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IntroductionThis textbook is intended for teachers, for studentsin the �rst year of university and in high school aswell as for the more advanced students in secondaryschools who wish to acquire a solid understanding ofsystematic programming.In view of the wide range and diverse character ofthe intended audience, it makes very few demands onthe knowledge of mathematics. The examples intro-duced have been chosen such that they presume onlyan elementary knowledge of mathematics, but of coursemany illuminating and useful examples can be foundin that �eld. Some of the larger examples are con-cerned wit certain application areas of Informatics, butthere is no orientation towards any particular applica-tion area. The teacher or reader can add such an orien-tation by the choice of suitable examples for practicalwork.The central issue of all programming methodologiesis the controlled use of abstraction. In this particu-lar textbook we rely much more on linguistic abstrac-tion than on mathematical abstraction. The languageused, the Educational Language Elan, can be seen asa daughter of ALGOL68, designed speci�cally for theteaching and practice of systematic programming. Thedidactic approach followed here can be applied in usingother languages, provided they possess the necessaryconcepts. But only Elan is specially designed to sup-port a number of systematic programming methods:� Top-Down programming,� recursive programming,� Bottom-Up programming, and� modular programming.This �rst part deals predominantly with Top-Downprogramming. It exploits the fact that, in Elan, the re-�nement is not a paper-and-pencil technique but a cen-tral language mechanism, supported by a sophisticatedprogramming environment. It furthermore deals withthe possibilities o�ered by the exploitation of recursion.The second part will be concerned with Bottom-Up andModular programming, and presupposes a good under-standing of Top-Down programming.This somewhat arbitrary and dogmatic division ismotivated by a di�erence in the intended audience: thesecond part is aimed at a more professional user, whowants to learn how to design and implement non-trivialprograms in a systematic fashion. The second part willtherefore also be much more formal in its approach.

The book attempts to be very careful and consistentin the introduction of concepts and terms, both regard-ing the programming language and regarding the pro-gramming process itself. Standard terminology is usedas far as possible, but jargon is avoided. The conceptsand terms used here are not con�ned to Elan, but canbe used to understand programming in any language.Once systematic programming in Elan has been mas-tered, it should be easy to learn to use other languagesas well.It should be pointed out that, apart from studyingthe book, the hands-on experience of doing a numberof exercises is indispensable, in order to acquire thenecessary skills and to experience the possibilities andlimitations of the methods taught. For such practicalexercises, some computer with an Elan implementationwill have to be available.From the publisher of this book, Ellis Horwood, in-terpreters for two subsets of the full language can beobtained. The smallest subset, Elan-0, is available onsmall microcomputer systems and is su�cient for exer-cises about the �rst ten chapters of the book. For therest of the book the larger subset, Elan-1, is needed,which is available on MS-DOS computers and othermedium-size microcomputer systems. Another imple-mentation (of full ELAN) is the EUMEL-system, avail-able from the GMD, Postfach 1240, D-5205 St. Au-gustin (Germany).In order to avoid confusion between the di�erent sub-sets, it is clearly indicated in the text whenever someremark applies only to a particular subset.It is hoped that this book and the various Elan im-plementations will provide a sensible alternative to BA-SIC and an improvement over PASCAL in the teachingof systematic programming.Nijmegen, October 1988C.H.A. Koster
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Chapter 1AlgorithmsIn programming we try to tell a computer what todo, i.e. we describe what the computer should do insuch a form that the computer can obey that descrip-tion. Such a description we call an algorithm. In formu-lating algorithms we can learn quite a lot from study-ing other descriptions, intended to tell people what todo: instruction manuals, cooking recipes, knitting pat-terns, and so on.In this chapter we will investigate some algorithmsfrom daily life, and identify some important aspects ofalgorithms. In particular we shall draw attention tothe importance of abstraction in the formulation of al-gorithms. The chapter ends with a tentative de�nitionof the notion of algorithm.1.1 Algorithms in daily lifeThe following examples, whether actual examples fromdaily life or contrived, show a number of importantaspects of algorithms.1.1.1 Paybox telephoneAs a �rst example of an algorithm we give instructionsfor the use of a public paybox telephone, such as mightbe found next to the telephone.INSTRUCTIONS FOR USE1. Take the telephone from the hook,2. wait for the dialtone,3. put in coins,4. choose the desired number.Inspecting this algorithm somewhat more closely, wenotice a number of important points.� The algorithm is a description that is intended toguide the actions of a human being. The descrip-tion is executable, in contrast to the notice that thetelephone is property of the telephone company.� The execution of the algorithm proceeds in steps.The sequence of steps taken in a speci�c executionof the algorithm we call a process described by that

algorithm. The executor of the algorithm, in thiscase a human being, is called the processor.� One step in the execution of the algorithm consistsin its turn of the execution of one or more (other)algorithms that are indicated in the algorithm bya name (such as take the telephone from thehook). In these instructions such named algo-rithms are considered as elementary. The given al-gorithm is composed from elementary algorithms.Whoever wants to execute the algorithm mustknow the elementary algorithms and be capableof executing them. He must know the languagein which the algorithm is written; he must knowwhat a dialtone is and how to put in coins.� We demand from an algorithm that it is su�-ciently precise, i.e. that each step as well as theorder of their execution is not open to conictinginterpretations. To that end, the algorithm mustbe formulated at a suitable level of detail (level ofabstraction).In order to make clear how to take the phone fromthe hook, we may of course indicate which handhas to be extended to the phone (distinguishingbetween left- and right-handed people), with whatforce (in newtons) the various �ngers have to graspthe phone and with what speed that end of thephone to which the cord is not connected has tobe moved with its at side until it is no more thanone sixteenth of an inch from the right ear of theprocessor (if the right ear is absent one has to takethe left ear). But this is by no means the end ofthe story: we must de�ne how and when the indi-vidual muscles of hand and arm are to be applied.In this way the description threatens to sink in abottomless swamp of more and more extensive de-tails. Only a coherent choice of not too detailed el-ementary algorithms (take the telephone fromthe hook, wait for the dialtone) and a formu-lation of the algorithm on the thus de�ned level ofabstraction allows us to be precise.Precision entails the choice of a speci�c level ofabstraction.� The algorithm, i.e. the text of the description,must be �nite, and even short when the processor1



is to be a human being. The execution of the algo-rithm (the process) is not necessarily �nite (thinkof an algorithm for walking a treadmill).1.1.2 Cooking recipeIn cookbooks one �nds recipes, i.e. instructions for thepreparation of some food, written with a typical use oflanguage and typical notational conventions.CHICKEN �a LA MARSEILLAISE.2 broilers, 6 tomatoes, 2 paprikas, 1/2 cup of whitewine, 1/2 cup of bouillon, 1/2 lemon, salt, pepper,thyme and a clove of garlic.Divide the broilers into pieces. Salt and pepper andput into the clay pot, which has been soaked in water.Add the �nely cut paprikas, the quartered and peeledtomatoes and the garlic. Add the white wine andbouillon which has been seasoned with pepper, thymeand lemon juice, mix thoroughly. Put the closed potinto the oven and cook the dish at a temperature of225 Centigrade in circa 90 minutes.For a cook who is not too inexperienced this is a precise,executable and, of course, �nite description of a processthat he learns to know under the name of \preparationof chicken �a la Marseillaise" ([EXN70]).The execution of this algorithm consists of the execu-tion of other algorithms (cut, season) manipulatingobjects (broilers, pepper). Again we notice a num-ber of important aspects of this algorithm.� At the start of the description a list is given of thenecessary ingredients that will be used in perform-ing the algorithm. The algorithm describes opera-tions on named objects, such as the peeling of thetomatoes, and the cutting of the paprikas. Someobjects must be available for the execution of thealgorithm (input), others become available as theresult of the execution of the algorithm (output)and yet others exist only during the process (localobjects).� Objects can be elementary, i.e. indicated in thealgorithm by their name and showing no furtherstructure, or they can be considered as composed,when their structure is essential to the execution ofthe algorithm. In the previous example the tele-phone consisted of a phone, a hook, a dial, etc.This is also a matter of abstraction level | toa chemist, salt can look quite di�erent than to acook. And a physicist may even be interested inthe state of the sodium ions in the salt.There is an interdependency between algorithmsand objects: the choice of the elementary objectsdecides the level of detail of the elementary al-gorithms operating on them and conversely, thechoice of the elementary algorithms �xes the kindsof objects to which they are applied.Together the algorithms and objects form the building

stones of the algorithmic universe, that we can subdi-vide as follows:algorithmselementary algorithmscomposed algorithmsobjectselementary objectscomposed objects1.1.3 Knitting patternIn fashion magazines one can �nd knitting patterns likethe following.STRIPED PULLOVER (3 - 4 YEARS)Materials: 250 gms middle weight dralon/mohair mixin each of pink, white, dark green and light green.Ribbing: 2 knit, 2 purl ending with purl.Body: knit in stocking stitch (knit across and purl onthe way back).Stitch tension: 26 stitches and 37 rows = 10 x 10 cm.Stripe pattern: * 4 rows pink, 4 rows white, 4 rowsdark green, 4 rows light green, 2 rows pink, 2 rowswhite, 2 rows dark green, 2 rows light green, repeatfrom * three times ending with 4 rows pink, 4 rowswhite, 4 rows dark green. Pattern equals 108 rows.Back: Cast on 130 stitches in pink.Begin with 4 rows of ribbing for the border thencontinue in stocking stitch following the stripepattern. After 78 rows (21 cm) . . .Again we make a number of observations.� The algorithm (of which we showed only a frag-ment) consists of the description of a numberof sub-algorithms, such as Ribbing, Body orStripe pattern. These sub-algorithms in theirturn are described in terms of elementary algo-rithms, such as purl and knit.These sub-algorithms are de�ned in the algorithmitself, and they can be invoked by mentioning theirname.� Some of these sub-algorithms have parameters toinuence the result of their execution. As an ex-ample, 4 rows white will give a white stripe inthe pullover, whereas 2 rows dark green willgive a somewhat smaller dark green stripe.� In the sub-algorithm Stripe pattern the marker* serves to indicate a place from which a part ofit has to be repeated. The repetition is a descrip-tional trick to keep the algorithm short.� The algorithm contains a number of statementsthat are not by themselves intended to be executed(such as Stitch tension and Pattern equals2



108 rows) but serve to allow a plausibility checkon the execution of the algorithm. They are re-dundant but useful.For somebody who does not know how to knit, this al-gorithm is nearly incomprehensible. It is written in alanguage that can be understood only by people whoknow the elementary algorithms. But without the for-malism, one would have to describe the movementsthat the hands, the needles and the threads would haveto make during the knitting, which in itself would againraise the problem of describing such movements.However precisely one tries to describe some actionsalgorithmically, there always remain some elementaryalgorithms whose meaning is not indicated in the algo-rithm. An algorithm is always written in such a waythat a great many details of the process described areabstracted from. Such an abstraction is unavoidable.One form of abstraction lies in the fact that we givea name to an algorithm, so that this name can be usedin other places instead of a detailed algorithm (thisalso leads to brevity in this description). Once oneknows what is the description of such an elementaryalgorithm, at places where this algorithm has to beapplied it su�ces to mention only its name. The ab-stract algorithms form an extension of the elementaryalgorithms.1.1.4 Driving a carThe following example could have been taken from aninstruction manual for driving a car (on the continentor in the U.S.A.).STARTING FROM THE KERB1. Wait until the direct environment of the car is free(beware of playing children), apply the hand-brake,put the gear shift into neutral and if the engine iscold pull out the choke.2. Push the start button briey.3. Repeat from step 2 if car engine is not running.4. Look over left shoulder and wait until road is free.5. Left foot: depress clutch.Right hand: disengage hand-brake.6. Left foot: keep clutch depressed.Right hand: put into �rst gear.7. Left foot: slowly lift clutch.Right foot: push accelerator.Both hands: turn steering wheel to the left.8. Left foot: release clutch.Right foot: push accelerator.Both hands: turn the steering wheel so that thecar moves in the right direction.Without concerning ourselves with the complexity or

correctness of this algorithm we make the following re-marks about its structure.� The algorithm consists of a number of steps thathave to be executed in the order indicated (serialexecution).� The �rst step consists of four parts that can beperformed in any order, or even simultaneously(collateral execution).� The last three steps contain parts that have nec-essarily to be performed simultaneously (parallelexecution).� Step 3 consists of the conditional repetition of step2 and one of the parts of step 1 is also conditional.The collateral parts of an algorithm can be performedin parallel, provided su�cient processors, in this casehands and feet, are available, but they can also be per-formed in any order one after another or simultane-ously without inuencing the results (apart from someinuence on the execution time). The parallel parts ofthe algorithm however have to be performed simulta-neously in order to reach the desired result. We callan algorithm sequential if it does not make any es-sential use of parallelity. This algorithm therefore isnon-sequential.For a number of reasons, non-sequential algorithmsare much harder to understand than sequential ones.In the remainder of this book we therefore restrict our-selves to sequential algorithms, in this way also layinga basis for the understanding of non-sequential ones.1.2 SummaryAn algorithm is a precise, �nite description of one ormore processes. This description is composed of otheralgorithms and, ultimately, elementary algorithms.An algorithm describes a process in the form of ma-nipulations of objects that are composed of other ob-jects and �nally of elementary objects.The structure of algorithms and the structure of ob-jects manipulated by those algorithms show a strongsimilarity that can be depicted as follows:program text, consisting ofalgorithmselementary algorithmsconcrete elemen-tary algorithmsabstract elemen-tary algorithmscomposed algorithmsobjectselementary objectsconcreteelementary objectsabstractelementary objects3



composed objectsAn algorithm must be executable for a processor, beit a human being or an automaton, that knows theformalism in which the algorithm is written and themeaning of the elementary algorithms.An algorithm can be sequential or non-sequential. Asequential algorithm has the property that all its partsmay be executed serially. A non-sequential algorithmhas some parts that have to be executed in parallel.
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Chapter 2Notation of algorithmsIn the previous chapter we found, more or less intu-itively, a number of aspects of algorithms and objects.In this chapter we will introduce a notation for mostof these aspects, as a preparation for the introductionof the programming language.We shall not immediately start with a systematictreatment of a language but try to focus more on thestepwise development of algorithms. The purpose ofthis chapter is to get used to a number of essential al-gorithmic ingredients of programming languages suchas actions, conditions, control structures and re�ne-ments, while avoiding (at �rst) di�cult concepts likeobjects, types and data structures.2.1 Karel the robotIn this chapter we shall make use of a didactic model,introduced in the book Karel the Robot [PAT81]. Thismodel, that is obviously based on ideas of S. Papert[PAP80], allows us to avoid in �rst instance the notionof the object from informatics and instead rely on theworld of daily experience.Karel the robot lives in a simple algorithmic world ona at surface. He spends all his time on street corners.In the following �gure you see him standing on thecorner of the second street and the 8th avenue, withhis nose pointing east:. . . . . . . . . .. . . . . . . . . .. > . . . . . . . .. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .At the start of his world, Karel stands in the origin(�rst Street, �rst Avenue) in the lower left-hand cornerof the screen, with his nose pointing north.Apart from Karel himself, his world contains alsobeepers and walls. Beepers can lie on street corners.Karel can pick up a beeper and put it in his pocket,or take one from his pocket and drop it on the corner

where he is standing. To that end, he has a pocketcontaining an unlimited supply of beepers.On the screen a wall will be depicted as X, and abeeper as o. In order to keep Karel within the visi-ble part of his world, the screen is surrounded by animaginary wall (just outside of the screen).. . . . . . . . . .. . X X X X . . . .. . . . . X o . . .. . . . . X o . . .. . . . . X V . . .. . . . . X . . . .. . . . . X X X X X. . . . . . . . . X. . . . . . . . . X. . . . . . . . . .Walls may block street corners. Karel cannot standon such a corner. Therefore he sometimes has to takea roundabout route in order to arrive where we wanthim to go.2.2 Karel fetches his morningpaper (1)In the course of an example we shall design an algo-rithm for Karel, while at the same time introducing aspeci�c notation for algorithms.Karel is lying in bed in his home, facing west. Infront of the outside wall of his house lies a newspaper,under the guise of a beeper.We shall write an algorithm for Karel to fetch hisnewspaper and take it to bed with him.2.2.1 First attemptWe shall split Karel's task into three parts, that he hasto perform in the listed order.go to garden;take newspaper;go back to bed.Each of the three sentences appearing here we shallconsider as the name of an algorithm. We write their5



. . . . . . . . . . . .. . . . X X X X X X . .. . . . X . . . . X . .. . X X X . . . . X . .. . . . . . . . . X . .. . X X X . . . . X . .. . . o X . . . . X . .. . . . X . . . . X . .. . . . X . . . . X . .. . . . X < . . . X . .. . . . X X X X X X . .. . . . . . . . . . . .names, separated by semicolons, in order to indicatethat they have to be performed sequentially and in thegiven order. At the end of the algorithm we put aperiod. Such a sequence of actions (units) separatedby semicolons, we call a paragraph.We choose the names of algorithms to be such thatthey indicate what the execution of the algorithmachieves. The names of the algorithms are thereforeverbal formulations of their e�ect, that have to be cho-sen with care.Now it would of course be unreasonable to supposethat an algorithm like go to garden is one of Karel'sconcrete algorithms. We will rather attempt to de-scribe how the algorithm go to garden has to be per-formed in terms of simpler algorithms. The notationthat we use for this purpose is called a re�nement,which gives a name to a paragraph.go to garden:walk along wall;walk through entrance;walk to newspaper.This re�nement de�nes the algorithm go to garden asthe sequential execution of the other algorithms men-tioned. This does not take us much farther, becausethose algorithms are still much too particular to letthem be part of Karel's repertoire of concrete algo-rithms. At any rate we have already gained some de-tail. We de�ne analogouslygo back to bed:go back to entrance;walk back through entrance;walk back along wall.As a newspaper we shall of course take a beeper.take newspaper:take beeper.2.2.2 Concrete algorithms of KarelWhat are Karel's concrete algorithms? We shall chooseat least the following:start karel makes the world of Karel appear on yourcomputer screen; Karel appears in the origin, withhis nose pointing north.

turn right makes Karel turn 90 degrees to the righton his at world.turn left same to the left.move makes him move to the next street corner in thedirection of his nose. We shall have to take carethat Karel does not try to move through a wall.take beeper Karel takes the beeper, which must bepresent at this street corner, and puts it in hispocket.drop beeper Karel takes a beeper from his pocket anddrops it at the current street corner. We shall haveto take care that there is no beeper lying therealready.stop puts an end to Karel's world.These instructions are reasonably suitable for a simplerobot like Karel. Later on we shall add some more tohis repertoire.2.2.3 Continuation of the exampleIn terms of these concrete algorithms we can now de�nethe remaining re�nements.walk along wall:turn right;move;move;move;move;move.walk through entrance:turn left;move;move;move;move.walk to newspaper:turn left;move;move;turn left;move;move;turn right;move.2.2.4 The limited repetitionThe algorithms given above are of course rather bor-ing, because they contain so many repetitions of thealgorithm move. If we want Karel to move over largerdistances this will get even worse. We obviously needa notation to indicate that a speci�c paragraph has tobe repeated a number of times. For that, we introducea notation, the limited repetition:6



UPTO numberREPactionENDREPwhich means that the action is repeated this numberof times.We can now write (it is not much shorter, but cer-tainly less boring):walk along wall:turn right;UPTO 5REPmoveENDREP.The text of this re�nement can be shortened even more(without any e�ect on its meaning) by using a some-what denser layout.walk along wall:turn right;UPTO 5 REP move ENDREP.The re�nement walk to newspaper is also simpli�edsomewhat.walk to newspaper:turn left;UPTO 2 REP move ENDREP;turn left;UPTO 2 REP move ENDREP;turn right;move.We can exploit the regularity in this algorithm to makeanother realization.walk to newspaper:UPTO 2REPturn left;move;moveENDREP;turn right;move.We may even write:walk to newspaper:UPTO 2REP turn left;UPTO 2 REP move ENDREPENDREP;turn right;move.According to the jargon of Elan, the body of this re�ne-ment is a paragraph consisting of three units separatedby semicolons, the �rst of which is a repetition; the ac-tion repeated is in its turn a paragraph consisting oftwo units, of which the second is a repetition. We seethat a repetition may occur as a unit within another

repetition. This is called a nested use of the repeti-tion (think of a number of bowls, one nested withinanother).We realize the remaining re�nements.go back to entrance:turn about;move;turn left;UPTO 2 REP move ENDREP;turn right;UPTO 2 REP move ENDREP.turn about:turn right;turn right.Of course we might just as well have taken turn left.walk back through entrance:turn right;UPTO 4 REP move ENDREP.walk back along wall:turn right;UPTO 5 REP move ENDREP.Our �rst concrete program is now complete. We canexecute it with the aid of the Karel-environment whichis delivered along with our Elan implementation, sothat we can see Karel move over the screen. The struc-ture of our program can be depicted in a diagram whichindicates for each re�nement which other re�nementsit uses, as follows:programgo to gardenwalk along wallwalk through entrancewalk to newspapertake newspapergo back to bedgo back to entranceturn aboutwalk back through entrancewalk back along wall2.2.5 Summing upUp to now we have met two mechanisms for the com-position of algorithms:� the paragraph consisting of units, separated bysemicolons, and� the repetition, written with the keywords UPTO. . . REP . . . ENDREP.Such composition mechanisms for algorithms aretermed control structures. Furthermore we have seenhow abstract algorithms can be de�ned with the aid ofre�nements.7



2.3 Karel fetches his morningpaper (2)We now modify the problem statement somewhat, inorder to illustrate more language constructions andconcepts. We assume the same problem as before, ex-cept that� the newspaper is not lying at a speci�c place butis lying somewhere in Karel's front garden at oneof the places indicated in the following �gure by aquestion mark;� Karel does not necessarily start with his nose fac-ing north, so that we �rst have to turn him withhis nose to the north. In the �gure we indicateKarel, whose nose direction we do not know, bymeans of a letter K.. . . . . . . . . . . .. . . . X X X X X X . .. . . . X . . . . X . .. . X X X . . . . X . .. . . . . . . . . X . .. . X X X . . . . X . .. . . . X . . . . X . .. . . ? X . . . . X . .. . . ? X . . . . X . .. . . ? X K . . . X . .. . . ? X X X X X X . .. . . . . . . . . . . .The program now begins slightly di�erently.go to front garden;find the newspaper;go back to bed.go to front garden:turn to the north;walk along wall;walk through entrance;walk to wall.go back to bed:walk back to entrance;walk back through entrance;walk back along wall.2.3.1 The choiceIn re�ning turn to the north we have to decide, inone way or another, whether Karel is already point-ing his nose in the right direction, and otherwise turnhim in the desired direction. We shall have to choosebetween di�erent actions, depending on the conditionwhether Karel is already pointing north. The notationthat we introduce for that purpose is the choice.IF conditionTHEN the oneELSE the otherFI

which means: if the condition is true then the oneis done and otherwise the other. Using this notationwe writeturn to the north:IF not pointing northTHEN turn aroundELSE do nothingFI.turn around:IF pointing southTHEN turn aboutELSEIF pointing eastTHEN turn leftELSE turn rightFIFI.Notice the nesting of choices in this re�nement.turn about:turn left;turn left.How do we instruct Karel to do nothing? The sim-plest thing is to leave out the second alternative of thechoice.turn to the north:IF not pointing northTHEN turn aroundFI.The meaning of this is: If Karel is not pointing norththe further execution of turn to the north consistsof turn around and otherwise the execution of the al-gorithm is immediately complete.2.3.2 The conditional repetitionBy the use of a limited repetition we can give a some-what shorter de�nition for turn to the north:turn to the north:UPTO 3REP IF not pointing northTHENturn rightFIENDREP.This is a typical robot solution. In the stupidest wayimaginable we three times decide whether Karel is al-ready pointed the right way and otherwise make a rightturn. If Karel happens to be pointed the right way ini-tially, all the work is for nothing. Furthermore it takessome thought to establish that three times is enough.The repetition with a �xed number of turns (the lim-ited repetition) is not what we need here. We wantthe repetition to take place as long as a speci�c condi-tion is met (a conditional repetition). To that end weintroduce a new notation8



WHILE conditionREP actionENDREPwhich means: as long as the condition is true, theaction is performed and then the condition testedagain, until it turns out that the condition does nothold any more.We can now writeturn to the north:WHILE not pointing northREPturn rightENDREP.2.3.3 ConditionsA condition is an algorithm that as result of its exe-cution yields a truth value (yes or no). We give Karelthe following repertoire of concrete conditionspointing north yes only if Karel's nose is pointingnorth (and no otherwise).pointing east yes only if Karel's nose is pointingeast.pointing south yes only if Karel's nose is pointingsouth.pointing west yes only if Karel's nose is pointingwest.wall ahead yes only if the following corner is coveredby a wall so that Karel cannot go there.wall right yes only if the street corner to Karel'sright contains a wall.at beeper yes only if there is a beeper at the currentstreet corner.We furthermore introduce a notation for the denial ofa condition:NOT at beeperwill mean: yes only if the current street corner does nothave a beeper, and no otherwise. Using this notationwe may writenot pointing north:NOT pointing north.The meaning of this de�nition is rather subtle: wede�ne an abstract algorithm named not pointingnorth, that yields a truth value, the denial of the resultof the condition pointing north.The introduction of this operator NOT, that invertstruth values, saves us the introduction of particularalgorithms for the denial of each of those conditions.

2.3.4 Continuation of the exampleOnce Karel's nose is pointing the right way, he canbe brought to the front garden by the re�nement goto front garden which we had already written. InKarel's front garden, the newspaper lies in one of thefollowing four possible places:. . . . . . . . . . . .. . . . X X X X X X . .. . . . X . . . . X . .. . X X X . . . . X . .. . . . . . . . . X . .. . X X X . . . . X . .. . . > X . . . . X . .. . . ? X . . . . X . .. . . ? X . . . . X . .. . . ? X . . . . X . .. . . ? X X X X X X . .. . . . . . . . . . . .Once he has arrived in his garden at the �rst ques-tion mark, with his nose pointing south, we let Karelperform a systematic search.find the newspaper:move;IF at newspaperTHENtake newspaperFI;move;IF at newspaperTHENtake newspaperFI;move;IF at newspaperTHENtake newspaperFI;move;IF at newspaperTHENtake newspaperFI;four steps back.at newspaper:at beeper.take newspaper:take beeper.four steps back:turn about;UPTO 4REP moveENDREP.Exploiting the regularity in the previous algorithms,we may make use of the limited repetition.9



find the newspaper:UPTO 4REPmove;IF at newspaperTHEN take newspaperFIENDREP;four steps back.But that is yet another of those typical robot solutions.A better technique is:find the newspaper::walk until newspaper;take newspaper;turn about;walk back until wall.walk until newspaper:WHILE not at newspaperREPmoveENDREP.not at newspaper:NOT at beeper.What happens if there is no newspaper at all in thefront garden? With this last solution, Karel disappearssouth like a meteor, because he does not meet a beeper,until he drops o� the screen.The previous solution with the limited repetition issomewhat more robust: in that case at least Karel re-turns to his bed without his newspaper.In designing an algorithm, questions like these haveto be put explicitly. An algorithm is intended to func-tion under speci�c conditions. If these are not satis�ed(for instance by a human error) strange things mayhappen.2.3.5 Another form of conditional rep-etitionThere is something arti�cial in the realization of walkuntil newspaper: Actually we don't want Karel towalk as long as he is not at the newspaper, but to walkuntil he is at the newspaper. With the current for-mulation, Karel repeatedly looks whether he is at thenewspaper, and moves if he isn't. It is a \precheckedloop". The �rst time around, the condition will cer-tainly be false and Karel will have to make a move.There exists in Elan another form of conditional repe-tition (a \postchecked loop"), which would be slightlymore natural in this example:walk until newspaper:REP moveUNTIL at newspaperENDREP.at newspaper:at beeper.

Notice that we got rid of a NOT sign. We de�ne simi-larly:walk back until wall:REP moveUNTIL wall aheadENDREP.A repetition of the formREP actionUNTIL conditionENDREPmeans the following: The action is performed once,and after that, as long as the condition is false, theaction is performed and then the condition testedagain, until it becomes true. This repetition is there-fore equivalent to the paragraphaction;WHILE NOT conditionREP actionENDREPIt is useful to have both forms of conditional repeti-tion available, although strictly speaking one, e.g. theWHILE-form, would satisfy all needs.2.3.6 ConclusionWriting a few missing re�nements, or taking them fromthe previous example, we again obtain a complete pro-gram, whose structure can be depicted as:programgo to front gardenturn to the northnot pointing northturn aroundwalk along wallwalk through entrancewalk to wallfind the newspaperwalk until newspaperat newspapertake newspaperturn aboutwalk back until wallgo back to bedwalk back to entrancewalk back through entrancewalk back along wall2.4 DelimitersThe notation that we have introduced makes use ofmagic words (delimiters) like IF and REP that give theimpression of being (parts of) English words. Notethat these words are not used with their natural mean-ing and also are not names of algorithms or objects.Delimiters are parts of speci�c conventional �gures ofstyle and for that reason are written in large capital10



letters, in distinction to names that consist of smallletters and possibly digits.Some people may �nd that abbreviated delimiterslike REP are too cryptic and would rather see completewords. For this reason Elan allows alternative repre-sentations for a number of symbols like:REP REPEATENDREP ENDREPEATFI ENDIFWe shall however systematically use the shorter ver-sions in preference.2.5 SummaryWe have now made our acquaintance with the Top-Down programming style, in which we introduce ab-stract algorithms as needed and afterwards de�nethem, until the concrete level has been reached.Abstract algorithms are introduced by means of are�nement :name : paragraph .The name is written with small letters, digits and (pos-sibly) spaces, and starts with a letter.A paragraph consists of one or more units, separatedfrom one another by semicolons:unit ; unit ; ... ; unitSuch a unit may either be elementary (e.g. the invoca-tion of an algorithm) or it may be composed (e.g. withthe aid of a control structure) from other units.Apart from the paragraph, the choice and the repe-tition belong to the control structures. The choice hastwo forms:IF conditionTHEN this paragraphELSE other paragraphFIandIF conditionTHEN paragraphFIThe condition is a unit yielding a truth value, on thebasis of which a choice is made. For the repetition wegive three forms. The limited repetition has the formUPTO expressionREP paragraphENDREPin which the expression is an algorithm yielding a wholenumber, the number of times that the paragraph has tobe executed. The conditional repetition has two formsWHILE conditionREP paragraphENDREPand

REP paragraphUNTIL conditionENDREPIn both forms, the number of repetitions of the para-graph is determined by the condition.All these constructions belong to the language Elan.Furthermore we have introduced a number of concreteactions and conditions that belong to the environmentof Karel the robot and appear only in this chapter.They serve to provide some exercises with Karel. Im-mediately after this chapter you may forget them again.If we want to go further in the direction of learninga real programming language we have to get to knowits concrete algorithms and especially its notations andconcepts for dealing with objects. We shall introducethose in the succeeding chapters.2.6 ExercisesIn these exercises we shall make use of the Karel-packetthat is distributed together with the Elan interpreter.At the start of each exercise we bring Karel to theorigin of an empty world, with his nose pointing north,by invoking start karel.1. One of Karel's concrete algorithms turn left andturn right is in fact superuous. De�ne this onein terms of the other.2. (Square) Let Karel move around a square whoseside has length 10.3. (Potato �eld) Consider the screen as a �eld withfurrows in the horizontal direction. Let Karel seedwith potatoes a �eld of 16 furrows of 20 moveseach. Karel must return to the origin at the end.4. (Fisherman) Teach Karel how to draw a Dutchfolkloristic �gure looking like in Fig. 2.1.Try to express the drawing of this �sherman (andhis ag) as neatly as possible in terms of the draw-ing of his component parts.5. (House) Do the same for drawing a house (of yourown design).6. (Staircase) The lowest line of the screen is con-sidered to be a oor on which stands a staircase.The north is therefore interpreted as \above". De-velop an algorithm that can walk over a oor withstairs (independent of the place, form and heightthereof) until a beeper is found. A typical stair-case can be constructed by calling make stairs.7. (Maze) Karel �nds himself in a maze. He musttry to get to the outside by walking with his righthand touching the wall. Outside the maze, to theright of its entrance, lies a beeper. Develop analgorithm to get out of the maze. An exampleof a maze can be constructed by means of makelabyrinth.11
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Chapter 3The whole numbersIn this chapter we shall begin the systematic intro-duction of Elan. First we shall deal with the four con-crete elementary types: the whole numbers, real num-bers, truth values and texts. These concrete types ofElan are more or less the same as in other programminglanguages and have, on most computers, a direct rep-resentation. (The direct representation means that thecomputer can operate on such elementary objects withsingle machine instructions, e.g. it can add or multiplydirectly two integers or two reals. In this respect thetexts, and in some cases the reals, are exceptions. Texts| as we shall see later | are sequences of characters,so called (character) strings, and most computers canoperate on a single character only.)The concrete types of Elan are de�ned in the stan-dard packets, (hypothetical) pieces of program contain-ing declarations for all concrete objects, types and al-gorithms. In the second volume of this book we shallalso learn how to construct our own packets, a facilityfor Bottom-Up programming that is typical for mod-ern languages like Elan and ADA. (This description islikely unsu�cient for the reader to understand the no-tion of packet. For a while, this understanding is notnecessary, and it will be explained later in full detail.)The �rst elementary type we describe implementsthe whole numbers. The name of this type is INT andthe conventional name for those whole numbers thatcan be represented within the computer is integers. Foreach of the types we describe in this and the followingchapters we present� (denotation) how do you write down a value of thistype,� (operations) what operations are speci�c for thistype, and� a number of examples.3.1 Integer denotationsIn our algorithms we want to indicate in some waythat the computer has to manipulate speci�c wholenumbers. In order to indicate such a whole numberwe have to denote it in the algorithm. (Any notion,i.e. numbers too, may have arbitrarily many di�erentrepresentations. To avoid misunderstanding, a groupof people agrees upon how to denote a given notion;

this is called denotation. E.g. in the decimal system 10means a mathematical notion, namely a given wholenumber. This same mathematical notion is denotedby ten in English, tien in Dutch, and t��z in Hungarian.This same number can be written as 1010 in the binaryand as A in the hexadecimal system. The Romansdenoted it as X. When we count something we oftenput bars onto paper like "" and this may also meanthe number ten. While using a programming languageits denotations must be applied. Hence, let us see howintegers are denoted in Elan.)The conventional denotation for integers is the dec-imal notation for (positive) whole numbers, i.e. a se-quence of one or more decimal digits. We shall indicatethis fact in the form of a syntax diagram.integer-denotation- digit -����Figure 3.1: Integer denotationdigit����������? ? ? ? ? ? ? ? ? ?0���� 1���� 2���� 3���� 4���� 5���� 6���� 7���� 8���� 9��������������-Figure 3.2: DigitThose two diagrams de�ne the notions integer-denotation (Fig. 3.1) and digit (Fig. 3.2). By startingin the upper left hand corner and going through themkeeping to the right and downwards or, following thedirection of ow, to the left and upwards we see thatan integer-denotation consists of one or more digits, andthat a digit is one of the digits 0 to 9.In later chapters we shall introduce much more com-plicated constructs with the aid of syntax diagrams.In appendix A of this volume you will �nd a com-plete description of the syntax of Elan in another for-malism, context-free grammar, which is introduced inchapter 11.The value that is represented by an integer-denotation follows from its usual interpretation as a13



decimal number. Observe that strictly speaking onlypositive whole numbers can be expressed with the aidof an integer-denotation; we can pre�x it with a + or �but this sign does not form part of the denotation |it is an operator. Observe furthermore that di�erentdenotations may represent the same value, e.g. 0023and 23.The diagrams given above do not indicate any upperlimit to the size of an integer-denotation. Of course inreality there is always a smallest and a largest num-ber that can be represented in the computer. Thosewhole numbers that can be represented in a (speci�c)computer are called the integers (of that computer).The range between the smallest and largest integer ofa computer is called the integer range of that com-puter. In Table ?? we have indicated for a number ofcomputers the smallest and largest whole number thatcan be represented on that computer.smallest largest integercalculator. �108 + 1 108 � 1 = 9999999932-bits mach. �231 231 � 1 = 214748364716-bits mach. �215 215 � 1 = 32767From this table it appears that both positive and neg-ative whole numbers can be represented, and that thelimits of the range are in general at or near a powerof 2. Observe the asymmetry in many integer ranges.The strange number 32767 holds for most mini- andmicrocomputers. For didactic reasons, the Elan-0 in-terpreter has a power of ten as its limit.The fact that integers are usually represented inter-nally in the binary system (and not in the decimal sys-tem) is in itself of no consequence except for the factthat the integer range has somewhat curious limits.However, it is not necessary to understand the binarysystem in order to work with integers.Although the integers in a computer have been ex-pressly provided in order to represent the whole num-bers there are a number of pitfalls that make it neces-sary to be cautious in programming with them.3.1.1 OverowDuring a computation on integers, like, for example,addition, it may occur that the result is not repre-sentable on the particular computer. We call this sit-uation overow. Some computers are nice enough toreport overow, others deliver as a result of the ad-dition, without any comment, an integer that has noobvious relationship with the intended answer. For thisreason it is necessary to avoid overow.Even when the �nal result of a computation is repre-sentable, it may occur that an intermediate result givesrise to overow and destroys this result. As a conse-quence, a simple algebraic law like (a+b)+c = a+(b+c)may not always be valid on a computer; it holds onlyif no overow occurs.In this context it may be interesting for the readerto determine what percentage of all possible additions

of integers gives rise to overow, and similarly for mul-tiplications.3.1.2 Machine dependenceA second source of problems comes from the factthat di�erent computers have di�erent integer ranges.These di�erences can be quite large. In comparisonwith the PDP 11 it turns out that the CDC Cyberdeals with integers that are about 1010 times greater.In order to make it possible to write programs thatcan be executed on diverse computers, an Elan pro-gram can make use of a constant with the name maxintwhose value is the greatest concrete whole numberrepresentable on this computer. The smallest repre-sentable whole number is usually equal to - maxint,on some machines it may be one smaller. Thus it isguaranteed that the integer range contains at least theinterval - maxint : maxint. By an adroit use of thisconstant it is possible to formulate algorithms in sucha way that they are independent of the integer rangeof the machine used.3.1.3 TerminologyIn order to avoid confusion, the following terms haveto be carefully distinguished:whole number a certain mathematical conceptinteger a whole number that can berepresented in the computerINT the name of the type of theintegersinteger-denotation the way to denote a (positive)integer.3.2 Some important conceptsWe will now introduce, in the course of an example,a number of important concepts and notations thatare not only applicable to integers but that allow themanipulation of all types of objects.Let start with the example. It is told that BlaisePascal was already as a boy in school a clever math-ematician. One day, when his teacher wanted to keepthe class occupied and quiet for some time, he gave tohis pupils the task of computing the sum of all numbersfrom 1 up to 100. Pascal discovered the summation for-mula for the arithmetic progression and �nished suspi-ciously soon. Of course a modern pupil would, ratherthan think, go for his pocket computer. Let's do some-thing similar. We let the computer compute this sum,according to the schema14



begin with the number 1;begin with the sum zero;WHILE number <= 100REPadd the number to the sum;increase the number by oneENDREP;show the result.In this schema, number and sum appear as a variable:a name with a �xed meaning and a changeable value.Such a name is introduced by means of a declaration;to a variable you may give another value by means ofan assignment. The result can be displayed by meansof an output algorithm. For each of those fundamentalactions, Elan has a speci�c notation, speci�c concretealgorithms belonging to the language.3.2.1 Declaration of a variableWe use the term object for a name, occurring in theprogram, with which during execution of the programa value is associated. A variable is an object with aname, a type and a changeable value. A variable (oranother object) may be used in a program only afterthe execution of an object declaration. In order to in-troduce an integer variable i with actual value 1, wehave to writeINT VAR i:: 1The type of i is here given as INT which means that ican have only integers as values. The sign :: followedby the expression 1 causes the initialization of i withthe value one. It can be read as \initialized to". Suchan initialization is optional; if it is left out the variablehas an unde�ned initial value, as inINT VAR jThe declaration of a number of variables of one sametype may be combined, as inINT VAR i:: 1, jwhich is a contraction of the two preceding declara-tions, or as in the contraction ofINT VAR lower; INT VAR upperto INT VAR lower, upperThe relevant syntax diagram is given in Fig. 3.2.1.A name (\identi�er") is written with (lower case)letters and digits, and has to start with a letter(Fig. 3.2.1). It may contain spaces to enhance readabil-ity, but they do form part of the name only in Elan-0and Elan-1.The rather boring syntax diagram for letter will beomitted here.

