 326
stepup, 337
storage

type
automatic, 129
dynamic, 130
static, 128

types, 128
STORAGE_ERROR, 380
Strand, 741

strictness

analysis, 861
declaration, 861

string conversion, 165, 172
strong typing, 596
strtol, 374
struct, see record
struct, 236, 241
Structograms, 68

structure, 160, 434, 882, 890
equivalence, 890
expression, 890
nested, 892
opaque, 892

structured programming, 80, 81
subexpression

parallel, 904
subprogram, 267–364, 375, 445, 450

active, 273, 330
as parameter, 278
body, 273, 287
calling, 273, 292
declaration, 297, 320
definition, 273

entry point, 293
execution

failure, 385
retry, 385

header, 280
implementation, 330
inline, 299
instance, 330

interface, 280
name

overloading, 327
naming, 270
parameter list, 292
parameter passing, 322

by address, 374
parameter profile, 285

pointer, 198
protocol, 285
prototype, 281, 299
recursion, 331
recursive, 297

indirectly, 297, 299
tail-recursion, 333

return value, 288, 372
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specification, 273, 280, 297, 327, 368
type, 301

subroutine call, 63
subtype, 209, 245, 250, 282, 316, 328

polymorphism, see inclusion
polymorphism

subtyping, 584
contravariant, 600
covariant, 600
invariant, 600

suchthat, 337
SVG, 1023
symmetric control model, 338
synchronization, 723

pattern, 920
alternative, 920

synchronization specification, 77
synchronous languages, 731
syntactic sugar, 178, 237
syntactical polymorphism, 584

T
tagged union, 238
task, 737, 746

attributes, 752
complete, 380
object, 748
termination, 751
type, 747, 748

TASKING_ERROR, 380
Tcl, 1041
template, 279, 419, 446, see type

parameters, 892
template, 580, 584
terminate, 758
this, 296, 483
Thread, 735
thread, 129, 141, 905
Tiny BASIC, 17
Tk toolkit, 1041
Together, 831
transaction based control, 116
transfer of control, 63, 91
Trellis, 742
try, 288
tuple, 393, 871
Turing, 857

machine, 857

Turing-machine model, 76
type, 158, 159, 856, 859, 881

unit, see zero-tuple
abstract, 168, 416–462, 467, 591,

847, 862, 881, 887, 890, 901
algebraic, 890

algebraic, 862, 868, 881, 884, 885,
900

abstract, 890
application, 884

boolean, 182, 211
cast

dynamic, 582

implicit, 582
static, 582

character, 181, 212
check, 281, 320

checking, 133
class, 168, 169, 211, 856, 859, 869,

881–883

context, 883, 884
coercion, 582
composite, 168, 224

composition
cartesian product, 230

concrete, 439, 846
constant, 883

construct, 417
construction, 173, 449, 871, 884, 895,

898

array, see array
list, see list
record, see record

sequence, see sequence
tuple, 871

constructor, 884, 887, 889, 901
class, 889

classes, 884
variable, 889

context, 884

conversion, 164, 166, 201, 282, 439
narrowing, 164
widening, 164

data constructor, 864, 868, 887, 901
emi, 884

declaration, 862

delta, 187
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derivation, 209
derived, 884, 887
discrete, 169, 172, 255
dynamic, 167
enumeration, 169, 170, 173, 211, 884
equivalence, 226, 257

declaration equivalence, 227
name equivalence, 226
structure equivalence, 227

erasure, 595, 599
expanded, 171, 318
expression, 884

extendable, 901
fixed point, 169
floating point, 169
higher-order, 881
Hindley–Milner type system, 862
immutable, 227, 236, 251, 257

indefinite, 274
inference, 862, 884
inference system, 163
integer, 169, 175, 211
interval, 316
invariant, 236

limited, 231
most generic, 884
mutable, 227, 236, 251
node, 849
numeric, 869
opaque, 436

operation, 160, 162, 171, 230, 248,
417, 436, 438

parameter, 446, 563, 587
bounding, 590
explicit, 573

inference, 596
matching, 596
restriction, 587
typeclass, 589

pattern matching, 903
pointer, 168, 188

polymorphism, 862
primitive, 168
principal, 884
real, 169, 172, 184, 212
realization, 161

reference, 188, 249, 314, 317, 318

scalar, 168, 170, 256
small value, 187
specification, 418, 439, 440, 449, 467,

892
static, 871
subprogram, 301
synonym, 884, 887, 890
system, 163, 883

Hindley–Milner, 862, 884
monomorphic, 583
mostly monomorphic, 583
polymorphic, 583
strictly monomorphic, 583

taxonomy, 168
typing

static, 862
strong, 862

value, 317
variable, 574, 882–884, 887

type parameter, 575
implicit, 573

type parameters
wildcards, 601

type-value set, 160, 171, 176, 178, 184,
191, 229, 238, 245, 247, 253, 255

typecast, 328
typedness, 210

static, 163
strong, 163, 234
weak, 164

typing
weak, 596

U
UCSD P-System, 81
UML, 1013, 1023
unaccessible object, 137
unary, 203
unconditional transfer of control, 91
unconstrained discriminated record type,

274
Unicode, 44, 181
Unified Process, 1024
union, 237, 259

free, 239, 259
labeled, 174
tagged, 238, 242, 259

union, 239, 241
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unique, 895, 899
variable, see variable

unique, 173
uniquely referenced

array, 876
unit, 202, 204

protected, 272
unit (ML, Haskell), see zero-tuple
UNIX, 370

Epoch, 140
shell, 144

unlocking, 727
update

destructive, 861, 865, 894, 895
upto, 337

V
value, 313
value sharing, 584
value type, 248
var, 304, 312
variable, 862, 867

automatic, 189, 194, 195, 213
dynamic, 189
free occurrence, 862
global, 134, 189, 374
initialization order, 137
local, 135, 287, 331, 383
mutable, 897
static, 189, 194, 195, 213
unique, 894

variant, 242
vector, 247, 260
vectorization, 730
visibility, 319, 438, 440, 441, 443, 448,

885, 891, 892
package-level, 136
private, 135
protected, 135
public, 135
semi-public, 136

void type, 271

W
waterfall design model, 269
WayPointer, 1023
weak

typing, 596
where, 862
while, 336
while-programs, 73, 74
WITH, 233
WITH, 258
with, 321

X
XMI, 1023

Y
yield, 336

Z
zero-tuple, 871