3.2.2 AssignmentThe value of a variable can be changed by means ofan assignment (\assignation"). But beware: the valueitself is not modi�ed, the variable just obtains a newvalue!As an example, after the previous declaration i pos-sesses the value one (Fig. 3.3). Immediately after thenamevalue i1Figure 3.3: Value one
namevalue i1/ 2Figure 3.4: Value twoassignmenti:= 2i possesses the value two (Fig. 3.4).Such an assignment is written as the \becomes sym-bol" := with to its left the name of a variable and toits right an expression (Fig. 3.5).assignment- operand - :=�
 �	 - expression -Figure 3.5: AssignmentThe notions of variable and expression will be dis-cussed in detail in section 7.3 and 7.2, respectively.The e�ect of the execution of an assignment likev:= expris as follows:� the value of the expression expr is computed,� this value is made to be the value of v. An eventualprevious value of v is lost.3.2.2.1 Examples of assignmentsThe e�ect of an assignment can best be studied in anumber of examples like the following. For all of themwe assume that a and b are integer variables, declaredas INT VAR a, bConsider the following assignments:� a:= 13(Now a has the value thirteen.)� a:= 13; b := 7(The assignment to b does not change the value ofa.)15



variable-declaration- type-declarer - VAR�
 �	�� ���,������- variable-name -:=���� - expression -�� ��name, variable-name, constant-name- letter -���letter�� ��digit�� a:= 13; b := a(Now a and b have the same value.)� a:= 13; b := a - 6(Now b is six less than a.)� a:= 13; a := 14(The e�ect of the �rst assignment is lost becauseof the second.)� a:= 13; a := a(The current value of a is again assigned to a.)� a:= 13; a := a + 1(The result of adding the current value of a and 1is assigned to a.)� a:= 6; b := 7;a:= a + b; b := a - b - b;a:= a + b; b := a - b - b(Observe that this curious piece of program dou-bles the initial values of a and b, provided no over-ow occurs.)3.2.3 OutputIn order to make visible the value of a variable or, morein general, an expression you can writeput (expression)Here put is the name of an output algorithm and theexpression between the brackets is the parameter withwhich it is called. The value of this expression is com-puted (yielding, for example, an integer). This valueis then written on the output medium in the form ofa denotation, possibly preceded by a sign. The outputmedium is usually the screen of the microcomputer orterminal at which we are working. On this screen a cur-sor indicates the position where the next output willappear.Actually it is more di�cult to describe exactly thee�ect of the output algorithm than to try it out, so just

sit down in front of the computer and try a very smallprogram likeprogram:put (1); put (2 + 3); put (4 - 10).Observe how the cursor moves over the screen duringwriting. If you attempt to write too much on one line,the cursor leaves this line and continues at the begin-ning of the next line. Such a move to a new line can beobtained also by a call of the algorithm line. In thisway, a nicer layout of the screen can be achieved thanby writing haphazardly on the screen. It is possible togive more than one new line by calling the algorithmwith an integer parameter, likeline (5)A call of line with the parameter 1 has the same e�ectas a call without a parameter.3.2.4 InputIt is possible to input numbers during the execution ofa program, by means of the input algorithm get, witha variable as its argument. Let number be an integervariable whose value we want to input. The callget (number)has the following e�ect:� The execution of the program is stopped whilethe computer waits until a line has been typedin at the keyboard followed by the RETURN- orENTER-key. The characters typed in appear onthe screen at the current cursor position.� This line should contain an integer denotation,possibly preceded by a plus or minus sign. Thevalue of that (signed) denotation is computed.� This value is assigned to the variable number.Actually things are more complicated, because on aline more than one denotation may appear. The �rstcall of get waits until the line has been fully typed16



in, but the next call can then proceed with the nextdenotation without further waiting, until the line hasbeen completely processed, after which a further callof get has to wait for input again.3.2.5 Continuation of the exampleIn order to apply all this we shall now write a completeprogram, which computes the sum of the numbers 1 tomax, in which max is a variable we read in.problem of pascal:read the maximum;start with the number 1;begin with the sum 0;WHILE number <= maxREP add number to sum;take the next numberENDREP;show the result.We shall now re�ne each of the subalgorithms.read the maximum:INT VAR max;get (max).start with the number 1:INT VAR number:: 1.start with the sum 0:INT VAR sum:: 0.add number to sum:sum:= sum + number.take the next number:number:= number + 1.show the result:line;put (sum).We have followed very closely the formulation of thealgorithm given at the beginning of the chapter, whichresults in a rather large number of small re�nements.In learning to program it does not hurt to be overlyexplicit. The consequence is that the algorithm is easyto follow but rather lengthy. This doesn't mean thatall programs should be re�ned to this level of detail.Re�nements are means to direct the creative thinkingin programming and to �x the intermediate stages ofthat thinking. As our programming experience grows,somewhat greater leaps of imagination become possi-ble, but initially we try to re�ne as clearly as possible,in such a way that the solution reects very explicitlythe thoughts of the programmer.3.2.6 Declaration of a constantBesides variables there also exist constants, objectswith (after their declaration) a �xed unchangeablevalue. A constant is always initialized in its declaration(Fig. 3.6).

There may be all kinds of reasons to give a speci�cname to a value and use that name rather than the de-notation: it may be that the value by itself is uninter-esting but its importance lies in the role it plays. Forexample, on a speci�c machine the constant maxint,which is already known to us, may have a declarationlikeINT CONST maxint:: 2147483647This is the value which maxint has on an IBM 370computer. On other machines this constant might haveanother value but we would still call it maxint. Adeclaration of an integer constant that might be of usein a chess program isINT CONST number of fields:: 8 * 8Again the declaration for a number of integer constantscan be combined into one composed declaration. Ex-ample:INT CONST ace:: 14, king:: 13, queen:: 12,jack:: 11Once a constant has been declared it has an unchange-able value. In distinction to variables it is not possibleto assign to a constant. Not even by accident. Thistoo may be a reason to use a constant rather than avariable wherever applicable. As a rule of thumb: ifwe do not wish to assign to an object it had better bea constant.The di�erence between variables and constants isonly a di�erence in access : from both a variable and aconstant a value can be obtained (\read access"), butonly to a variable can a new value be assigned (\writeaccess").3.3 Integer operationsIn the programming language Elan a number of con-crete algorithms for the manipulation of integers aregiven that do not need a further declaration in a pro-gram. These have been declared in a standard packet,a box full of useful algorithms, objects and types givento you for free (see appendix B).3.3.1 Arithmetic operationsTo begin with, we have the well-known arithmeticaloperations (Table 3.1).operator meaning example result+ addition 1 + 1 (= 2)� subtraction 5 � 9 (= �4)* multiplication 3 * 4 (= 12)DIV division 13 DIV 6 (= 2) !!MOD rest 13 MOD 6 (= 1)** to the power 5 ** 2 (= 25)Table 3.1: Arithmetical operations on integers17



constant-declaration- type-declarer - CONST�
 �	�� ���,������- constant-name - =���� - expression -Figure 3.6: Constant declarationBesides these dyadic integer operators, which havetwo integers as operands and an integer result, the +and the - also exist as monadic integer operators, thatis having one integer operand and with an integer re-sult. Examples:+ 8- 4For positive arguments the result of the modulo op-erator MOD is always positive and smaller than the nom-inator. The operators DIV and MOD should not beused with denominator zero, otherwise overow occurs.They have the following properties:xDIV� y = �(xDIVy) (3.1)xMOD� y = xMODy (3.2)(�x)DIVy = �(xDIVy) (3.3)(�x)MODy = �(xMODy) (3.4)3.3.2 ExpressionsWith the aid of operators, operands and brackets, ex-pressions (\formulae") can be formed in the usual man-ner, keeping in mind that each of the operators hasits own priority (\precedence"). Raising to the powerhas a higher priority than multiplication and division,which in turn have a higher priority than addition andsubtraction. Priorities being equal, the operations areexecuted from left to right. Examples:a * b + c DIV d = (a * b) + (c DIV d)a DIV b * c = (a DIV b) * cThe monadic operators always have the highest prior-ity. Examples:3 * - 1 (= -3)- 1 ** 2 (= +1) watch out !!Because of the high priority of the monadic operator -this last expression yields the value +1 and not -1 asone might expect.If desired, another order can be indicated by meansof brackets, as in:- (1 ** 2) (= -1)3.3.3 Comparison operatorsThere exist a number of dyadic operators having twointeger arguments and a truth value as result. Theyare shown in Table 3.2.

operator meaning< less than<= at most> greater than>= at least= equal to<> unequal toTable 3.2: Comparison operations on integersThese can be used in a condition likex <= 0The priorities of these comparison operators are lowerthan that of the arithmetic operators, so that a + 1<= x means the same as (a + 1) <= x.3.3.4 Operations combined with as-signmentThe combination of an addition with an assignmentto an integer variable as in x:= x + 1 appears so fre-quently that a shorter way of writing has been intro-duced. Using this, the assignmentsubtotal:= subtotal + termcan be written assubtotal INCR termThis is not only shorter but it also makes more ex-plicit the intention to increment the variable (it is notjust any old assignment). The assigning operator INCRneeds as its left operand an integer variable. Its rightoperand can be any integer expression.Analogously, there also exists an operator DECR toindicate subtraction combined with assignment, as inincome DECR expenseswhich means the same asincome:= income - expensesThese operators are very useful, particularly if the vari-able has a long name.18



3.4 Example: Maximum of a se-ries of whole numbersAs an example of the use of these concepts, we shall ad-dress the problem of �nding the largest of a nonemptysequence of positive whole numbers.We assume that the numbers are input via the stan-dard input medium (the keyboard). The amount ofnumbers that will arrive is not known beforehand, butit is at least one (the sequence is not empty). The endof the sequence is indicated by a negative number. Wewish to determine the maximum, i.e. �nd the value ofthe largest number.The algorithm which solves our problem is based onthe idea of reading, after some preparation, the num-bers one by one, and remembering at each moment thelargest one found up to that point. In this way we haveobtained at the end the largest one of all the numbersread.determining the maximum:take zero as initial maximum;read the first number;REPlook if it is larger;read the next numberUNTIL all positive numbers consideredENDREP;write the definitive maximum.We use a variable to build up the current maximum.Before the repetition, this variable has to be initialized.Two strategies o�er themselves:� initialization to zero, which is the maximum ofzero positive numbers;� initialization to the �rst number read, because themaximum is at least equal to that number.We shall follow the �rst strategy.take zero as initial maximum:INT VAR current maximum:: O.Observe that frequently a re�nement can be realized asan initialized declaration. It serves to establish a well-de�ned situation, which can easily be given a name.read the first number:INT VAR number;get (number).look if it is larger:IF number > current maximumTHENcurrent maximum:= numberFI.read the next number:line;get (number).Because of the call of line, each number which is readin will appear on a separate line.

all positive numbers considered:number < 0.write the final maximum:line (3);put (current maximum);line.By means of the call of line we have put the solutionon a line of its own.The idea behind this algorithm is the fact that theassertionthe value of the variable current maximum isthe maximum of all numbers read until nowis true after every step of the repetition. Before therepetition this assertion is true because the maximumof an empty sequence of positive numbers is 0. Whenthe repetition is completed all numbers have been readand the assertion is still true. Therefore the currentmaximum at that point is equal to the �nal maximum.This property is also reected in the choice of the namecurrent maximum for the variable, which might alsohave been called maximum up to now or something likethat.The termination of the algorithm is assured by thefact that in every step of the repetition a number isread, while only a �nite amount of numbers will beinput before a negative number is given.ExerciseWhat would the solution look like according to thesecond strategy (take the �rst number as initialmaximum)?3.5 Example: Fibonacci num-bersIt is told that in the year 1202 the Italian mathe-matician Leonardo Pisano, also known as LeonardoFibonacci (Filius Bonaccio), solved the important eco-nomic problem:How many pairs of rabbits can be produced inthe course of one year, starting from one pairof rabbits?Of course he made some simplifying assumptions. Eachpair of mature rabbits produces one pair of young eachmonth, one of which is male and the other is female.A pair of newborn rabbits after one month is able toprocreate similarly. Rabbits never die unless they areeaten. (Obviously in this world of rabbits things godi�erently than in the world of humans. For more in-formation about the life of rabbits we refer to [ADA72].The solution to this problem is found as follows. As-sume the number of rabbit pairs in month n to beF (n). (The letter F is used here in commemorationof Fibonacci.) Assume that among these F (n) pairsof rabbits the number of mature ones is V (n). Whatis the number of pairs in month n + 1, F (n + 1)? Inthe month n + 1 there will be F (n) mature pairs of19



rabbits because the number of mature pairs in a spe-ci�c month is equal to the total number of pairs in thepreceding month. Moreover, each of the V (n) maturerabbit pairs have produced a pair of young, so thatF (n + 1) = F (n) + V (n) = F (n) + F (n � 1). Whenwe assume that our pair of rabbits in month 1 is bornin that month (the number of rabbits in the preced-ing month was zero, presumably because they were alleaten), then the problem can be formulated as:Find the value of F (12) when it is given thatF (0) = 0F (1) = 1and F (n+ 1) = F (n) + F (n� 1) for n � 1:After some computation we �nd that master Fibonacci,starting in January with one pair of young rabbits,could feast by Christmas on one hundred and fortyfour pairs of rabbits.We shall now investigate the problem of �nding, withthe aid of the relationship for the Fibonacci numbersgiven above, the limit of the ratio between two consec-utive numbers. In order to get some insight into thebehaviour of Fibonacci numbers we will �rst deducethe value of this limit.Let us call the limit of F (n)=F (n�1) for n to in�nityF . We already know that F (n) = F (n�1)+F (n�2),so for su�ciently large nF (n� 1) = F (n)=F;F (n� 2) = F (n� 1)=F = F (n)=(F � F );and thereforeF (n) = F (n)=F + F (n)=(F � F )which can be simpli�ed toF 2 � F � 1 = 0from which we deduce thatF = F (n)F (n� 1) = 1�p52for n to in�nity.We choose the positive solution (= 1.61803. . . ), sincebecause of our choice of F (0) and F (1) all F (n) arepositive. Therefore each Fibonacci number is about1.6 times larger than the preceding Fibonacci number.Considering for simplicity the Fibonacci numbers asa geometric sequence with this limit as its ratio, it fol-lows that the largest Fibonacci number which is stillrepresentable on the IBM 370 computer (with maxint= 2147483647) would be F (43). Through experimentwe can �nd out that this estimate is too pessimisticand that even F (46) can still be represented for thisvalue of maxint.An algorithm that computes the �rst 46 Fibonaccinumbers and prints their ratios can be formulated asfollows (in order to prevent problems with overow, weshall stop at the 46th Fibonacci number):

initialize;WHILE not yet last numberREPcompute next number;print number and ratioENDREP.From the relationship for Fibonacci numbers it followsthat in order to compute F (n+1) we need only the twopreceding numbers F (n) and F (n�1); other Fibonaccinumbers need not be remembered. In this algorithm weshall call those two terms the variables last numberand last number but one. Also we need a variable toindicate the sequence number of the number computed.The initial values of last number, last number butone and sequence number follow from F (0) = 0 andF (1) = 1. We obtain:initialize:INT VAR last but one:: 0, last:: 1,sequence number:: 1.We can continue as long as the sequence number issmaller than 46.not yet last number:sequence number < 46.The action compute next number has to establish therelationship F (n+1) = F (n) +F (n� 1). In each stepof the repetition, last has to be the newly computednumber of the previous step and the last but one hasto be the last of the previous step. For this shifting ofvalues we need a temporary name to indicate the valueof the newly computed number. This value is constantduring the shift.compute next number:INT CONST new::last + last but one;last but one:= last ;last:= new ;sequence number INCR 1.Observe that the order of the �rst three lines is crucial.We will print the sequence number, last and theratio on a new line.print number and ratio:line;put(sequence number);put(last);put( real(last) / real(last but one) ).In the expression given the ratio between the last andthe last but one we have (rather prematurely) usedthe division operator / and the conversion algorithmreal, which yield as their result a real number. Weshall discuss real numbers and their operators in thenext chapter.The program given above has the drawback thatit is suitable only for computers whose maxint is atleast 2147483647. Therefore it is better, rather than tocount until a speci�c sequence number, to try to �nd20



precisely the largest Fibonacci number which is rep-resentable on our computer. We can achieve this bycontinuing the computation of the new number as longas no overow can arise and stopping just before over-ow would arise. We need only modify the algorithmnot yet last number. There will be no overow aslong aslast + last but one <= maxintBut we cannot use this test since it might cause exactlythe overow we want to avoid! We therefore write:not yet last number:last <= maxint - last but one.which gives the same result without causing overow.Table 3.3 has been produced by the thus modi�edprogram on an IBM 370 computer. We see that thecomputed ratio does not change after sequence number40. From this, however, we cannot deduce that thatnumber is really the limit: a computer computes realnumbers with some imprecision, as we will see in thenext chapter.From [KNU72] we quote the limit truncated to 41decimal digits:1:6180339887498948482045868343656381177203We see that the ratio found by us is somewhat too lowin the last decimal.In this example we proved that for large values of nthe Fibonacci numbers behave as a geometric sequence.In higher mathematics such seqences are called asymp-totically geometric seqences.The Fibonacci numbers as de�ned by the equationsabove play an important role in all kinds of naturalprocesses. As an example, the limit of the ratio be-tween two consecutive Fibonacci numbers is a numberwhich is called the Golden ratio. In botany the Fi-bonacci numbers appear in the Phyllotaxis (the order-ing of leaves along a stem), and we have just dealt witha problem from zoology.3.6 Network of types and oper-ationsIn this chapter, we have introduced a number of opera-tions (procedures and operators) on integers which arejoint to other operations (often with the same name)on other types which will be introduced later. How canwe keep an overview of the operations belonging to atype, otherwise than by some enumeration?A very telling representation is the Network of Typesand Operations (NTO) [CRA87]: a type is representedas an oval, inscribed with the name of that type, and anoperator or procedure as a rectangle, again inscribedwith its name. These ovals and rectangles are con-nected by arrows:� An arrow from an oval (type) to a rectangle (oper-ation) indicates that that operation has an argu-ment of that type. In case an operation has more
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than one argument, we will also draw more thanone arrow to that particular rectangle, in whichthe arguments are indicated strictly from left toright.� An arrow from a rectangle (operation) to an oval(type) means that either that operation yields aresult of that type or it changes the value of itsargument. In the latter case the access right ofthat argument must be VAR which is indicated bya double arrow.� A double-headed arrow from an oval (type) to arectangle (operation) and back indicates that thatoperation awaits an argument which must havea value and it modi�es this value. This meansthat the access right of this argument must be VARwhich again is indicated by a double arrow.Notice that an NTO is a very convenient notation foroperators, and also for procedures with a couple of pa-rameters. However, if the number of parameters ex-ceeds three such a graphical representation is not reallyuseful.Below and in the following chapters, the signaturesof the four basic types in the form of NTO's will bepresented. However, none of the NTO's will containthe denotation of that type or the assignation (:=) andinitialisation (::) as these are always present with thetype.By combining the NTO's of the di�erent types youmay, if you wish, obtain the complete picture.3.6.1 NTO of the integersThe NTO for the type INT has to be composed of anumber of parts:� the monadic +, -;� the dyadic +, -, *, DIV, MOD, **, INCR and DECR;� the comparison operators =, <>, <, <=, > and >=;� the output procedure put;� the input procedure get;� the integer constant maxint.All these parts can be found back in the scheme ofFig. 3.7. This NTO in its turn forms part of a largerframework together with other NTO's which we havenot included in this picture.For a complete set of operations on integers see ap-pendix B.3.7 Exercises1. Find a sequence of assignments that interchangesthe value of two variables a and b. Can this alsobe done without the use of an auxiliary variable(mind the overow)?
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y Not Elan-0Figure 3.7: NTO of integers2. (Interval sum) Write a program that �nds, for agiven number s, all pairs of integers i and j with1 � i � j such that the sum of all numbers in theinterval i up to and including j is equal to s.3. (Counting grid points) Read an integer r andcount how many points of the unit grid fall withinthe circle with radius r, i.e. how many pairs (x; y)exist with x2 + y2 � r2.4. (Maximum sum of divisors) Determine that num-ber in the interval [a : b] with 1 � a � b for whichthe sum of divisors is maximal. Note that 1 andthe number itself are also divisors.5. (Pythagoras numbers) Determine for a given k > 0all numbers i and j with 0 < i � j such thati2 + j2 = k2.6. (Pythagoras numbers) Find all pairs (i; j) with1 � i � imax and 1 � j � jmax that formPythagoras numbers (i.e. i2 + j2 is a square num-ber).7. (Ulam's rules) The number theoretician Ulam es-tablished that a sequence of natural numbers al-ways ends up with 1 if, starting with any nonzeronumber, the following rules are applied repeatedly:� an even number is divided by 2,� an odd number is multiplied by 3 and thenincremented by 1.22



Write a program executing Ulam's rules and ob-serve its behaviour.8. (Perfect numbers) Numbers equal to the sum oftheir true divisors are called perfect. Write an ef-�cient program producing all perfect numbers lessthan one million (ten thousand with Elan0).9. (Friendly numbers) Let s(n) denote the sum of thetrue divisors of a number n. If for the numbers n1and n2 s(n1) = n2 and s(n2) = n1, i.e. s(s(n1) =n1, then n1 and n2 are called friendly numbers.Write an e�cient program producing all friendlynumbers less than one million (ten thousand withElan0). Mind the symmetric pairs!10. (Related numbers) Again, let s(n) denote the sumof the true divisors of a number n. If for thenumbers n1; n2; n3; : : : ; nk s(n1) = n2; s(n2) =n3; : : : ; s(nk) = n1 then n1; n2; : : : ; nk are calledrelated numbers.Write an e�cient program producing all relatednumbers less than one million (ten thousand withElan0) for k = 1; 2; : : :. Mind the permutations!11. (Five sailors, many coconuts and a monkey) Fivesailors are shipwrecked at a small island, togetherwith their monkey. To their good luck, the islandis rich in coconuts, of which they collect a big pilebefore they retire to rest. One of the sailors wakesup in the night, feels hungry, gives one nut to themonkey and then honestly takes his �fth; this di-vision is possible without rest. When the secondsailor wakes up and feels hungry he proceeds sim-ilarly, and so do the others; the division is in ev-ery case possible without rest. When they cometogether later in the morning, although wonderingat the tiny pile, they divide equally, and also with-out rest, what they have found | but this timeleaving out the monkey [KLI85].Write a program to solve this di�cult Diophantineequation and answer the question: how many co-conuts did the sailors collect on the previous day?
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Chapter 4The real numbersThe next elementary type implements the real num-bers. The name of this type is REAL, and its values arecustomarily called reals. Real numbers play a role inall kinds of physical and technical computations; forthis reason, reals are available in practically every pro-gramming language.4.1 The denotation of realsThe customary denotation for reals is a decimal no-tation. It consists of a sequence of decimal digits inwhich a decimal period should occur and which maybe followed by a part indicating a power of ten.The syntax diagrams for real denotations are shownin Fig. 4.1, 4.2 and 4.3.real-denotation- �xed-point-numeral -��- oating-point-numeral ��Figure 4.1: Real-denotation�xed-point-numeral- digit - .���� - digit -���� ����Figure 4.2: Fixed-point-numeraloating-point-numeral- digit -.�� �� - digit -E�� �� - digit -	� �
�	�
 �	�
 �	�
�
-+�� �� 	
--�� �� 	Figure 4.3: Floating-point-numeralSome examples of real denotations are1.432E-19 1.0 1234.0 0.001234

whereas the following notations have a strong resem-blance to them, but are not correct according to thesyntax diagrams (check this!).1.E+2 0001E2 E.2 3.The value represented by a real denotation is its usualinterpretation as a decimal number; the exponent in-dicates a power of ten as a scale factor.Just as in the case of integer denotations, negativereals can be denoted by a denotation for a positive real,preceded by the operator -.One same real value can be denoted in a number ofdi�erent ways. For example a certain approximationof the number � might be denoted as 3.141592654 or0.3141592654E+001 or 314159265.4E-8.4.1.1 Precision errorsThe following list of properties of reals makes clear thatthey are but a meagre substitute for true real numbers.� Reals are represented internally not in base 10 butgenerally in base 2. Of course this makes no di�er-ence for most properties of the real numbers, butit makes the distance between our conceptions andthe realities of the computer noticeable.� The number of binary digits (\bits") that a com-puter uses for the internal representation of a realis limited and di�ers from computer to computer.� The number of binary digits used for the internalrepresentation of the exponent is also limited anddi�erent.These facts have a number of consequences.� Within a particular computer, only a �nite num-ber of real numbers can be represented exactly or,more precisely, only a �nite subset of the rationalnumbers. Maybe the reals could better have beencalled \rats": rational numbers.� All other real numbers within a speci�c range arerepresented approximately by one of the exactlyrepresentable rational numbers.� Therefore the value of this representation di�ersby some amount from the intended real number.This di�erence is called the absolute representationerror.25



� In representing the result of a real operation, theresult is often truncated to some number of bits,giving rise to rounding errors.� Because of the representation of real numbers asoating point numbers, the absolute representa-tion error is large for those real numbers that havea large absolute value. (In consequence of the lim-ited precision the least signi�cant digits get lost.)� When a computer internally uses the binary sys-tem, many decimal fractions like 0.1 are not ex-actly representable. This has as a consequencethat on such computers 10�0:1 is not equal to 1:0.4.1.2 Machine dependenceThe properties of reals di�er from computer to com-puter. In order to allow you to formulate programsinvolving reals that will work on any computer, in thestandard packets two constants have been de�ned.The constant smallreal is the (in absolute value)smallest positive real that, when added to 1.0, givesa result di�ering from 1.0. Therefore the numbersmallreal is a measure for the relative precision.The constant maxreal is the largest real that can stillbe represented in the computer. The number maxrealtherefore gives an idea of the range of reals in the com-puter.Table 4.1 gives, for a number of computers, the val-ues of smallreal and maxreal. The notation used inthe table also indicates the internal number system.smallreal maxrealCDC Cyber 2�47 (2�48 � 1) �(21022)SIEMENS 2002 10�12 (1� 10�10) �(1049)IBM 370 16�6 (1� 16�6) �(1663)DEC 20 2�63 (1� 2�63) �(2127)PDP 11 223 (1� 2�23) �(2127)Table 4.1: smallreal and maxreal on some computers4.1.3 Overow and underowApart from overow, which occurs when a computedresult is larger than maxreal, in real arithmetics alsounderow can occur, when a result is too small to berepresented, e.g. when the exponent is more negativethan the number representation allows. In that casethe result may be rounded to zero. That is somewhatless tragic than overow.4.1.4 TerminologyNotice the distinctions between the following terms:real number a mathematical concept;real a rational number, representable in the language,used as an approximation to a real number;REAL the name of the type of the reals;

real denotation the denotation for (positive) reals in aprogram.4.2 Real constants and variablesDeclarations for real constants and variables have thesame form as those for integer constants and variables,apart from the fact that they start with the type nameREAL.The following constants are standard in Elan andtherefore need not be declared by the programmer.REAL CONST maxreal :: very large,smallreal:: very small,pi:: 3.141592653589793238 ...;The constants maxreal and smallreal have been dis-cussed in the previous paragraph. The constant pi isthe well-known ratio between the circumference anddiameter of a circle.Notice that Elan, like so many programming lan-guages, does not have one general notion of numberbut comprises two di�erent concepts, reals and inte-gers, that are much more related to the constructionof the central processing unit in computers than to ourexpectations. As an example, 12 is an integer deno-tation and therefore is not a real denotation. Since inan assignment the types of left-hand and right-handside have to be equal, 12 cannot be assigned to a realvariable. Therefore we cannot write:REAL VAR x; x:= 12but have to writeREAL VAR x; x:= 12.04.3 Operations on reals4.3.1 Arithmetical operationsReals are especially intended for performing compu-tations. All the usual arithmetic operations for realnumbers are therefore included among the standardoperators in Elan (Table 4.2).operator meaning example result+ addition 1.0 + 3.0 (= 4.0)� subtraction 7.5 � 1.1 (= 6.4)* multiplication 2.0 * 4.7 (= 9.4)/ division 3.8 / 2.0 (= 1.9)MOD rest 3.4 MOD 2.0 (= 1.0)Table 4.2: Arithmetical operations on realsThese dyadic operators are de�ned for real operandsand yield a real result.The priority of these arithmetical operators for realsis the same as those for integers; the priority is a prop-erty of the operator which is inherited with its name.26



Exponentiation has as its left operand a real and asits right operand an integer which has to be larger thanzero (Table 4.3).operator meaning example result** exponentiation �1.3 ** 2 (= 1.69)Table 4.3: Exponentiation4.3.2 Real functionsThe functions, listed in Table 4.4, with one real argu-ment and a real result are also available in Elan:Name Meaningsqrt taking the square rootexp e-to-the-powerln the natural logarithmsin the sine functioncos the cosine functiontan the tangent functionarcsin the arcsine functionarccos the arccosine functionarctan the arctangent functionabs taking the absolute valueTable 4.4: Real functionsThe six trigonometric functions expect theirargument to be in radians, respectively deliver their re-sult in radians. These are not operators but procedureswhose argument has to be placed between the brack-ets ( and ). (Procedures will be discussed in detail inchapter 10). A function call can appear as an operandin an expression. Examples:sin (x) ** 2 + cos (x) ** 2exp (1.0)Some of these functions have limitations on their ar-guments that are customary in mathematics. As anexample, the function sqrt (\square root") is de�nedfor nonnegative arguments only. Therefore never tryto take the square root of a negative number.4.3.3 Comparison operatorsTwo reals can be compared with the aid of the well-known operators:= <= < > >= <>Be careful in comparing reals: owing to the possibilityof rounding errors, the representation of a result de-pends strongly on its history, and it is possible that anexpected equality does not occur. Instead of a = b oneshould rather writeabs(a - b) < thresholdwith a su�ciently small value for threshold.

4.3.4 Conversion operationsThe functions, listed in Table 4.5, have been introducedto allow the conversion from an integer to an equivalentreal number or from a real number to an integer value.The function round yields an integer result, theName Meaningreal to convert an integer into an equivalent realround for rounding a real number to the nearest integertrunc for truncating a real number down to the nearest integerTable 4.5: Converting functionsnearest integer.round (4.3) = 4.0round (4.8) = 5.0round (-4.3) = -4.0round (-4.8) = -5.0A real number ending on .5 is supposed to be roundedup, but of course if it ends on .4999999999 it may berounded downwards.The function trunc delivers the greatest integerwhich does not exceed its operand.trunc (4.3) = 4.0trunc (4.8) = 4.0trunc (-4.3) = -5.0trunc (-4.8) = -5.0Because of the inherent imprecision of the reals youcan not �nd out easily that an expression like trunc(10.0 * 0.1) yields zero or one. Its explanation isthe following. The decimal fraction 0.1 is an in�nitefraction of the form 0.0001010101. . . in the binary sys-tem and is normalized as 0:1010101 : : :�2�3. The com-puter, of course, can store a �nite number of digits only.Suppose the computer represents the mantissa with aneven number of bits which means that the �rst omit-ted bit is a 1. When the computer rounds the numberaccording to the omitted bits the mantissa will end upin . . . 011; therefore the number will be larger than 0.1and its tenfold larger than 1! In this case the above ex-pression yields 1. On the other hand, if the computerdoes not round the mantissa then the number will beless than 0.1 and its tenfold less than 1. Thus, theexpression results 0.An important application of conversion operators isto allow arithmetic on operands of di�ering type, forinstance REAL and INT:INT VAR k:: 0;REAL CONST dx:: 0.001;WHILE k <= 100REPk INCR 1;REAL const x:: real(k) * dx...ENDREP27



4.3.5 Input and output of realsJust like integers, reals can be read and written bymeans of the concrete algorithms get and put. Whencalled with a real variable as its argument, the proce-dure get reads a number in the same form as a realdenotation, possibly preceded by a sign. Similarly, putwith a real argument outputs a denotation for that ar-gument, possibly preceded by a - sign and some spaces.(So far, we used the names get and put to identify con-crete algorithms of Elan and now, suddenly, we say getis the name of a procedure. There is no contradictionsince procedures, like programs and operations, are al-gorithms and in a sense the term procedure is used asa synonym for algorithm. The notion of procedure willbe de�ned more precisely in chapter 10).The number of digits written by put depends onthe precision with which the computer represents re-als. This number is in any case su�cient to show allsigni�cant digits of a real, but you have to be awareof the possibility that rounding errors have occurred.Therefore do not be surprised when you have computedwith great labour a result which should be equal to twoand it is printed as 0.199999994E+1 or some such.4.4 Example: The roots of aquadratic equationAlthough the reals are specially intended to performcomputations with real numbers, in practical compu-tation a great deal of prudence has to be exercised.Reals form only a meagre realization of the real num-bers. We cannot just take a formula and turn it into aprogram. In many cases its result will be rather di�er-ent from what we expect, especially when intermediateresults approach the precision limits of the reals. Wewill illustrate this with a shocking example.A well-known formula for the roots of a (non-degenerate) quadratic equation is the abc-formula.The equation ax2 + bx+ c = 0has as roots, according to your highschool mathematicsx1; x2 = �b�pb2 � 4ac2aThe formulation of an algorithm to compute theseroots for a number of values for a, b and c is an ex-ercise in the linear notation of formulae.roots of quadratic:read the coefficients;see if there are roots.

read the coefficients:REAL VAR a, b, c;line;put (" 2");line;put ("The roots of ax + bx +c");line (2);put ("Give a: ");get (a);line;put ("Give b: ");get (b);line;put ("Give c: ");get (c);line.We have used here the procedure put with a text as itsparameter which of course we do not introduce untilchapter 6. We hope its use is self-explanatory: a calllike put("Give a: ") writes the text Give a: (with-out the quotes) on the screen, starting at the currentposition.see if there are roots:IF the equation is degenerateTHENcompute roots of degenerate equationELSEIF discriminant is negativeTHENreport that there are no real rootsELSEcompute the roots;print themFIFI.the equation is degenerate:a = 0.0.compute roots of degenerate equation:IF b = 0.0THENIF c = 0.0THENreport that there are too manyrootsELSEreport that there are no rootsFIELSEgive the only rootFI.report that there are too many roots:put ("There are too many roots.");line.report that there are no roots:put ("There are no roots.");line.28



report that there are no real roots:put ("There are no real roots.");line.give the only root:put ("The only root is: x = ");put ( - c / b);line.discriminant is negative:REAL CONST discriminant:: b * b - 4.0 *a * c;discriminant < 0.0.compute the roots:REAL CONST x1:: (-b -sqrt(discriminant)) / (2.0 * a);REAL CONST x2:: (-b +sqrt(discriminant)) / (2.0 * a).print them:line;put ("x1 = ");put (x1);line;put ("x2 = ");put (x2);line.In Table 4.6 we have given for the quadratic equation(x� 10:0i) � (x� 1:0) = 0 for i = 1; 2; 3; : : :the results according to this algorithm in the left col-umn and the correct values in the right column. Thecomputations have been done on a computer withsmallreal = 1.1920929E-7 and maxreal =1.7014117E+38.We observe that beyond i = 7 according to the abc-formula the value of the smallest root is 0 instead of1! These strange results are not the fault of the algo-rithm, but are due to the fact that we use reals ratherthan real numbers. We see that the smallest root canhave a large relative error, especially if the roots of theequation di�er greatly in absolute value. This is easyto explain when we note that in that case a and c aresmall with respect to b. Therefore b and the square rootof the discriminant p(b2 � 4ac) will be about equal toone another. Owing to the limited precision, the dif-ference between those two values will therefore have alarge relative error.We get better results by using the following math-ematically equivalent formulae for obtaining the rootsof this quadratic equation:x1 = � 2cb1 +q1� 4acb2and x2 = � cax1With these formulae we obtain as the smallest root x1and as the (in absolute value) largest root x2.

In serious computations the pitfalls may be muchlarger than illustrated by this example. In such casesyou should go for advice to the branch of mathematicsthat knows how to cope with limited accuracy, viz.numerical mathematics.4.5 Example: Mean and vari-anceAn important problem in production processes is thecontrol of the quality of the product. Assume thatwe have a factory producing bottles of noodle soup.The number of noodles in one bottle of noodle soupshould be on the average equal to �fty. It should notbe too low, otherwise we will no longer be entitled tocall our product noodle soup. It should not be too high,because noodles are relatively expensive in comparisonto the other ingredients of the soup.One way to check the quality of our noodle soup is tocount the number of noodles in every bottle producedand adjust the production process as soon as we seeimportant deviations.Important deviations occur whenever the averagenumber of noodles per bottle strays too far from ourgoal value (i.e. 50). But that is not enough. We wouldalso get into trouble if one bottle of the soup were tocontain one hundred noodles and the next bottle nonoodles at all. If we alternate bottles like that, theaverage will be �fty but we still may have trouble sell-ing our stu�. We should insist that the variance of thenumber of noodles per bottle is not too large.Of course it is not feasible to count the number ofnoodles in each and every bottle. In practice we willtherefore count only the noodles from a relatively smallfraction of the bottles. Any handbook of elementarystatistics will tell us how often we have to measure abatch of bottles in order to obtain (according to theformulae given below) a reasonable indication of themean and the variance of the number of noodles perbottle.Let Wi be the number of noodles in the ith bottle ofthe batch and let n be the total number of bottles inthe batch. The average is given by the formula:Pni=1Winand the variance (exactly, corrected empirical varianceis its name in mathematical statistics) by:sPni=1W 2i � n � average2n� 1Notice that for n = 1 the corrected empirical varianceis unde�ned.The mean and corrected empirical variance can nowbe computed according to these formulae by a program,which has to read the size of the batch and the valuesfor Wi and compute the sum and the sum of squaresof Wi.29



(x� 10:0i) � (x� 1:0) = 0:0 for i = 1; 2; 3; : : :with abc-formula with improved formulax1 x2 x1 x2+1.0000000E +0 +1.0000000E +1 +1.0000000E +0 +1.0000000E +1+1.0000000E +0 +1.0000000E +2 +1.0000000E +0 +1.0000000E +2+1.0000000E +0 +1.0000000E +3 +1.0000000E +0 +1.0000000E +3+1.0000000E +0 +1.0000000E +4 +1.0000000E +0 +1.0000000E +4+1.0000000E +0 +1.0000000E +5 +1.0000000E +0 +1.0000000E +5+1.0000000E +0 +1.0000000E +6 +1.0000000E +0 +1.0000000E +6+1.0000000E +0 +1.0000000E +7 +1.0000000E +0 +1.0000000E +7+0.0000000E +0 +1.0000000E +8 +1.0000000E +0 +1.0000000E +8+0.0000000E +0 +1.0000000E +9 +1.0000000E +0 +1.0000000E +9+0.0000000E +0 +1.0000000E+10 +1.0000000E +0 +1.0000000E+10+0.0000000E +0 +1.0000000E+11 +1.0000000E +0 +1.0000000E+11+0.0000000E +0 +1.0000000E+12 +1.0000000E +0 +1.0000000E+12+0.0000000E +0 +1.0000000E+13 +1.0000000E +0 +1.0000000E+13+0.0000000E +0 +1.0000000E+14 +1.0000000E +0 +1.0000000E+14+0.0000000E +0 +1.0000000E+15 +1.0000000E +0 +1.0000000E+15+0.0000000E +0 +1.0000000E+16 +1.0000000E +0 +1.0000000E+16+0.0000000E +0 +1.0000000E+17 +1.0000000E +0 +1.0000000E+17+0.0000000E +0 +1.0000000E+18 +1.0000000E +0 +1.0000000E+18+0.0000000E +0 +1.0000000E+19 +1.0000000E +0 +1.0000000E+19Table 4.6: Computation of the roots of a quadratic equationUpon closer consideration it is not necessary to keepall values Wi: we only want to compute the sum of thevalues Wi and the sum of the squares W 2i . For that wehave to take into account only one Wi at a time.During these summations, overow can occur. Thiswould happen with virtual certainty if we were to com-pute both sums as integers. We shall therefore computethe sums as reals, trusting that the real range of ourcomputer is large enough.We come to the following program:read number of measurements;compute sum and squaresum;compute mean and variance;print values.read number of measurements:put ("Batch size = ");INT VAR n;get(n);line(2).compute sum and squaresum:INT VAR number:: 0;REAL VAR sum:: 0.0, squaresum:: 0.0;WHILE not last valueREPread next value;adjust sum and squaresumENDREP.not last value:number < n.

read next value:REAL VAR value;put("Next value, please: ");get(value);line;number INCR 1.adjust sum and squaresum:sum:= sum + value;squaresum:= squaresum + value ** 2.compute mean and variance:REAL CONST mean:: sum / real(n);REAL CONST variance::sqrt((squaresum - real(n) * average**2) / real(n-1)).Notice that we have to convert n explicitly into a realin order to use the real division and multiplication. There�nement can be simpli�ed somewhat tocompute mean and variance:REAL CONST mean:: sum / real(n);REAL CONST variance::sqrt((squaresum - sum * average) /real(n-1)).print values:line;put ("Number of measurements= ");put(n); line;put ("Average= "); put(mean); line;put ("Variance= "); put(variance);line.We install this little program in the computer on thework oor of the factory, give the necessary instructionsto the personnel and, after some time, conclude withpride that the quality control is now so much better30



that the clients �nd on the average fewer noodles intheir soup than before.But one day the foreman, his face ash-grey, runs intoour o�ce with the cry: \It doesn't work . . . ". Wefollow him to the computer and read upon the screenthe messageFATAL ERROR AT ADDRESS 000247 IN MODULEEC00D3E4OVERFLOW IN REAL DIVISIONSYMBOLIC DUMP FOLLOWSfollowed by a load of drivel. After some searching we�nd that the operator by mistake had indicated a batchsize one. The program could not cope with this input.After some thought we modify one re�nementread number of measurements:INT VAR n;REP put ("Batch size = ");get(n);line(2)UNTIL n > 1ENDREP.thus making the program somewhat more robust.4.6 NTO of the realsThe NTO for the type REAL has to be composed of anumber of parts:� the monadic +, -;� the dyadic +, -, *, /, MOD and **;� the comparison operators =, <>, <, <=, > and >=;� the output procedure put;� the input procedure get;� the real constants maxreal, smallreal and pi;� the real functions sqrt, abs, sin, cos, tan,arcsin, arccos, arctan, ln and exp;� the conversion functions real, round and trunc.All these parts can be found back in the scheme ofFig. 4.4. This NTO in its turn forms part of a largerframework together with other NTO's which we havenot included in this picture.For a complete set of operations on reals see ap-pendix B.4.7 Exercises1. (Square root) One of the eldest algorithms is thefollowing determination of the square root of anumber. If x is an approximation of the squareroot of a then a better approximation can be ob-tained by the formula xi+1 := 0:5(xi + a=xi).

Write a program to compute the square root ofsome number. Compare the results with thosegained by the built-in sqrt(x) function of Elan.2. Explore the behaviour of real arithmetics by per-forming the following computations� 1� 1=3� 1=3� 1=3,� 1� 1=6� 1=6� 1=6� 1=6� 1=6� 1=6,� x�px2 for some values of x,� x� (px)2,� x� tan(arctanx).3. Compute e and 1=e by means of the sequencese = 1 + 1=1! + 1=2! + 1=3! + : : : ;1=e = 1� 1=1! + 1=2!� 1=3! + : : :After every step, the product of the approxima-tions should be computed as a check.4. (Minimization) Write an algorithm that �nds aminimum of a concave function in one variable byrepeated halving of the interval in which this min-imum should lie. Find, with the aid of this algo-rithm, that value in [3:0 : 4:0] for which cosx isminimal.5. Compute �=4 by means of the following sequence�=4 = 1� 1=3 + 1=5� 1=7 + 1=9� : : :After every step, show the value of the approxi-mation and compare it to the value the computergives for �=4.6. Compute ln 2 by means of the sequenceln 2 = 1� 1=2 + 1=3� 1=4 + 1=5� : : :Compute the power of e with your approximationsas a check.7. Determine experimentally the values of maxrealand smallreal on your computer.
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Chapter 5Truth valuesIn Elan two truth values are distinguished: true andfalse. In honour of George Boole (1815{1864) who in-vented the logical algebra or \switching algebra", thesevalues are called Boolean values; in computer jargon:booleans. Their type has the name BOOL.Truth values can be regarded in two ways. In the�rst place they appear as values of objects that canbe manipulated by algorithms. In this respect theybehave similarly to integers and reals. On the otherhand, truth values can also control the execution of al-gorithms. In the choice and repetition, the execution ofthe algorithm is controlled by the result of a condition.In Elan, no distinction is made between those twoaspects of truth values, but experience shows it is dif-�cult for the beginner to reconcile those two di�erentuses.5.1 Boolean denotationsSince there are only two truth values, the syntax ofthe boolean-denotation consists of an enumeration ofthe possibilities.boolean-denotation- TRUE�
 �	 -��- FALSE�
 �	��Figure 5.1: Boolean denotationThe yes-value is represented as TRUE and the no-value is represented as FALSE. In the standard packetstwo boolean constants, true and false, are prede�nedfor the use of those people who (like this author) donot like conspicuous uppercase letters. Therefore wecan write TRUE and FALSE in small letters instead if weprefer.Also for this type we have to distinguish between anumber of concepts:truth value the concepts true and falseboolean the representations of those truthvalues in the programming languageBOOL the name of the type of thebooleansboolean-denotation the notation for boolean values.

5.2 Elementary algorithms forbooleansInstead by way of a boolean denotation, a truth valuecan be introduced by means of an algorithm yielding aboolean value (a condition or \test"). This is the usualway to obtain such a value.5.2.1 Comparison operatorsIn Elan for all elementary types, including thebooleans, there exist two comparison operators thatcompare the values of their operands for equality.These operators are shown in Table 5.1. The twooperator meaning= equal to<> not equal toTable 5.1: Comparison operators for equalityoperands must be of the same type, be it INT or REALor BOOL (or, as we will see in chapter 6, TEXT). Theresult of the comparison is a truth value. For operandsof type BOOL these are also the only comparison opera-tors. In addition, for those elementary types for whichan ordering relationship exists, such as INT and REAL,but also TEXT (see chapter 6), there exist four morecomparison operators. They are shown in Table 5.2.operator meaning< smaller than> greater than>= at least<= at mostTable 5.2: Comparison operators for orderingThese also take two operands of one same type andyield a truth value. Just like the arithmetic operators,these comparison operators are not de�ned for combi-nations of integer and real operands; the types of theiroperands have to be the same.The priority of comparison operators is lower thanthe priority of the arithmetic operators, so that a for-mula like:b ** 2 < 4 * a * c33



means the comparison of b ** 2 with 4 * a * c; nobrackets are needed here.The two di�erent aspects of truth values | elemen-tary object as well as control of the execution | isreected in the use of formulae such as the one above.This formula might for instance be used in a choicelike:IFb ** 2 < 4 * a * cTHENcompute complex rootsELSEcompute real rootsFIHere the result of the test is used immediately to choosebetween the computation of the complex or the realroots of a quadratic equation. The result of a test is,however, a truth value. Therefore the test can also beused in an assignment or an initialization, e.g.BOOL CONSTdiscriminant is negative :: b ** 2 < 4* a * cThe result of the test is now kept as the value of aconstant and can be used later in a choice like:IFdiscriminant is negativeTHENcompute complex rootsELSEcompute real rootsFIOf course this constant declaration makes the mostsense if its value is used more than once. Observe, bythe way, that the value of this constant of course doesnot change if we happen to change the values of a, band c afterwards. Its value will not be recomputed, indistinction to, for example, a re�nementdiscriminant is negative: b ** 2 < 4 *a * c.whose value is recomputed afresh each time the re�ne-ment is invoked.5.2.2 Logical operatorsFor the manipulation of truth values as elementary ob-jects, the following operators are given: NOT (negation),AND (conjunction), OR (disjunction, inclusive OR), andXOR (exclusive OR).The result of these operators for various values oftheir operands follows from Table 5.3. The operatorAND has a higher priority than the operators OR andXOR, but a lower priority than the comparison oper-ators. The monadic operator NOT has, like all othermonadic operators, the highest priority.With the help of these operators and the booleancomparison operators = and <>, the sixteen operators

operands operationsp q NOT p p AND q p OR q p XOR qTRUE TRUE FALSE TRUE TRUE FALSETRUE FALSE FALSE TRUE TRUEFALSE TRUE TRUE FALSE TRUE TRUEFALSE FALSE FALSE FALSE FALSETable 5.3: Boolean operatorsof the proposition calculus can be realized simply. Asan example, bothp = q OR qandNOT p OR qare formulae computing the implication p! q.5.2.3 Combined conditionsSome care has to be exercised in the use of comparisonoperators. The formulap = q = rdoes not mean what you hope. Because the priorityof the operators is equal, this formula is executed fromleft to right, and therefore it is equivalent to(p = q) = ri.e. the boolean result of the comparison p = q is com-pared to the (supposedly logical) value of r. If we wishto ensure that we get the result TRUE exactly when p,q and r all have the same value, we must writep = q AND q = rIn testing on an ordering, a formula of the forma <= b <= cis syntactically wrong, because the result of the left-most operation is a value of the type BOOL which doesnot allow comparison with the integer c. Therefore wehave to writea <= b AND b <= cif we wish to achieve our goal.Note that both operands of a dyadic logical opera-tor are computed even when, after the computation ofthe �rst operand, the result is already decided. As anexample,a <> 0 AND b DIV a >= 10is not a suitable way to prevent a division by zero.Instead one has to write34



IFa <> 0THENb DIV a >= 10ELSEfalseFIFor the convenient handling of such cases, some pro-gramming languages and systems, e.g. EUMEL, o�erthe so called conditional AND and conditional OR op-erators (shortly CAND and COR). Here, the secondoperand will not be computed if the result may alreadybe determined from the �rst one. Then you can writea <> 0 CAND b DIV a >= 105.2.4 Input and output of booleansFor the input and output of truth values, Elan doesnot provide algorithms. Instead of these truth values,one will have to read and write a text, as is shown inchapter 6.5.3 Trusting the booleansThe twofold character of booleans (value and control)leads many people to strange circumlocutions and er-rors of style that can all be explained as a lack oftrust in the booleans. Assume for example that a isa boolean variable. Many programmers writeIF a = true THEN ...where simplyIF a THEN ...would su�ce. Obviously they do not realize that theexpression a by itself already yields a boolean and tryto turn it into a control by means of a test. It must beconceded that the last line looks a bit naked, but notif you use a meaningful identi�er likeIF it is raining THEN ...A comparable distrust of the integers would lead to theabsurdput (i + 0)in order to ensure that the value of the integer variablei is really a whole number. Strange contortions likeBOOL VAR t;t := IF a > b THEN true ELSE false FI;IF (t = true) = true THEN t := false FIshow a lack of understanding of the booleans and a lackof trust in their dual character.It is instructive to invent shorter versions for thefollowing boolean expressions:IF a > 0 THEN true ELSE false FIIF a THEN NOT a ELSE true FI

IF a THEN false ELSE a FI5.4 Example: Prime numbers(1)Consider the problem of determining whether a givenpositive whole number is a prime number, i.e. whetherit has no divisors except 1 and itself. We start with arough formulationread the number;determine whether the number is prime;print the answer.Reading the whole number gives no problems.read the number:INT VAR number;put("Number, please: ");get(number).The easiest way to �nd out whether a number is primeis to look it up in a table of primes, but in order tokeep the problem interesting we shall assume that sucha table is not available.We can try to divide the number by all prime num-bers that are smaller than that number and check ev-ery time whether the rest is zero, but for that we againneed a table! On the other hand, we might just as wellsimply divide by all numbers that are smaller than thenumber, including the non-prime ones. This costs morework but leads to the same result. After all, that's whatwe have computers for.The answer to the primality question we shall recordin a boolean variable no divisors, that initially isTRUE and is made FALSE as soon as we �nd a divisor.The �rst candidate we try is 2.determine whether the number is prime:BOOL VAR no divisors :: TRUE;INT VAR candidate :: 2;WHILE yet candidates to tryREPlook if candidate fits;take the next candidateENDREP.look if candidate fits:IF number divisible by candidateTHEN no divisors := FALSEFI.How does one decide whether a number is divisible byanother number? One way to do it is the following. We�rst divide the number by the candidate and ignore theremainder. Then we multiply the quotient obtained bythe candidate and compare the result with the originalnumber. The result is only equal to the original numberif the �rst division had zero as remainder.number divisible by candidate:(number DIV candidate) * candidate =number.35



Strictly speaking, the brackets are superuous here,but we leave them in to make this re�nement moretransparent.Somewhat simpler is the use of the operator MODthat, for positive operands, yields the remainder of thedivision.number divisible by candidate:number MOD candidate = 0.As candidates we can try all numbers smaller than thenumber itselfyet candidates to try:candidate < number.take the next candidate:candidate INCR 1.For the last re�nement, print the result, we steal aleaf from chapter 6 and print one of two texts.print the answer:IF no divisorsTHEN put ("prime number")ELSE put ("not a prime number")FI.The program is now complete, but it relies very muchon the brute force of computers. Let us try to make itsomewhat cleverer.A �rst criticism of the program is that we try fartoo many divisors. It is su�cient to try only thosecandidates that are smaller than the square root ofn. For if k is a divisor larger than that square root,then also n DIV k is a divisor, smaller than that squareroot! For large values of n this makes a tremendousdi�erence, e.g. having to try 100 divisors rather than10000.yet candidates to try:candidate * candidate <= number.A second improvement follows from the observationthat, once a divisor has been found, there is no reasonto continue the repetition. In the current formulationthe process inexorably continues until all candidateshave been tried. We can improve upon this by insist-ing in the condition of the repetition that no divisorsis true.yet candidates to try:candidate * candidate <= number AND nodivisors.We can now also simplify the re�nement look ifcandidate fits somewhat:look if candidate fits:no divisors := division does not fit.division does not fit:NOT(number MOD candidate = 0).or asdivision does not fit:number MOD candidate <> 0.

Notice that the brackets in the �rst version of divisiondoes not fit are necessary because of the high prior-ity of the operator NOT. We prefer the second version.Because of the role played by the variable nodivisors in assuring fast termination of this repeti-tion, we call this form a repetition with a boolean aux-iliary variable.The repetition can end in one of two ways: eitherthe number turns out to be prime, after all candidateshave been tried, or one of the divisions �ts and thevariable no divisors obtains the value FALSE.5.5 The LEAVE-constructThe use of such a boolean auxiliary variable is a trick toobtain two things in one stroke. The problem is that ata place deep in the algorithm we have a certain knowl-edge (viz. that a divisor has been found) with whichwe do not know what to do at that place (in the veryinterior of look if candidate fits). Another re�ne-ment determine whether the number is prime canbe completed due to use of this knowledge.For this purpose, Elan knows a speci�c construct,the LEAVE-construct (called terminator in the syntax;see Fig. 5.2).terminator- LEAVE�
 �	 - re�nement-name -����- WITH�
 �	 - expression ��Figure 5.2: TerminatorThis construct causes the present execution to be dis-rupted; and instead of it, the re�nement mentioned iscompleted from within in one fell swoop. Obviously,only such an algorithm can be named in a LEAVE-construct whose execution led to it. The WITH-part,which is optional, serves to complete an algorithmwhich yields a result. It will be discussed in more detaillater on.Using this construct, we can writelook if candidate fits:IF division fitsTHEN no divisors := FALSE;LEAVE determine whether the number isprimeFI.division fits:number MOD candidate = 0.Now we can simplify another re�nementyet candidates to try:candidate * candidate <= number.The resulting program is somewhat more e�cient butespecially more perspicacious. In languages without36



the LEAVE-construct we have to make use of booleanauxiliary variables instead.
5.6 Example: Prime numbers(2)The program that we have obtained now is already anenormous improvement over the previous version. Stilla number of superuous divisions are made. Let us tryanother improvement.After having tried the divisor 2 we do not have totry any other even number and can restrict ourselvesto the odd numbers as candidates. We can achievethis by, after the test whether the number is not even,starting with the candidate 3 and computing the nextcandidate by increasing the divisor 2.However, after the candidate 3 we need not try anyother multiples of 3 so that, having found that thenumber is not divisible by 7, we can continue with thecandidate 11. We will now compute the next candi-date by increasing the candidate alternately by 2 and4. Why? Here is the explanation.The number p is either divisible by 3 or p mod 3 = 1or p mod 3 = 2. If p mod 3 = 1 then (p+2) mod 3 = 0and (p+4) mod 3 = 2, i.e. p should be increased by 4 ifwe want to skip the numbers divisible by 3. Similarly,if p mod 3 = 2 then (p+4) mod 3 = 0 and (p+2) mod3 = 1, i.e. now p should be incremented by 2 in orderto skip the unwanted numbers. Hence treating 2 and3 as special cases, we then try the divisors 5, 7, 11, 13,17, 19, 23, . . . .In this way we have to try at most jpn=3j+2 candi-dates, including 2 and 3, rather than n�2 and jpnj�1candidates in the �rst and second versions, respec-tively. Even for fairly large values of n, for instancen < 108, this algorithm can still be used.The following program works according to this idea.The alternating addition of 2 and 4 to the value ofcandidate is achieved by increasing its value withthe value of the variable increment, which there-upon obtains the value 6 - increment. The variableincrement in this way assumes the values 2, 4, 2, . . . .Of course we could go still farther and omit also themultiples of larger prime numbers as candidates. Thevalues that increment then has to take become ratherdi�cult to compute and the returns are diminishing,partly because of this additional computing. We there-fore leave such an amelioration to the reader.

determine whether the number is prime:BOOL VAR no divisors :: FALSE;IF number MOD 2 = 0 OR number MOD 3 = 0THENit was not primeELSEINT VAR candidate :: 5, increment ::2; WHILE yet candidates to tryREPlook if candidate fits;take the next candidateENDREPFI;it was prime.All re�nements are as in the previous example, except:take the next candidate:candidate INCR increment;increment := 6 - increment.it was not prime:LEAVE determine whether the number isprime.it was prime:no divisors: = TRUE.For yet larger values we have to use quite di�erentmethods. These are often based on the theorem ofFermat. We shall not discuss them as they require a�rm knowledge of higher mathematics. But we can, atleast, draw the lesson that when the amount of datato be processed increases signi�cantly we have to applymore e�cient algorithms based on higher mathematics.It may even be better if we turn to an expert.5.7 CommentsWe will discuss the construct called a comment atthis place, although properly speaking it does not be-long here. Comments are pieces of text which are notdirected at the computer but at the human readingthe program. They are not a functional part of theprogram and therefore do not �t into the systematicscheme of the programming language. For that reasonwe might just as well discuss them here as anywhereelse.In Elan, comments can appear anywhere betweensymbols, denotations and identi�ers, and have no e�ectat all on the meaning or execution of the program. Acomment starts with a comment-open-symbol and endswith a comment-close-symbol. Between those symbols,all characters may appear that can not be confusedwith a comment-close-symbol. There are two represen-tations for these symbols:comment-open-symbol f (*comment-close-symbol g *)Some examples of comments:37



version 7.3 of 23 October 1976, H.F.(* now the fun starts! *)Comments serve such purposes as:� Indicating name, version and author of a program.� Giving a short characterization, limitations andpreconditions for the use of a program or somepart of a program, e.g.:f Solution of the equation system AX = Band computation of the determinant as acheckon the precision, according to the methodofGauss-Jordan.A, B and X must have the same size.The algorithm should not be used for largesystems because of instabilities. g� Asserting invariant properties for the bene�t of thehuman reader and for a proof of correctness, e.g.:find maximum of a sequence of positiveintegers:INT VAR max :: 0;f maximum of an empty sequence gFOR i FROM 1 UPTO nREPIF max < row[i]THEN max := row[i] FIf max is the maximum of row[j] for j= 1 .. i gENDREPf max is the maximum of row[j] for j =1 .. n g .� Giving only absolutely necessary explanations,e.g.:(* In the interest of efficiency we haveomitted the test on overflow. *)Comments are not intended to conserve stupidremarks for posterity as in the second example(* now the fun starts! *) or as inx := 0; x is set to zeroIt is much more preferable to include abstractions func-tionally in the program, by the use of re�nements forthe algorithms and by the choice of meaningful namesfor the objects, rather than to add to the program(mostly in hindsight) comments that try to make itunderstandable.A re�nement might, of course, have a misleadingname, but that can usually be noticed by inspectionof a small part of the program. A comment on theother hand is not functionally part of the program sonobody cares whether the comments remain up to datein any modi�cations to the program.In this book we lay so much stress on abstractionthat the use of comments turns out to be largely super-uous. In a more industrial environment, the careful
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Figure 5.3: NTO of booleansand formalized use of comments is absolutely neces-sary, due to restrictions of the programming languagesused that do not allow the retention of the abstractionsthat occurred in the programming process. Due to thelack of re�nements, the program by itself does not giveenough documentation.We end this section with a pearl of wisdom:A badly structured program cannot be savedby the addition of any number of comments.Its chaotic origin will always remain obvious.5.8 NTO of the booleansThe NTO for the type BOOL has to be composed of anumber of parts:� the monadic NOT;� the dyadic AND, OR and XOR;� the comparison operators = and <>;� the boolean constants true and false.All these parts can be found back in the scheme ofFig. 5.3. This NTO in its turn forms part of a largerframework together with other NTO's which we havenot included in this picture.
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Chapter 6TextsThe algorithmic manipulation of texts is the key toa whole world of non-numeric applications:� the presentation of the results of computations inan attractive form,� translators and interpreters for programming lan-guages,� linguistic research and other research with a lin-guistic component,� the processing of texts in newspapers and in theo�ce,� various forms of o�ce administration.The applications mentioned last may be the most pro-saic, but economically they are the most important.With the advent of machines speaking and understand-ing human speech, the scope for non-numerical appli-cations will certainly grow.For the manipulation of texts, special programminglanguages have been designed (such as SNOBOL andall kinds of macro processors) that allow a concise for-mulation of complicated text manipulations. The stan-dard library of Elan o�ers a whole collection of cuttingand pasting instruments for dealing with texts. Thelanguage mechanisms of the subset Elan-0 are in thisrespect more primitive but still adequate.6.1 Denotation of textsTexts are composed of characters, chosen from a spe-ci�c alphabet. The type of such a text is TEXT. A textcan be thought of as a row of characters, each of themrepresentable in the computer (Fig.6.1). What char-acters are representable in the computer depends onthe implementation used, but this alphabet in any casecomprises the signs with which Elan programs are writ-ten (lower case and capital letters, digits, punctuationmarks, operator tokens, spaces, etc.).A text is denoted by putting it between quotes, e.g.:"this is a text"The value of the denotation is the sequence of charac-ters obtained by omitting the enclosing quotes.In order to represent a quote within a text, the con-vention is used to double such a quote sign (a typical

text-denotation- "���� - "���� -���any-character-except-quote�� ��""�
 �	�Figure 6.1: text denotationtrick from informatics, used over and over again). Ex-ample:" ""Silence!"" spoke Gandalf, ""HearThorin's speech""."In particular the text consisting of a single quote isdenoted as follows:""""The empty text (a row of zero characters) is denotedas ""To avoid confusion, in this chapter we will indicate thespace within a text denotation by the sign # in orderto make it easier to count how many spaces are meantin, for example:"###"This character does not appear on your computer,where the space will be represented by an empty posi-tion.Although, in principle, texts of any length can bedenoted, a particular implementation may impose anupper limit on the length of representable texts. Asan example, the Elan-compiler in the EUMEL systemlimits the length of texts to 255 characters (the valueof the INT-constant max text length). Larger textshave to be treated in that system as rows of lines (seechapter 8 on rows).6.2 Operations on textsFor the manipulation of texts, Elan o�ers a number ofstandard operations. Unfortunately only a small partof those is also available within Elan-0. This is one39



of the places where the language had to be severelyreduced. In their stead, Elan-0 has a simpler set ofoperations. We shall �rst describe the operations thatElan-0 has in common with Elan and afterwards thosewhich are particular to Elan-0. The remaining Elanoperations are described in section 6.6.6.2.1 Common text operations1. The operator + concatenates two texts, e.g.:"abc" + "def" = "abcdef"2. The operator LENGTH yields the number of charac-ters in the text, an integer greater than or equalto zero. As an exampleLENGTH "abc"is equal to 3, andLENGTH """"yields 1.3. The operator * with a non-negative integer n as itsleft operand and a text as its right operand yieldsthe n-fold concatenation:3 * "abc" = "abcabcabc"4. The characters of a text x can be considered to benumbered starting from 1. In order to select thekth character from the text we have an operatorSUB (its left operand a text x, its right operandan integer k, yields a text composed out of onecharacter, viz. the kth character of x). Example:("abc" SUB 2) = "b"If the right operand of SUB is smaller than one orlarger than the number of characters in the leftoperand then the result is an empty text, for ex-ample in"abc" SUB 375. The dyadic operator CAT (with a text variable asits left operand and a text as its right operand)combines a concatenation with an assignment,e.g.:t CAT "abc"means the same ast := t + "abc"Remark : The notation CAT, from concatenation, issomewhat inconsistent with the generally acceptedterminology. In text processing, the term concate-nation usually means the previously introduced +operation of Elan.

The operator SUB has a blemish: it has an extremelylow priority, so that expressions involving SUB in manycontexts have to be enclosed between brackets. If weomit the brackets we may discover to our surprise that"abc" SUB 2 = "b"means:"abc" SUB (2 = "b")which is rejected by the Elan implementation with arather bizarre error message. Namely, an integer cannot be compared to a text, and a boolean value cannot be the operand of SUB.It is rather bewildering for that the seemingly sim-ilar expression LENGTH s - 1 is correct and has thesame meaning as (LENGTH s) - 1. The di�erence iscaused by the fact that SUB is a dyadic operator withlow precedence while LENGTH is a monadic operator andtherefore has the highest possible priority.For this reason it is advisable to include in expres-sions involving the operator SUB a su�cient number ofbrackets to avoid unintended interpretations, e.g.3* ("abc" SUB i)6.2.2 Comparison of textsThe comparison operators for texts are the same asthose for integers and reals:= <= < > >= <>The ordering relation meant is the alphabetic lexico-graphic ordering. This implies that"" < "a""a" < "b""a" < "ab""aa" < "b""aa" < "ab"and so on. You may know that this ordering has theproperty that, if some text x is the same as an initialsegment of a text y (i.e. y consists of x possibly followedby some more characters), we then know for sure thaty >= x.Each character has a code, a small positive wholenumber (mostly < 128 or < 256) that serves as internalrepresentation. The individual characters of a text arecompared on the basis of their codes. Since di�erentimplementations may each use their own code, apartfrom the ordering of letters and the ordering of digitsnot much is certain (does the space come before orafter the small letter \a"? Do the small letters comebefore or after the capital letters? Does the dollar sign($) come before or after the \at-sign" (@)? To suchquestions no general answer can be given: it dependson the code used).The two codes that are most widely used areEBCDIC (Extended Binary Coded Decimal Inter-change Code) on IBM main frames,40



ASCII (American Standard Code for Information In-terchange) on nearly all othersbut the situation is further complicated by the factthat ASCII is actually the American variant of ISO,which has a number of other national variants contain-ing such signs as �a and �c. If you do not know in whatcode you are working you should avoid making di�cultcomparisons.6.2.3 Subtexts in Elan-0The sublanguage Elan-0 has a number of algorithmsfor working with parts of a text (the complete languageElan has a whole collection as described a few sectionsdown, in section 6.6).The monadic operator HEAD yields a text consistingof the �rst character of its operand, for example:HEAD "abc" = "a"and the HEAD of an empty text is the empty text. Themonadic operator TAIL yields a copy of the value ofits operand but with its �rst character removed, forexample,TAIL "abc" = "bc"The TAIL of an empty text is again empty, just like theTAIL of a text of length 1. In all casesHEAD s + TAIL s = sandHEAD s = (s SUB 1)6.2.4 Input and output of textsA text can be written onto the screen with the outputalgorithm put. Where it crosses the end of the line, itis continued on the next line. In this way the layoutcan never become a total mess, but it is still advisableto keep the layout in hand by means of the procedureline. Example:line; put ("Sum#=#"); put (sum); lineThe algorithm get, called with a TEXT-variable as pa-rameter, reads the input until the end of the line(marked by RETURN, ENTER, CR, etc.). An emptyline is skipped and the next non-empty line is taken.The resulting text is assigned to its parameter. Exam-ple:TEXT VAR message; get (message)After this, the value of message will be a non-emptytext.6.2.5 First summaryThe elan-0 subset comprizes the following text opera-tions:� the monadic HEAD, TAIL and LENGTH;

� the dyadic +, CAT, SUB and *;� the comparison operators =, <>, <, <=, > and >=;� the output procedure put;� the input procedure get;� the conversion procedure ascii.The NTO in �gure 6.2 gives an overview.6.3 Example: Making crossedpaperWe want to make a grid of squares according to thepattern given in Fig. 6.3.+-----+-----+-----+-----+| | | | || | | | |+-----+-----+-----+-----+| | | | || | | | |+-----+-----+-----+-----+| | | | || | | | |+-----+-----+-----+-----+| | | | || | | | |+-----+-----+-----+-----+| | | | || | | | |+-----+-----+-----+-----+Figure 6.3: Crossed paperWe program:draw grid:INT VAR row number :: 1;REPdraw row of squarecaps;row number INCR 1UNTIL row number = 5ENDREP;draw horizontal stripe.draw row of squarecaps:draw horizontal stripe;draw vertical lines;draw vertical lines.draw horizontal stripe;put(4 * (cross + 5 * horizontal) +cross);line.draw vertical lines:put(4 * (vertical + 5 * blank) +vertical);line.41
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SUB ascii *Figure 6.2: Text operations in Elan-0horizontal: "-".vertical: "|".cross: "+".blank: "#".Notice that, instead of the re�nements horizontal,vertical, cross and blank, we might just as well havedeclared text constants. Re�nements yielding a valueare often an alternative to the declaration of a constant.Notice also that the priority of + and * for textsis the same as that for integers or reals. You mayremember that the priority is a property of the operatorand independent of the type of the operands.6.4 Example: Converting inte-gers to a given radixWe construct a program that reads a sequence of wholenumbers. The �rst is taken as the radix of some num-ber system, to which the other numbers have to beconverted.We are used to the decimal number system, withradix 10: a number is represented decimally as aweighted sum of powers of 10, using the digits of thenumber as weights. For exampledecimal 4711 = 4 � 103 + 7 � 102 + 1 � 101 + 1 � 100Each of those digits is a positive whole number smallerthan the radix (so 0 � digit < radix ).We can generalize this system to radices other than10; for example we can take radix 2decimal 23 = 1�24+0�23+1�22+1�21+1�20 = binary 10111

We can also take radices larger than 10 where A,B,. . .will be used to represent the curious \digits" ten,eleven, etc.A rough formulation of such a program can be:radix conversion:ask for a radix;WHILE another number to convertREPrepresent the number to this radix;print the representationENDREP.ask for a radix:line;put ("The#radix,#please:#");INT VAR radix;get (radix).another number to convert:line;put ("A#number,#please:#");INT VAR number;get (number);number > 0.We determine the representation of the number in thisradix by, from back to front, splitting o� digits in theradix number system.represent the number to this radix:TEXT VAR representation :: "";REPsplit off the rightmost digit;append it to the representationUNTIL no digits leftENDREP.42



split off the rightmost digit:INT CONST digit :: number MOD radix;number := number DIV radix.We append a text, corresponding to the digit just splito�, at the front of the representation.append it to the representation:representation :=representation of this digit +representation.We shall introduce a representation for the digits upto �fteen; higher digits will be printed as a question-mark.representation of this digit:IF digit > 15THEN"?"ELSE"0123456789ABCDEF" SUB (digit + 1)FI.We have to add one to the value of the digit, becausethe numbering of characters in a text does not start atzero but at one.no digits left:number = 0.print the representation:line (1);put ("Representation#is#");put (representation);line (2).This example is particularly useful because it dealswith the relationship between texts (that may containdigits) and numbers (composed of digits). The readeris urged to try out this algorithm for some values ofradix and number.6.5 Example: Circular shiftingof textsThe next example is intended to clarify the use of theoperators HEAD and TAIL. By \circularly shifting thetext to the left" we mean a cyclic movement as inABCDEBCDEACDEAB...where each element is moved one place to the left, ex-cept for the �rst, which is moved to the far right.We shall construct a program that shifts a string cir-cularly to the left until the original is obtained again.

circular shift:declare string;REPshift string circularly one place tothe left;display stringUNTIL same as originalENDREP;line.declare string:TEXT VAR string;put("String,#please:#");get(string);TEXT CONST original :: string.shift string circularly one place to theleft:string := TAIL string + HEAD string.display string:line;put (string).same as original:string = original.This program shifts a string like AAAAAA only once tothe left, and a string like ABABAB only twice since afterone, or two, steps stringwill be the same as original.In this example we do not make a di�erence betweensimilar characters at di�erent places. However, the de-scription of the problem is ambiguous and allows var-ious interpretations: we may consider even the samecharacters di�erent if they are at di�erent places. Inthis case the algorithm circular shift must be mod-i�ed:circular shift:declare string;UPTO LENGTH stringREPshift string circularly one place tothe left;display stringENDREP;line.Now the same as original re�nement is not neces-sary.The example illuminates that the description of aproblem, i.e. its speci�cation is often ambiguous. Be-ginners as well as professional programmers frequentlymisunderstand the problems to be solved. We shallreturn to this question later, in chapter 11.6.6 Subtexts in ElanBesides +, *, SUB, CAT and LENGTH, the full Elan lan-guage knows a whole collection of special algorithmsfor cutting and pasting texts. Although none of thesealgorithms is absolutely necessary (with the operators+ and SUB and some trouble any e�ect could already43



be achieved), they do make the manipulation of textsa lot easier than in Elan-0.In many applications it is nice to have more pow-erful algorithms at your disposal, as described in thefollowing sections.6.6.1 Standard constantsIn the standard environment, a number of TEXT-constants are prede�ned:TEXT CONST niltext :: "",blank :: "#",quote :: """"These can be used without further declaration.Programmers often use the word blank as a syn-onym for space but even more frequently as a synonymfor niltext. This latter seems to carry the day. Bytradition Elan-0 uses the name blank as given abovebut, if you like, you may declare another constant withthe name space.6.6.2 Subtexts: the algorithm textA text t can be turned into one of length len (bycutting it if len < LENGTH t and by padding it on theright with blanks if len > LENGTH t) by means of thecalltext (t, len)In all following examples we will assume that t has thevalue abc.text (t, 2) = "ab"text (t, 5) = "abc##"We can also cut a text at a speci�c position p by theaid of a call of the formtext (t, len, p)Its meaning is: a text of length len is formed fromthe text t but starting at the character with index p.Examples:text (t, 2, 2) = "bc"text (t, 5, 2) = "bc###"It is easy to see that generallytext (t, 1, p) = (t SUB p)text (t, len, 1) = text (t, len)A more complicated example (cyclic shifting):text (t, LENGTH t - 1, 2) + (t SUB 1)="bca"Strictly speaking there are two di�erent algorithms de-�ned in the standard environment, both with the nametext, but with di�erent number and type of parame-ters. (We shall later on meet more algorithms withthis same name.) They all have in common that theyturn \something" into a text, as the name tries to sug-gest. (The careful reader might notice that so far we

have introduced three di�erent get and three di�er-ent put algorithms although we have not emphasizedit. These get and put procedures di�er in the type oftheir parameter.) Such a collection of algorithms withthe same name, di�erent number and/or types of pa-rameters and a comparable function is called generic.6.6.3 Subtexts: the algorithm subtextThe generic algorithm subtext is a practical pair ofscissors. In its simplest formsubtext (t, from)it yields the text obtained from t by starting at theposition from. Example:subtext (t, 2) = "bc"In generalsubtext (t, i) = text (t, LENGTH t - i +1, i)The callsubtext (t, from, to)yields the subtext from t starting at the position fromand ending at the position to, for example:subtext (t, 1, 2) = "ab"In case from > to the result is the empty text.subtext (t, 2, 1) = ""Generallysubtext (t, p, p) = (t SUB p)As an example we will once more formulate the cyclicshift:subtext (t, 2) + (t SUB 1) = "bca"Since it has more than one de�nition with the samename, but di�erent parametrization, the algorithmsubtext is also generic.6.6.4 Searching a text: the algorithmposIt is possible to look in a text t for a text x by meansof the callpos (t, x)This call yields the index of the leftmost occurrenceof x in t, provided x occurs in it, and zero otherwise.Examples (assuming x = "a"):pos (t, "b") = 0pos (t, "ab") = 1pos (t, "ba") = 2Its generic brotherpos (t, x, from)44



yields the index of the �rst occurrence of x in t startingfrom the position from (and zero if x does not occur).Thus the second occurrence of x in t can be found bythe callpos (t, x, pos (t, x) + 1)6.6.5 Replacing a subtext: the algo-rithm changeA subtext of a particular text can be replaced by an-other text by a call ofchange (text variable, subtext, othertext)in which the leftmost occurrence of subtext in thetext variable is replaced by the other text. If thesubtext does not occur in the value of text variablenothing happens. Since the length of subtext andother text may di�er, it is possible that this callchanges the length of the value of the text variable.We can, as an example, change every occurrence ofJohn in a text into Jim by means ofWHILEpos (my text, "John") > 0REPchange (my text, "John", "Jim")ENDREPRemark : This short algorithm shows nicely the e�ectof a call of change but it hides dangerous traps, too.E.g. if the loop body is modi�ed to change (my text,"John", "Johnson") the repetition continues forever.Be cautious!6.6.6 Reading and writing: the algo-rithms get and putAs in Elan-0, a text is written by means of the algo-rithm put.For the reading of a text, in full Elan a number ofalgorithms are available. Let x be a TEXT-variable. Thesimplest oneget(x)has the following e�ect:1. spaces and new lines are skipped in the input untila non-space is found;2. from the current position until the next space orend of line, characters are read and combined intoa text;3. this text is assigned to the variable x.The di�erence with the get of Elan-0 is that spaces areconsidered as separators between texts.Notice that the text read in this way can not con-tain spaces and that the new lines in the input arepractically invisible. This form of input is evidently

particularly suited for more or less linguistic applica-tions.A generic variant of this one, with a whole numberas its second parameterget(x, length)assigns to x a text of at most length characters,read from the current position without skipping ini-tial spaces. There is no automatic skip over the endof line and spaces at the end of a text are disregarded.Therefore a blank line is read as an empty text.If one wishes to achieve in Elan the same as the getin Elan-0, then one has to use this last version withlength equal to the line length of the input.6.6.7 Converting texts: the algorithmstext, int and realThere are a number of algorithms for converting val-ues of other types into texts and converting texts intovalues of other types.To begin with there is an algorithm with the nametext (in lower case letters) that converts a REAL orINT value into a text resembling a denotation for it.An example:TEXT VAR t :: text(123)The value of the integer 123 is converted to a text con-sisting of some spaces followed by the characters 1, 2and 3, in that order, for example ####123.In the other direction (TEXT to INT), the procedureint can be used with, as parameter, a text resemblingan integer denotation, possibly preceded by a + or -sign. For example:put (7 + int(t))now will print the number 130. With the procedurereal we can convert texts resembling real denotationsto REAL values:REAL VAR x :: real(t + ".0")assigns to x the value 123.0.Conversely, the procedure text can be called witha real parameter and then yields a text resembling adenotation in \oating point" form. As an example,text(0.1234)yields a value like 1.2340000E-1.In using those conversion algorithms many thingscan go wrong, especially when starting out from a text.After all, one wrong character in the text is enough tomake conversion impossible, as inint("123a")In order to inquire whether the conversion performedlast was successful, a boolean standard procedure, lastconversion ok, exists that can be used to program areaction to errors:45



IF NOT last conversion okTHEN put ("conversion#failed");bangFIExercise: Re�ne the algorithm bang using the vari-ous cutting, pasting, and converting algorithms youlearned about in this chapter.6.7 Example: A desk calculatingmachineIn this example we will try to imitate a pocket calcu-lator of the kind that is available in every departmentstore at bargain prices. For simplicity we con�ne our-selves to the whole numbers and their four basic oper-ations.The calculator holds a kind of dialogue with us.When it is ready to start computing it gives a dollarsign (as a \prompt"). The input consists of an expres-sion. As an answer, the machine prints the value ofthat expression and then gives another prompt to in-dicate that more input is expected. If we want to stopcalculating, we give as input the text halt. (Of coursewe would never get rich selling such rubbishy calcula-tors, but we leave it to the reader to design a morerealistic one.)The dialogue between calculator and user could looklike:$4*3 12$5+8 13$haltFirst we implement the dialoguedesk calculator:ask for first input;WHILE further computation desiredREPprint value of formula;ask for next inputENDREP.ask for first input:TEXT VAR input;ask for next input.ask for next input:line;put ("$");get (input).Using Elan-1 and this version of the generic get wecannot put spaces between operands and operators fora space terminates a text. But that is not required.further computation desired:input <> "halt".The input will have to be scanned from left to right,in order to determine what operators and operands it

contains. We will do this by inspecting the �rst charac-ter of the input and, whenever it has been recognized,removing the �rst character of the input. We will callthat �rst character the \head" of the input.head:input SUB 1.skip head:input := subtext (input, 2).The rest of the program is based on a number of syntaxdiagrams, expressing the di�erence in priority betweenoperations (Fig. 6.4).formule - term -���+�
 �	�� ��-�
 �	�term - factor -���*�
 �	�� ��/�
 �	�factor - cijfer -����Figure 6.4: Syntax diagrams for desk calculatorFor each of the the syntactic notions we introduce are�nement that tries to recognize this notion in the in-put and yields as value the result of the correspondingexpression.formula:INT VAR result formula :: term;WHILE head = "+" OR head = "-"REPIF head = "+"THENskip head;result formula INCR termELSEskip head;result formula DECR termFIENDREP;result formula.46



term:INT VAR result term :: factor;WHILE head = "*" OR head = "/"REPIF head = "*"THENskip head;result term := result term * factorELSEskip head;result term := result term DIVfactorFIENDREP;result term.factor:IF head = "+"THENskip head;numberELIF head = "-"THENskip head;- numberELSEnumberFI.We will recognize numbers in the same way. A numbermust consist of one or more digits. Notice that twonumbers in a formula will always be separated from oneanother by at least one operator, so that a sequence ofdigits always forms one number.number:IF head is digitTHENINT VAR value :: 0;WHILE head is digitREPskip head;value := 10 * value + digitENDREP;valueELSEerror;0FI.head is digit:INT CONST digit :: pos ("01234567879",head) - 1;digit >= 0.We make explicit use of the fact (deducible from thediagrams) that a number is always followed by an op-erator. We complete the example

print value of formula:INT CONST result :: formula;IF head = ""THENline;put (result)ELSEerrorFI.error:line;put ("error#in#formula");LEAVE print value of formula.Notice that our desk calculator does not allow spacesin the input. This is realistic in so far as a pocketcalculator does not even have a space key, but on a(micro)computer the space key (and a lot of other spu-rious keys) are present. A more intelligent version ofthe desk calculator could take this into account.For all its shortness, the example is not simple. Theuse of syntax diagrams as guidance in programming isa very powerful technique, which however needs someknowledge of grammars.The solution given can easily be expressed in Elan-0.In doing so, we have to substitute the standard proce-dures subtext and pos by rewriting the re�nementsthat call them:skip head:input := TAIL input.head is digit:INT CONST digit :: pos of head - 1;digit >= 0.pos of head:INT VAR i :: 1;WHILE i <= 10REPIF ("0123456789" SUB i) = headTHENLEAVE pos of head WITH iELSEi INCR 1FIENDREP;0.Notice that the name pos has also been changed topos of head. pos is the name of a number of stan-dard generic procedures and if we rede�ned it as a re-�nement then those procedures would become hiddeni.e. they could not be called any longer. This is notwhat we want as it could lead to various problems. Inchapter 10 you will learn more about the scope rules ofprocedures and re�nements.A nicer version should skip the spaces in the inputstream. But this is left as an exercise to the reader.47



6.8 NTO of the textsAn overwiew of the text-operations in the Elan0 subsetwas given in �gure 6.2. In the Elan-1 level we �nd anumber of further operations:� the text constants niltext, blank and quote;� the \scissor" procedures text, subtext, pos andchange;� the conversion procedures text, int and real;� another version of the input procedure get.These are depicted in the form of an NTO in Fig. 6.5.The NTO's of text in their turn form part of a largerframework together with other NTO's which we havenot included in this picture.For a complete set of operations on texts see ap-pendix B.6.9 Exercises1. (Palindromes) A \palindrome" is a text that, readfrom left to right, is the same as read from right toleft. In order to obtain interesting palindromes, itis customary to admit, besides the letters, spacesand other punctuation marks, but they play norole in the comparison. E.g. a palindrome from thelast century is: a man, a plan, a canal: panama.Write an algorithm that reads a line of text andreports whether the letters occurring in it form apalindrome.2. (Cryptology) In a simple form of secret code, allletters and the space are shifted circularly by somenumber of places. For example, shifting the alpha-bet by 3 places to the left we write d instead of a,e instead of b, b instead of z, c instead of space,etc.Write a program that reads a text and then printsit with circular shift 1,2,. . . ,26.Use that program to read the following (partlydistorted) messages: \zerdidomdidrizix-driqdmwqivm" and \txvwidradrzxbiwtvpgstc".3. (Arabic to Roman) Write a program that reads awhole number and prints it out in Roman numer-als.4. (Roman to Arabic) Write a program that reads anumber in Roman numerals and prints it out inthe decimal system.5. (Calculator) Modify the ask for next input re-�nement (and also others if needed) in order toskip possible spaces in the input. Recall that theprocedure get with a single text parameter has aslightly di�erent meaning in Elan-0 and Elan-1.

6. (Children's language) Children like \secret"speech. In one of their favourite languages eachvowel is doubled and the consonant b is insertedbetween them. For example, the word today willbe spelled as tobodabay [KLI85].Write a program that reads a sentence and thenconverts it into this language.7. (Ticket vendor machine I) Program a simple ticketvendor machine that endlessly� informs about the available tickets (for thesake of simplicity, use a number of price cat-egories),� asks for the ticket required,� requests the money until the paid sumreaches or exceeds the price,� returns the excess money, if any, and issuesthe ticket.8. (Ticket vendor machine II) Program a more real-istic ticket vendor machine, performing the sametask as the previous one, but working with a lim-ited set of coins, say, 1, 2 and 5 ducats. Initially,the machine has a limited supply of coins. If, lateron, there will be any possibility that the excessmoney can not be returned, it should display themessage Exact payment, please! and refuse ex-cess coins. You may also program a cancel button.9. (Supermarket bill) Program a cash-register that,with a limited choice of articles,� accepts (abbreviated) names and amounts ofpurchased goods;� prints bills containing names, unit prices,subtotals and total;� tracks sales and stocks, and gives warning ifa stock becomes too low;� sums up the daily takings and calculates the(article-dependent) tax.If you want your program to be realistic explore anear-by supermarket.
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Chapter 7Control structuresThe control structures are amongst the most impor-tant stylistic properties of a programming language andto a large extent determine its appearance for the pro-grammer. They serve for the construction of composedalgorithms, just as data structures are means for theconstruction of composed objects. Syntactically, con-trol structures indicate how a number of algorithmscan be composed to make one algorithm that in itsturn can be used in the composition process. Theyare the cement of the programming language. Thecontrol structures also decide how the meaning of thecomposed algorithm is to be expressed in terms of themeaning of its parts, i.e. how its value and its e�ectare to be expressed in terms of the value and the ef-fect of its subalgorithms. Control structures controlthe execution of the program, which gives them theirname.We have already described most of the control struc-tures of Elan. In this chapter we shall give some addi-tions and clari�cations.7.1 Paragraphs and unitsOne of the most fundamental control structures in al-gorithmic languages is the sequence, realized in Elanby the paragraph (Fig. 7.1).paragraph - unit -���;�������� ��Figure 7.1: ParagraphA paragraph consists of a number of units, separatedfrom one another by semicolons. Notice that a para-graph may even be empty.Such a unit (Fig. 7.2) in its turn can be either a sim-ple form of declaration or an expression or a composed-unit (a control structure, see Fig. 7.3).In reality (see appendix A) the syntax is more com-plicated, but these diagrams provide su�cient detail.

unit - synonym-declaration -�- object-declaration ��- composed-unit ��- expression �� �
Figure 7.2: Unitcomposed-unit- repetition -��- choice ��Figure 7.3: composed unit7.1.1 E�ect and value of a paragraphThe e�ect and value of a paragraph can be deducedfrom the value and e�ect of its parts.The execution of a paragraph consists of the exe-cution in the given order of its units (subalgorithms).Therefore the e�ect of that execution also consists ofthe serially composed e�ect of its subalgorithms. Thevalue of a paragraph ending on an expression is thevalue of that expression; paragraphs not ending on anexpression are actions and yield no value.Observe that every unit in a paragraph can itself bea composed-unit.7.2 ExpressionsExpressions are composed of operands and operators(Fig. 7.4 and 7.5).We have already dealt with most forms of operand;the others will follow later.7.2.1 Priority of operatorsObserve that the syntax diagram for expression is am-biguous for expressions with more than one dyadic op-erator. In order to give to expressions their (unambigu-ous) meaning we have to take into account the priority51



expression - operand -���monadic-operator�� ���dyadic-operator� Figure 7.4: Expressionoperand - denotation -� - name �� - procedure-call �� - subscription �� - display �� - choice ��- (���� - expression - )���� �
� �

Figure 7.5: Operandof the operators. These priorities (from low to high)can be deduced from Table 7.1.The operators with the highest priority bind moststrongly. Operators with the same priority bind fromleft to right. As an example2 + x DIV 2 DIV a + 3 - cmeans the same as(((2 + ((x DIV 2) DIV a )) + 3) - c)In evaluating an expression, the operands of the oper-ator with the lowest priority are evaluated, after whichthe operator is applied to their values. The same holdsfor the evaluation of those operands which are, in theirturn, expressions. The e�ect is, loosely speaking, thatthe operations with the highest priority are performed�rst.7.2.2 Side e�ectsBoth operands of a dyadic operator are evaluated col-laterally, i.e. nothing can be said about the order oftheir computation. In a program likeINT VAR x;x:= 0;put (a + b + x).a:x:= x + 4;1.b:x:= 2 * x;2.

1. The assignment and the operators combined withan assignment:= :: INCR DECR CAT2. All abstract dyadic operators (declared by theuser, using a form of declaration to be introducedlater) as well as SUB3. OR XOR4. AND5. = <>6. <= < >= >7. The dyadic operators+ -8. * / DIV MOD9. **10. All monadic operators, such as+ - LENGTH ABS SIGNTable 7.1: Priority of operatorsyou can not assume that a, b, and x are computed inthat order in expression a + b + x: any other order isalso correct! Therefore you do not know whether theresult printed is 11 (�rst a, then b, �nally x) or 7 (�rstb, then a, then x) or even 3 (�rst x, then a, then b).A program like this, in which the execution of oneoperand inuences the value of another operand (a sidee�ect) must therefore be avoided. Keep in mind thatthe textual order of the operands and of the operationsneed not at all be the order of execution.7.3 Object declarationsDeclarations in general serve to de�ne an object bybinding a name to a value. The simplest declarationsare the two kinds of object declaration (see Fig. 7.6).object-declaration- variable-declaration -��- constant-declaration ��Figure 7.6: Object declarationYou are already familiar with both forms of objectdeclaration (see Fig. 3.2.1 and Fig. 3.6. These di�eronly in their access attribute and in the fact that a vari-able need not be initialized whereas a constant mustbe.52



7.3.1 E�ect of an object declarationThe execution of an object declaration with a unit asinitialization has as e�ect that this unit is executedand an object is introduced with the given type, ac-cess attribute, name, and the computed value. If theinitialization is missing, an (as yet) unde�ned value istaken. A declaration does not yield a value.7.3.2 Scope of declarationsAn object declaration is valid in a speci�c scope, i.e.within a speci�c part of the program a speci�c objectis indicated with that name.In the kind of programs we have been writing untilnow, consisting of a paragraph and some re�nements,every declaration is valid in the whole program. InElan constructs to be introduced later, more limitedscopes may appear.Notice that an object may not be used before its dec-laration has been executed: it does not have a valueyet. It is of course possible to mention the name of anobject earlier in the program, for example in a re�ne-ment which textually precedes the re�nement in whichthe declaration occurs. This does no harm as long asthe object has obtained a value at the moment it is�rst used.Within the scope of a declaration, no other declara-tion may occur with the same name. For every objectin the program there has to be exactly one declaration.Of course this one declaration may appear within a rep-etition, for exampleWHILE i <= LENGTH messageREPTEXT CONST sign:: message SUB i;put (3 * sign);put (".");i INCR 1ENDREPThe object sign is a constant that in every turn of therepetition has as value the next sign of the message.Yet it is a constant, because it is impossible to assign toit. It is a constant whose value is di�erent at di�erentmoments (admittedly a strange kind of constancy |it resembles a person who falls in love time and again,and each time is sure that true happiness has now beenfound).7.4 The choiceA choice is made between a number of paragraphsdepending on either a truth value or on a number(Fig. 7.7).7.4.1 Conditional choiceThe choice based upon a condition has already beenintroduced. Its syntax diagram is shown in Fig. 7.8.

choice- conditional-choice -��- numeric-choice ��Figure 7.7: Choiceconditional-choice- IF�
 �	 �� ���expression��- THEN�
 �	 - paragraph - ELIF�
 �	����- ELSE�
 �	 - paragraph - FI�
 �	 -� ��Figure 7.8: Conditional choiceThere are many paths through this syntax diagram.In particular the ELSE-part may be absent and theremay be any number of ELIF-parts. An alternative rep-resentation for FI is ENDIF.The meaning (value and e�ect) of a conditionalchoice is the meaning of the paragraph that is executedon the basis of its condition. We will not describe thismeaning any further but draw the attention to somedetails.The choice can be made between paragraphs that donot yield a value, so that the choice itself also does notyield a value. Only in that case the ELSE-part maybe omitted. If all paragraphs deliver a value of onespeci�c type then this is also the type of the result ofthe choice. In this case, the ELSE-part is obligatory.The ELIF-construction serves to distinguish betweena larger number of possibilities without incurring anavalanche of FI-brackets (this form is called also mul-tiple choice):IF x > 0.0 AND y > 0.0THEN put ("point lies in first quadrant")ELIF x < 0.0 AND y > 0.0THEN PUT ("point lies in second quadrant")ELIF x < 0.0 AND y < 0.0THEN put ("point lies in third quadrant")ELIF x > 0.0 and y < 0.0THEN put ("point lies in fourth quadrant")ELSE put ("point lies on an axis")FIFor a declaration appearing in the THEN- or ELSE-part,the scope is the whole program, as said above. Theobject declared in this fashion can not be used to bringa result to the outside, because there also exists a waythrough the program on which this declaration is notexecuted.53



IF the first caseTHENINT VAR result;compute result in the first wayELSEcompute result in the other wayFI;put (result)is wrong, because it is possible to follow a way throughthe program in which the declaration of result is notexecuted. It does not help to put a declaration forresult in both the THEN-part and ELSE-part: in thatcase the program contains two declarations with thesame name, which is forbidden:IF the first caseTHENINT VAR result;compute result in the first wayELSE INT VAR result;compute result in the other wayFI;put (result)The declaration will have to take place before thechoice.INT VAR result;IF the first caseTHENcompute result in the first wayELSEcompute result in the other wayFI;put (result)7.4.2 Numerical choiceElan knows another form of choice, the numericalchoice or SELECT-construct, that serves to choose aspeci�c paragraph on the basis of a whole number. Inother languages, this control structure may be calledcase clause, switch or computed goto. This constructis not included in Elan 0. Its syntax is depicted inFig. 7.9.This is quite complicated, therefore we �rst give anexample:weekday:SELECT day OFCASE 1: "monday"CASE 2: "tuesday"CASE 3: "wednesday"CASE 4: "thursday"CASE 5: "friday"CASE 6: "saturday"CASE 7: "sunday"OTHERWISE "no day at all"ENDSELECT.We assume here that the days of the week have beenencoded in the obvious fashion as the whole numbers1 to 7 and the numerical choice maps these codes onto

texts. This solution is somewhat shorter and may besomewhat faster than through a cascade of ELIFs.The CASE-parts in this example were very simple; ofcourse, they may be much more complicated. Observethat the cases need not be ordered, and that two caseswith the same paragraph can be taken together, as inis the digit even:SELECT digit OFCASE 0, 2, 4, 6, 8: trueOTHERWISE falseENDSELECT.(This might be programmed in a simpler fashion usingMOD).The SELECT-construct is of most use in mappingwhole numbers onto a choice between algorithms. Aswe have seen in the previous examples, it can also yielda value but then each case must yield the same typeof value; even the | otherwise optional | OTHERWISE-part.7.5 The repetitionFor repetition, Elan has a number of notations that allare variants of one same basic form. The repetition isa control structure that does not yield a value.7.5.1 The basic formThe simplest forms of the repetition are the precheckedloopWHILE there is something to doREPdo itENDREPand the postchecked loopREPwhatever there is to doUNTIL readyENDREPIf we omit both the WHILE- and UNTIL-part, we obtaina repetition which is in principle unending, like the fol-lowing loop which appears in many operating systems:REPread a program text;translate it and check for errors;IF the text contains no errorsTHENexecute the program;print the resultsELSEprint the errors foundFIENDREPOnly a disaster (or operator action) can stop this rep-etition.54



numeric-choice- SELECT�
 �	 - expression - OF�
 �	����- CASE�
 �	 - integer-denotation - :������- synonym-name �� ���,������ ���paragraph���� ��- OTHERWISE�
 �	 - paragraph - ENDSELECT�
 �	 -Figure 7.9: Numerical choiceMany non-sequential algorithms, that are not cov-ered in this book, make use of inde�nitely repeatingprocesses.7.5.2 The controlled variableIn many repetitions, a variable appears whose valueis changed incrementally until a speci�c situation isreached. In most cases this is an integer variable, thecontrolled variable, whose value is increased by one aslong as a speci�c condition holds or until a speci�c limitis reached, e.g.:INT VAR i:: 1;WHILE i <= limitREPrepeated action;i INCR 1ENDREPThis example shows the following characteristic ele-ments:� the controlled variable i;� the initialization :: 1;� the test i <= limit;� the repeated action depending on i;� the incrementing of the controlled variable i INCR1.In the order of these elements, there are a number ofdegrees of freedom.It is, for example, possible to exchange the incre-menting and testing, which then must be done slightlydi�erently. Where we are assured that limit > 0 wecan writeINT VAR i:: 1;REPrepeated action;i INCR 1UNTIL i > limitENDREP

and alsoINT VAR i:: 0;WHILE i < limitREPi INCR 1;repeated actionENDREPIn proving the correctness and termination of an algo-rithm the controlled variable often plays a central role.After completing the text of a program, it is good prac-tice to check whether all controlled variables will startand end with the intended values, before executing theprogram for the �rst time.7.5.3 The limited repetitionThe use of the prechecked loop carries the danger thatone forgets to initialize the controlled variable. For thenormal case, that is when this is an integer variablethat has to step by one through a speci�c range, theprogrammer can express his intentions byFOR index FROM start value UPTO limitvalueREPrepeated actionENDREPor FOR index FROM start value DOWNTO limitvalueREPrepeated actionENDREPThis construct, the limited repetition or FOR-loop, hasthe following properties:� index must be an integer variable that has beendeclared before. Its value before the repetitionis irrelevant. After the repetition it has the �rstvalue rejected.55



� start value and limit value have to be integerexpressions. They are computed collaterally once,at the beginning of the repetition.Programming languages usually eval-uate �rst the start value and thenthe limit value as the latter may de-pend upon the �rst. The designers ofElan preferred the collateral executionfor it allows, in principle, the parallelevaluation of the two expressions pro-vided more than one arithmetic unitsare available. The parallel evaluationof expressions may speed up programsa lot therefore this topic has great sig-ni�cance in modern programming lan-guages.� The controlled variable index runs through a spe-ci�c repetition range with step size 1 in case ofUPTO and �1 in case of DOWNTO, starting at thestart value, until the limit value is passed.For each of the (zero or more) values in this range,the repeated action is performed once.Examples (what results are displayed?):FOR t FROM 1 UPTO 10 REP put (t) ENDREPDisplays the result 1 2 3 4 5 6 7 8 9 10.FOR t FROM -10 UPTO 0 REP put (t) ENDREPDisplays �10 �9 �8 �7 �6 �5 �4 �3 �2 �1 0.FOR t FROM 10 DOWNTO 1 REP put (t) ENDREPDisplays 10 9 8 7 6 5 4 3 2 1.FOR t FROM 10 DOWNTO 1 REP put (11 - t)ENDREPThe result 1 2 3 4 5 6 7 8 9 10 is displayed.FOR t FROM 10 UPTO 10 REP put (t) ENDREPDisplays 10.FOR t FROM 1 UPTO -1 REP put (t) ENDREPNothing is displayed: since the step size is positive, 1is already beyond �1.7.5.4 Abbreviated formsThis form of repetition admits a number of abbrevia-tions:� FOR index may be left out if the controlled vari-able does not occur in the repeated action.� FROM 1 may be left out.� UPTO maxint may be left out. (Remember:maxint is the largest integer representable inElan.)Example:

UPTO 3 REP line ENDREPhas the same e�ect asline (3)7.5.5 Limited repetition with condi-tionsCombining the limited repetition with the conditionalrepetition, one obtains the most general form of repe-tition (Fig. 7.10).repetition- FOR�
 �	 - variable-name� ����- FROM�
 �	 - expression ����- UPTO�
 �	 - expression ��- DOWNTO�
 �	 - expression ����- WHILE�
 �	 - expression ����- REP�
 �	 - paragraph ����- UNTIL�
 �	 - expression ����- ENDREP�
 �	 -Figure 7.10: RepetitionThis construct is reminiscent of a Swiss army knifewith large and small blades, a small screwdriver, bottleopener and corkscrew and even a very small hammerand tongs. In spite of its overwhelming multi-purposecharacter it is still a practical instrument, because onecan leave out the parts one doesn't need.7.5.6 About the controlled variableIn a limited repetition, it is intended that the countingvariable runs through a speci�c range. If the repeatedaction itself modi�es the value of i, the program canbe very hard to understand. It is better to avoid tricksand to let the controlled variable go its way withoutside e�ects. In order to convince the reader we donot answer the question of what the following piece ofprogram means. Is it the counting mechanism of therepetition or the assignment in its body that carriesthe day?56



INT VAR i;FOR i FROM 1 UPTO nREPput (i);i:= 2 * iENDREPIf the controlled variable of the limited repetition isallowed to run through its range, after the repetitionit has the �rst value rejected, i.e. the �rst value it ob-tained that does no longer lie in the range.7.5.7 Example: Trailing blanksWe give an example of the interplay between a limitedrepetition range and a condition in a WHILE-part. Wewant to eliminate from a text the blanks at its end. Tothis end we have to determine the position of the �rsttrailing blank, i.e. of the �rst space in the line which isfollowed only by spaces.first trailing blank:INT VAR place;FOR place FROM LENGTH text DOWNTO 1WHILE another spaceREPENDREP;place + 1.another space:(text SUB place) = " ".When there are no trailing blanks, this yields the value1 + LENGTH text and if the whole text consists ofspaces it yields the value 1.7.6 ConclusionThis was a somewhat tough chapter, full of syntax di-agrams and nitpicking, with few convincing examples,but it was necessary to take a closer look at a num-ber of constructions we have been using for some timerather loosely, as a preparation to the introduction ofcomposed objects.7.7 Exercises1. (Morse code) Consider the problem of convertinga text to morse code. In the morse alphabet everysign is represented by a sequence of short and longsignals with pauses in between. A short signalis called a dot, a long signal a dash. The morsealphabet looks as follows:

A . { K { . { U . . { 1 . { { { {B { . . . L . { . . V . . . { 2 . . { { {C { . { . M { { W . { { 3 . . . { {D { . . N { . X { . . { 4 . . . . {E . O { { { Y { . { { 5 . . . . .F .. { . P . { { . Z { { . . 6 { . . . .G { { . Q { { . { �A . { . { 7 { { . . .H . . . . R . { . CH { { { { 8 { { { . .I . . S . . . �O { { { . 9 { { { { .J . { { { T { �U . . { { 0 { { { { {Period . { . { . {Error . . . . . . . .SOS . . . { { { . . .Start of message { . { . {End of message . { . { .Between two letters we give one space, betweentwo words we give 3 spaces. Write a program toconvert a message consisting of one line to morse.You may make use of a numerical choice.2. (Decoding morse) Write a program that reads aline of morse code and deciphers it. Try it out,together with the previous program.
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Chapter 8Composed objects: RowsIn the previous chapters we have dealt with the ele-mentary types of Elan. In this chapter we introduce amechanism for the composition of types from elemen-tary types and discuss the meaning and use of com-posed objects.8.1 Values, objects and typesA composed object is an object that can assume valuesof a composed type. Before discussing composed types,we shall recapitulate a number of important conceptsand terms that have been introduced in the course ofthe preceding chapters.8.1.1 Recapitulation of terminologyTo begin with, there are ideas and physical objects,facts and �gments of the mind. In writing a program,we may devise for these some representations in thecomputer, in order to perform some computations onthose representations. By a value we mean an elementof some abstract set for which there exists a represen-tation in the computer, as well as that representationitself.When we speak of \the value three" we may meanboth a speci�c familiar mathematical concept, the fol-lower of two, and some particular representation for itin the computer. In a wider context, we can even speakof \the value of the dollar" or \the values of WesternCivilization". The word value has a multiple meaning.Usually we are not bothered about such ambiguities inthe meaning of words, since the context will make clearwhich particular meaning is intended.We cannot manipulate values directly, but insteadwrite algorithms that achieve the intended result. Insuch an algorithm we may denote a value directly, bya denotation, a notation in the programming languagethat serves to denote a speci�c value. We may alsogive a name to a value, by means of a declaration oran assignment. The name is our handle on that value.The combination of a name and a value (bound to itin the course of the execution of the algorithm) we callan object.The binding of a value to a name is temporary. Inthe course of time, to one name di�erent values maybe bound, for instance by the repeated execution of a

declaration with di�erent values for its initialization.Some objects (the variables) allow the explicit replace-ment of their value by another, by means of an as-signment. Others (the constants) do not allow such anassignment.The values can be distinguished into di�erent classes,the types. Each type has a name and a collection ofoperations, applicable to values of that type. The set ofvalues belonging to a speci�c type is called its domain.The type of an object is the type its values may as-sume. The type of an object may be elementary (givenby the name of that type) or composed (constructedout of named types by means of a data structure). Inthis chapter we shall be concerned with objects of aspeci�c composed type, the rows.8.1.2 Type declarersIn a declaration for a variable or constant, its type isindicated by a type declarer (Fig. 8.1).type-declarer- elementary-type-declarer -��- composed-type-declarer ��Figure 8.1: Type declarerThe simplest example of a type declarer is the nameof an elementary type (Fig. 8.2).elementary-type-declarer- INT�
 �	 -� - REAL�
 �	 �� - BOOL�
 �	 �� - TEXT�
 �	 �� - synonym-boldname �
� �

Figure 8.2: Elementary type declarerWe already know the four concrete types. The pos-59



sibility of introducing abstract types by means of asynonym-boldname is introduced later.The rows and the structures are the data structuresof Elan. (Fig. 8.3). In this chapter we deal only withrows. Structures will be described in the second volumeof this book.composed-type-declarer- row-declarer -��- structure-declarer ��Figure 8.3: Composed type declarer8.2 RowsBy a (one-dimensional) row we mean a collection of alimited number of objects of one same type, the ele-ments of the row. These elements are numbered con-tiguously from a lower bound 1 upto some upper bound,equal to the number of elements (\cardinality"). Theposition of an element in the row is called its index.The type of a row is indicated by a row declarerin which the number and the type of the elements isstated. The syntax for the row declarer is given inFig. 8.4.The representation of the row-symbol is ROW. Afterthe row-symbol follows the number of elements. Later,in the context of synonym-declarations, we shall discussthe possibility of indicating the number of elements bya synonym-name. Examples:� ROW 10 REAL A row of ten reals numbered from 1to 10.� ROW 200 ROW 60 TEXT A likely representation fora book consisting of 200 pages of 60 lines each.Just like the declarers INT, REAL, etc. introduced be-fore, the row declarers are used to indicate types inobject declarations. Example:ROW 10 REAL VAR old temperature, newtemperatureWe can consider a row as one single object and assignit in one fell swoop to a suitable variable:old temperature := new temperatureAfter the assignment the value of old temperaturewill be a copy of the value of new temperature. Apartfrom assignment, there are no concrete operations ona row as a whole.8.2.1 Access to the elements of a rowThe elements of a row can be manipulated separately.One can take the value of an element (\read access")or give another value to the element (\write access").

The latter is possible only for the elements of a row-variable.In the context of the declaration of the row-variableROW 10 REAL VAR temperaturethe value of the ith temperature is indicated bytemperature[i]Its value can be printed, for example, byput (temperature[i])and can be changed by the assignmenttemperature[i] := 0.0This construct is called a subscription (Fig. 8.5).subscription- operand - [���� - expression - ]���� -Figure 8.5: SubscriptionThe value of the integer expression is called the in-dex. The index must have a value between the lowerbound 1 and the upper bound of the row; otherwise,the subscription is unde�ned and the execution of theprogram is terminated.Assigning a value to one of the elements of a rowleaves the other elements unchanged. The programfragmentFOR i UPTO 10REPold temperature[i] := new temperature[i]ENDREPhas the same e�ect as the assignmentold temperature := new temperaturein the previous section.8.2.2 Inheritance of the access at-tributeThe subscription temperature[i] in all aspects be-haves like a real variable: it inherits the access at-tribute VAR from the row which is subscribed. LettingEL stand for the type of the elements,Subscription of an EL-row-variable yieldsan EL-variable.Subscription of an EL-row-constant yieldsan EL-constant.The elements of a composed constant are also con-stants. They can not be modi�ed by an assignment.60



row-declarer- ROW�
 �	 - integer-denotation - type-declarer -��- synonym-name ��Figure 8.4: Row declarer8.2.3 Denotation of one-dimensionalrowsIn distinction to the elementary types, INT, REAL, etc.,the row-constants have no proper denotation. In itsstead comes another more general control structurethat constructs a composed object from the values forits elements, the display. This construct plays the roleof denotation for rows. Its syntax is shown in Fig. 8.6.display- [���� - expression - ]���� -���,������Figure 8.6: DisplayDisplays have the following constraints:� The expressions in a display, used to denote a row,all must have one same type, the type of the ele-ments of the intended row.� Their number determines the upper bound of therow obtained.Examples:[0, 1, 3 DIV 2, 7] is a ROW 4 INT-display[0.0, 1.0, 3.0/2.0, 7.0] is a ROW 4 REAL-display["I", "you", "he"] is a ROW 3 TEXT-displayWe can give a name to the value of a display by meansof a constant-declaration.ROW 10 INT CONST first 10 primes ::[2, 3, 5, 7, 11, 13, 17,19, 23, 29]8.3 Example: Counting wordsAs an example of the use of rows we shall consider theproblem of determining from an input, consisting ofwords, the frequency of each word, i.e. the number oftimes it appears. We use one row each to rememberthe words and their frequencies.

counting words:start with an empty list;WHILE another word followsREPcount that wordENDREP;print the list.We reserve space for at most 100 words.start with an empty list:ROW 100 TEXT VAR word list;ROW 100 INT VAR frequencies;INT VAR first free place :: 1.The end of the input we shall indicate by a word con-sisting of nine letters \z".another word follows:TEXT VAR word;put("Next word, please: ");get(word);line;word <> "zzzzzzzzz".A word is entered into the list only once.count that word:IF the word already appears in the listTHENincrement its countELSEenter itFI.The word list is not ordered, so we have to scan throughit all in order to look for a particular word.the word already appears in the list:INT VAR place;FOR place FROM 1 UPTO first free place- 1REPIF word list [place] = wordTHENLEAVE the word already appears inthe list WITH trueFIENDREP;false.The counting is simple.increment its count:frequencies [place] INCR 1.61



enter it:IF first free place > 100THENno place leftELSEword list [first free place] := word;frequencies [first free place] := 1;first free place INCR 1FI.What do we do when the word list is full, i.e. a hun-dred di�erent words with their frequencies have alreadybeen entered and any further word we have now cannotbe added? One possibility is to stop altogetherno place left:put ("Word list is full.");print the list;LEAVE counting words.Another possibility is to continue counting the occur-rences of the one hundred words already entered andignore any additional words. Then this last re�nementbecomes yet simpler.no place left: .We can print the words in any order.print the list:line(2);put("Frequencies of words:");line;INT VAR w;FOR w FROM 1 UPTO first free place -1REPput(frequencies[w]);put(" " + word list[w]);lineENDREP.In order to obtain two regular columns, we put thefrequencies �rst (for an integer uses a �xed number ofcharacter positions on the screen).8.4 Nested rowsA row in its turn is an object with a speci�c type andtherefore can occur as an element in another row. Wecan use a composed type declarer in a declaration likeROW 200 ROW 60 TEXT| {z }declarer| {z }declarer VAR bookand can continue with declarations likeROW 10000 ROW 200 ROW 60 TEXT VAR library;ROW 200 ROW 60 TEXT VAR book;ROW 60 TEXT VAR pageDuplicating a book in the library can be done by anassignmentlibrary[4711] := library[9999]

Obviously this is easier said (written) than done.A composed row has a composed subscription,library[12][14][8]is an indication of the 8th line on the 14th page of the12th book of the library.A display for a row of rows of course is a nest ofdisplays. The outermost brackets of this nest displaybelong to the leftmost row, and the innermost bracketsbelong to the rightmost row, while the depth of nestinghas to be equal to the depth of nesting of the rows.Examples:ROW 15 ROW 2 TEXT CONST translation fromDutch ::[["aap", "monkey"],["noot", "nut"],["Mies", "Mary"],["Wim", "Bill"],["zus", "sister"],["Jet", "Harriet"],["Teun", "Tony"],["vuur", "fire"],["Gijs", "Gilbert"],["lam", "lamb"],["Kees", "Cornelius"],["bok", "he-goat"],["weide", "meadow"],["does", "poodle"],["schapen", "sheep"]]ROW 3 ROW 3 INT CONST magic square ::[[8, 3, 4,], [1, 5, 9], [6, 7, 2]]8.5 On the bounds of rowsThe lower bound of a row is always 1. The upper boundmust be a whole number that cannot depend on theexecution of the program. It must be a denotation,not be the result of a computation. The reason for thishighly restrictive rule is that the number of elementsdetermines the type of the row:ROW 3 INTandROW 4 INTare di�erent types, and assigning a value of the onetype to a variable of the other type is impossible.Usually the upper bound is repeated in more thanone place of the algorithm (in the row declaration, asthe limit for a repetition, etc.). If I want to change thisupper bound then I have to make changes in a num-ber of places of the program. This is highly annoyingand for that reason a special mechanism has been in-troduced in Elan, the synonym-declaration, that gives aname to a denotation. We give the syntax diagram forthis synonym-declaration in Fig. 8.7.62



synonym-declaration- LET�
 �	�� ���,������- synonym-name - =���� - denotation -� ��- synonym-boldname - =���� - type-declarerFigure 8.7: Synonym-declarationWe will discuss here only the �rst form. An exampleis: LET max = 200This declaration introduces a synonym max for the de-notation 200 that can be used everywhere where 200may appear, e.g.:ROW max REAL VAR temperature;FOR i UPTO maxREPtemperature[i] := 0.0ENDREPIn this way we can abstract from the exact number oftemperatures. The synonym-declaration is an aid inabstraction.It can not be denied that Elan has a confusingly largenumber of ways to bind a name to a value. The dif-ferences between the following constructions are rathersubtle.� INT VAR max :: 200the name max gets the value of 200. It can obtainanother value by an assignment.� INT CONST max :: 200The name max gets the value of 200 and this valuecan not be changed by an assignment.� max : 200.Every time it is invoked, the re�nement max yieldsthe value of 200.� LET max = 200The name max becomes a synonym for the deno-tation 200.Only when declared in a synonym-declaration can aname be used as the upper bound of a row.8.6 SortingWe shall now discuss a number of simple algorithms forthe problem of sorting a row. Assume we have a row-variable with n elements x1; x2; : : : ; xn and an orderingrelation � between the elements. We say that this rowis sorted if, for any i and j, i < j ! xi � xj . By sortingwe mean a shu�ing of the elements of the row-variable

until they satisfy the ordering relation, without gainingor losing elements. In terms of the programming lan-guage we have to achieve this by assigning the valuesof the elements to other elements of the row-variablex. We call this also in situ sorting, in distinction to thepossibility of leaving the original row undisturbed andbuilding up the sorted row in another row-variable.For each of the following algorithms, we assume thefollowing declarations:LET n = 1000;ROW n EL VAR xHere we mean by EL the type of the elements (you may�ll in INT or TEXT or some such), n is the number ofelements and therefore the index of the last element.8.6.1 Example: Selection SortThe idea behind this algorithm is as follows.We split the row into a sorted part (initiallyempty) and an unsorted part. In the unsortedpart we repeatedly look for the smallest ele-ment which we then glue behind the sortedpart, that therefore grows by one element (seeFig. 8.8).selection sort:initially the sorted part is empty;WHILE not all elements in placeREPtake the smallest from the unsortedpart;glue this behind the sorted partENDREP.initially the sorted part is empty:INT VAR i :: 0.Observe that here, as in so many examples, an initial-ized declaration has a clear abstract meaning that caneasily be verbalized.not all elements in place:i < n - 1.We do not have to sort the end-element, because assoon as the �rst n-1 elements are in their place the nthelement has to be also.63
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Figure 8.8: Selection Sorttake the smallest from the unsorted part:start at the first;WHILE not all consideredREPlook whether you have got a smalleroneENDREP.start at the first :INT VAR j :: i + 1;EL VAR smallest :: x[j];INT VAR index smallest :: j.not all considered:j INCR 1;j <= n.look whether you have got a smaller one:IF x[j] < smallestTHENsmallest := x[j];index smallest := jFI.glue this behind the sorted part:EL CONST set aside :: x[i+1];x[i+1] := smallest;x[index smallest] := set aside;i INCR 1.How does the execution time of this algorithm dependon n, the number of elements? An interval of dimin-ishing size has to be searched repeatedly, in total n�1times, where the time to search it is practically pro-portional to the length of that interval. Therefore thetime is of the order of Pn�1i=1 (n � i) which for large nis proportional to n2.8.6.2 Example: Insertion SortAgain the �rst part of the row is sorted, the secondis unsorted. This time we repeatedly take the nextunsorted element and insert it in the right place in thesorted part, according to the picture in Fig. 8.9.

insertion sort:INT VAR j;FOR j FROM 2 UPTO nREPinsert jth element in the right placeENDREP.insert jth element in the right place:determine the place where it belongs;put it in that place.We determine the place by linear search. Later inthis chapter we will describe a more intelligent wayof searching.determine the place where it belongs:INT VAR place :: 1;WHILE x[place] < x[j]REPplace INCR 1ENDREP.Observe that this repetition always terminates: in theworst case all indices from 1 to j are tried, but on theaverage half this range.put it in that place:take the jth element;shift the others to the right;drop the jth element.take the jth element:EL CONST element :: x[j].Shifting the other elements to the right is necessary inorder to make room for the element. The sorted part isenlarged by one element, overwriting the original jthelement. Observe that the shifting has to proceed fromhigher to lower indices (what happens if we go the otherway?).shift the others to the right:INT VAR k;FOR k FROM j DOWNTO place + 1REPx[k] := x[k-1]ENDREP.64
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ongesorteerdFigure 8.9: Insertion Sortdrop the jth element:x[place] := element.8.6.3 Example: Bubble SortIt is well known, at least for those who are familiar withcombinatorics, that every permutation can be achievedby a number of permutations of 2 consecutive elements.(Permutation means a particular enumeration of all el-ements of a sequence.) This brings to mind the ideaof going repeatedly through the row while sorting eachconsecutive pair. We do this until there is nothing leftto do.The algorithm thanks its name to the similarity thatexists between the motion of the \lighter" elements ofthe row, while it is sorted, towards the end of the rowand the upwards motion of the bubbles in a glass ofsoda water.bubble sort:REPsweep through the rowUNTIL nothing out of orderENDREP.sweep through the row;INT VAR i;BOOL VAR exchange performed :: FALSE;FOR i FROM 1 UPTO n - 1REPmay exchange pairENDREP.may exchange pair:IF x[i] > x[i+1]THENEL CONST set aside :: x[i];x[i] := x[i+1];x[i+1] := set aside;exchange performed := TRUEFI.nothing out of order:NOT exchange performed.If the row is \nearly" sorted the algorithm Bubble Sortwill need only a small number of sweeps. Only in this

special case it is noticeably more e�cient than the twoprevious ones. (The word \nearly" needs some expla-nation. It does not mean what you would suppose at�rst. As an example, consider a row where the small-est element happens to be at the opposite end of therow. Now it does not matter how the other elementsare sorted, the algorithm must execute each one step.Would you consider the row 2 3 4 5 1 \nearly" or\far from" sorted?)An improvement follows from the observation thatafter a sweep the \greatest" element is guaranteed tohave been moved up. For this reason the next sweepcan be one shorter.8.6.4 Should we really sort this way?How does the complexity (in particular the executiontime) of these three algorithms depend on n, the num-ber of elements? To begin with, this of course dependson speed of the computer | a microcomputer may bea factor of 1000 slower than a \real" computer. For acomparable architecture of computers we can assumethat they have to perform more or less the same ac-tions. In general we can express the execution timeas the number of actions times a factor indicating themachine speed. We abstract from this last factor bylooking only at the dependence on n.The execution time depends not only on the numberbut also to some degree on the values of the elements.We shall therefore examine how many actions are tobe performed� in the worst case,� in the best case,� in the average case (but what do we mean by \av-erage"?)as a function of n.Finally the execution time also depends on the char-acter of the actions to be performed and on details ofthe programming. For su�ciently large n all other ac-tions can be neglected with respect to those repeatedmost often. All those aspects can be subsumed underthe factor already mentioned.65



In the worst and in the average case for the givenalgorithms the execution time depends quadraticallyon n, i.e. the execution time = O(n2), as argued forthe algorithm Selection Sort. Sorting twice as manyelements therefore takes four times as long!As an example we take the sorting of a list of nameswith an O(n2) algorithm on some rather slow com-puter.school class: 30 names, 1 secsports club: 300 names, 100 secAutomobile Club: 300000 names, 108 secUSA: 300 � 106 names, 1014 secBear in mind that the times mentioned are given onlyfor reasons of comparison.The better algorithms, such as Quick Sort which wedescribe later in this book, are of the order O(n log n).For su�ciently large n they are arbitrarily faster. Inspite of that, their sorting time still increases more thanlinearly with the number of elements. The administra-tion of the citizens of the USA will certainly not besorted anew every day, but a �le of that size will bekept on background memory using special data struc-tures.8.7 Example: Binary searchTo conclude this chapter we describe the binary searchmethod, a classical halving algorithm for �nding theindex of a given element el in a row x. For the rowx1; x2; : : : ; xn, where xi � xj and 1 � i < j � n, wesearch an index k such that xk�1 < el � xk. In otherwords: if there is an element equal to el in the row,then k is the smallest index of such an element, andif there is not such an element, k is the index that elwould have if it were inserted in the right place of therow.Consider an arbitrary element of x with index t 2[1 : n] and compare it with el. Obviously one of therelations xt > el or xt = el or xt < elmust hold.Looking at the value of the element with index tallows us to say something about the index k:xt � el ! k 2 [1 : t]xt < el ! k 2 [t+ 1 : n]Choosing the index t in the middle of the row allowsus to eliminate half of the elements of the row at onetime. We repeat this until we have only one elementleft.

binary search:start with the whole interval;REPchoose an index t;IF x [t] >= elTHENcontinue in left halfELSEcontinue in right halfFIUNTIL only one element leftENDREP.start with the whole interval:INT VAR lower :: 1, upper :: n.Observe that lower < upper because 1 < n. We chooset to be in the middle of the interval [lower : upper].choose an index t:INT CONST t :: (lower + upper) DIV 2.For the termination of this algorithm we have to assurethat both halves are smaller than the whole.By the special meaning of DIV (division dropping theremainder) we can deduce lower < upper ! lower �t < upper.continue in left half:upper := t.In this case the interval gets smaller because t <upper.continue in right half:lower := t + 1.In this case also the interval gets smaller, because t �lower, so t+1 > lower.All what we still have to do is to give the terminatingcondition. Since the part yet to be sorted is betweenlower and upper we write:only one element left:lower = upper.Observe that in this way a sorted row of 2k elementsis searched in k steps, and in general n elements inabout logn steps. The algorithm is of the order logn.A row of one million elements is searched in about20 steps | much faster than linear search. We can usethis algorithm to speed up the algorithm Insertion Sort,although the e�ect is not dramatic because the inser-tion of the element of the right place remains quadraticand takes most of the time.The above algorithm works well until the requiredelement, el, is not greater than the greatest element ofthe sorted row. If greater this algorithm still deliversthe index of the greatest element of the row instead ofthe index that is larger by one. There is a number ofsolutions. We can, for example, check at the beginningwhether the required element is greater than the great-est element and stop if it is. We get a more elegant |and shorter | algorithm if we use a guard. In ourcase the guard will be the (n+1)th element of the row66



and its value must be the greatest possible value. (Incase of a row with INT-elements, for example, maxintwould be an appropriate guard.) Now, when the re-quired element is greater than the greatest element ofthe (original) row the modi�ed algorithm delivers theindex of the guard.8.8 Exercises1. (Shaker Sort) A variant of Bubble Sort is obtainedby alternating the directions of the sweep so thatalternately the next largest element is moved tothe right and the next smallest element is movedto the left. The unsorted area is enclosed betweentwo growing sorted areas, so that the sweeps getshorter and shorter.2. (Symmetrical binary search) In the given formu-lation of the binary search algorithm we have ex-ploited only two of the three possibilities (becausewe did not distinguish the case that t happens tobe the index of the right element). As a conse-quence the algorithm is not completely symmetri-cal in dealing with the left and right half. Write avariant of the algorithm that does exploit all threepossibilities and is symmetrical. Make use of theLEAVE-instruction.3. (Comparison of sorting methods) Make an exper-imental comparison between the sorting methodsgiven (and possibly others). Distinguish betweenthe best, average and worst case. Try to explainthe di�erences found.4. (Calendar) Write a program that can print a cal-endar for any year between 1901 and 2100. Makeuse of the knowledge that the �rst of January 1901was a Tuesday. The calendar should make an ap-petizing impression, which means that the layoutof the output is very important. (Hint: it may besimpler to build up the calendar in a row of textsbefore printing it.)5. Write a program that reads in a text of severallines, computes a frequency table of the letters oc-curring in that text and then displays this tablein the form of a bar diagram with vertical bars.Choose the vertical scale such that the longest bar�ts exactly on the screen.6. (Text formatter) Write a program that reads atext (consisting of words with punctuation marksand layout, a number of lines and ending on a dol-lar sign) and prints it out in a minimum number ofjusti�ed lines. A line is called justi�ed if (like mostlines in this book) the �rst word starts on the left-most position of the line and the last word ends atthe rightmost position of the line. The words areseparated by one or more spaces and the spacesare distributed as evenly as possible between the

words on the line. The last line need not be right-justi�ed. A line consisting of one overly long wordcan also not be justi�ed.7. (Game of life) Take a big board with squares andan appropriate number of stones (e.g. a GO-boardwith its stones). Put some stones as the �rst gen-eration on the board. Each stone may have up toeight neighbours. Apply the following rules (�rstdescribed by Conway in 1970) to all stones of theboard con�guration to determine the next con�g-uration:� a stone with two or three neighbours survives,� a stone with less than two neighbours dies inloneliness,� a stone with more than three neighbours diesin overpopulation,� a new stone will born if an empty �eld is sur-rounded by precisely three neighbours.Establish the initial con�guration by means ofsome display. Show the sequence of con�gurationson the screen.
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Chapter 9FilesComputers owe their fast development not so muchto the fact that they can calculate as to the factthat they provide an economic solution for importantproblems of administration. It is the electronic dataprocessing that brings in the big money. The purecalculating applications, even for the military, wouldnot have justi�ed the enormous investments over thelast thirty years. The storage and processing of largeamounts of data needs other techniques than we havedescribed so far.Consider for example the administration of spareparts in a large production plant. For thousands ofparts, a certain amount of information has to be stored,such as the name of the article, the part number, thenumber in stock and the retail price. The collectionand the processing of the data generally takes place bydi�erent programs at di�erent times, while over a num-ber of terminals various programs must act in sequenceor even simultaneously on the same collection of data.This demands a quite di�erent form of data storagethan we have met until now. We shall not describe atthis place the physical storage methods and the conse-quent techniques for administration and programmingthat have been developed. We only give a number of es-sential concepts and some simple programming meansby which a model can be made of such a large admin-istration.9.1 Some conceptsWe introduce only some of the most general concepts,and do not concern ourselves with the detailed termi-nology that has arisen in this branch of Informaticsover the years.A �le is a stored collection of data that has a name.The concept of �le allows us to abstract from the phys-ical properties of speci�c storage means (such as in thepast punched card or punch tape, nowadays magnetictape, magnetic drum or disk and shortly also the com-pact disk).The data are stored in the form of records that eachcontain a line of text. Those records we consider assplit up in some way into a number of �elds each con-taining a number or text (for a spare part: the item'spart number, number in stock and retail price followedby a text of at most forty characters, the name). Ofcourse di�erent programs can look upon the records of

one same �le in di�erent ways, but this has to be donewith great circumspection. A record that contains 3numbers can also be looked upon as a record contain-ing one text, but then it may be rather more di�cultto extract the 3 numbers.By means of input procedures, the �elds of a recordare read as values. Similarly, values can be written toa �le by means of output procedures. Files can be keptor deleted, they can obtain another name, and theircontents can be modi�ed repeatedly.9.2 File operations in Elan-0Elan has a concrete type of �le (FILE) with a completeset of operations that are representative of typical elec-tronic data processing. We introduce here instead asomewhat simpler set of operations that are adequatefor an introduction to �le handling and for understand-ing the most essential aspects. These operations arethe only ones available in Elan-0, and they can easilybe expressed by the language means of the full lan-guage. For a description of the standard packet for �lemanagement we refer to the Elan language de�nitionor to chapter 11 of [HOM83].9.2.1 Opening and closing �lesAt any moment the computer knows of a number of�les. Every �le has a text as its name. In order toaccess a �le from a program we �rst have to open it,indicating what kind of �le we need (new or old, forreading or writing) and what its name is. Finally wemust make the �le available to other programs by clos-ing it.In simple Elan-0 systems, only one �le at a time canbe open. This is a severe restriction compared to thepractical situation where quite a large number of �lescan be open simultaneously. This restriction is moti-vated by the desire to use Elan-0 also on microcomput-ers that have only a cassette recorder for �le storage. Aconsequence of this restriction is that algorithms haveto be oriented more towards internal data structures(rows) than to data structures on �les. Such �le struc-tures are interesting but will not be dealt with untilthe second volume of this book.For �le handling we have a number of concrete al-gorithms, of which we shall indicate the name and the69



parameters by means of a procedure-heading. We hopethat the notation used here to give particulars aboutthese procedures will be self-evident although proce-dures are described in chapter 10.a) PROC new file (TEXT CONST name):An empty �le with the name name is opened forwriting, which means that we can write on it butcan not read from it. Writing starts at the �rstrecord. If there already exists a �le with thatname, it is erased (beware!).b) PROC old file (TEXT CONST name):If there already exists a �le with the name namethen this is opened for reading, starting at the �rstrecord. If such a �le does not exist, the executionof the program is halted.c) PROC close file:Any �le that was open is closed. After beingclosed, a �le can be opened by one of the two pre-ceding procedures. The closed �le is kept until itis erased.d) PROC erase file (TEXT CONST name):If there already exists a �le with the name name,then this is erased, otherwise nothing happens. Inthis way we can limit the number of �les that thecomputer has to keep.If you have opened a �le and forget to close it then atthe end of the program it is closed automatically. (Butbetter when a programmer is not absent-minded.)9.2.2 Writing to a �leWriting is possible only to a �le that has been openedfor writing. The following algorithms write on the cur-rent line of the �le starting at the current position.e) PROC write (INT CONST x):A denotation of the value of x is written, possiblypreceded by a negative sign.f) PROC write (TEXT CONST x):The characters of the value of x are written oneby one. As with the procedure put, no quotes aregiven surrounding this denotation, which leads toa nice layout but may make reading back some-what complicated.g) PROC writeline:After a call of writeline, writing continues at thebeginning of the next record of the output �le.Many machines have a special �le name for the printer,for example, prn. It is the name of a �le that can onlybe written to. Writing to this �le causes the outputto appear on the printing device of the computer (if ithas one).

9.2.3 Reading from a �leReading is possible only from a �le that has beenopened for reading. In reading from a �le, it is pos-sible to read back in the form of a text something thathas been written as a number and vice versa, so thatsome care is necessary. Also it is not allowed to readbeyond the end of the �le; in trying to read beyond theend of �le, the execution of the program is stopped.h) PROC read (INT VAR x):An integer denotation with eventual precedingsign and layout (new lines, spaces) is read. Itsvalue is assigned to x.i) PROC read (TEXT VAR x):The rest of the record is read and assigned as a textto x. After that, reading continues with the nextrecord of the �le. There is no separate procedurefor going to the next input record.j) BOOL PROC file ended:Answers the question whether the end of the input�le has been reached. No other convention to testfor the end of �le is needed, provided this test isinvoked in time.Observe that a record in general contains zero or morenumbers followed by a text. If we reverse this order(have a text followed by a number) then, in reading,this number is assumed to be part of the text, so thatit cannot be read separately, which may lead to unfore-seen behaviour of the program.9.3 EditingBesides the reading of data, its modi�cation occurs sooften in all kinds of information systems that we shallintroduce for that purpose a special operation that cancollaborate very well with the �le manipulation opera-tions. It is somewhat complicated:k) PROC edit (TEXT VAR t, INT CONST p):The �rst parameter of edit is a text variable; itsvalue is displayed on the screen and then the op-portunity is o�ered for modifying the text on thescreen. Finally the thus-modi�ed text is assignedto the actual parameter corresponding with t.The constant p (with 1 � p � LENGTH t) gives athreshold position. The cursor cannot be movedbefore it. If one chooses p = 1, the whole text canbe modi�ed.With the help of edit it is simple to make informationsystems such as the following example.9.4 Example: Keeping an ad-dress listI have an address list containing the names, addressesand phone numbers of a growing number of people.70



Now and then I add a person or change his addressor phone number. In the course of time, these modi�-cations make such a muddle of my address list that Itake an evening out for copying the address list into afresh book, with the names alphabetically ordered andwithout insertions.We shall write a program to administer an addresslist. We assume that the address list is written on a �leand that we may modify it by the following program.9.4.1 User interfaceWe shall �rst plan the behaviour of the program fromthe point of view of the user and the commands to begiven by the user. It is highly important to design thisuser interface well, so that the user can easily use thesystem, has a good mental picture of its workings andcannot be suddenly confronted with surprises.9.4.1.1 PhasesIn the execution of the program we distinguish threephases. At the beginning of the program, the currentaddress list is read from its �le. During the secondphase of the execution of the program, a copy of thewhole address list is in memory, and we have the op-portunity to make all manner of modi�cations. Finallythe thus-modi�ed address list is written out as a new�le. Since this new �le has the same name as the oldone, the old �le thereby becomes inaccessible.The modi�cations are not made directly to the �le.As a consequence, the old address list remains availablein unmodi�ed form for the duration of the program, sothat it is possible to stop the execution of the programprematurely before the new address list is written to a�le.9.4.1.2 The information to be storedWe use a very simple �le structure: three records perperson, containing their name, the �rst part of theiraddress and the second part of their address. The de-tailed contents of those records we choose not to spec-ify. The second line of the address might contain, forexample, the phone number, but the precise contentsof the records do not concern us.9.4.1.3 CommandsThe user interface is modelled somewhat on that ofthe Elan-0 programming environment. The commandsconsist of one single letter, followed by pressing theRETURN-key and possibly some further information.After the �le has been read initially, the following com-mands can be given:a adding a person. Should be followed by lines con-taining the name, adr1 and adr2. If a person withthat name is already known, then his adr1 andadr2 �elds are updated, otherwise the new personis entered at the right place in the alphabetic list.

Notice we cannot have more than one acquain-tance with the same name.d deleting a person. Demands a known name. Ifa person with that name occurs in the list, thisperson is removed, otherwise nothing happens.s showing a person. Demands a known name. If aperson with that name is known then its entriesare shown, otherwise nothing happens.e modifying entries. Demands a known name, looksup the corresponding adr1 and adr2 and gives theopportunity to modify these. If the name given isunknown nothing happens.l listing the names. Gives on the screen an alpha-betic list of the known names.q quitting. The dialogue is ended and the programgoes over to the third phase, in which the resultingalphabetic address list is written, overwriting theinput �le of the same name.9.4.2 ProgramThe three phases of execution can be found back in themain program.program:define all commands;read old address list;show all names;REPask for command;execute commandUNTIL command = quit commandENDREP;write new address list.The main program is a simple interpreter for the com-mands.define all commands:TEXT CONST add command :: "a";TEXT CONST delete command :: "d";TEXT CONST show command :: "s";TEXT CONST edit command :: "e";TEXT CONST list command :: "l";TEXT CONST quit command :: "q".The various commands are introduced here as text con-stants, making it simple to choose a di�erent user in-terface.9.4.2.1 Reading the old �leWe read the old �le by means of the operations in-troduced in this chapter and store their records in theform of three rows.71



read old address list:LET list max = 100;INT VAR max index :: 0;ROW list max TEXT VAR namerow;ROW list max TEXT VAR adr1row;ROW list max TEXT VAR adr2row;open old address list;REPread person;insert personUNTIL file endedENDREP;close file.By modifying the value of list max we can try to copewith a larger address list, but this can only succeed ifour computer has su�cient memory.open old address list:ask address list name;old file (file);read next nonempty line.In order to keep the program exible and independentof the underlying operating system we prompt the userfor a �le name.ask address list name:TEXT VAR file;put ("Name of address list, please: ");get(file).We must be careful in reading the lines from the �le.On the one hand, if we tried to read after the end ofthe �le we would get an error message and our programwould be stopped. On the other hand, we may wishto insert empty lines in our address list to enhancereadability, but we do not want these empty lines tobe taken as names or addresses, so we have to skipthem. This is again a nice example for the interplay ofthe WHILE- and the UNTIL-part.read next nonempty line:TEXT VAR textline :: "";WHILE NOT file endedREPread (textline)UNTIL textline <> ""ENDREP.After so much preparation we can read the old addresslist.read person:read name;read address1;read address2.The entries for one person consist of three records thatwe read separately. Notice that we always read the nextline in advance. This is necessary if we want to detectthe end of �le condition while skipping the empty lines.It is a variant of the often used look-ahead technique.

read name:TEXT VAR person name :: textline;read next nonempty line.read address1:TEXT VAR address1 :: textline;read next nonempty line.read address2:TEXT VAR address2 :: textline;read next nonempty line.9.4.2.2 Adding a personWe keep the list of names sorted in memory. There-fore we cannot just append a new person at the endof the list but have to insert it somewhere in the list(cf. Insertion Sort, Sec. 8.6.2). First we compute itsindex, i.e. the position in the name table that eithercontains a person with that name or is where a personwith that name should �t according to the alphabetic-lexicographic ordering.insert person:find index;IF already knownTHENoverwriteELSEshift up from index;overwriteFI.find index:INT VAR index :: 1;WHILE index <= max indexREPIF namerow [index] >= person nameTHENLEAVE find indexFI;index INCR 1ENDREP.We use here the simplest form of linear search. Toincrease e�ciency, the reader might prefer a form ofbinary search (see Sec. 8.7).already known:IF index > max indexTHENfalseELSEnamerow [index] = person nameFI.This condition is rather \tricky", because a personmight have to go after the last element of the list.overwrite:namerow [index] := person name;adr1row [index] := address1;adr2row [index] := address2.72



shift up from index:IF max index = list maxTHENaddress list fullELSEINT VAR i;FOR i FROM max index DOWNTO indexREPshift one upENDREPFI;max index INCR 1.shift one up:namerow [i+1] := namerow [i];adr1row [i+1] := adr1row [i];adr2row [i+1] := adr2row [i].address list full:line;put ("Address list full ...");line;LEAVE program.The algorithm presented here is of poor e�ciency.Suppose we have n entries and want to add m moreentries. Then this algorithm will execute shift oneup in the order of n�m-times. A better solution wouldbe to �rst store the new entries in separate rows andthen, when the program writes the entries into a �le,merge the data from the di�erent rows. Of course, ifwe have only 100 entries it makes no di�erence but,again, with large amounts of data we must be careful.9.4.2.3 Processing a commandask for command:TEXT VAR command;REPline;put ("Command = ");TEXT VAR comline;get (comline);command := comline SUB 1UNTIL command >= "a" AND command <= "z"ENDREP.execute command:IF command = add commandTHENask person;insert personELIF command = delete commandTHENask known name;remove personELIF command = show commandTHENask known name;show person

ELIF command = edit commandTHENask known name;edit address1;edit address2ELIF command = list commandTHENshow all namesELIF command = quit commandTHENELSEline;put ("Admissible commands: a d e l sq"); lineFI.9.4.2.4 Asking for informationWe shall use names like \ask..." for those algorithmsthat read information interactively (i.e. not from �le,but via keyboard and screen directly from the user ofthe program).ask person:ask name;ask address1;ask address2.Remember that the get algorithm with a single textparameter behaves di�erently under the various Elanimplementations. Therefore, it is better if we hide thecall of get into one re�nement thus making the modi-�cation easier. Here is the Elan-0 version:nonempty textline:get (textline);textline.And here is one of the possible Elan-1 versions:nonempty textline:get (textline,80);textline.ask name:line;put ("Name: ");person name := nonempty textline.ask address1:line;put ("Address1: ");address1 := nonempty textline.ask address2:line;put ("Address2: ");address2 := nonempty textline.When the requested name is not found we shall kindlywarn the user: Unknown.73



ask known name:ask name;find index;IF NOT already knownTHENline;put ("Unknown.");line;LEAVE execute commandFI.9.4.2.5 Modifying entriesFor modifying entries we make use of the procedureedit.edit address1:line;put ("Address1: ");edit (adr1row [index], 1).edit address2:line;put ("Address2: ");edit (adr2row [index], 1).We might similarly permit also the name of a personto be modi�ed, but then we must take care to deletethe old person and insert the new person.9.4.2.6 Removing personsIn order to remove a person the execute command al-gorithm asks for a known name. If, for any reason,our answer is wrong the ask known name re�nementgives a warning message (Unknown.) and prematurelyterminates the execution of the command. On theother hand, if the name is known index will containthe proper value and the entry can be deleted. Nowonly the prompt will indicate that the command hasbeen executed.remove person:shift down until index.shift down until index:INT VAR j;FOR j FROM index UPTO max index - 1REPshift one downENDREP;max index DECR 1.shift one down:namerow [j] := namerow [j + 1];adr1row [j] := adr1row [j + 1];adr2row [j] := adr2row [j + 1].9.4.2.7 Showing entriesshow all names:FOR index FROM 1 UPTO max indexREPshow nameENDREP.

show name:line;tab;put (namerow [index]).show person:line;tab;put (namerow [index]);line;tab;put (adr1row [index]);line;tab;put (adr2row [index]).tab:put (8 * " ").9.4.2.8 Writing the new �leBefore we write the address list into a �le we kindlyask the user to name the output �le: the old �le maybe rewritten or a new �le may be created. The writeend of file mark re�nement is necessary if we wantto read in the same �le later. Most Elan implemen-tations makes the file ended condition true whenthe operating system indicates that the �le, opened forreading, has reached its end, others need an explicitmark. It is safe if we always append this mark to theend of the �le.write new address list:ask address list name;new file (file);write all persons;write end of file mark;close file.write all persons:FOR index FROM 1 UPTO max indexREPwrite personENDREP.write person:write (namerow [index]);writeline;write (adr1row [index]);writeline;write (adr2row [index]);writeline.write end of file mark:write (ascii (4)).9.4.3 Our �rst address listWe are proud of having developed such a beautiful pro-gram, we laboriously type it in | and then suddenlyrealize that it has one curious property: it presupposesthat the �le we want to modify is already present. This�le must exist before the execution of the program andmay not be empty. Where do we get it from?74



The simplest way is to make another program thatwrites an initial �le with at least one person. Once wehave got that �le, the initializing program is no longernecessary. We choose one of the people we want tohave in the list, and write the following program:start data base:ask address list name;new file (file);write ("Aardvark, Anthony A.");writeline;write ("17, Hampstead Road");writeline;write ("Weston-Super-Mare");writeline;write end of file mark;closefile.It would have been simpler to make an empty �le (wewould have needed only the �rst and the last unit),but the program we have developed needs at least oneperson.9.4.4 The use of the programWe start the program and after some time see theprompt appearCommand:Immediately behind this we type an a and �nish theline with the RETURN-key. A new prompt appearsName:whereupon we type inCowznowsky, Melvin S.Now we are prompted for the �rst part of the address.We enter also the two address �elds and again get thepromptCommand:Curious to see the result of our work, we give an l andseeAardvark, Anthony A.Cowznowsky, Melvin S.By means of a number of a commands we introducethe other persons and give again an l whereupon weobtain an alphabetic list of all persons.Now Anthony Aardvark comes in and asks what datawe have stored about him. We give an s followed byAardvark, Anthony A.(It is rather long. Maybe we had better �nd a con-vention for searching for abbreviated names, such as:Aard*.) and see his entries appear. We give a q, where-upon the new address list is written away and the pro-gram is �nished.We shall not describe the use of the other commands;you should rather try them yourself.

The program given is rather long, but, it is hoped,quite comprehensible. It is one of the largest Top-Downprograms appearing in this book. All kinds of informa-tion systems with a similar structure can be modelledafter it.9.5 Exercises1. (Flexible searching) Modify the ask known namere�nement in the address list program allowing� abbreviated names, such as Aard*,� case-insensitive searching, such as aardVARK,anTHONy a.,� meaningless punctuation characters, such asAardvark Anthony A,� combinations of the above cases.2. (Membership administration) Are you a memberof some club? Try to imagine how its administra-tion of members should be organized. Per memberthe following entries are of importance: address,membership number, last year paid, and other en-tries that are dependent on the nature of the club.Take care that at least the following lists can beobtained:� complete list of members in alphabetic order;� same ordered by number, with addresses, inthe form of address labels;� list of tardy payers.3. (School administration) Design an administrationfor a school, that captures� for every pupil the courses and results;� for every class the pupils.What kind of modi�cations to this �le must bepossible? What questions should be asked of it?4. (Giro system) Design and realize a simple bank-ing system that keeps the name, address, accountnumber and balance of the clients, takes care ofdeposits, withdrawals and transfers, sends dailystatements and periodically computes interest.5. (Booking system) Design and realize a simplebooking system for an airline, that per plane ad-ministers the customers and the empty places andcan make booking for (groups of) customers. Thissystem can be made as realistic as you wish by theaddition of all kinds of aspects (like smoking/non-smoking, waiting list, alternative routing, di�erenttime zones . . . ).
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Chapter 10ProceduresAs the means of de�ning abstract algorithms, wehave until now used re�nements. This mechanism isof major importance in learning a systematic way ofprogramming, but in most programming languages it isnot available in its pure form. Instead, these languageshave, as a means of abstraction for algorithms, theprocedure (\subroutine", \subprogram", \function").Elan distinguishes both re�nements and procedures,each associated with a speci�c programming style.Just as for a re�nement, a procedure is a means ofgiving a name to a piece of program text, so that thatname can be used in place of that piece of text. Thepurpose of this mechanism is, to begin with, simpli�ca-tion of programming by shortening the program textand reduction of the opportunity to introduce errorsin repeating pieces of text. Both mechanisms can beused as a means of abstraction for algorithms in Top-Down programming. Procedures additionally have apossibility of communicating with their environmentthrough parameters given at their call. Therefore theylend themselves also to a di�erent programming stylethan re�nements.From this chapter on, we leave the sublanguage Elan-0, which is intended purely for Top-Down program-ming. Although in this book we do not yet introducethe Bottom-Up programming style, the following chap-ters are a preparation for it.10.1 Re�nements: a look backHuman beings have great trouble in keeping anoverview of complicated matters. In order to compen-sate for this human weakness, we do not try to solve dif-�cult problems in one stroke, but are satis�ed as a �rstapproximation to take the problem apart into smallerparts, each of which seems to be easier to solve. Thenwe repeat this decomposition process on each of thesubtasks until we arrive at tasks that are small enoughto be resolved immediately.We use the same technique in programming: we wantto construct an abstract algorithm that precisely solvesour problem. To that end we imagine a number ofsuitable abstract algorithms to solve parts of the prob-lem, which we then stick together by means of con-trol structures. After that, we have to realize each ofthose abstract algorithms in terms of (other) abstractalgorithms and, �nally, the concrete algorithms of the

programming language used.For de�ning those abstract algorithms that arise asa eeting intermediate stage in this process we makeuse of re�nements.10.1.1 Example: description of a man-ual taskWe want to construct an algorithm that describes howto �x a hole in the front tube of a bicycle. We assumethat we have a simple but highly specialized processorthat can manipulate parts of bicycles. The example isrealistic to the extent that it can be seen as a programfor a kind of robot.At the highest level of abstraction we consider thebicycle as consisting of a few large parts, such as thewheels. Those are the objects that we can talk about.At this level we can indicate what we mean by fixfront tube of bicycle.fix front tube of bicycle:turn the bicycle about;remove the front wheel;fix the front tube;attach the front wheel;turn the bicycle about.This is a complete algorithm, albeit as yet not verydetailed. It is so far not incorrect, in that it does notsay anything wrong as yet. The \only" thing we have todo now is to realize the abstract algorithms mentioned.We call such a formulation, at the highest level ofabstraction, the rough formulation of the algorithm.It is important that this rough formulation capturesthe essence of the solution, otherwise nothing has beenachieved. We do however have the freedom to intro-duce useful abstract algorithms at will, even if they donot belong to the concrete repertoire of one or otherprocessor. Afterwards we shall make them concrete bymeans of re�nements.Consider for example the abstract algorithm withthe suggestive name remove the front wheel. Thename more or less adequately expresses what has tobe done. In the re�nement we now have to indicatehow that must be done. This realization we express interms of a lower level of abstraction, where we conceiveof the front wheel as in its turn composed of a hub withnuts, spokes, nave, inner and outer tube.77



remove the front wheel:remove the left front wheel nut;remove the right front wheel nut;take the front wheel from the fork.attach the front wheel:fit the front wheel into the fork;attach the right front wheel nut;attach the left front wheel nut.Again we abstracted from a number of things. Wehave for instance not mentioned at all where to keepthe nuts safely. The decision about that is part of there�nement of remove the left front wheel nut.A decision of detail that we have already made inthe realization given concerns the question of in whichorder the nuts have to be loosened and tightened. Weindicated that �rst the left and only afterwards theright front wheel nut had to be removed. Of coursethe order might just as well have been the other wayaround, because the result does not depend on it. Butthis decision has a consequence for other details. Wemight for instance deduce that the processor betweenthe removal of the nuts and their tightening is at theright side of the bicycle. The decision \�rst left, thenright" is an overspeci�cation. In order to keep gen-erality as great as possible, we should have speci�edcollateral removal, so that some kind of octopus mighteven have removed both nuts simultaneously. Since werestrict ourselves to sequential algorithms we have nonotation to describe collateral execution. Overspeci�-cations like this one occur in programming all the time:time and again we see ourselves forced to make a choicethat excludes whole classes of just as good or possiblybetter realizations.We might have delayed the decision another re�ne-ment step by introducing an abstract algorithm removeboth nuts; but that would merely have delayed the is-sue.In programming, one has to be aware all the time ofsuch phenomena, and must take care to make concretechoices for a speci�c strategy as late as possible, in or-der to minimize remorse about hasty decisions. On theother hand, when taking a decision can no longer beavoided, we should cut through the knot courageouslyand accept the consequences of our decision. It is advis-able in this process to de�ne those abstract algorithmsthat belong to the same level of abstraction �rst beforeembarking on the next, lower, level of abstraction.We continue re�ning:fix the front tube:loosen the outer tube;take the inner tube out;fix the inner tube;stuff the inner tube in;mount the outer tube.In �xing the inner tube we have to take care of yet moredetails, so that now the hole in the tube also belongsto our level of abstraction. It may be that there ismore than one hole, or that we have made an errorand cannot �nd any hole at all.

fix the inner tube:WHILE there is another holeREP fix that holeENDREP.And so we must continue re�ning until we reach (wehope) the level of directly executable concrete algo-rithms.The method that we have applied here is knownas the Top-Down method, hierarchical decompositionwith the aid of re�nements.By the systematic use of re�nements with well-chosen names we strive to retain a large part of thepassing thoughts, ideas and insights that play a rolein the design process. In a later modi�cation of theprogram the meaning of the maker need not be re-constructed painfully from his deeds (see [MEE77],[DAH72]).Re�nements serve to support the programming pro-cess, but they do not perform wonders. They serveto retain the eeting thoughts arising during the pro-gramming process. They give a certain rhythm to aprogram. They reduce the distance in abstraction thathas to be bridged at one time. They restrict the horizonthat the programmer has to oversee at one time. Theyallow him to distinguish between the \what" and the\how". They allow another person at a later time tofollow the kinky thoughts of the author of a program.Once again | they serve as a means for capturingthoughts. But they cannot suggest the thoughts.10.2 Procedures as buildingblocksTop-Down programming, in principle, proceeds untilthe level of the concrete expression means of the pro-gramming language has been reached.In many cases, and especially for larger programs,this level is de�nitely not the most convenient one toend at. Much work can be saved by de�ning before-hand a few well-chosen elementary algorithms and ob-jects, intended to serve as the lowest level of detail forthis particular program.We shall introduce for this purpose another form ofabstract algorithm, the procedure, that we use when-ever we feel the wish to de�ne an algorithm that is tobe used in more than one place in the program.In that case we no longer consider it as an interme-diate stage in the thinking process but as a supplementto the concrete algorithms of the language, as a newelementary building block. As an example, turning thebicycle around, manipulating the left and right nuts ofthe front and rear wheel, and also �xing of a hole ob-viously belong to the basic capabilities of anyone whois to repair his bicycle.In somewhat larger programming exercises, one pro-ceeds by �rst carefully de�ning a packet of elementaryalgorithms, objects and types in terms of which thesolution of the problem can be expressed more conve-niently, rather than by attempting to close the whole78



distance between the given problem and the given con-crete language in one great step.The consequent application of this idea leads toanother programming style, Bottom-Up programming(\The Method of stepwise Synthesis") (e.g. [KLE81]),for which Elan has a number of special constructions(procedure declarations, type declarations, operatordeclarations, packet mechanism with interfaces). Weshall go deeper into this subject in volume 2.Of course there is a spectrum of possibilities be-tween Top-Down and Bottom-Up programming style,in which procedures play an important role.Those abstract algorithms that are worthy to be usedmore than once as elementary algorithms in the pro-gram, we shall realize as procedures.Abstract algorithms that play only a unique, passingrole in the design process of the algorithm we realizeby means of re�nements.As a matter of fact in the previous chapters wehave already silently made our acquaintance with pro-cedures, because many of the concrete algorithms inElan are procedures. Take for example the standardprocedures put, sin and cos. In this chapter we shallindicate how to declare procedures, how to use themand how to classify them into various sorts.10.3 Procedure declarationsJust like other objects (variables and constants), pro-cedures have to be declared before they can be used.Such a declaration looks as given in Fig. 10.1.An example of a procedure-declaration is:REAL PROC average (REAL CONST a, b):(a + b) / 2.0ENDPROC averageThis declaration introduces a function of two argu-ments with the name average. (We usually say thatoperators have operands, functions have argumentsand procedures have parameters. Their role is essen-tially the same.) Each of its parts (heading, body andtail) stands here on a line of its own. The �rst line isthe heading and the second one the body.The execution of a procedure declaration has as ef-fect that a routine (a value which serves as the internalrepresentation for the procedure) is bound to the nameof the procedure. As you see, a procedure is again anobject with a name and a value. The scope of a proce-dure declaration is determined in the same way as forother declarations.10.3.1 The procedure-headingIn the heading of a procedure the correspondence is in-dicated between the environment where the procedureis executed and the body of the procedure. This corre-spondence is e�ected, as it will be described later, bybinding values and variables from the environment (ac-tual parameters) to names that are known only withinthe procedure (formal parameters). As an example,

in the call sin (0.5 * x) the expression 0.5 * x isthe actual parameter of sin. The name of the corre-sponding formal parameter we have to look up in thedeclaration for sin. The syntax of the procedure-headis shown in Fig. 10.2.The formal-parameter-pack gives declarations for theformal parameters, objects for which, in calling the pro-cedure, a value will be given (Fig. 10.3. The pack offormal parameters is omitted if the procedure has noparameters.A procedure may deliver as its result a value of thetype indicated in its head. The type of the eventualresult of the procedure can be deduced from the typedeclarer that precedes the keyword PROC. There arealso procedures that have no value and only an e�ect.In the last case the type-declarer is empty.The result of the procedure in our example is of typeREAL.The list of formal parameters REAL CONST a, b de-�nes two real constants a and b for use in the body ofaverage.In the head of the procedure we �nd the names of allformal parameters with their type and access. In call-ing the procedure, for every formal parameter a cor-responding actual parameter has to be supplied, i.e.an object or expression whose value will be bound tothe formal parameter. The formal-parameter-pack indi-cates the number, types and order of the parametersdemanded and gives them a name for use in the bodyof the procedure.From the syntax diagram given above we omittedthe possibility of passing a procedure as a parameter,which will be described in the next book.10.3.2 Examples of headingsThe extent to which a declared procedure is un-derstandable depends on the procedure-name chosen,the names of the formal parameters and their types.Through the use of short catchy names, readability canbe improved. A well chosen procedure-head indicatesclearly what the procedure does without telling how itdoes it.In order for this story not to get too dry, we shall�rst give a number of examples of procedure-headings.REAL PROC sin (REAL CONST x):REAL PROC max (REAL CONST a, b):BOOL PROC even (INT CONST n):TEXT PROC multiply (INT CONST n, TEXTCONST s):PROC put (INT CONST x):PROC get (INT VAR x):Anticipating the possibility of declaring abstract types,we will also give some examples of procedure-headingswith formal parameters of various abstract types.79



procedure-declaration- procedure-head - procedure-body - procedure-tail -Figure 10.1: Procedure declarationprocedure-head- type-declarer - PROC�
 �	�� �� ����- procedure-name - formal-parameter-part - :���� -�� ��Figure 10.2: Procedure headThese examples illustrate well the usefulness of mean-ingful names: such names suggest the reader of theprogram text what is to be expected without tellinghim how it can be achieved.REAL PROC max value (FUNCTION CONST f,INTERVAL CONST i):PROC invert (MATRIX VAR a):BOOL PROC are equal (ELEMENT CONST a, b):BOOL PROC is in (SET CONST m, ELEMENTCONST x):PROC perform transfer (ACCOUNT VARdebtor, creditor, REAL CONSTsum):PROC add to (ELEMENT CONST x,COLLECTION VAR m):PROC signal (TEXT CONST message):PROC stop:In all cases the head of procedure can easily be recog-nized by the magic word PROC.10.3.3 The procedure-bodyThe body of a procedure consists of a paragraph whichmay be followed by some re�nements (Fig. 10.4). Theexecution of the body consists of the execution of itsparagraph.In the previous example the body of the procedure isvery simple: the paragraph consists of one single unit.The body may also contain one or more re�nements asin the (rather contrived) example

procedure-body �� ��- paragraph - .���� - re�nement -�� ��Figure 10.4: Procedure bodyREAL PROC average (REAL CONST a, b):sum of values / sum of weights.sum of values:a + b.sum of weights:1.0 + 1.0.ENDPROC average;10.3.4 The procedure-tailThe name of the procedure may be repeated in its tail,a redundancy that makes it simpler to signal structuralerrors (such as lost ENDPROCs) adequately. The delim-iter ENDPROC may also be written as END followed byPROC (Fig. 10.5).procedure-tail- ENDPROC�
 �	 - procedure-name -�� ��Figure 10.5: Procedure tailIn the examples, we will usually give a semicolonafter the procedure-tail, but strictly speaking this doesnot belong to the procedure declaration: it acts as aseparator from the next declaration.10.3.5 The procedure-callOnce a procedure has been declared, it can be calledfrom di�erent places of the program. In a procedure-80



formal-parameter-part- (���� �� ���,��������- type-declarer - CONST�
 �	 - parameter-name - )����-��- VAR�
 �	��Figure 10.3: Formal parameter packprocedure-call- operand - (���� - actual-parameter - )���� -���,�������� ��Figure 10.6: Procedure callcall, the values of objects from the environment of thecall are bound to the formal parameters of the pro-cedure. The syntax of the procedure-call is shown inFig. 10.6 and 10.7.actual-parameter- expression -Figure 10.7: Actual parameterThe syntax diagram for actual-parameter has beensimpli�ed by omitting the possibility of passing a pro-cedure as a parameter.The value and the e�ect of the call of a procedureare the value and the e�ect of the execution of its body,taking into account the binding of parameters (param-eter mechanism) as described in the next sections. Acall is executed by �rst binding the values of the ac-tual parameters to the corresponding formal parame-ters, and then executing the body of the procedure.The types of the formal parameters and the corre-sponding actual parameters have to be the same. Ifa formal parameter has the access right VAR then thecorresponding actual parameter also must be a VAR, sothat assignment to it is possible.If the body of the procedure yields a value then thisvalue after returning from the call acts as the resultof that call. For example the call sin (0.2) yieldsas result the real that is computed as the value of thebody of the procedure sin.We shall now discuss the parameter mechanism.10.3.5.1 CONST-parametersIn calling a procedure, the formal parameters with aCONST access attribute (the formal constants) are ini-tialized to the values of the corresponding actual pa-rameters.Consider the call average (1.3, 1.7) of the pro-cedure already described. It yields the same value as

the paragraphREAL CONST a :: 1.3, b :: 1.7;(a + b) / 2.0consisting of two declarations, one for each formal con-stant, with the actual parameters as initializations, fol-lowed by the body of the procedure. Therefore the callput ( average(1.3, 1.7) )writes the real number one-and-a-half.10.3.5.2 VAR-parametersFor VAR-parameters (formal variables) the correspon-dence between formal and actual parameters is eventighter. Any assignment to the formal parameter isalso an assignment to the actual parameter: the for-mal parameter is nothing other than an alias for theactual parameter.Consider the example:PROC increment (INT VAR x, INT CONST y):x := x + yENDPROC increment;INT VAR number :: 0;increment (number, 3)For the duration of the call, the formal variable x is analias for the actual variable number. Any assignmentto x assigns also to number and vice versa. The callhas the same e�ect as the execution of the paragraphf Let x be an alias for number gINT CONST y :: 3;x := x + yAfter the call, x is no longer an alias for number, but theassignment to x has had its e�ect on number. Thereforethe call increment (number, 3) has as net e�ect thatthe variable number is incremented by 3.81



10.3.6 Scope of local declarationsA procedure declaration makes the name of the proce-dure visible in the whole scope of the declaration, inour case the whole program. The formal parameters ofthe procedure and all objects declared within the bodyof the procedure (local objects) have as scope the pro-cedure declaration itself, and are not visible outside it.This means that the names of objects, declared in theenvironment of the procedure (global objects), can bere-used within the procedure as names of formal pa-rameters, local objects, etc. The local meaning thenholds only within the procedure and the global mean-ing holds outside it. It is as if the local objects auto-matically and invisibly obtain another unique name iftheir name happens to be the same of that of a globalobject.In the context INT VAR y :: 13, x :: 4 con-sider the execution of the call increment (y, x). Toavoid name conicts, the local names x and y in theprocedure increment are, as it were, changed intonames xx and yy, so that increment (y, x) is exe-cuted asf Let xx be an alias of y gINT CONST yy :: x;xx := xx + yyThe fact that a procedure can have local objects isone of the essential di�erences with re�nements. Onthe other hand, the declarations occurring outside aprocedure have as scope the whole program!The syntax of Elan does not allow a procedure to bedeclared local to a procedure, so all procedures standside by side in a global environment.10.3.7 Communication with the envi-ronmentProcedures communicate via their formal parameterswith the environment in which they are called. An-other form of communication is possible via a globalvariable that is visible both from the call and from thebody of the procedure itself. Just like re�nements, pro-cedures can communicate via variables in their environ-ment. The environment can inuence the behaviour ofa procedure through such a variable.The following example illustrates how we might con-trol the behaviour of a procedure through a global vari-able.INT CONST is sine :: 1, is cosine :: 2;INT VAR type :: is sine;

REAL PROC sine or cosine (REAL CONST x):IF type = is sineTHEN sin (x)ELIF type = is cosineTHEN cos (x)ELSEput ("Unknown function type");line;0.0FIENDPROC sine or cosine;The chimaera sine or cosine behaves as the sine oras the cosine, dependent on the value of the globalvariable type.It is an excellent example of the bad programmingstyle that should be, at any rate, avoided: the internalbehaviour, i.e. the control, of a procedure is inuencedthrough global variables (so called ags). If an erroroccurs in the environment it may cause an error also inthe procedure, far from the eventual place where theerror has been made. Such an error is extremely di�-cult to localize. Through global data objects the pro-cedures should exchange data and no control informa-tion! This bad programming style roots in assembly-level programming, and makes precisely that protec-tion mechanism ine�ective that makes the distinctionbetween high- and low-level programming languages.There is an important di�erence between communi-cation via parameters and communication via globalvariables. In the �rst case, the communication via pa-rameters, we can see at the call explicitly which objectsmay be modi�ed by the procedure. We can call the pro-cedure with di�erent sets of actual parameters. In caseof communication via global variables, the variablesthat can be modi�ed by the procedure are implicitlygiven by the procedure declaration. At the call of theprocedure we cannot see which global variables may bemodi�ed.Both techniques for communication have their ownapplications. Which is preferable depends on circum-stances. When a procedure is to be called in di�erentenvironments this may be a reason to prefer the use ofparameters.When we have a collection of collaborating proce-dures that together realize some abstraction, and forthat purpose need some common memory, it is desir-able to let the communication between those proce-dures run via global variables. Communication in thiscase happens behind the scenes as it were, because it isnot relevant to the environment in which the procedureis called; it is abstracted away from.10.3.7.1 Alias problemsAs we have seen, a global variable may, via a VAR-parameter, be known within a procedure under twodi�erent names. It is not advisable to have assignmentsto both, as in:82



INT VAR total :: 10;PROC riddle (INT VAR t):total INCR 1;t INCR totalENDPROC riddle;The meaning of the call riddle (total) is not easyto deduce without the help of a tableau (Fig. 10.8).total,t101122��Figure 10.8: AliasIndisciplined use of an alias opens the door to dan-gerous side e�ects. We advise you to avoid alias prob-lems and not to write programs whose meaning de-pends on subtle details of the parameter mechanism.10.4 Classi�cation of proceduresProcedures can be classi�ed in various ways. One cri-terion is to distinguish whether the procedure does ordoes not yield a result, i.e. whether its execution yieldsa value.Whenever a procedure (directly or via a formal pa-rameter) modi�es the value of a global variable onesays that that procedure has an e�ect. Note that thise�ect need not be observable within the program thatuses the procedure, but may also exist in the printingof a text on a line printer or the screen of the termi-nal (a kind of external variable). Strictly speaking, aprocedure always has an e�ect, because the call of theprocedure at least uses up some computer time. How-ever we will disregard the aspect of time. (The time asa variable has an important role in various applicationareas, e.g. in controlling industrial processes, rockets,space ships etc.)The observation that a procedure may or may nothave an e�ect and may or may not yield a value leads toa classi�cation of procedures in four kinds, dependenton their behaviour with respect to their environment.A procedure may:1. have an e�ect and yield a value (function with ef-fect),2. have an e�ect and yield no value (action),3. have no e�ect but yield a value (function),4. have no e�ect and yield no value (dummy).The �rst sort is a mixture between the second and thethird. These procedures are di�cult to use, becausetheir ambiguous behaviour may be a source of errorsin programming. The fourth sort is the most innocentand has as an important parameterless representative

PROC dummy:ENDPROC dummy;Procedures of this last sort can be used during thetesting of programs. By taking a \dummy" procedurefor an action that has not yet been programmed, with asuitable heading and an empty body, often other partsof the program may be tested at an early stage.10.4.1 FunctionsAn example of a function is:REAL PROC max (REAL CONST a, b):IF a > b THEN a ELSE b FIENDPROC max;that computes the maximum value of the parametersa and b. By the aid of max we can de�neREAL PROC max of 4 (REAL CONST a, b, c,d):max (max (a, b), max (c, d))ENDPROC max of 4;which computes the maximum of four reals. A purefunction is a mapping from its parameters to a resultthat depends only on the value of those parameters.Well-known examples of pure functions are the con-ventional trigonometric functions such as sin and cos.Programming languages also allow impure functions,whose result depends not only on the parameters butalso on global variables. The examples in this sectionall are pure functions.10.4.2 ActionsAn action has an e�ect on its environment but yields noresult. Well-known examples of actions are the proce-dures get and put for reading and writing respectively.Other examples are:PROC count (INT VAR number):number INCR 1ENDPROC count;that increments the value of its parameter by 1.PROC exchange (INT VAR x, y):INT CONST aux :: x;x := y;y := auxENDPROC exchange;This action exchanges the value of its parameters.Strictly speaking, functions are not necessary becausewe can achieve the same e�ect using only actions (cf.\statement languages" like COBOL). As an example,instead of the standard function sin we could de�nean action compute sine:PROC compute sine (REAL CONST x, REAL VARsine):sine := the sine of xENDPROC compute sine;83



In order to compute the value of the formula 1 -sin(x) ** 2 with the aid of the procedure computesine, we would then have to write:REAL VAR s, result;compute sine (x, s);result := 1 - s ** 2The example makes clear that the notation as a func-tion is much more palatable.It is also possible to go all out for functions (as inpure \expression languages" such as LISP), but in gen-eral it is most convenient to have a choice between bothforms of expression.When seeing a procedure purely as a mapping fromits (eventual) parameters to a value, the function formwill be preferable. In other cases, e.g. when no resultor rather more than one result is to be yielded, theprocedure will be declared as an action. An exampleof this last case is:PROC division with remainder(INT CONST dividend, divisor, INT VARquot, rem):quot := dividend DIV divisor;rem := dividend - quot * divisorENDPROC divide with remainder;10.4.3 Functions with side e�ectWhen the execution of a function has also an e�ect (ona global variable) we speak of a side e�ect. This namealready makes clear that the purist frowns upon sidee�ects. A function is supposed to yield a value, not tomodify the global environment!Upon closer consideration, legitimate examples ofthe meaningful use of side e�ects are easy to �nd. Theyhave in common that the global environment implicitlyacts as a memory for the function and inuences its re-sult. Examples:INT VAR n :: 0;INT PROC next client:n INCR 1; nENDPROC next client;Obviously a global memory is essential to this func-tion.BOOL VAR a;BOOL PROC flipflop:a := NOT a; aENDPROC flipflop;PROC set:a := TRUEENDPROC set;PROC reset:a := FALSEENDPROC reset;

For anybody conversant with electronics this set of pro-cedures has a familiar behaviour. Notice the way inwhich flipflop yields its value.Another function with a side e�ect, again withoutparameters, is:INT PROC next nat:INT VAR numb;REP get(numb)UNTIL numb >= 0ENDREP;numbENDPROC next nat;which yields as a value the next non-negative numberof the input and has a side e�ect on that input.10.4.4 GenericityProcedures are generic: di�erent procedures with thesame name may occur alongside one another as long asthey di�er in the number or type of formal parameters.In a procedure call, the number, the order and the typeof the actual parameters must agree with the number,order and type of the formal parameters of one of theprocedures declared with that name. That procedurewill then be identi�ed by this procedure call. In thesecond part of this book we shall introduce the use ofgenericity as an abstraction mechanism.10.4.5 EncapsulationA secure use of procedures using global variables asmemory demands a facility to protect the global ob-jects that are necessary for the correct execution of theprocedures from the environment in which those pro-cedures are called. The programming language Elan tothis purpose contains a mechanism, the packet mecha-nism, which we shall describe in the second volume.For the implementation of large program systems,on which many people will be at work, such an explicitencapsulation mechanism is essential.10.5 Structure of programsAt this point we can discuss the structure of Elan pro-grams. We shall not yet introduce the complete syntax(which can be found in appendix A) but describe twosubsets of Elan that we shall call Elan-0 and Elan-1respectively.elan-0-program- procedure-body -Figure 10.9: Elan-0 programIs Fig. 10.9 a surprise? The language mechanismsthat we introduced in the �rst 8 chapters turn out tobe precisely those that can be used in the body of aprocedure.84



elan-1-program - procedure-body -��;����� operator-declaration �������� procedure-declaration�� type-declaration ���Figure 10.10: Elan-1 programOne conclusion from that is that we may take anycomplete Elan-0 program and enclose it between thelinesPROC program:ENDPROC programthus turning it into a procedure, an action withoutparameters.By allowing the closed-declaration for procedures(and operators and types), we obtain a second, widersubset, Elan-1, i.e. Elan without packets (Fig. 10.10).It can be seen that an Elan-1 program consists of aBottom-Up part, in which some abstract algorithmsand types are de�ned, followed by a Top-Down part inwhich they are used.For the rest of this book we shall employ the subsetElan-1.10.6 Procedures andre�nements revisitedRe�nements and procedures have much in common.Why then do we distinguish two mechanisms?The di�erences between procedures and re�nementsare subtle but have rather far-reaching consequences.� A procedure has as its environment (i.e. as thescope of its declaration) the program. The sameholds for re�nements of the program but not forre�nements of procedures. Those have as environ-ment the procedure itself, and therefore can beused for local Top-Down programming.� Communication between re�nements can occuronly implicitly via e�ects on common global ob-jects. Communication between procedures takesplace explicitly, by means of parameters.� Declarations within a procedure are local to thatprocedure. Declarations in a re�nement are visiblein the whole program; thus it is possible to re�nea declaration! Many examples in this book showthat especially an initialized declaration (which in-troduces a variable and at the same time leads toa well-de�ned state of the program) can be verbal-ized well.� A procedure only obtains its meaning at its dec-laration; before that it may not be called. A re-

�nement can be invoked everywhere in its scopewithout the necessity for executing a declaration.In other programming languages, re�nements do notappear as separate constructs. One can then use (pa-rameterless) procedures as re�nements. This does leadto a number of problems:� Some programming languages (like standard BA-SIC) have such severe limitations on the choice ofnames of procedures that these can no longer beseen as abstraction means.� The fact that procedures can only be called afterexecution of their declaration means that such adeclaration has textually to precede its �rst call.This conicts with the order of the Top-Down pro-gramming process: at any moment we may postu-late some speci�c abstract algorithm that we haveto declare only later. In using procedures, theorder of invention and the textual order can nolonger be the same.� Writing down a procedure declaration with a de-tailed heading adds so much \overhead" to the de-sign process that it restrains the programmer fromwriting many short abstract algorithms. Implicitcommunication raises much less overhead and �tsbetter into the Top-Down programming method.� The necessity in many programming languages(like PASCAL) to declare all variables beforethe algorithmic part of a procedure of programstrongly impedes a natural Top-Down style. Elanon the other hand is very liberal as regards theplacement of declarations.� The block structure that arises through the possi-ble nesting of procedure declarations causes greattrouble to beginners. The very simple scope rulesof Elan are easier to follow.There is no doubt that procedures may be used strictlyas re�nements, but the problems mentioned justifythe introduction of re�nements as a separate syntac-tic mechanism. Also from the point of view of system-atization of language concepts, it is advantageous todistinguish between the means for Top-Down program-ming (re�nements, control structures) and Bottom-Upprogramming (packets, procedures, operators, types).85



Re�nements are above all a didactic aid in learn-ing systematic programming. Once their use has beenfully understood it is possible to program systemati-cally even without such an aid.Re�nements are for the programmer what the navelis for the Zen Buddhist.10.7 Exercises1. (Roman numerals) Write a procedureINT PROC value of (TEXT CONST romannumeral)that converts a Roman numeral to an integer.Make use of an auxiliary procedure to obtain thevalues of Roman digits.2. (Converting to Roman numerals) Write a proce-dureTEXT PROC romanize (INT CONST number)that represents a natural number in the Romannumbering system. Test it with the previous pro-cedure.3. (Standard library from chapter 6) Realize the pro-cedures pos, text, subtext and replace in termsof the operations +, LENGTH and SUB.
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Chapter 11Languages and grammarsIn this chapter we want to take a look at languagesand grammars. A linguistic application of Informaticswill be presented: the generation and analysis of sen-tences according to a grammar. In passing, we shallhave to deal with the subject of random numbers.11.1 On the description of lan-guagesThe English language can be seen as the collection ofall its sentences. Likewise, the language Elan can beseen as the collection of all its programs.A natural language is a living organism, part of anintricate social, cultural and economic system. Theboundaries of a natural language are vague and sub-ject to shifting in time. Expressions, constructionsand words will slowly be adopted and become com-monplace, whereas others become obsolete. There aredialects and language variants. Pronunciation andspelling will change over time.For an arti�cial language like our programming lan-guage, explicitly constructed by human beings, theboundaries are much sharper. But there we have aproblem in sharing it with others: We are not im-mersed in the language from our birth, and cannot takerecourse to native speakers of the language. The inven-tor of an arti�cial language will have to describe it.How do you describe a language? To enumerate acomplete listing of all English sentences is obviouslyimpossible, because there are too many. There is noteven a strict bound to the number of sentences: I cantake any sentence and make it two words longer byembedding it inHe said: \ . . . ".Furthermore, such an enumeration of all sentences isnot very enlightening, because sentences have meaningonly in relation to a speci�c context.In the description of a language, be it natural orarti�cial, three di�erent aspects can be distinguished:syntax, semantics and pragmatics.The syntax indicates which sequences of symbolsform the sentences of the language and what syntac-tic structure they possess. The semantics assigns ameaning to syntactically correct sentences. The prag-matics is concerned with the relationship between the

language and the human being who uses it, in otherwords: the heart of the matter.We shall not concern ourselves with semantic andpragmatic description, but shall introduce one particu-lar formalism for syntactic description from mathema-tical linguistics, the context-free grammar. This for-malism is related to the syntax diagrams that we in-troduced earlier in this book, but it may lead to a moreconcise notation with a somewhat higher degree of ab-straction.Most applications of Informatics in the human sci-ences, and especially those in linguistics, can be classi-�ed as follows:� Text storage.The input, storage, modi�cation and retrieval oftexts (\word processing"), their preparation forprinting and automatic typesetting. You will havenoticed that the text of this book has been pre-pared with the aid of the computer (and inciden-tally quite a number of human beings). As theoutput devices of the computers get more perfectand more professional, the computer turns moreand more into a super-typewriter.� Calculating with texts.The computer with its long patience and unwa-vering conscientiousness is a very reliable aid forcounting the occurrences of certain phenomena intexts (language statistics), for screening and sort-ing linguistic data and for compiling indices andconcordances. More and more the computer is re-placing the shoebox stu�ed full of indexing cardson which the old-fashioned linguist kept his notes.� Applications of syntactic techniques to texts.The linguist and the informatician share a com-mon interest in the description of languages andthe automatic processing of sentences. This inter-est is reected in the examples in this chapter.11.2 A syntactic notationA context-free grammar (\CF grammar", \CFG")is a formal notational system, in which linguistic con-cepts are de�ned in terms of other concepts and, �nally,in terms of speci�c words or classes of words.87



As an example we verbally express a part of Englishgrammar:1. a sentence consists of a subject, followed by a verb,followed by an object;2. a subject is either a personal pronoun, or an articlefollowed by a noun;3. an article is one of the symbols `the', `a' or `an'.In a context-free grammar we express this same infor-mation by means of the three rulessentence:subject, verb, object.subject:personal pronoun;article, noun.article:a-symbol;an-symbol;the-symbol.The punctuation marks in this grammar can be pro-nounced as follows:: as \is a",, as \followed by a",; as \or a",. as a short pause.The resemblance of this notation to the Elan notationfor re�nements is no accident. Re�nements have a sim-ilar descriptive character to a grammar and we mightwell call the re�nements the \special grammar" of theprogram.In order to simplify the recognition of symbols wemay use the convention that their name always ends in-symbol.11.2.1 Context-free grammarIn a context-free grammar we distinguish between con-cepts and symbols, each represented by their name, con-sisting of lower case letters and possibly digits. We mayuse spaces and hyphens (\-") to enhance readability.Words like sentence, subject and verb are names ofconcepts, the so-called non-terminal symbols or non-terminals. The grammar has for every non-terminal arule, that de�nes precisely which sequences of wordsare comprised by this concept.Words like a-symbol, the-symbol etc. are names forthe symbols of the language, the so-called (terminal)symbols or terminals. For these terminals there is noproduction rule, but instead one or more representa-tions are given. Take for example the the-symbol. Itcan be pronounced, written by hand or printed, all thetime remaining the same symbol, just like 2 or twoalways retains its twoness.A rule consists of a left-hand side (\de�niendum"),a colon, a right-hand side (\de�nition") and a period.The left-hand side consists of the non-terminal to bede�ned. The right-hand side consists of one or more

alternatives, separated by semicolons. An alternativein the de�nition of a non-terminal we also call one ofthe direct productions of this non-terminal.An alternative consists of a list of zero or morewords, i.e. terminals or non-terminals, separated fromone another by commas. An alternative may also beempty.Based on the notion of direct production we shallnow de�ne the notions of production, terminal produc-tion, sentence and language.A production of a non-terminal x is either a directproduction of x, or a list of words, obtained by replac-ing in a production of x some non-terminal y by a directproduction of y.Some productions of sentence:sentencesubject, verb, objectpersonal pronoun, verb, objectarticle, noun, verb, objecta-symbol, noun, verb, objectthe-symbol, noun, verb, object...By a terminal production of x we mean a productionthat contains no further non-terminals and thereforeconsists solely of a list of terminals. The representationof a terminal production is the sequence of representa-tions of its terminals.A sentence is a representation of a terminal produc-tion of the syntactic notion sentence. The collection ofall sentences, described by a grammar, is the languageof that grammar.In the back of this book can be found a context-free syntax of Elan (appendix A). This is the syntaxwhich is used by the Elan implementation to determinewhether a speci�c sequence of symbols belongs to Elan.With this grammar in hand, it is possible to �ndanswers to questions about the syntax of Elan, like:� Is mar1lyn an identi�er?� Can the body of a re�nement end in a LEAVE-construct (the terminator)?� Can the body of a re�nement consist of an object-declaration?without trying out examples on the computers.11.2.2 Other formalismsThe notation for context-free grammars that we haveused is not one of the various conventional nota-tions from linguistics, but a notation from Informaticsnamed after A. van Wijngaarden [ALGOL68].To be precise, the so-called two-level grammars havebeen named after van Wijngaarden. In fact we haveused a simpli�ed version of the van Wijngaarden nota-tion, using only one context-free level. Another nota-tion used in Informatics is the so-called Backus-NaurForm. All these di�erent notational systems are how-ever interchangeable.88



11.2.3 Using a grammarSuppose we have obtained a context-free grammar of asubstantial part of the English language. How can wedetermine how good this grammar is?One technique would be to analyse a large numberof sentences by the aid of the grammar and to de-termine whether a su�ciently large fraction of thosesentences can be analysed according to the grammar.The linguist who works in this fashion is called a cor-pus linguist, named after the (huge) collections of text(\corpora") with which he works.Another technique consists in generating sentences:producing examples of sentences according to thegrammar, which are then checked for grammaticalityby human beings. A grammar suitable for generatingsentences is called a generative grammar.Observe that there is little sense in generating, insome order, \all" sentences of the language: their num-ber is usually in�nite. That would be extremely boringand not very instructive. It is more interesting to gen-erate \by chance" examples of English sentences.We shall �rst indicate how you might program a gen-erative grammar. Assume that one of the rules says:statement:subject, verb, object.In order to generate an example of a statement, wehave to generate an example of a subject, followed byan example of a verb and then an object. This soundsremarkably like the calling of algorithms. For everynotion, we introduce a procedure written in Elan, e.g.:PROC statement:subject;verb;objectENDPROC;There is a striking resemblance between this notationin the programming language and the syntax rules, butunfortunately the punctuation marks \;" and \," havea di�erent meaning in the two systems. We can con-tinue with the syntax rulesubject:personal pronoun;noun group.As an example of a subject I have to generate either apersonal pronoun or a noun group, with equal proba-bility:PROC subject:IF fifty fiftyTHEN personal pronounELSE substantive groupFIENDPROC;The condition fifty fifty has to be a boolean ex-pression that yields true with 50% probability and falsewith 50% probability. How do we achieve this?

11.3 Excursion: about chanceA six-sided dice is an instrument for generating num-bers by chance. From such a dice we expect:� even knowing the whole of history, it is unpre-dictable what the next outcome will be;� the six possible outcomes are homogeneously dis-tributed, i.e. they all have an equal probability.Every model that has those two properties can serveinstead of a dice. We can try to deduce such randomnumbers from a natural process, like a white noise gen-erator, or from the \random" contents of some part ofthe memory of the computer, but the �rst demandsextra hardware and the second will not be very satis-factory.We can also try to determine algorithmically a se-quence of real random numbers in the range 0.0 to 1.0as R0 = initial value,R1 = obtained from R0,R2 = obtained from R1,. . .in such a way that the sequence Ri is unpredictable andhomogeneously distributed. For practical reasons weprefer to compute a sequence of non-negative integersIi and then letRi = real(Ii)=real(maxint)in which Ii > 0, and of course Ii � maxint. The simplecomputation schemeIi+1 = (a � Ii + b) mod cturns out to have surprisingly good properties provideda, b and c are chosen with care. In order to simplify thecomputation we choose c = maxint, on most machinesa power of two minus 1. Observe that the sequence isin every case periodical: there are only a �nite numberof integers, so that after a certain number of terms anelement of the sequence must be repeated. A numberof Ii occurring for the second time in the sequence asIi+k will have the same successor value Ii+1 = Ii+k+1and so on.We must obviously try to keep the period as long aspossible. It can be at most equal to maxint. Also thesequence has to be unpredictable. We have to choosefor a and b prime numbers, such that a, b and c haveno divisors in common. For well-chosen values of aand b the elements of the sequence are homogeneouslydistributed, and also stronger statistical tests do notpoint to regularities. In distinction to real chance, thissequence is reproducible. This allows us to replay a\random process". Such a reproducible random se-quence is called pseudo-random.Due to the way these pseudo random numbers aregenerated, the lowest bits of consecutive random num-bers are highly correlated. The higher bits are \morerandom".89



11.3.1 Random numbers in ElanWe do not ourselves have to search for suitable valuesof a, b and c for our computer. Somewhere in the stan-dard packets of Elan there is a hidden integer variablelast random declared asINT VAR last randomand an algorithm with a real result, similar toREAL PROC random:last random := (a * last random + b)MOD maxint;abs ( real(last random) / real(maxint))ENDPROC random;Using this algorithm, the expressionrandom < phas a probability p to yield TRUE.At the start of the execution of a program the vari-able last random is automatically and mysteriouslyset to some initial value, which is probably based onthe constellation of the stars or the built-in clock ofthe computer. This makes the random sequence trulyunpredictable for us.It is possible to choose your own random sequence,initializing the hidden variable by a call of initial-ize random (x) in which x is a real expression, whosevalue has to lie between 0.0 and 1.0. By doing thisagain the same random sequence follows, thus makingit possible to repeat history.We can simulate a dice asmake a dice:INT CONST dice :: trunc(random * 6.0) +1.This results in a beautiful dice: it is unpredictable,homogeneously distributed and, if desired, also repro-ducible.In order to facilitate the production of integer ran-dom numbers, there is a variant of random with twointeger parameters. It yields an integer that lies withinthose two bounds. The call random (1,6) is the equiv-alent of a dice.The algorithm fifty fifty can now be written as:fifty fifty:random < 0.5.11.3.2 Random numbers in Elan-0In the standard library of Elan-0, the algorithms justmentioned do not occur, but instead an algorithmchoose128 is given. The value it yields is the sameas that of random (0,127).To simulate with this algorithm a dice with sixequiprobable results is somewhat more complicated.One method is to take only the values from the interval[0 : 125], and these modulo 6:

make a dice:INT VAR random, dice;REPrandom := choose128UNTIL random <= 125ENDREP;dice := 1 + random MOD 6.With the aid of choose128 we can realize the algorithmfifty fifty as follows:fifty fifty:choose128 MOD 2 = 0.But this is not a very satisfactory solution, since itsvalue then depends on the lowest bit of a pseudo ran-dom number which, for various reasons, is not the mostunpredictable. It is preferable to use the higher bits:fifty fifty:choose128 > 63.11.4 Example: A generativegrammarWe now give a context-free grammar for a part of theEnglish language, in which we assign a probability toeach of the alternatives (a probabilistic CF grammar).According to this grammar we will write a program togenerate random sentences. We can control only theform of the sentences produced, their meaning escapesour analysis. In order to make our sentences not toononsensical, we will restrict our vocabulary to seman-tically strongly loaded words from a speci�c area. Thisparticular vocabulary was inspired by the verse \Maryhad a little lamb". The symbols appearing in the gram-mar we shall indicate by their representation betweenquotes.sentence: subject, predicate.subject:[.7] substantive group;personal pronoun 1.The notation with the square brackets serves to indi-cate that the probability of the �rst alternative of thisrule is equal to 0.7 and of the second alternative is1.0 - 0.7 = 0.3.We program this rule as follows:PROC subject:IF random < 0.7THEN substantive groupELSE personal pronoun 1FIENDPROC;We continue the grammar:substantive group:article, noun phrase.90



article:[.45] \a";\the".We output the terminal symbol to the screen, takingcare to follow each symbol by a space.PROC article:IF random < 0.45THEN put ("a ")ELSE put ("the ")FIENDPROC;noun phrase:[.25] adjective noun phrase;noun part.Notice that the concept noun phrase is de�ned herein terms of itself. Such a concept is recursive. Theintention of this rule is to indicate that there is no apriori upper limit to the number of adjectives in frontof a noun part. Of course the probability of having alarge number of adjectives is rather small. We realizethis e�ect with the aid of a conditional repetition witha 25% chance of continuation.PROC noun phrase:WHILE random < 0.25REP adjectiveENDREP;noun partENDPROC;We have a choice of adjectives.adjective:[.30] \little";[.60] \meek";[.90] \big";\bad".In order to generate an example of an adjective we com-pute one random number and then, on the basis of itsvalue, choose one of the alternatives.PROC adjective:REAL VAR r :: random;IF r < 0.30THEN put ("little ")ELIF r < 0.60THEN put ("meek ")ELIF r < 0.90THEN put ("big ")ELSE put ("bad ")FIENDPROC;The rest of the grammar should be self-explanatory.We do not give an Elan procedure for each individualrule | the correspondence should by now be clear.noun part:noun, rel clause option.

rel clause option:[.25] rel clause;.noun:[.20] \boy";[.40] \girl";[.60] \lamb";[.80] \bear";\tree".rel clause:\that", predicate.predicate:adverbial option, verb, object.adverbial option:[.20] modi�er; .modi�er:[.33] \always";[.67] \often";\never".verb:[.20] \had";[.40] \sees";[.60] \likes";[.80] \eats";\dreams about".object:[.80] substantive group;personal pronoun 4.personal pronoun 1:[.25] \he";[.50] \she";[.75] \Mary";\Jim".personal pronoun 4:[.25] \him";[.50] \her";[.75] \Mary";\Jim".The syntax serves as a blueprint for a program gener-ating random sentences.
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11.4.1 ResultsSome example sentences generated by the aid of thisprogram arethe bear that sees the bear likes a badbearthe bear likes himthe boy dreams about the beara girl never sees the girlJim sees Marya boy that sees the big tree always likesa boy that alwayseats a treeMary eats a little bearIt is obvious that a sentence appears more meaningfulif it is short. This is no wonder, since all meaning isaccidental. The longer a sentence is, the more oppor-tunity it gets to contradict itself.11.5 Syntax AnalysisLet us now turn to the subject of syntax analysis, whichcomprises two closely related activities: sentence recog-nition and parsing.A recognizer for a (context-free) language G is analgorithm that, for a given sequence of symbols s, de-termines whether s is one of the sentences the languageof G. It gives a yes/no answer.recognize(G; s) = � s 2 L(G)! trues 62 L(G)! falseA parser is an algorithm that, gives a sentence s�L(G),determines its structure (in the form of a parse tree).parse(G; s) = � s 2 L(G)! parse tree for ss 62 L(G)! undefined:The two activities can pro�tably be combined: Aparser should also signal non sentences in a properfashion, and once a recognizer has been constructedit can easely be extended to a parser | infact the bestproof that a sequence of symbols forms a sentence is toconstruct a parse tree for it!We shall investigate some aspects of syntax analysis,attempting to construct a recognizer for the fragmentof english just described.11.5.1 Recursive DescentWewant to construct a recognizer for sentences, that is,a boolean procedure is sentence that will yield trueif and only if the input contains a terminal productionof sentence. A sequence of symbols is a terminal pro-duction of sentence precisely if it consists of a terminalproduction of subject followed by one of predicate.Basically we proceed in the same way as we did forconstructing a generator, by writing a boolean recogni-tion procedure for each of the non-terminal symbols interms of recognizers for the other non-terminal and for

the terminal symbols. Very simple, but we will meet anumber of complications.Recognizing a terminal symbol amounts to snippingo� the head of the input provided it is the symbol wewant to recognize. We hold the sequence of symbols asa text in the variable input and use an index inptrto remember how far the recognition process has pro-ceeded.TEXT VAR input :: the input we want torecognize;INT VAR inptr :: 1; f the position of thenext symbol gWe provide one boolean procedure to recognize a sym-bol, which also takes care of the blanks between sym-bols.BOOL PROC is (TEXT CONST s):WHILE (input SUB inptr) = " "REP inptr INCR 1ENDREP;IF subtext (input, inptr, inptr + LENGTHs - 1) = sTHENinptr INCR LENGTH s;trueELSE falseFIENDPROC is;How should we compose a recognition procedure forsentence: subject, predicate.out of recognition procedures for its constituents? Wemight �rst think ofBOOL PROC is sentence:is subject AND is predicateENDPROC is sentence;but this is wrong: rather than trying the second rec-ognizer only in case the �rst one succeeds, it alwaystries the second | a dyadic operator (in this case AND)always evaluates both its operands. And what is more,they are evaluated collaterally, so we are not even sureof the order in which the two recognizers are called!We have to be much more careful.BOOL PROC is sentence:IF is subjectTHEN is predicateELSE falseFIENDPROC is sentence;The next sytax rulesubject:substantive group;personal pronoun 1.has two alternatives. We try them in order and if anyof them succeeds, a subject was found.92



BOOL PROC is subject:IF is substantive groupTHEN trueELSE is personal pronoun 1FIENDPROC is subject;substantive group:article, noun phrase.The next rule leads to a choice between terminal sym-bolsarticle:\a";\the".BOOL PROC is article:IF is ("a")THEN trueELSE is ("the")FIENDPROC is article;The remaining rules can be transcribed to recognitionprocedures without further adventures, apart from thetreatment of the adverbial option. Since it is optional, itcannot fail to be recognized. Rather than transcribingit into a boolean procedure that always yields true, wemake it an action.predicate:adverbial option, verb, object.adverbial option:modi�er; .BOOL PROC is predicate:adverbial option;IF is verbTHEN is objectELSE falseFIENDPROC is predicate;PROC adverbial option:IF is modifierTHENELSEFIENDPROC adverbial option;The name of the resulting procedure is not pre�xedwith is ..., as we did in constructing other recogni-tion procedures, in order to show that it cannot fail.Finally we add a small driver program to read aninput line. It tries to recognize a sentence from theinput, and continues to o�er the input for editing untilit is recognizable.simple parser:start with empty input;REP ask further inputUNTIL is sentenceENDREP;congratulations.

start with empty input:TEXT VAR input :: "";INT VAR inptr :: 1; f index of nextinput character gput ("Input, please ...").ask further input:line;edit (input, inptr);inptr := 1.congratulations:line;put (inptr * "-");line;put ("Success!");line.Upon recognizing a sentence from the input, the pro-gram stops after underlining the recognized portion ofthe input text. This serves to cope with the problemthat the recognizer works from left to right and has theproperty that, once it recognizes a sentence, it does notcare whether it covers the whole input or is followed bysome non-sense. It is easy enought to impose the addi-tional condition that a sentence must cover the wholeinput, but this problem gives a hint that there are someproblems in combining recognizers.11.5.2 Some complicationsThis particular recognizer will work correctly for thegrammar from which it was derived, but that does notmean that we can construct in this fashion a recognizerfor any context-free grammar.To begin with, there is the matter of left-recursion:a rule may very well be left-recursive, likenoungroup:noun;noungroup, postmodi�er.which expresses the fact that a noun can have any num-ber of postmodi�ers. Turning this rule into a recognizerwill lead to an un-ending program execution: whenthe input does not start with a noun, the procedureis noungroup will call itself, and so on until the endof the world or until the memory of the computer isexhausted (whichever comes �rst).Furthermore, the situation where two alternativesstart with the same (terminal or non-terminal) symbol,likenounpart:noun, rel clause;noun.leads to complete confusion of the recognizer, and toan altogether di�erent language being recognized thanis generated by the grammar (think of a noun followedby another noun instead of a rel clause). That is whythis rule has to be left-factored, taking out the commonpart noun.nounpart: noun, rel clause option.93



rel clause option: rel clause; .These and other problems make that a given CFgrammar only under very restrictive conditions can berecognized by recursive descent. The grammar pre-sented here cleverly adheres to these so-called LL(1)-conditions. There is a rich literature about syntaxanalysis, to which we refer for further reading [WAI84][AHO86].The recursive descent analysis technique is much toorestrictive for linguistic purposes, since it can not copewith ambiguity . A sentence is ambiguous if it can beproduced from the grammar in more than one way, likethe famous sentencesThey are ying planesand Time ies like an arrowDo you see the 2 respectively 4 di�erent analyses?Analysis techniques that can deal with ambiguity doexist | but this is not the place to pursue this subject.You may also have noted that the grammar stu-diously avoids the problems of coordination betweenpronouns, substantives and verb forms, by having onlythe 3d person singular forms. It is possible to extendthe grammar to deal with other persons and with plu-ral forms, but then it grows tremendously in size. Con-text free grammars are (as the name indicates) not aconvenient formalism to express context dependency,and although linguistics makes wide use of context freegrammars under various guises, they are mostly ex-tended with some mechanism for dealing with context| like Augmented Transition Networks [WOO70].In Informatics a number of extensions to context-freegrammars have been invented, like van WijngaardenGrammars, Attribute Grammars [KNU68] and A�xGrammars [KOS70]. Again, it would lead too far topursue this highly interesting subject further in thistextbook.11.6 Beyond analysisTranslating sentences from one language to another canbe seen as the problem of �rst analysing a sentence ac-cording to the syntax and semantics of the �rst lan-guage and then generating an equivalent sentence inthe other language. This process is wrought with allthe problems just outlined, plus a few more: how to ex-tract and represent the meaning of a sentence in such away that an equivalent sentence can be produced andhow to produce the translation from the semantic rep-resentation.\Machine Translation", as this problem used to becalled, is amongst the oldest applications of computers(then often called \electronic brains") in the very early�fties. After some initial successes, Bar-Hillel showedthe inadequacy of the available theory and methodsin the late �fties [BAR60], and a soberer period fol-lowed, in which linguistic fashion turned to pragmatics

| syntax being considered too limited and semanticstoo di�cult to be of interest. In the sixties and seven-ties powerful analysis and translation techniques wereinvented in Informatics and computers became so muchlarger and faster that a fresh interest in the syntax ofnatural languages and, in particular, in machine trans-lation was raised.All kinds of applications need a linguistic interface.With the advent of the speaking chip, the analysis andsynthesis of human speech and (written) language willget tremendous importance. The present chapter ismeant to provide a modest initial introduction to thelinguistic application of computers | and at the sametime to present a wonderful opportunity to see proce-dures in action in a larger real example.11.7 Exercises1. Describe, by way of a CF grammar, the structureof � a train (of waggons, locomotive, coal tender,brake car)� a division of the regular army (consisting ofregiments, companies, etc.), for as far as youcan obtain the necessary information� a context-free grammar.2. Write a generative grammar for the production offree poetry, full of strongly evocative substantives,adjectives and verbs (animals, sea, colours, per-sons, sorrow, happiness).3. Write a generative grammar to produce a nicelystructured letter full of insults. You can give youropinion of the pedigree of the addressee, his habits,psychological stability and future.4. (Roulette) Smith and Jones are playing roulette.One plays only on red, the other on black. Theirgoal is to double their initial capital. Both startwith the same initial capital and a bet of one.Jones reacts to a loss by doubling his bet. In caseof a win he returns to the basic bet 1. Smith be-lieves himself to be even cleverer. He raises his betby one in case of loss and upon winning returns tothe basic bet. The probability for red and black isof course equal, but not quite �fty percent becausewith a probability 1/37 the ball ends up on the 0,which is neither red nor black.Write a program to simulate an interesting eveningat the casino. Try it out with initial capitals 10and 100. The bank has an unlimited supply ofmoney.5. (One-armed bandit) Simulate a one-armed bandit.In order to raise the level of verisimilitude, some�eld work (in pubs and gambling halls where thosethings can be found) may turn out to be unavoid-able.94



6. (Shu�ing I) Shu�ing is the inverse of sorting.Write a program to shu�e a sorted pack of 52cards by randomly taking a card either from thebottom or from the top of the pack, until the wholepack has been taken, and repeating the process anumber of times. Display the shu�ed cards dur-ing the process and observe the e�ect of a longershu�ing.7. (Shu�ing II) The shu�ing is more e�ective if wetake the cards at random from the sorted pack.Write a program to shu�e a pack of 52 cards andshow the result.Hint : After choosing a card from the pack removeit indeed. If you simply mark it the random selec-tion might result in fruitless moves which decreasethe e�ectiveness of the algorithm.8. (Selection game) Manfred Eigen described a sim-ple game simulating natural selection [EIG81].In the beginning 10 individuals each of 4 di�erentspecies live in a small world. They die and areborn as other mortals. But whenever one of themdies exactly one other comes into the world, whichis a duplicate of one of the remaining individuals.Surprisingly, after a short period of coexistenceonly one of the species will survive.Write the program and study natural selection.9. (Wasps) There are two rooms separated by a door.One of the rooms is full of ying wasps. When weopen the door some of them will �nd the openingand y into the other room. After some time thedistribution of wasps will be more or less the samein both rooms.Write a program to simulate the behaviour of thewasps.10. (Ten marksmen, ten pigeons) If ten marksmenshoot at ten pigeons simultaneously some pigeonswill survive even if all the marksmen are sharp-shooters. Show by simulation how many pigeonsremain alive.11. (Chi-square test) The most often used method ofexamining random distributions is the chi-square(�2) test [KNU69].Assume we want to test a die simulated on ourcomputer. Then we have to \throw" the die ntimes and record how often every single result wasobtained; let us denote their number by Ys. Here-upon, the formulaV = 1n kXs=1�Y 2sps �� nis to be computed where k is the number of pos-sible outcomes and ps is their probability; in ourcase k = 6 and the probabilities are equal, i.e.ps = 16 . The value V is then to be comparedagainst the table below so that the quality of our\die" can be judged.

p = 1% 15.09p = 5% 11.07 not randomp = 25% 6.626 suspectp = 50% 4.351 almost suspectp = 75% 2.675 acceptablep = 95% 1.1455 almost suspectp = 99% 0.5543 suspectk � 1 = 5 not random

Write a program to test the random number gen-erator of your Elan Programming Environment ortest a random number generator of your own mak-ing.12. (Birthdays) 23 persons are celebrating the birth-day of a friend. One of them suggests a bet thatthere are at least two persons present whose birth-day falls on the same day of the calendar. Deter-mine by simulation whether this is a fair proposal.13. (A telephone directory, a needle and the number�) It is possible to determine the number � witha telephone directory and a needle | and withthe help of probability theory. The columns inthe directory form a raster; let its distance be de-noted by d. A needle of length l, where l � d,will repeatedly be dropped on this raster. Theprobability that the needle crosses a raster line isp = 2 � l=(� � d). With d = 2 and l = 1, p = 1=�.Write a program to determine the approximatevalue of � by experiments. Hint : use relative fre-quency instead of probability.
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Chapter 12Recursive algorithmsQuite often an obvious formulation of an algorithmcontains in its turn a call of that algorithm: the prob-lem is reduced to a simpler version of the same problem.In mathematics it is a standard technique to describecertain sequences by means of recurrence equations liketn = tn�1 � x=n.When an algorithm calls itself, we use the term re-cursion. We shall illustrate the use of recursion as aprogramming technique by means of a number of ex-amples.12.1 RecursionIn order to give a recursive solution to a problem welook for1. A simplest case, in which the solution is trivial.2. A way of reduction the complicated version of theproblem to a simpler version of the same problem.In doing so we suppose in each step that the sim-pler solution has already been found so it can beused in solving the more complex problem.It should be obvious that this method is soundly basedon mathematical induction.We say a procedure is directly recursive if it containsa call of itself, and indirectly recursive if it calls a pro-cedure that in its turn calls it (directly or indirectly).We say an algorithm is simply recursive if it containsonly one directly recursive call of itself which is notcontained in a repetition.We shall �rst give an example of simple direct recur-sion.12.1.1 Example: Printing a numberWe want to write a procedure print number such thatprint number(x) prints the integer x in a minimalnumber of positions. We assume the procedure printdigit, that prints one single digit, to be given.A positive number less than 10 we can print directlyby means of print digit; that is a trivially simplecase.From a number consisting of n digits, where n > 1,we can separate out one digit so that we are left withn �1 digits; a simpler case.

We could try to remove this digit at the front of thenumber but then would have to go through a wholerigmarole with powers of 10 in order to compute n,with all kinds of possibilities to obtain overow; oncewe have determined n, we can obtain the consecutivedigits by division by 10n�1, 10n�2, and so on | all inall not very appetizing.We can also take the digit from the back of the num-ber, by simply taking the number modulo 10. So therewe sit, holding in our hand a digit that we can onlyprint after all preceding digits have been printed. Howdo we print all those preceding digits? Well, in thesame way: we now have one digit less than we had ini-tially, and therefore a simpler case of the same problem.A small complication is the fact that the integer maybe negative. In this case we simply print a minus sign,followed by the opposite of the number, that thereforewill be positive.The solution sketched looks as follows:PROC print number (INT CONST number):IF number is negativeTHENprint minus sign;print opposite of numberELIF number consists of 1 digitTHENprint that digitELSEprint the preceding digits;print the last digitFI.number is negative:number < 0.print minus sign:put("-").print opposite of number:print number(- number).number consists of 1 digit:number < 10.print that digit:print digit(number).print the preceding digits:print number(number DIV 10).97



print the last digit:print digit(number MOD 10).ENDPROC print number;Finally we shall give a possible de�nition for printdigit:PROC print digit (INT CONST value):IF value < 0 OR value > 9THEN put ("?")ELSE put ("0123456789" SUB (value + 1))FIENDPROC print digit;We now have a procedure for printing an integer in acompact way. The solution found is possibly not verye�cient, because the test number is negativemay beperformed unnecessarily often, but we hope its princi-ple is clear. Observe that in the whole procedure not asingle variable or assignment appears. This contributesto the clarity of its structure.In order to get an insight in the working of this pro-cedure, we will trace a call of print number(123).print number(123)INT CONST number :: 123print number(123 DIV 10)INT CONST number :: 12print number(12 DIV 10)INT CONST number :: 1print digit(1) prints a "1"print digit(12 MOD 10) prints a "2"print digit(123 MOD 10) prints a "3"We see that at the high point of activity three instancesof print number are active. Such an \active instance"of an algorithm, with its own local data, is called anincarnation of that algorithm.A non-recursive formulation of an algorithm, inwhich repetition is used rather than recursion, is callediterative. If we try to give an iterative version of thisalgorithm | a sketch has already been given | we �ndout that this is much more cumbersome in its formula-tion and as a consequence will in the �rst instance belikely to contain more errors.The condition number consists of 1 digit playsa central role in the termination of the algorithm: whenthis condition is satis�ed no further recursive call ismade. We call it the termination condition of the al-gorithm.Finding a suitable termination condition (the \sim-plest case") is usually the key to �nding a recursivesolution.At the end of this chapter you will �nd a number ofsmall exercises that have a simply recursive solution,

Figure 12.1: Initial situationfor which you are requested to �nd the terminationcondition.12.2 Multiple recursionWe shall now look at a number of algorithms that aremultiply recursive, in the sense that each incarnationcan make more than one recursive call. The �rst ex-ample (Towers of Hanoi) is introduced because of itshigh didactic value, not for its practical importance.In later chapters we will give examples like Quicksortthat do show that with the aid of recursion short, clearand e�cient solutions for practical problems can beobtained.12.2.1 Example: The towers of HanoiOne of the oldest stories in informatics is the legendof the towers of Hanoi, as it was told to the author byLeo Geurts, many years ago.According to this legend there once stood, long ago,in front of a temple in Hanoi three columns; the �rstone was made of copper, the second of silver and thethird of gold. On the copper column one hundred diskswere stacked, which were made of porphyry. From thelargest one at the bottom to the smallest one at thetop the disks were decreasing in size (Fig. 12.1).An old monk had set himself the task of carryingthe tower of porphyry disks from the copper column tothe golden column, one disk at the time, by repeatedlytaking the topmost disk from one column and putting itat the top of another column, taking care that a largerdisk never landed on top of a smaller one. Accordingto the legend, once the monk had �nished his work theend of the world would be at hand.Soon the monk understood that in this work he hadalso to make some use of the silver column. He satdown in front of his desk in order to make a plan.He meditated and thought, thought and meditated,and suddenly obtained enlightenment: he could solvehis problem in three steps.(Step 1)Transport the tower, consisting of the topmost 99disks from the copper column to the silver one.(Step 2)98



Transport the last, greatest disk from the copperto the golden column.(Step 3)Transport �nally the tower of 99 disks from thesilver column to the golden one.In considering this scheme the monk noticed that Steps1 and 3 would be hardest to perform; and because hewas not only an old but also a wise monk, he decided tohave these steps performed by his eldest disciple. Whenthe disciple �nished the �rst step, our monk would takeit upon himself to carry the largest disk from the cop-per to the golden column; and then he would once moreinvoke the services of his eldest disciple.In order not to overly tax his eldest disciple, he de-cided to communicate this plan to him in order to sim-plify his work.The algorithm that the monk on the next day nailedto the temple door we here translate from the ancientVietnamese.Method and way to transport a tower of n disks fromone column to another making use of a third column:In the case where the tower consists of more than onedisk, request your eldest disciple to move a tower ofthe top n�1 disks from the �rst to the third columnmaking use of the other column.Personally carry �rst disk from the one to the othercolumn.In the case where the tower consists of more than onedisk, request your eldest disciple to move a tower ofn�1 disks from the third to the other column makinguse of the �rst column.After the monk had completed the nailing of this doc-ument he rested somewhat; and upon waking up, heasked himself what he had to do now: oh yes, he hadto move a tower of one hundred disks from the coppercolumn to the golden column making use of the sil-ver column. Because he was somewhat tired after theheavy thinking of the past day he did not rememberin detail how to do something like that; but seeing alarge knot of people in front of the temple door readingsomething, he knew what he had to do. He pushed hisway up to the temple door and started reading.And thus he called his eldest disciple to him andrequested him to transport the tower of 99 disks fromthe copper column to the silver one making use of thegolden column and upon completion report to him.Questions:� What is the �rst thing that this monk does?� How many monks will have been put to work be-fore the �rst disk is actually moved?� What does our old monk do when his eldest disci-ple �nally reports?

We will now formulate the monk's algorithm in Elan.The columns will be indicated by their names in theform of texts, the disks by their numbers (the biggestdisk having the highest number).PROC transport tower(INT CONST n, TEXT CONST first,second, third):IF n > 1THEN transport tower (n-1, first, third,second)FI;move disk (n, first, second);IF n > 1THEN transport tower (n-1, third,second, first)FIENDPROC transport tower;The movement of a disk we will indicate by printingwhich disk is carried from what column to what col-umn.PROC move disk (INT CONST n, TEXT CONSTfrom, to):line;put ("Carry disk"); put (n);put (" from the "); put (from);put (" column to the "); put (to);put (" column.")ENDPROC move disk;We can now solve the original problem by the call:transport tower (100, "copper", "golden",silver")The procedure transport tower contains two directlyrecursive calls and therefore is multiply recursive. Thecondition n > 1 is the negation of the termination con-dition. A variant in which the termination conditionis more explicit but which follows the old Vietnameseoriginal less faithfully is as follows:PROC transport tower(INT CONST n, TEXT CONST first,second, third):IF n > 0THENtransport tower (n-1, first, third,second);move disk (n, first, second);transport tower (n-1, third, second,first)FIENDPROC transport tower;The recursion now ends at the level n = 0, where noth-ing remains to be done.12.2.1.1 Complexity of the algorithmHow often must a disk be moved in order to transporta tower of height n? We call this number Sn.99



S1 = 1S2 = 1 + 2 � S1 = 3in general Sn = 1 + 2 � Sn�1 for n > 1Let us test the hypothesis:Si ?= 2i � 11 + 2 � Si�1 ?= 2i � 11 + 2 � (2i�1) ?= 2i � 11 + (2i � 2) ?= 2i � 12i � 1 ?= 2i � 1 Q.E.D.The amount of work therefore grows exponentially withn, the number of disks.Question: Assuming that all the monks work veryhard, so that one disk is moved every second, how longwill it take until the end of the world?12.2.1.2 Example of outputWe will complete this example with some output of thealgorithm (n = 4):Carry disk 1 from the copper column to thesilver column.Carry disk 2 from the copper column to thegolden column.Carry disk 1 from the silver column to thegolden column.Carry disk 3 from the copper column to thesilver column.Carry disk 1 from the golden column to thecopper column.Carry disk 2 from the golden column to thesilver column.Carry disk 1 from the copper column to thesilver column.Carry disk 4 from the copper column to thegolden column.Carry disk 1 from the silver column to thegolden column.Carry disk 2 from the silver column to thecopper column.Carry disk 1 from the golden column to thecopper column.Carry disk 3 from the silver column to thegolden column.Carry disk 1 from the copper column to thesilver column.Carry disk 2 from the copper column to thegolden column.Carry disk 1 from the silver column to thegolden column.In the numbers of the disks moved, a regularity can befound which has a nice relationship to counting in thebinary number system.

Figure 12.2: Mouse in maze12.3 Example: The mouse in themazeIn the previous example we have made use of the factthat every monk can instruct another, namely his el-dest disciple, to perform a task that can be done in thesame way.This is an excellent way to understand recursionand not very far from the execution of the algorithmon a machine: every incarnation of the proceduretransport tower can call upon further incarnationsof the same procedure. If, in our model, four monksare busy simultaneously in ful�lling their task, and allbut one of them are waiting for another, then therealso exist four incarnations of the procedure, of whichonly the youngest is active.A di�erence lies in the fact that the number of monkswith disciples, and also the measure of their patience,is in reality severely limited. The number of possibleincarnations of a procedure, on the other hand, is prac-tically unlimited: the processor can arbitrarily makenew incarnations and forget old ones, as long as somemaximum number of simultaneous incarnations is notexceeded (depending on the machine used, the mem-ory space available and details of the implementationof the programming language used), of the order of afew hundreds to many thousands of incarnations.It is very enlightening to compare the recursive in-vocation of a procedure to the giving of tasks by oneperson to another. We will now give a second example,in which again such an anthropomorphic image aids inunderstanding.A mouse wants to �nd a shortest path through amaze, starting at a given point A and ending at an-other point where lies the cheese. (Notice that theremay be more than one shortest path of one samelength. Which of the shortest paths we choose is im-material.)We shall represent the maze as a rectangle of n �m�elds (Fig. 12.2). Every �eld, except for those on whichthe mouse sits or the cheese lies, is either blocked bya wall or free. We shall indicate the �elds by theirposition (x; y) with 1 � x � n and 1 � y � m.By a path of length k we mean a sequence of k �elds100



Figure 12.3: Mouse in compassFi = (xi; yi), such that for 1 < i � k it holds that Fihas exactly one side in common with Fi�1:1 < i � k !xi�1 = xi AND yi�1 = yi�1 OR xi�1 = xi�1 AND yi�1 = yi:These relations describe formally that every �eld of apath must be connected with its sides to the neighbour�elds.A loopfree path is a path such that i 6= j ! xi 6=xj OR yi 6= yj .A successful path of length k is a path such that(x1; y1) = A,(xi; yi) = free (2 � i � k � 1),(xk; yk) = ����@`b aa à b̀12.3.1 The length of a shortest pathThe problem is to �nd the length of a shortest success-ful path. Notice that such a path is always loopfree.One could try to compute the collection of all paths,from those eliminate all paths that are not successfuland then choose the shortest one, but this is not verysimple to formulate iteratively and costs a forbiddingamount of work from the processor.Idea of a solution: the length of a shortest pathstarting at a speci�c �eld is one more than the mini-mum of the lengths of the shortest path starting at itsneighbour �elds.A mouse, sitting on a speci�c �eld (Fig. 12.3), sendsfrom each of its free neighbour �elds other mice, oneform each �eld, with the task of �nding the length ofa shortest path starting at that �eld. The mouse itselfremains waiting at the �eld (x; y) until the others havecompleted their task. No other mouse may thereforepass over this �eld. This guarantees that every pathconsidered is loopfree.Upon the return of the other mice, the mouse com-putes the minimum of the values they found, and adds1 to that (for the distance from the �eld on which itis sitting), reports that value to the mouse that sent itand leaves the �eld. Very simple, but it does need alarge number of dedicated mice (albeit at most n �m).As termination condition we make use of the factthat, if the cheese lies on a speci�c �eld, the path fromthat �eld to the cheese has length zero. In the form ofan algorithm:

IF the field contains cheeseTHEN0ELSEsend from every free neighbour fielda new mouse with the task of findingthe length of a shortest path to thecheese and take the minimum of thelengths thus obtained;1 + the minimumFIThe status of a �eld (free, wall, mouse or cheese) wewill encode as an integer. For that purpose we declare:LET free = 1,wall = 2,mouse = 3,cheese = 4;The maze will be represented by a row of rows:ROW n ROW m INT VAR maze;The behaviour of one mouse we realize as a procedurethat computes the length of a shortest path from (x,y) to the goal:INT PROC length of shortest path from (INTCONST x, y):IF already at cheeseTHEN0ELSEtake the field;find the minimum of four directions;release the field;1 + minimumFI.The elementary operations can be re�ned:already at the cheese:maze[x][y] = cheese.take the field:maze[x][y] := mouse.release the field:maze[x][y] := free.Observe that the procedure given is not robust againsta call with a �eld that already contains a mouse orwall; we shall have to test for that before calling theprocedure.We shall have to compute a path length even in thecase when the mouse gets into a blind alley. In such acase we choose as path length \in�nite", that is to say:greater than any meaningful path length. For that wedo not take maxint (why not?), but for example:INT CONST infinite :: n * m;If there is no path from the mouse to the cheese, thelength of the path will be at least infinite. We cannow re�ne101



find the minimum of four directions:INT VAR minimum :: infinite;a mouse to the north;a mouse to the south;a mouse to the west;a mouse to the east.(By the way: any resemblance to T.S. Eliot's \Cho-ruses from The Rock" is purely accidental.)The order of the last four units in fact plays no role,but our sequential programming language forces us to�x a speci�c order. (Observe that allowing the miceto proceed in parallel would open the door to endlessconfusion.)We de�ne two auxiliary procedures that obviate theneed for many similar re�nementsPROC shortest (INT VAR min, INT CONSTterm):IF min > term THEN min := term FIENDPROC shortest;BOOL PROC can go to (INT CONST x, y):IF within mazeTHEN maze[x][y] = free OR maze[x][y]= cheeseELSE falseFI.within maze:1 <= x AND x <= n AND 1 <= y AND y <=m.ENDPROC can go to;Observe that we can only test whether a �eld is freeor contains cheese if we are sure that it lies within themaze, so we cannot just writewithin maze AND (maze[x][y] = free ORmaze[x][y] = cheese)because the subscription maze[x][y] is meaningless forindices x and y outside the maze.We program very careful mice, e.g.:a mouse to the north:IF can go to (x, y+1)THENshortest(minimum,length of shortest pathfrom(x, y+1))FI.and analogously for other directions. We �nish theprocedure withENDPROC length of shortest path from;The resulting program is somewhat boring because ofits repetitive character but not badly structured. Stillit has a shortcoming.

12.3.2 Shortest path | an alternativeapproachWhat are the preconditions under which length ofshortest path from (x,y) can be called? The fol-lowing must be ful�lled:� the procedure may only be called with x 2 [1 : n]and y 2 [1 : m], otherwise a subscription erroroccurs;� the �eld maze[x][y] must contain cheese or befree. We may for instance not start in a wall.These conditions have to be tested within the proce-dure at every recursive call. But the same holds forthe initial call that occurs outside the procedure. Ofcourse it is all too easy to forget such tests.It is much wiser to perform the test immediatelyupon entry of the procedure, thereby making it ro-bust against misuse. All the tests before sending anew mouse are now superuous: the mice are cleverenough to perform the testing as necessary.With these modi�cations (and making use of a nu-merical choice | see section 7.4.2) we obtain:INT PROC length of shortest path via (INTCONST x, y):IF NOT within mazeTHEN infiniteELSESELECT maze[x][y] OFCASE free :take the field;find the minimum of the fourdirections; release the field;1 + minimumCASE wall : infiniteCASE mouse : infiniteCASE cheese: 0ENDSELECTFI.take the field:maze[x][y] := mouse.find the minimum of the four directions:INT VAR min :: length of shortest pathvia (x+1, y);shortest (min, length of shortest pathvia (x-1, y));shortest (min, length of shortest pathvia (x, y+1));shortest (min, length of shortest pathvia (x, y-1)).release the field:maze[x][y] := free.within maze:1 <= x AND x <= n AND 1 <= y AND y <=m.102



The remaining procedures stay the same. Again we�nish the procedure with:ENDPROC length of shortest path via;Observe that the procedures given above may maketemporary modi�cations to the maze by means of takethe field, but that upon their return the maze is al-ways left in its original state. They remove, as it were,their own garbage.The two approaches length of shortest pathvia and length of shortest path from di�er in thesense that the �rst one only works subject to stringentpreconditions, whereas the second one is robust. It isgood practice to prefer testing at the entry of a proce-dure to testing at each of its calls.Of course we should have programmed a robust ver-sion of this algorithm right from the start. The secondversion is shorter, clearer, and gives less opportunityfor errors in programming. But beginners especiallyhave a curious preference for solutions like the �rst one.It is very hard for human beings to �nd obvious andsimple solutions to their problems.12.4 ConclusionIn a number of ways, a good understanding of recursionleads to a deeper insight into programming.� Many problems naturally admit a constructive re-cursive de�nition that can be used as a �rst roughformulation of the algorithm.� Recursion is the most economical form of re�ne-ment: a recursive algorithm is also its own re�ne-ment.� Recursion leads to an economical form of think-ing. A large problem (for example the analysis ofa maze) is reduced to a smaller local problem (theanalysis of a square in the maze) plus the originalproblem in a simpli�ed form. Once the local prob-lem has been solved correctly, a correct inductionscheme leads to a correct solution for the globalproblem.� Recursion leads to an economic form of proof ofcorrectness and termination, because only the cor-rectness of the solution of the local problem andthe induction step have to be proved.� Recursion leads to a simple form of administra-tion of intermediate results, that can be kept inlocal variables and manipulated without interfer-ing with global objects.� Recursion leads to short concise programs, thatare easier to overview than equivalent iterative so-lutions and therefore lead to fewer errors.Of course one pays a price for these advantages: inmost implementations a recursive program is executedsomewhat slower than an equivalent iterative program.

Furthermore, some old-fashioned programming lan-guages do not admit recursion.In a following chapter we shall take a look at tech-niques for deducing, starting from a correct recursivealgorithm, an equivalent iterative algorithm, while re-taining correctness and generally raising e�ciency. Anumber of important algorithms have been found inthis way. A simple-minded iterative thinker wouldprobably never have found them.12.5 ExercisesFind termination conditions for the following formula-tions and program the suggested simply recursive pro-cedures.1. Let there be given ROW n INT CONST row. Themaximum of the n elements of the row is the max-imum of the nth element and the maximum of thepreceding elements.2. Let be given a ROW n INT CONST d. The value ofa decimal number, represented by dndn�1 : : : d1d0(with 0 � di � 9), is the value of the last digitd0 plus ten times the value of the decimal numberdndn�1 : : : d1:3. Again ROW n INT CONST d is given. The value ofa decimal fraction, represented by 0:d0d1 : : : dn, isone tenth times the sum of the values of the leadingdigit d0 and the decimal fraction 0:d1 : : : dn.4. Given is the TEXT CONST a. The row of charactersa1a2 : : : an�1an is symmetric, if� a1 is equal to an and� the row a2 . . . an�1 is symmetric.5. a to the power n is a times (a to the power (n�1)).6. Given is a ROW n BOOL CONST row. The parity ofthe row is by de�nition TRUE if the row containsan even number of TRUE elements, and FALSE ifthe row contains an odd number of TRUE elements.Write a procedureBOOL PROC parity (INT CONST k)that recursively computes the parity of the �rst kelements of row.Now follow a number of multiply recursive algorithms.7. (Subdividing a line) In how many ways can a lineof length n be subdivided into pieces of length 1and 2? (Hint: there are two kinds of divisions,those starting with a piece of length 1 and thosestarting with a piece of length 2).8. (Mouse in maze, again) The test whether we arestill within the maze can be omitted if we surroundthe maze by a wall.103



ROW n ROW m INT VAR maze;initialize border as wallRewrite the algorithm accordingly.9. Write a procedure with the headingPROC print all paths from (INT CONST x,y):that prints all loopfree paths, starting at (x, y)and ending at the cheese. (Hint: At the momentthe cheese is reached a loopfree chain of mice liesin the maze from the starting point to the cheese).10. (Tabular) Print a 10-column table containing thenatural numbers up to 100. Numbers divisible by7 and numbers in which the sum of the digits isdivisible by 7 must be replaced by *****.Hint : In order to print 10 numbers in a singleline the conversion procedure text(INT CONST i,width) should be used. The new-line-required anddivisible-by-7 tests can be accomplished by usingthe MOD-operator. You have also to separate thedigits: give �rst an iterative and then a recursivesolution.

104



Chapter 13Computer graphicsIn this chapter we will �rst introduce some conceptsand terminology from Computer Graphics and a set ofalgoritms for Comuter Graphics in Elan. Then we willdiscuss some recursive picture-drawing algorithms.Computer graphics means the processing and pre-sentation of visual information by means of the com-puter. The technology for processing and presentingdata in graphical form is developing fast. It playsan increasingly important role in realising user-friendlyman-machine interfaces.Drawing pictures on the computer screen is an at-tractive exercise in systematic programming. In par-ticular there exist beautiful families of recursive draw-ings that provide good examples of the design of re-cursive algorithms. For a more comprehensive studyof computer graphics various textbooks are available(eg. [FOD84]). Graphics software packages are alsogood examples to investigate the modular and layer-wise structure of large programs, as we shall see involume 2.13.1 The physical layerThe assortment of equipment for graphical input andoutput is very large. We only enumerate a number ofgraphical output devices: plotters to make drawingson paper with a mechanically controlled pen; cath-ode ray tube (CRT) screens applying the TV princi-ple: pictures are composed of horizontal lines which, intheir turn, are composed of either black-and-white orcoloured points | this method is called \raster graph-ics"; CRT screens controlled by separate processor(s)that change the pictures autonomously, with lightningspeed, or their miserly elder brothers in which a singleprocessor supports both picture generation and com-puting, with the consequence that the picture disap-pears during computing. There is a plethora of devicesfor sale | only the 3-dimensional holographic colourplotter is still music of the future.We shall restrict ourselves to the graphics displaywith which most microcomputers are equipped. Thescreen is a rectangle composed of points, so called pix-els (= picture elements). Each pixel can take on acolour from a �xed palette (black or white; a shade ofgrey; or perhaps one of 100000 Japanese colours). Werestrict ourselves further to monochrome displays that

allow black and white only.The number of pixels in a horizontal (vertical) lineis called the horizontal (resp. vertical) resolution. Formicrocomputers, a common resolution is 720x348, butlarge variations can be observed. With the resolutionmentioned the structure of the lines composed of pix-els can still be distinguished from quite near but fromsome distance the dots can not be recognised.On such a display it is very easy to draw horizon-tal or vertical lines. However, in order to draw slopinglines (see Fig. 13.1) some smart approximation algo-rithm (e.g. that of Bresenham, see [FOD84]) will berequired.
Figure 13.1: Sloping line as drawn by the BresenhamalgorithmThe situation is often complicated by the fact thatmany CRT screens use special hardware support (a\character generator") to display texts. Therefore textoutput can not be alternated with graphics | �rst thescreen must be switched into another operating mode.It is as though you had two screens, a text screen anda graphics screen, between which you have to switch.A further complication may be that the height of apixel usually di�ers from its breadth. A square, com-posed of the same number of pixels in both directions,may appear attened on the screen. The ratio betweenthe vertical and horizontal unit of lenght is called theaspect. In order to avoid distortions the aspect mustbe taken into account.13.2 Integer graphicsThe lowest layer of graphics operations is called integergraphics because the screen is addressed by integer co-ordinates. It forms a uniform interface to the graphicshardware, which itself varies from machine to machine,and thus consistent behaviour of programs is guaran-teed.105



Integer graphics is a (machine dependent) packetwhich is part of the standard library of each Elan Pro-gramming Environment. We describe here what it de-livers to the user without telling how it is implemented.Before using any of its operations you should ini-tialise some hidden variables and prepare the screenby calling the procedurePROC enter graphics mode:f clear the screen and switch tographics mode gENDPROC enter graphics mode;Similarly, you should �nally leave graphics mode bycallingPROC enter text mode:f clear the screen and switch to textmode gENDPROC enter text mode;The drawing always occurs in a given position insidethe area[1 : graphics x limit; 1 : graphics y limit]which represents the graphics screen.LET graphics x limit = 720,graphics y limit = 348,aspect = 1.35;These values, characterising the Hercules board of theIBM PC, are machine dependent; the aspect 1.35means the pixels are higher than wide.The current screen position may be modi�ed throughthe e�ect of the various graphics actions. When thegraphics mode is switched on, the initial value of thecurrent screen position (the so-called reference point)is (1; 1), which corresponds to the upper left corner.The current position can be changed by the callPROC move (INT CONST x, y):f go to position (x, y) gENDPROC move;Whenever either x or y, or both, are outside the ma-chine dependent boundaries of the screen, a beep issounded and the coordinate concerned takes on one ofthe boundary values given above.It is possible to draw something on the screen bymoving the screen position as desired and calling theprocedurePROC plot pixel:f plot the pixel in the currentposition gENDPROC plot pixel;The plotting of a pixel has an e�ect which depends onthe colour of the \brush". We may choose a colour bycalling the procedurePROC color (INT CONST c):f use, until further notice, colournumber 'c' gENDPROC color;

The numbering of colours is highly machine dependent.If you do not have a handbook describing this corre-spondence for your machine perhaps you better keepyourself away. After the �rst call to enter graphicsmode the brush is white (or amber or light green) andthe background colour of the screen is black.By means of these procedures all possible capers canbe performed on the screen although their usage is notat all simple because of the tedious details. Therefore,another procedure is added for drawing lines. It plotsall the necessary pixels according to the Bresenhamalgorithm.PROC draw (INT CONST x1, y1):f draw a line as straight as possible gf from the current position to (x1, y1)g f and plot all pixels en route gENDPROC draw;The usual procedures get, put and line for input andoutput work also in graphics mode, but the type fontused may di�er from that in text mode: In graphicsmode the characters are also drawn laboriously pixelby pixel, instead of by a \character generator".As you might imagine, each character is composed ofpixels arranged as a matrix (see Fig. 13.2). Both hor-izontally and vertically a gap is needed between twoneighbouring letters in order to maintain readability.The space used to display any character, together withits surrounding gaps, is constant but machine depen-dent; its height is given by line height, its widthby character width. (On the IBM PC, for example,line height is 11 and character width is 8.) Thereference point of a character is its upper left corner.
� -Characterwidth
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Figure 13.2: Letter M in a character matrixOf course, as a side e�ect, the current position is al-ways updated by draw. It is stored in a hidden variable(or, more probable, in a pair of hidden variables) in thepacket realising the graphics interface.The procedure line can also be called in graphicsmode in order to perform a transition to the beginningof the next \line" on the graphics screen, going downby line height pixels and to the leftmost pixel in theline.Starting in position (x, y), the e�ect of this pro-cedure is the same as that of move (1, y + lineheight).In the sequel, a few example programs will be dis-cussed that draw on the graphics screen. In order to106



write portable programs we try to be careful in usingrelative coordinates in terms of graphics x limit andgraphics y limit.13.2.1 Useful auxiliary proceduresA call to enter text mode, or its alternative formleave graphics mode declared asPROC leave graphics mode:enter text modeENDPROC leave graphics mode;immediately clears the graphics screen. We may in-troduce a procedure wait for confirmation whichwaits for the user to hit the space bar, thus givinghim the necessary time to study the picture.This procedure has two parameters: the integer co-ordinates of a place on the screen where you want thewarning Hit space! to appear.PROC wait for confirmation (INT CONST x,y):move (x, y);put ("Hit space!");TEXT CONST t:: incharENDPROC wait for confirmation;Notice that any character is accepted, not only thespace.A group of procedures which are very useful in theinput dialogue for numbers and texts can be declaredas follows:INT PROC ask int (TEXT CONST message):INT VAR x;put (message);get (x);xENDPROC ask int;REAL PROC ask real (TEXT CONST message):REAL VAR x;put (message);get (x);xENDPROC ask real;TEXT PROC ask text (TEXT CONST message):TEXT VAR t;put (message);get (t);tENDPROC ask text;The trigonometric functions of the standard library as-sume the angle as a real parameter given in radians. Ininteger graphics it is more natural to compute the angleas an integer given in degrees. To that end we declare:REAL PROC sin (INT CONST a):sin (pi * real (a) / 180.0)ENDPROC sin;

REAL PROC cos (INT CONST a):cos (pi * real (a) / 180.0)ENDPROC cos;13.2.2 Example: RadarThe �rst program draws a number of lines of one samelength, springing from the approximate centre of thescreen. In the circular pattern created in this way thee�ect of the line drawing algorithm applied is clearlyrecognisable. Notice the nice interference of lines inFig. 13.3.radar:enter graphics mode;print heading;determine parameters;draw radar;wait for confirmation (2 * graphics xlimit DIV 3, 1);leave graphics mode.print heading:put ("Radar");line;put ("=====").determine parameters:REAL CONST radius::real (min (graphics x limit, graphicsy limit)) / 2.1;INT CONST centre x:: graphics x limitDIV 2, centre y:: graphics y limitDIV 2.draw radar:INT VAR i;FOR i FROM 0 UPTO 359REPmove (centre x, centre y);draw (centre x + round (aspect * sin(i) * radius),centre y + round (cos (i) *radius))ENDREP.13.2.3 Example: Moving radarThe next program example draws similar lines, but thistime springing from a moving centre.moving radar:enter graphics mode;print heading;determine parameters;draw moving radar;wait for confirmation (2 * graphics xlimit DIV 3, 1);leave graphics mode.107



Figure 13.3: Radarprint heading:put ("Moving radar");line;put ("============");line.determine parameters:REAL VAR radius:: ask real ("Radius?");radius:= min (radius,real (min (graphics xlimit, graphics ylimit)) / 2.1);put ("Radius used: ");put (text (int (radius), 3));REAL CONST step x::min (1.0, real (graphics x limit) /360.0);REAL VAR centre x:: max (0.0, radius -260.0);INT CONST centre y:: graphics y limit -int (radius).draw moving radar:INT VAR i;FOR i FROM 0 UPTO 360REPmove (round (centre x), centre y);draw (round (centre x + aspect * sin(i) * radius),centre y + round (cos (i) *radius));centre x INCR step xENDREP.In order to allow the studying of various interferencepatterns the program asks the user for the radius to be

Figure 13.4: Moving radarused. The program limits this value so that the draw-ing always remains within the graphics screen. Theexperimental value 2.1 is used to leave enough spacefor messages.Like in the previous example we want to make awhole turn of 360 degrees, which means that we alsohave to take 360 steps horizontally, across the screen.On some screens | and also in the laser printer thatproduced this book | graphics x limit is less than360. To that end, step x is introduced. It has thevalue 1.0, or less if necessary.The coordinates of the centre are stored in centrex and centre y. The former is a real variable sincethe centre must drift horizontally, in steps which maybe less than 1. Initially, centre x contains either 0.0or | for large radii | a value that keeps the drawingwithin the graphics screen. The somewhat arbitrary,experimental value of 260.0 is motivated by the factthat | for large radii | the leftmost point is drawncca. in step 260. The initial value of centre y leavesenough space for the messages at the top, even in caseof large radii.The loop body is similar to the previous one. Noticethe upper limit of the loop variable is 360 in the presentcase.13.2.4 Example: MondriaanAs a last example, let us see how pictures reminiscent ofthe paintings of Mondriaan can be generated by meansof integer graphics.Please do not consider this as a serious contribution108



Figure 13.5: A Mondriaan?
to computer art, although ithelps you to imagine howsome artists use the computer as a working tool. Com-puter art makes extensive use of random numbers, al-lowing the artist to study the fringe area between chaosand order.

make a famous painting:prepare the canvas;stain it diligently;painting is done.
prepare the canvas:enter graphics mode;INT CONST xmin:: graphics x limit DIV10, ymin:: graphics y limit DIV10, xmax:: graphics x limit -xmin, ymax:: graphics y limit -ymin;move (xmin, ymin);draw (xmin, ymax);draw (xmax, ymax);draw (xmax, ymin);draw (xmin, ymin).

stain it diligently:INT VAR k, l, x, y;FOR k FROM 1 UPTO 150REPx:= random (2 * xmin, xmax - xmin);y:= random (2 * ymin, ymax - ymin);l:= int (real (ymin) * (1.0 - sqrt(random)));IF random > 0.5THENmove (x - l, y);draw (x + l, y)ELSEmove (x, y - l);draw (x, y + l)FIENDREP.painting is finished:wait for confirmation (5, 5);leave graphics mode.In conjunction with the resulting picture, this simpleprogram should need no further explanation.13.3 Turtle graphicsAnother packet in the standard library builds a layeron top of the integer graphics that simpli�es graph-ics programming. The packet is inspired by Karel theRobot (see chapter 2) and the turtle graphics of Logo.In the �rst place, relative coordinates will be usedinstead of absolute ones. After all, we want mostlyto draw regiments of lines. A �gure is regarded as asequence of (visible or invisible) lines connected to eachother. The notion of current position (the \graphicscursor") and current angle are also introduced. A pieceof line always starts in the current position and extendsin the direction determined by the current angle; onlythe length must be given explicitly (see Fig. 13.6).In the second place, integer coordinates are replacedby real ones. It is much easier to round o� an accu-rately computed real position to an integer afterwardsthan to hold it continuously as an integer when (be-cause of skew slope directions) all kinds of roundingerrors may occur.
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Figure 13.6: Current position (x; y) and current angle�109



13.3.1 The turtle graphics interfaceTwo line drawing algorithms are introduced: move forinvisible lines and draw for visible ones.PROC move (REAL CONST l):f draw an invisible line of length 'l'in the gf direction determined by the currentangle gf and starting in the current positiongENDPROC move;PROC draw (REAL CONST l):f draw a visible line of length 'l' inthe gf direction determined by the currentangle gf and starting in the current positiongENDPROC draw;After a call of these, the endpoint of the line server asa new current position. In order to steer the lines wemust be able to change the value of the current angle,for example, byPROC turn (INT CONST angle):f add 'angle' degrees to the currentangle gENDPROC turn;Recall from mathematics that the counter-clockwise di-rection is the positive one. For the special cases ofturning 90 degrees to the left and right two faster pro-cedures are introduced:PROC turn left:f add 90 degrees to the current angle gENDPROC turn left;PROC turn right:f subtract 90 degrees from the currentangle gENDPROC turn right;In addition to the relative moves (similar to that ofKarel the Robot going after his nose) two more linedrawing procedures are de�ned that use absolute coor-dinates:PROC move (REAL CONST x, y):f go to position (x, y) gENDPROC move;PROC draw (REAL CONST x, y):f draw a line from the current positionto (x, y) gENDPROC draw;We may arbitrarily choose the units to be used withdistances. To that end, two constants turtle x limitand turtle y limit are declared within the packet,the value of which may be changed by the user.

To switch the graphics screen to and from turtlegraphics mode two actions are declared: enter turtlegraphics, leave turtle graphics.13.3.2 Example: Drawing a rosetteLet us give one (not very ambitious) example of turtlegraphics: we shall draw a rosette.

Figure 13.7: RosetteThe rosette consists of six equilateral triangles, witheach subsequent triangle turned by 60 degrees. Thedrawing starts in the centre of the screen and the edgesare equal to one third of the screen length.draw a rosette:enter turtle graphics;go to the centre;UPTO 6REP draw equilateral hook;turn (60)ENDREP;wait for confirmation (10, 10);leave turtle graphics.go to the centre:REAL CONST d:: turtle y limit / 3.0;move (turtle x limit / 2.0, turtle ylimit / 2.0).draw equilateral hook:draw (d); turn (120);draw (d); turn (120);move (d); turn (120).In the next section you will �nd some more complicatedapplications of turtle graphics.110



13.4 Recursive drawingThe following examples of recursive drawings, whichinvolve multiple recursion, are certainly not simple, butthey serve well to demonstrate the power and eleganceof recursion.13.4.1 Example: Peano curvesThe number theorist Peano not only gave his name tothe axiomatic treatment of the natural numbers, but hewas also concerned with the continuum, the real num-bers. He considered, for instance, continuous mappingsfrom the line [0 : 1] to the square [0 : 1; 0 : 1].For this purpose he de�ned families of continuouscurves, composed of straight lines, with the propertythat the nth member of such a family passes each pointof the square at a distance of at most 2�n. A trivialexample of such a curve is shown in Fig. 13.8.
Figure 13.8: A simple Peano curveThere exist much more beautiful families of suchcurves. In this section we introduce an algorithm byAad van Wijngaarden that computes and draws sucha family of Peano approximations (which was �rst de-scribed by Hilbert). We de�ne a family of Peano-approximahts, as follows. The zeroth member of thefamily has to pass each point of the unit square at adistance of at most 2�0. This condition is met by apoint in the middle of the square (Fig. 13.9).6SNW E �Figure 13.9: Peano approximation 0As a next approximation (the �rst member of the fam-ily) we divide the square into four squares with a sideof 1=2 each. In these smaller squares we use the pre-vious approximation and join the small drawings bymeans of three line pieces of length 1=2, the �rst onein an easternly direction, the second to the north andthe third to the west (Fig. 13.10).This is an approximation with orientation north, be-cause the net movement is to the north. The four pos-sible orientations for n = 1 are named as indicated inFig. 13.11.

6SNW E -6� ?6dFigure 13.10: Peano approximation 1Our algorithm is based on the idea of constructing thenth approximation from four smaller (n�1)th approx-imations, joined together by means of three pieces oflength 2�n, with carefully chosen orientations. Weshow, as an example, an approximation of order 2 withorientation north in Fig. 13.12.6SNW E -6�
Figure 13.12: Peano approximation 2A Peano approximation of order n with orientationnorth starts at the point (2�(n+1); 2�(n+1)) and ends,after a sweep through the unit square, in the point(2�(n+1); 1� 2�(n+1)).For example, the approximation of order n = 2, asshown in Fig. 13.12, consists of:approximation east (1);line segment east;approximation north (1);line segment north;approximation north (1);line segment west;approximation west (1)We can now express the drawing of an approximationof order n in the form of four mutually recursive pro-cedures:PROC approximation north (INT CONST n):IF n <> 0THEN approximation east (n-1);line segment east;approximation north(n-1);line segment north;approximation north (n-1);line segment west;approximation west (n-1)FIENDPROC approximation north;In the case where n = 0 only a point has to be drawn;but because such a point always lies in the crossing oftwo line segments nothing has to be done.All line segments occurring in the drawing have onesame length, d = 2�n.111



�N ?E 6W -SFigure 13.11: Four orientationsPROC approximation east (INT CONST n):IF n <> 0THEN approximation north (n-1);line segment north;approximation east (n-1);line segment east;approximation east (n-1);line segment south;approximation south (n-1)FIENDPROC approximation east;PROC approximation south (INT CONST n):IF n <> 0THEN approximation west (n-1);line segment west;approximation south (n-1);line segment south;approximation south (n-1);line segment east;approximation east (n-1)FIENDPROC approximation south;PROC approximation west (INT CONST n):IF n <> 0THEN approximation south (n-1);line segment south;approximation west (n-1);line segment west;approximation west (n-1);line segment north;approximation north (n-1)FIENDPROC approximation west;All line segments occurring in the drawing have onesame length, d = 2�n.The current position (in the unit square [0 : 1; 0 : 1])we shall administer in a couple of variables REAL VARx, y. In order to draw line segments of length d weintroduce four procedures:PROC line segment north:draw (x, y + d)ENDPROC line segment north;PROC line segment south:draw (x, y - d)ENDPROC line segment south;

PROC line segment east:draw (x + d, y)ENDPROC line segment east;PROC line segment west:draw (x - d, y)ENDPROC line segment west;To put this whole machinery into movement, thegraphics cursor has to be positioned at the startingpoint, e.g. (d/2.0, d/2.0), on the screen. The mainprogram can be:program:ask order;draw curve;end program.ask order:enter graphics mode;INT VAR n:: ask int ("Peano curve oforder? ").So far, we have concerned only with unit length butnow the real size of the graphics screen must be takeninto account. The solution is based on integer graphics.Let us, then, consider the shorter side of the integergraphics screen to be of unit length; for this purpose amultiplying factor, scale, is introduced .draw curve:REAL VAR x, y;REAL CONSTd:: 1.0 / 2.0 ** n,scale:: real (min (graphics x limit,graphics y limit- line height));move (d / 2.0, d / 2.0);approximation east (n).end program:wait for confirmation (graphics x limitDIV 2, 1);leave graphics mode.In the program two procedures, draw and move, ex-pecting real parameters are used. We shall de�ne themin terms of their integer counterparts. The scaling andthe aspect of the pixels will be taken account here, too.And one more thing: the starting point of the curves.If position (0:0; 0:0) has to denote the lower left cornerthe drawing must be mirrored vertically.112



PROC draw (REAL CONST xp, yp):draw (round (scale * xp * aspect),graphics y limit - round (scale *yp));x:= xp;y:= ypENDPROC draw;PROC move (REAL CONST xp, yp):move (round (scale * xp * aspect),graphics y limit - round (scale *yp));x:= xp;y:= ypENDPROC move;Finally, in Fig. 13.13 we show two drawings that weregenerated in this way.Some questions :� Why must the approximations start and end inthe corners of the squares?� The approximation north and south we have cho-sen to rotate counter clockwise, whereas west andeast rotate clockwise. Is it possible to �nd a so-lution where one approximation can be obtainedfrom another by rotation?� How does the complexity, expressed as the totalnumber of procedure calls or draw calls, dependon n?� Notice that the recursion in this algorithm ends atthe level where nothing remains to be done; thisstyle is typical for Van Wijngaarden. It is moreusual to end the recursion at the level where theimplementation is su�ciently trivial to do it at onestroke. What do we have to change in order to letthe recursion end at n = 1? What e�ect does thishave on the number of procedure calls?13.4.2 Example: Pythagoras treeA Pythagoras tree (of order n) is a recursive draw-ing containing two Pythagoras trees (of order n � 1).Fig. 13.14 shows three Pythagoras trees of order 0, 1and 2. A Pythagoras tree has a number of parameters:the stem size, the angle � of its left subtree and thedepth of recursion determining the shape of the tree.It is quite a puzzle to derive a speci�c algorithmout of this general scheme. Moreover, it is worth thetrouble to keep the number of calls of turn low since ona microcomputer the computation of sine and cosineconsumes a lot of time. Where possible the (faster)turn left and turn right will be used.The following solution, based on turtle graphics, as-sumes that the current angle initially points in thegrowth direction of the tree and after termination inthe opposite direction. With these conventions thenumber of rotations remains restricted.

Figure 13.13: Peano curves
Order 0 @@��@@��@@��� stemsize?6Order 1 @@ @@�� ��Order 2Figure 13.14: Low-order Pythagoras trees (� = 45o)113



Figure 13.15: Pythagoras tree of order 8PROC pythagoras tree (REAL CONST size,INT CONST depth,angle):draw (size);IF resolution achievedTHENturn right;draw (size);turn rightELSEturn (angle);pythagoras tree (size * cos(angle),depth - 1, angle);turn left;pythagoras tree (size * sin(angle),depth - 1, angle);turn (90 - a)FI;draw (size).resolution achieved:depth = 0.ENDPROC pythagoras tree;program:enter turtle graphics;move (graphics x limit DIV 2 - 60, lineheight);put ("Pythagoras tree");line;ask parameters;draw frame;draw pythagoras tree;wait for confirmation (1,graphics y limit- line height);leave turtle graphics.

draw frame:move (0.0, 0.0);draw (0.0, 100.0);draw (100.0, 100.0);draw (100.0, 0.0);draw (0.0, 0.0).ask parameters:INT CONST tree depth:: ask int ("Depth?");INT CONST tree angle:: ask int ("Angle?");REAL CONST tree size:: ask real ("Size? ");REAL CONST tree xpos:: ask real ("Xpos? ");REAL CONST tree ypos:: ask real ("Ypos? ").tree xpos and tree ypos determine the position ofthe lower left corner of the stem. By assigning appro-priate values to these constants you may choose a nicelayout for your drawing.draw pythagoras tree:move (tree xpos, tree ypos);pythagoras tree (tree size, tree depth,tree angle).It is quite interesting to try di�erent values for theangle � and the recursion depth. Sometimes a wholecauliower grows out of the screen as e.g. in Fig. 13.15.In other cases, especially with angles not far from 90o,a large value must be supplied for depth otherwise thedrawing will be uninteresting. However, as you know,the deeper the recursion the slower the execution. For-tunately, deeply in the recursion the stem size becomesso small that it can no more be displayed | and there-fore we can use it as an alternative stop condition.resolution achieved:depth = 0 OR size < 0.1 * tree size.This restriction ensures that no tree can be smallerthan the pixel size. This will result in a better balancedtree with regards to the stem size of the subtrees.Fig. 13.16 shows two distorted Pythagoras treeswhere the second variant of the test resolutionachieved was used.13.4.3 Example: Peano curves revis-itedBased on turtle graphics, the program drawing Peanocurves (see section 13.4.1) can be made shorter. Thefollowing version exploits the observation that Peanocurves may have only two essentially di�erent orien-tations: turned to the left or to the right. Each casewill be covered by a recursive procedure. Notice that aPeano curve is constructed entirely from small, straightpieces of lines of a �xed length d. This piece will bedrawn by the procedure connect.114



Figure 13.16: Distorted Pythagoras trees

PROC connect:draw (side)ENDPROC connect;PROC peano right (INT CONST n):IF n <> 0THENturn left;peano left (n - 1);connect;turn right;peano right (n - 1);connect;peano right (n - 1);turn right;connect;peano left (n - 1);turn leftFIENDPROC peano right;PROC peano left (INT CONST n):IF n <> 0THENturn right;peano right (n - 1);connect;turn left;peano left (n - 1);connect;peano left (n - 1);turn left;connect;peano right (n - 1);turn rightFIENDPROC peano left;program:ask order;draw curve;end program.ask order:enter turtle graphics;move (1, 1);INT VAR order:: ask int ("Peano curveof order? ").draw curve:REAL CONST limit:: min(turtle x limit,turtle y limit);REAL CONST side:: limit * 2.0 ** -order;turn right;peano right (order).end program:wait for confirmation (graphics x limitDIV 2, 1);leave turtle graphics.115



13.5 Exercises1. (trembling line) Write an algorithm two draw atrembling line between two points.2. (snow) Draw a number of snow-akes. Exploitthe fact that a snow-ake is either 6- or 12-foldsymmetric. Use reection and rotation.3. (cube) Draw a perspective picture of a cube, usingturtle graphics, in which the near lines are twofoldshifted or turned (in order to gain virtual depth).
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Chapter 14Recursive sortingBy sorting a given row f(i),1 � i � n, with respectto a given ordering relation � we mean the problem of�nding a row f 0(i) consisting of the same elements asthe row f(i) such that:1 � i < j � n! f 0(i) � f 0(j)The row f 0 is a permutation of the row f ; no elementshave been added or lost.Sorting can be performed by many di�erent algo-rithms, with di�erent complexities in time (the num-ber of elementary algorithms to be performed) and inspace (the number of elementary variables necessary forthe performance of the algorithm). Of all computingtime used every day a large part is spent in sorting allkinds of �les according to various criteria. It is there-fore of great economic importance to look for sortingalgorithms that are e�cient in time and space.E�cient in space: the amount of space neededdepends at least linearly on n, the number of elementsto be sorted. We shall investigate only those sortingalgorithms that, apart from the elements themselves,need only a small number of elementary variables, ifpossible independent of n. We therefore restrict our-selves to in situ sorting, in which f 0 is built up in f .The permutation process takes place in the variable fitself.E�cient in time: if we program an in situ sort-ing algorithm in a straightforward fashion we obtain aformulation as given in chapter 8. The time complex-ities of these obvious sorting algorithms are quadraticin the number of elements to be sorted. This meansthat in for example doubling the number of elements,the amount of work goes up by a factor of four. Suchan algorithm may well work adequately for the sortingof the data of a thousand employees; but for sortingthe data of 200 million inhabitants the amount of workgoes up prohibitively. It is obvious that such methodsare useless for sorting really large �les.14.1 Merge SortOne way out is not sorting all the elements simultane-ously but sorting the two halves of the row separatelyand then in some way combining the two sorted parts.This is another application of the \divide and conquer"technique, a halving method.

The reason for expecting that this is faster is thefollowing: if the elements to be sorted are split intotwo equal groups, each of those groups can be sortedaccording to a quadratic algorithm in one fourth of thetime needed for the whole row. After that the twosorted groups have to be mixed in some way. If wenow manage to perform this mixing fast enough weshall gain in total time.We shall now design such a Merge Sort algorithm.PROC merge sort (INT CONST lwb, upb):IF lwb < upbTHENINT CONST middle:: (lwb + upb) DIV 2;merge sort (lwb, middle);merge sort (middle + 1, upb);in situ merge processFI.in situ merge process:INT VAR down:: lwb;INT VAR up:: middle + 1;REPIF the smallest is upTHENset smallest aside;shift lower group up by 1;drop smallest in free slotELSEpass down elementFIUNTIL lower group is up or emptyENDREP.the smallest is up:f[up] < f[down].set smallest aside:ELEMENT CONST smallest:: f[up].shift lower group up by 1:INT VAR i;FOR i FROM up - 1 DOWNTO downREPf[i+1]:= f[i]ENDREP;down INCR 1;up INCR 1.117



drop smallest in free slot:f[down-1]:= smallest.pass down element:down INCR 1.lower group is up or empty:upb < up OR up <= down.ENDPROC merge sort;Now the sorting of the two halves will decidely gofaster, but the in situ merge process spoils every-thing: large sub-rows have to be shifted about morethan once, so the algorithm again has a quadratic worstcase behaviour. It is easy to see that by making use ofa second row variable as an auxiliary the merging canbe performed in linear time. But then the algorithmneeds too much auxiliary memory to be called in situ.Variants of the Merge Sort algorithm, that do not workin situ but make use of large background memories, areindeed in daily use. We shall not deal with them here.Question: How does the time complexity of this ver-sion of Merge Sort depend on the number of elementsto be sorted?14.2 QuicksortIn Merge Sort the two halves are sorted separately andthen merged. We might also try to �rst unmerge therow into two parts and then sort those two parts sep-arately.For this, C.A.R. Hoare in 1961 proposed a recursivesorting algorithm that cannot but be called elegant.He �rst splits the row into two parts [1 : m] and [m+1 : n] by moving elements until all elements from the�rst part according to the given ordering relationshipprecede all elements of the second part, i.e.:(1) k 2 [1 : m]; j 2 [m+ 1 : n]! fk � fj :The number of elements to be moved for this purposeis linear in n. Once the table has been split up in thisfashion, the two parts can be sorted separately in situ(by the aid of the same algorithm Quicksort) so thatwe obtain: (2) k < j 2 [1 : m]! fk � fj ;(3) k < j 2 [m+ 1 : n]! fk � fj :From (1), (2) and (3) we can deduce immediately:(4) k < j 2 [1 : n]! fk � fj ;that is, without any further merging the whole row hasbeen sorted in situ.The tricky part is the splitting process in which (justas in Merge Sort) an element may be moved more thanonce. Let us look more closely at this process.

14.2.1 Splitting the rowWhat is the ideal splitting of the row? In the idealcase the row is split into two equal parts. Then wehave most advantage from the splitting. We thereforehave to �nd an element x such that as many elementsprecede x as follow it. Such an element is called theme-dian: it is that element which after sorting of the rowwould occur in the middle. But this has not broughtus any nearer to a solution:� elements may be equal so that the median is notuniquely de�ned;� when the number of elements is even, there is nomiddle element: the middle lies between two ele-ments;� the obvious algorithm for �nding the median is:sorting the table and then taking the middle ele-ment.We shall therefore be satis�ed with an approximationto the median; if this approximation is reasonable, weshall not be far from optimal behaviour of the algo-rithm; we shall later investigate the behaviour for abad approximation. There are still two di�erent waysin which we may proceed:� choosing a speci�c element from the row;� choosing a value (not necessarily an element) asnear as possible to the median value.Proceeding according to the �rst method, we may inprinciple take any element of the row. Let us take themiddle element as the approximate median. Then weare in luck if the whole row happens to be (nearly)sorted.What is the worst possible split? That is one inwhich one of the two parts is empty and the other thewhole original row. With this split we do not advanceat all, because sorting the greatest part then consistsof sorting the original row | if we are not careful thealgorithm may even get into a never-ending loop. Weshall therefore see to it that each of the parts is reallysmaller than the original row.We will now split according to the following idea. Letthe row be non-empty. We choose an element in themiddle as the approximate median. We let a pointer pgo upwards through the row and a pointer q go down-wards through the row. Whenever we �nd under p anelement greater than the approximate median and un-der q an element smaller than the approximate medianwe exchange those two elements. In other words, if we�nd on both sides an element that is out of position weexchange those elements.More precisely: let there be given a global row ofelementsROW n ELEMENT VAR fin which ELEMENT is one or another type. Let 1 �i < j � n. We choose m approximately in the middle118



of [i : j]. Let x = fm (the approximate median). Wewant to order fi; : : : ; fj in situ and choose p and q from[i� 1 : j + 1] in such a way that for all k in [i : j]:k < p ! fk � fm andk = p ! fk > fm andk > q ! fk � fm andk = q ! fk < fm andq � pIn this process, the variable p gets as value the indexof the �rst element greater than fm, and q points inthe same way to the last element smaller than fm. Ifthe left part is empty, q obtains the value i� 1; if theright part is empty, p gets the value j+1. In a picture:elements � fm i p-elements � fm q j�elements = fm q p-�We have now split the row into three parts, of whichthe middle part is non-empty because it contains atleast the approximate median. If the median elementdoes not end up automatically between p and q, wehave to shift it to this middle part. The middle partmay also contain some elements other than the medianand equal to it, but need not necessarily contain allelements equal to the median. We need not sort themiddle part any more. The left part or the right partmay be empty. Since, however, both parts are smallerthan the original row, a never-ending repetition is ex-cluded.PROC split (INT CONST i, j, INT VAR p, q):initialize;WHILE p and q suitable candidatesREP exchange p and q elementENDREP;if necessary bring median to middle.initialize:p:= i; q := j;INT CONST m:: (i + j) DIV 2;ELEMENT CONST med:: f[m].p and q suitable candidates:shift p upwards as far as possible;shift q downwards as far as possible;p < q.shift p upwards as far as possible:WHILE may shift p upwardsREP p INCR 1ENDREP.may shift p upwards:IF p > j THEN false ELSE f[p] <= medFI.

shift q downwards as far as possible:WHILE may shift q downwardsREP q DECR 1ENDREP.may shift q downwards:IF q < i THEN false ELSE f[q] >= medFI.exchange p and q element:ELEMENT CONST l:: f[p];f[p]:= f[q]; f[q] := l;p INCR 1; q DECR 1.if necessary bring median to middle:IF m > pTHEN exchange m and p elementELIF m < qTHEN exchange m and q elementFI.exchange m and p element:f[m]:= f[p];f[p]:= med;p INCR 1.exchange m and q element:f[m]:= f[q];f[q]:= med;q DECR 1.ENDPROC split;The splitting process is linear in n because p and qtogether will traverse at most 2n elements. The mid-dle part is guaranteed to be non-empty. It may evencontain any number of elements, e.g. in sorting a rowconsisting of only equal elements.Observe that the order indicated in the body of theprocedure split is an overspeci�cation: we do not re-ally wish �rst to move p up and then to move q down.These two actions should be undertaken collaterally, orpossibly even in parallel.14.2.2 Sorting with the aid of splitOnce the row has been split we can sort it recursively:PROC quicksort (INT CONST lwb, upb):IF the row contains more than 1elementTHENINT VAR p, q;split (lwb, upb, p, q);quicksort (lwb, q);quicksort (p, upb)FI.the row contains more than 1 element:lwb < upb.ENDPROC quicksort;Do you see another overspeci�cation in this procedure?What guarantees the termination of this procedure?119



The splitting process gives the worst result when ac-cidentally either the highest or the lowest element hap-pens to be in the middle. What complexity does thealgorithm have in this worst case? And in the bestcase?The \average" complexity depends strongly on thedistribution of the values of the elements. In [KNU73]it is proved that the time complexity of the algorithm,under the condition that the elements have been cho-sen at random from a homogeneous distribution, is ofthe order O(n log n), as in the best case, but with a dif-ferent multiplying factor. For su�ciently large valuesof n this is arbitrarily better than O(n2).We end by tracing an application of Quicksort (see�gure 14.1). The elements which are still to be sortedare underlined. The approximate median in the split-ting process is surrounded by a box. We indicate thesituation only at some critical moments.14.2.3 Splitting the row: an alternativemethodIn [DIJ76] the problem of the Dutch National Flag isposed and solved. We may use this solution directlyfor splitting the row in Quicksort. The resulting algo-rithm is somewhat more elegant than Hoare's originalsplitting algorithm but needs a few more movements.Consider a row of elements each of which has oneof the colours red, white or blue. Order them in situuntil they make up a Dutch ag (red followed by whitefollowed by blue). In other words, we want to permutethe original row in situ until we obtain three separateareas, from left to right: all red elements (elementssmaller than the median), all white elements (elementsequal to the median) and all blue elements (elementsgreater than the median).Half-way through the execution of the algorithm, wehave four areas: one containing red elements, one con-taining white, one containing blue and one containingelements yet to be considered. The coloured areas wekeep in the intended order, that much is clear; butwhere do we put the fourth area? We are completelyfree in this choice: initially the whole row is yet to beconsidered; at the end that area is empty, so its placedoes not matter. We shall make a speci�c choice andleave it to the reader to reason out why other choicesin any case do not lead to better algorithms.We choose the fourth area to be between red andwhite and mark the areas by the aid of the indices r,w and b. red unsorted white bluei p w b jthereforei � k < r ! fk < med (red),w < k � b ! fk = med (white),b < k � j ! fk > med (blue).We now repeatedly look at the element fw (the readermay convince himself that to look at fr is less advan-

tageous). If fw is white, we simply move w by 1 to theleft. If fw is red, we exchange that element with fr andshift r by 1 to the right. If fw is blue, we exchange itwith fb and shift both b and w by 1 to the left.It is easy to see the correctness of this algorithm.The red, white and blue areas remain red, white andblue. In each step the fourth area is diminished by 1element, so the algorithm certainly terminates. If wehave chosen as med an element of the row, the whitearea will be at least 1 long, so that the red and blueareas at the end of the split will certainly be shorterthan the whole row, thus guaranteeing termination ofthe algorithm.Initially the red and blue areas will be empty. Ifwe choose fj as med, the white area will initially havelength 1. (Can we also allow the white area to beinitially empty?) The resulting procedure split looksas follows:PROC split (INT CONST i, j, INT VAR r, w):initialize;WHILE not all elements consideredREPinspect element w;IF element is whiteTHENshift w by 1 to the leftELIFelement is redTHENexchange w and r element;shift r by 1 to the rightELSEexchange and b element w;shift b and w by 1 to the leftFIENDREP.initialize:ELEMENT CONST med:: f[j];r:= i;w:= j - 1;INT VAR b:: j.not all elements considered:r <= w.inspect element w:ELEMENT CONST this:: f[w].element is white:this = med.shift w by 1 to the left:w DECR 1.element is red:this < med.exchange w and r element:f[w]:= f[r];f[r]:= this.shift r by 1 to the right:r INCR 1.120
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0 1 2 4 5 3 5 6 7 8 99. pq0 1 2 4 5 3 5 6 7 8 910. pq 0 1 2 4 5 3 5 6 7 8 911. pq0 1 2 4 3 5 5 6 7 8 912. pq0 1 2 4 3 5 5 6 7 8 913. pq0 1 2 3 4 5 5 6 7 8 914. pq0 1 2 3 4 5 5 6 7 8 915. pq0 1 2 3 4 5 5 6 7 8 916.Figure 14.1: Trace of Quicksortexchange w and b element:f[w]:= f[b];f[b]:= this.shift b and w by 1 to the left:w DECR 1;b DECR 1.ENDPROC split;Whenever fr is red and so is this, this element is �rstmoved to fw; in the next iteration, it will be broughtback to the red area. This is a weakness of the al-gorithm, a sacri�ce to simplicity. We can modify thealgorithm in such a way that the index r is �rst movedto the right as long as there are red elements. The al-gorithm then becomes less clear-cut, but comes nearerto the splitting according to Hoare. Investigate thismodi�cation.14.3 Exercises1. Try to �nd an iterative solution for sorting in timeO(n logn). (Hint: try Merge Sort with an auxil-iary row, or look up the matter in [KNU73].)2. Design a splitting algorithm in which not one ele-ment of the row but the average of three elementsis taken as median [EMB70]. 121
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Chapter 15Backtrack programmingThe mouse in the maze was a good example of analgorithm based on systematically �rst doing and thenundoing steps in the direction of the solution. Themouse as it were retraces its steps. There are importantclasses of problems that can be solved according to sucha backtrack strategy.15.1 The enumeration problemThe problem of the mouse in the maze can be refor-mulated as follows: �nd all ways to make a loopfreechain of mice from the initial position to the cheese.For every �eld of the maze that is not �lled with wallor cheese we have to decide whether we cover it witha mouse or leave it free. We can therefore look uponthe, at most, n * m free �elds of the maze as variables,each of which has to take one of the values free andmouse.We shall call the collection of the values that the ithvariable (the ith free �eld) can assume the selectionspace for that variable. We have here an instance ofthe enumeration problem:�nd all sequences (x1; x2; : : : ; xn) with xifrom a �nite set Xi, 1 � i � n, that satisfypredicate P (x1; x2; : : : ; xn) [KNU75].Let k be the number of free �elds in the maze (1 �k � n � m). In our example the desired propertypathtocheese(xi; x2; : : : ; xk) is the property that the�elds 1; 2; : : : ; k form a loopfree chain of mice from theinitial position to the cheese, while the remaining �eldsare free.There are, for example, 8 free �elds in the maze ofFig. 15.1. These free �elds can be enumerated from thetop to the bottom by rows and in each row from theleft to the right.The three possible solutions are given as sequencesof �eld values satisfying the property path to cheese.Here f stands for free and m for mouse.1. path to cheese(f; f;m;m;m; f; f; f),2. path to cheese(m;m;m;m;m; f; f; f),3. path to cheese(f; f; f; f; f;m;m;m).We obtain an alternative formulation by taking as theith variable the position of the ith mouse, xi = (r; c)

Figure 15.1: Paths to cheesewith 1 � r � n, 1 � c � m, which leads to another enu-meration problem with the same result, i.e. the samecollection of loopfree paths. Possibly the second for-mulation is somewhat more obvious and in any casemore according to the spirit of the program alreadyobtained.The three solutions shown in Fig. 15.1 can now beformulated as1. path to cheese((3; 1); (2; 1); (2; 2);��;��;��;��;��),2. path to cheese((3; 1); (2; 1); (2; 2); (1; 2); (1; 3);��;��;��),3. path to cheese((4; 2); (4; 3); (3; 3);��;��;��;��;��).Now it su�ces to deal with subsequences that yield asolution. As the remaining elements of the sequencesare unimportant we denoted these arbitrary positionsby \��".We shall pursue the �rst formulation, however, inorder to have a fresh look at the problem.We shall investigate some general methods for solu-tion of the enumeration problem and in this way dis-cover a natural application of recursion.15.1.1 The brute force methodThe enumeration problem is a �nite combinatorialproblem and as such can in principle be programmed123



straightforwardly: we need only go systematicallythrough all combinations of variable values.WHILE not all combinations triedREPgenerate next combination;test whether it satisfies PENDREPIt is not immediately obvious how to generate the nextcombination but with some thought all kind of schemescan be found.In our case, according to the �rst formulation thereare 2k, and according to the second formulation thereare even at most kk combinations (in general: q1 � q2 �: : : � qk, in which qi is the number of elements of theselection space Xi). This may be somewhat overdone.There is no sense in going blindly through the wholeselection space X1 �X2 � : : : �Xk and we have to �nda more clever approach.15.1.2 The selection treeConsider the collection of all possible subsequencesover the selection space (see �g. 15.2). For the �rstvariable x1 there are q1 di�erent possibilities. For eachof those, the second variable x2 admits q2 possibilities,and so on.Without loss of generality we can represent thesesubsequences as a tree with branching, the selectiontree. In our case there are k variables: the selectiontree has depth k. Schematically we can depict the treeas shown in Fig. 15.3.
Figure 15.3: Selection tree with levels 1 . . . kAccording to the brute force method we could walkthrough the selection tree systematically, for example(in bastard Elan):FOR v1 IN (free, mouse)REP FOR v2 IN (free, mouse)REP ... FOR vk IN (free, mouse)REP IF path to cheese(v1,v2, ..., vk) THEN report a solutionFIENDREP...ENDREPENDREP

But, as we have already established, this makes nosense: k tree is too large.Upon closer analysis we observe that in walkingthrough the tree it is often possible to decide early(i.e. before we reach level k) that some speci�c branchcannot lead to a solution, because, for example, thereis a loop in the path or the mice get into a dead end. Inthis case we may discard the whole branch. In this waywe may (if we are lucky) have to visit only a fractionof the tree (see Fig. 15.4).
Figure 15.4: Selection tree, partially discardedWe must now somehow generate the possible com-binations in such an order that unproductive branchesof the selection tree are found as early as possible.15.1.3 HeuristicsHeuristics is a methodology for solving new problemsby means of known methods.In deciding the order in which the selection tree isgoing to be traversed we have a number of degrees offreedom:� The choice of the order of the variables: we wantto go through the variables in such an order thatunproductive branches are found as early as pos-sible, so that the selection tree is most e�ectivelyreduced by discarding branches early in the searchprocess. In the case of the mouse in the maze,for example, we must not go through the �elds inrandom order or in a �xed order like \from left toright", \from top to bottom": it is always prefer-able to extend a path at the end, so that the pos-sible loops and dead ends are found early.� Reduction of the selection space per variable: oftenthe values of the variables already �lled restrict thepossible values of subsequent variables.� The use of more or less strong rejection criteria forparts of the tree: in our case, loops in the path anddead ends. It might for example be advantageous�rst to close o� all dead ends in the maze sincethey cannot lead to the cheese.� The exploitation of symmetry arguments in orderto obtain more solutions at a time | not so ev-ident in this case but in many examples simpleand often necessary in order to keep a grip on thecomplexity of the algorithm.124



all possible solutions��� @@@solutionswith x1 = free��� @@@ solutionswith x1 = mouse��� @@@solutionswith x2 = free��� @@@ solutionswith x2 = mouse solutionswith x2 = free solutionswith x2 = mousesolutionswith x3 = free ` ` ` Figure 15.2: The selection spaceThe way we can make use of these and other degreesof freedom in solving a given problem depends on theproperties of that problem and on our own imagination:we have to invent something.In honour of Archimedes, who gave us the saying\Eureka" and who was the �rst known user of heuristicmethods, the word heuristic is used for any strategy,method, rule of thumb or trick that serves to reduce thecomplexity of a search process without impairing thecorrectness of the solutions found [SLA71]. (In somescienti�c �elds this word is also used for a method toreduce the complexity of a search process that yields\su�ciently good" solutions; in such a case we willspeak of an approximate heuristic rather than the exactheuristic meant here.)15.1.4 The backtrack methodWe want to �nd all sequences (x1; x2; : : : ; xn) withxi from Xi, 1 � i � n that satisfy a propertyPn(x1; x2; : : : ; xn).To solve this problem we try to �nd intermediateproperties Pk(x1; x2; : : : ; xk) such that for 0 � k < nwe can prove that property Pk+1(x1; x2; : : : ; xk; xk+1)implies property Pk(x1; x2; : : : ; xk).In other words, if Pk does not hold for(x1; x2; : : : ; xk) then Pk+1 can not hold for any choicefor xk+1. Continuing this argument inductively:the sequence (x1; x2; : : : ; xk) can not be extended to(x1; x2; : : : ; xk; : : : ; xn) that satis�es Pn.We give each Pk in the form of an algorithm to decidewhether a sequence satis�es that property.In abstracto we can search according to the followingalgorithm:ROW n EL VAR x; INT VAR k :: 0;PROC generate all continuations:fPk(x1; : : : ;xk) ^ 0 �k�ngIF k = nTHENfPn(x1; : : : ;xn)greport a successful sequenceELSE

fPk(x1; : : : ;xk) ^ 0 � k< ngEL VAR y;FOR y := each element from Xk+1REPIF Pk+1(x1; : : : ;xk;y)THENx[k+1] := y;k := k+1;fPk(x1; : : : ;xk) ^ 0 <k�nggenerate all continuations;k := k-1FIENDREPFIENDPROC generate all continuations;The expressions between curly brackets are invariants,properties that invariably hold at that particular pointof the program. They serve here to clarify the pro-gram but are not part of the program and thereforeare merely comments.Observe that after dealing with one branch of the se-lection tree the algorithm returns to a previous point inthat selection tree; from this property the name back-track algorithm is derived. After each recursive call thealgorithm comes back (by means of k := k-1) upona choice made before (x[k+1] := y; k := k+1). Inthe maze problem this backtrack consisted in explicitlyremoving a mouse from the �eld.The backtrack algorithm traverses the selection treein the \depth �rst" order: from left to right but go-ing in such a way that every branch is traversed com-pletely before its right neighbour is traversed, omittingbranches that are recognized to be non-productive (seeFig. 15.5).15.1.5 On the choice of the PksThe predicates Pk form the embodiment of the heuris-tics mentioned a few pages ago. In choosing them quitesome knowledge of the problem and a good deal of in-ventivity is needed. Furthermore it must be easy toformulate them as algorithms that can be computed125



Figure 15.5: Selection tree, order of traversale�ciently. How do we choose them?By choosing TRUE for Pk for k < n we again obtainthe brute force method; obviously these Pks are tooweak. In the ideal case it should hold thatPk(x1; : : : ; xk) exactly when there existxk+1; : : : ; xn such thatPn(x1; : : : ; xk; xk+1; : : : ; xn).That is, Pk indicates precisely whether there existssome continuation. But such an algorithm may be dif-�cult to �nd and may be just as time-consuming in itsexecution as the original problem. (Namely, checkingthe truth of such a Pk assumes the original problemhas been solved.)In general we shall have to make a compromise be-tween restrictive but time-consuming, and weak buteasily computed Pks. If we choose them too weak, we�nd the correct solutions but have to go through toomuch of the selection tree. When we choose them toostrong, they do not lead to any gain in e�ciency.15.2 Example: 8 Queens on achessboardA classical example of a backtrack algorithm is the so-lution of the following problem. Place 8 Queens on achessboard in such a way that no Queen can attackany other Queen (horizontally, vertically, on a rightdiagonal or left diagonal).Choice of the variables. As variables we choose thepositions of the Queens, i.e. 8 coordinates 2 [1 : 8; 1 :8].Reduction of the selection space. In each row onlyone Queen may stand, because it could attack a secondQueen in the same row. Furthermore there must beexactly one Queen in a row, otherwise we will neverput eight Queens on a chessboard.Order of the variables. We (arbitrarily) number thevariables from 1 to 8 depending on the row in whichthey occur.

PROC place queens from (INT CONST thisrow):IF this row > 8THENreport successELSEINT VAR i;FOR i UPTO 8REPIF position i is not threatenedTHENtake position i;place queens from(this row + 1);free position iFIENDREPFI.The place of the ith Queen is kept in a global rowROW 8 INT VAR column queen;We re�netake position i:column queen[this row] := i.In order to free this position there is nothing we haveto do explicitly | the return from the procedure issu�cient.free position i: .position i is not threatened:INT VAR j;FOR j UPTO this row -1REPIF jth queen threatens iTHENLEAVE position i is not threatenedWITH falseFIENDREP;true.jth queen threatens i:same column OR above to the right ORabove to the left.same column:column queen[j] - i = 0.above to the right:column queen[j] - i = this row - j.above to the left:column queen[j] - i = j - this row.report success:put("Solution of 8 queens problem");line;print the chessboard.ENDPROC place queens from;126



PROC print the chessboard:INT VAR k;FOR k UPTO 8REPprint one line;lineENDREP.print one line:INT VAR l;FOR l UPTO 8REPprint positionENDREP.print position:IF l = column queen[k]THEN put("Q ")ELSE put(". ")FI.ENDPROC print the chessboard;We need not initialize the row column queen. As mainprogram we can take:ROW 8 INT VAR column queen;place queens from(1).Without too much work this program yields all 92 so-lutions for the 8 Queens problem. By making a cleveruse of symmetry arguments, the amount of computa-tion could be reduced further, because only 12 of thoseare essentially di�erent.15.3 The optimization problemA generalization of the enumeration problem is the dis-crete optimization problem [GOL65].Determine that sequence (x1; x2; : : : ; xn) withxi from a �nite set Xi; 1 � i � n,for which some speci�c criterion functionFn(x1; x2; : : : ; xn) takes a minimal (or a max-imal) value. Compute that value of Fn.When there is more than one solution, we may chooseone of them or the problem may be formulated suchthat we have to give a list of all solutions.Obviously this problem can be seen as an enumer-ation problem, in which we remember the best of allsequences found up to now. Conversely an enumerationproblem can be seen as a discrete optimization problemwith a two-valued criterion function (useful/useless) forwhich we are asked to give all useful solutions. Ob-serve that we restrict ourselves to �nite discrete selec-tion spaces Xi. If Xi is for example a segment of thereal numbers and Fn a partially di�erentiable function,completely di�erent methods may be applied. In op-erations research and cryptography many examples ofdiscrete optimization problems can be found.

Figure 15.6: Distorted selection treeNow consider such a discrete optimization problem.We shall derive from the problem formulation a back-track algorithm by constructing a collection of partialcriterion functionsFk(x1; x2; : : : ; xk); 0 � k < nthat satisfyFk(x1; : : : ; xk) � Fk+1(x1; : : : ; xk; xk+1); 0 �k < nThe partial criterion function Fk can be seen to providea lower limit for the minimal value that the criterionfunction Fn can take on for any argument starting with(x1; : : : ; xk).In other words: Fk is a pessimistic guesser for Fn;it may underestimate but never overestimate. If thevalue of Fk tells us that a branch can be discarded, weare sure that this is never unjusti�ed.15.3.1 Branch-and-BoundIn a certain sense more information can be expressedin these functions Fk than in the two-valued functionsthat we constructed for the enumeration problem. Wecan use this information systematically: as soon as wehave constructed one complete sequence (x1; : : : ; xn),we know a bound for the minimal value of the solu-tion, that we can use to reject those partial sequences(x1; : : : ; xk) that can never lead to a better result. Aswe �nd better and better solutions we can thereforereject larger and larger parts of the selection tree forwhich we �nd Fk � bound .Symbolically we can indicate this in the form of aselection tree that has been distorted in such a waythat the length of a path from the root is equal tothe value that the criterion function Fn assumes for it(Fig. 15.6.This variant of the backtrack algorithm is called theBranch-and-Bound algorithm | a name that capturesboth the branching of the selection tree and the bound-ing by solutions already found.15.4 Example: Shortest routeBetween a collection of cities, numbered consecutivelyfrom 1 to n, exists a system of roads, so that betweeneach pair of cities i and j there may be either no127



connection at all or a direct connection of some spe-ci�c length dwij (a real number). See the example inFig. 15.7.

Figure 15.7: Road system with distancesWe are looking for an algorithm shortest route(i,j) that computes the length of a shortest route from ito j. Of course there may be more than one shortestroute, but in that case they all have the same length.How do we indicate that there is no direct way fromi to j? We shall encode this by giving a su�cientlylarge value to dw[i][j], for example infinite, so thatif there is a shortest route, it will have a length smallerthan infinite.The matrix dw is symmetric (unless we introduce oneway roads).LET number of cities = ...;ROW number of cities ROW number of citiesREAL VAR dw;REAL CONST infinite :: maxreal /real(number of cities);learn system of roads;ask for i and j;compute shortest route from i to j.We consider a route consisting of sequences of con-nected direct ways and choose as variables the citiesover which they go. In terms of the de�nition of theoptimization problem: �nd that sequence of direct con-nections (starting in i, and forming a loopfree con-nected path ending in j) for which the sum of thelengths is minimal, i.e. minimizeFn(x1; : : : ; xn) = dw(x1; x2) + dw(x2; x3) +: : :+ dw(xn�1; xn)with x1 = i and xn = j, n � 1.As partial criterion functions Fk we obviously mustchoose the length of the path from i to k. This choiceis meaningful, because for every route from i to j thatstarts with the segment i; : : : ; k must hold:Fn(x1; : : : ; xk; : : : ; xn) � Fk(x1; : : : ; xk).The essential part of the backtrack algorithm is

continuations from p:INT VAR q;FOR q UPTO number of citiesREP IF there is a direct way from p toq THEN increase partial length withthat direct way;try continuations via q;reduce partial length withthat direct wayFIENDREP.As soon as one route has been found, its length will be abound for the partial criterion functions. If the lengthof some partial route exceeds the bound we need notlook at any of its continuations, they will all exceedthat bound. Every time we �nd a new route whoselength is less than the bound, we adjust the value ofthe bound.try continuations via q:via q to jIF partial length smaller than theboundTHEN IF q=jTHEN improve boundELSE on the path[q] := TRUE;continuations from q;on the path[q] := FALSEFIFI.In order to guarantee termination we will see to it thatthe path is loopfree. To that end we remember whichof the cities are on the path, keeping a BOOL variablefor each city. Observe that this information by itself isnot enough to reconstruct the path.The algorithm is started by taking a closer look atthe start point (since i might be equal to j). Initiallythe path length is zero and the bound is in�nite.We now can concretize this algorithm:compute shortest route from i to j:REAL VAR bound :: infinite;ROW number of cities BOOL VAR on thepath;no city is on the path;find shortest route(i, j, 0.0).no city is on the path:INT VAR c;FOR c UPTO number of citiesREP on the path[c] := falseENDREP.128



PROC find shortest route (INT CONST i, j,REAL CONST pathlength):IF no sense in continuingTHENELIF target reachedTHEN improve boundELSE try all continuationsFI.The parameter path length contains the accumulatedlength of the route started at i; it plays the role of theFk.no sense in continuing:path length >= bound.target reached:i = j.improve bound:bound := path length.Observe that this is always an improvement.try all continuations:INT VAR k;FOR k UPTO number of citiesREPtry continuation via kENDREP.try continuation via k:IF NOT on the path[k] ANDthere is a direct way from i to kTHENon the path[k] := TRUE;find shortest route(k, j, path length+ dw[i][k]);on the path[k] := FALSEFI.there is a direct way from i to k:dw[i][k] < infinite.ENDPROC find shortest route;This optimization algorithm can be turned into an enu-meration algorithm by simply modifying one re�ne-mentno sense in continuing:FALSE.We shall investigate the e�ect of the Branch-and-Bound heuristics by way of an example. As a measurefor the amount of work to be performed we take thenumber of times that the procedure find shortestroute is called. This number depends on the numberof cities, the number of direct ways in the matrix dwand on their distribution and ratios.We shall therefore generate repeatedly a \random"matrix with a speci�c density, i.e. of which a givenpercentage of the elements is not in�nite. We shallexclude the direct way from the �rst to the last city (i.e.with indices 1 and number of cities, respectively).

fill the matrix:INT VAR i, j;FOR i UPTO number of citiesREPdw[i][i] := infinite;FOR j FROM i+1 UPTO number of citiesREPREAL CONST distance :: between 0and 100; dw[i][j] := distance;dw[j][i] := distanceENDREPENDREP;dw[1][number of cities] := infinite;dw[number of cities][1] := infinite.We make use of the procedure random that, for eachcall, yields a pseudo-random real number between 0:0and 1:0.between 0 and 100:IF random < densityTHEN random * 100.0ELSE infiniteFI.By inserting a counter we now count the num-ber of calls in find shortest route (1, number ofcities, 0.0). Since backtrack algorithms show astrongly uctuating behaviour we average the resultover ten times. Still the numbers measured show wildjumps, and give no more than an idea of the be-haviour of both algorithms. Table 15.1 shows the re-sults of such a simulation. Especially for higher den-density number of enumeration branch-and-boundcities algorithm algorithm.1 5 7 68 12 1011 27 2014 52 3717 127 68.3 5 11 128 102 4011 1867 9914 4728 30517 > 10.000 1090.5 5 32 188 356 7711 > 10.000 28014 47117 1661Table 15.1: Number of calls of find shortest routesities, these numbers show a great advantage for theBranch-and-Bound method, but for large numbers ofcities this method too will presumably demand a pro-hibitive amount of calculation.It should be pointed out that the \random" choice ofthe dw[i][j] was not quite realistic: for a larger num-ber of cities, each city will be connected to a rather129



small proportion of neighbouring cities, whereas directconnections between distant cities will hardly ever oc-cur. With the density as the only parameter, we cannotmodel this behaviour satisfactorily. It might thereforebe that some version of the Branch-and-Bound methodmay be applicable to this problem even in realistic situ-ations. But for this simple \shortest distance" problemthere exist much more e�cient algorithms.15.5 Exercises1. (Permutations) Print all permutations of the num-bers 1 : n.2. (Cutting up) From a sheet of n by n a number ofsquares with di�erent whole-numbered sizes be-tween 1 and n � 1 have to be cut, such that thelargest possible part of the area of the sheet isused.3. (Partitions) Under a partition of an integer n > 0we understand a sequence x1; x2; : : : ; xm of inte-gers with xi > 0 and x1 + x2 + : : : + xm = n.Write a recursive program that �nds all di�erentpartitions of an integer which is read in.4. (Knight's tour) Write a recursive program that�nds one tour of a Knight over a chessboard of5 � 5, starting at a given starting point, such thatevery �eld is reached exactly once.5. (Paying in coins) A sum of money can be com-posed in di�erent ways out of a collection of coins.Write a recursive program that, given an amountand a system of coins, decides in how many di�er-ent ways this amount can be formed in that systemof coins. Try it out for various amounts < 1000and the following coin systems:(H) 10, 20, 50, 100, 200, 500,(NL) 1, 5, 10, 25, 100, 250,(FRG) 1, 2, 5, 10, 20, 50, 100, 200, 500,(SU) 1, 2, 3, 5, 10, 15, 20, 50, 100.6. (Knight's jumps) On an | otherwise empty |chessboard stands a Knight. Write a recursive al-gorithm that, given the position of the Knight,marks all �elds of the chessboard with the mini-mum number of jumps in which the Knight canreach that �eld.7. (Camels) In a tunnel two caravans meet, each con-sisting of n camels, the nose of one camel touchingthe tail of his predecessor. Between the caravansis a free position exactly the size of a camel. Theinitial situation for n = 4 may, for example, berepresented as pppp qqqq.A camel standing before that empty place canwalk one camel length forward. A camel whichis separated from that empty place by one othercamel can jump over that other camel.

Give a shortest sequence of camel movements thatexchanges the positions of the two caravans.8. (Spiral) Write a program that prints a narrow-est right-going spiral of 100 �elds, starting to thenorth in the origin (0; 0). Each �eld of the spi-ral is a unit square which must have one side incommon with its direct predecessor and its directsuccessor, and may not have a side or a corner incommon with any other part of the spiral. Someof the �elds of the board may contain a barricadewhich may also not be touched by the spiral.Backtrack problems galore can be found in games andpuzzles or as optimization problems in Operations Re-search.

130



Chapter 16Transforming recursion to iterationConsider an iterative algorithm with a form likea;WHILE b REP c ENDREP;dObviously, it can be rewritten into an equivalent recur-sive formPROC bc:IF b THEN c; bc FIENDPROC bc;a; bc; dIn this chapter we shall inquire into the possibility ofturning a recursive algorithm into an equivalent itera-tive version, which is not always simple.The most important reason for which we discuss thissubject is that it throws an illuminating light on thechoices and the degrees of freedom in programming.In this chapter we shall restrict ourselves to proce-dures with one single parameter, of the formPROC p (INFO CONST x):IF c(x)THENn(x); p(f(x)); m(x)ELSEd(x)FIENDPROC p;in which c(x), d(x), n(x), f(x) and m(x) stand forpieces of program in which x may appear, but which donot contain local declarations that have an applicationin one of the other pieces. The parameter x is thereforethe only local object. For the abstract type INFO anyconcrete type may be assumed.16.1 Eliminating right recursionWe speak about right recursion if the recursive callis executed immediately before the procedure termi-nated. Consider the following example of a right-recursive procedure

PROC p (INFO CONST x):IF c(x)THENn(x); p(f(x))ELSEd(x)FIENDPROC p;As usual, c(x), d(x), n(x) and f(x) are pieces of pro-gram in which x may occur and p(f(x)) is a recursivecall of p.We can eliminate the right recursion by the intro-duction of an auxiliary variable x1 and a WHILE-formPROC p (INFO CONST x):INFO VAR x1:: x;WHILE c(x1)REPn(x1);x1:= f(x1)ENDREP;d(x1)ENDPROC p;The equivalence of both procedures can be proved byinduction. Notice that both programs generate the se-quencen(x);n(f(x)); : : : ;n(f(f(: : : f(x) : : :))| {z }(n�1) times ); d(f(f(: : : f(x) : : :))| {z }n times );provided all elements of the sequencec(x); c(f(x)); : : : ; c(f(f(: : : f(x) : : :))| {z }(n�1) times )are true and the callc(f(f(: : : f(x) : : :))| {z }n times )yields false.Let us take as an example a procedure to calculatethe sum of the �rst n of a given row of reals:REAL VAR total:: 0.0;131



PROC summate (INT CONST n):IF n >= 1THENtotal INCR row[n];summate(n-1)FIENDPROC summate;After transformation and simpli�cation we obtainREAL VAR total:: 0.0;PROC summate (INT CONST n):INT VAR n1:: n;WHILE n1 >= 1REPtotal INCR row[n1];n1 DECR 1ENDREPENDPROC summate;16.2 Application to QuicksortIn applying this transformation toPROC quicksort (INT CONST lwb, upb):IF upb-lwb > 0THENINT VAR p, q;split(lwb, upb, p, q);quicksort(lwb, q);quicksort(p, upb)FIENDPROC quicksort;we can eliminate only the last recursive call. The trans-formation is also complicated by the fact that the localvariables p and q occur in the calls of quicksort. How-ever, the declaration of p and q can without any prob-lems be shifted outside the repetition. Some puzzlingleads toPROC quicksort (INT CONST lwb, upb):INT VAR lwb1:: lwb, upb1:: upb, p, q;WHILE upb1 - lwb1 > 0REPsplit(lwb1, upb1, p, q);quicksort(lwb1, q);lwb1:= pENDREPENDPROC quicksort;The assignment lwb1:= p is crucial. It corresponds tox1:= f(x1) of the transformation scheme. The proce-dure obtained in this way is somewhat faster than theoriginal and uses somewhat less auxiliary memory. Itis no longer right-recursive but still contains a middlerecursion.A further improvement can be achieved by exploitingthe fact that the intervals [lwb1:q] and [p:upb1] willin all probability not have the same length. If we gointo recursion only for the shorter interval, we may

materially reduce the recursion depth. This idea leadsto PROC quicksort (INT CONST lwb, upb):INT VAR lwb1:: lwb, upb1:: upb, p, q;WHILE upb1-lwb1 > 0REPsplit(lwb1, upb1, p, q);IF q-lwb1 < upb1-pTHENquicksort(lwb1, q);lwb1:= pELSEquicksort(p, upb1);upb1:= qFIENDREPENDPROC quicksort;Observe that we make here a creative use of the over-speci�cation signalled before in the order of sorting ofboth halves.Right recursion can be eliminated so easily that somecompilers (for example for LISP but also for the lan-guage CDL2 in which ELAN was implemented) removeall right recursions automatically.16.3 Eliminating middle recur-sionIf recursion no longer takes place \at the right", thingsget more di�cult. Let us investigate the followingscheme:PROC p (INFO CONST x):IF c(x)THENn(x); p(f(x)); m(x)ELSEd(x)FIENDPROC p;The problem is that m(x) has to happen as often asn(x) and for the same sequence of arguments x, but inreverse order.The execution of p, as it depends on the number oftimes that c(x) yields true, can be depicted as follows(by ĉ we indicate the �rst call of c that yields false):none ĉ(x); d(x)once c(x); n(x); ĉ(f(x)); d(f(x)); m(x)twice c(x); n(x); c(f(x)); n(f(x));ĉ(f(f(x)));d(f(f(x))); m(f(x)); m(x)and so on.We must try to rewrite p to an iterative procedure insuch a way that in its execution the same sequence ofcalls of c, n, p, f and m occurs with the same argumentsas in executing the original procedure p.132



A possible solution makes use of a stack with valuesof type INFO.16.3.1 The stackBy a stack we mean a data structure for the stor-age of elements that later must be fetched back inthe reverse order of storing (\last-in-�rst-out", \LIFO-stack", \LIFO-list"). A physical model for such a stackcan be found in most cafeterias: a stack of plates fromwhich only at the top a plate can be removed or added(unless di�cult contortions are performed).A stack at any moment contains some number ofelements. If that number is zero, the stack is calledempty.Typical operations on a stack are:push add an element at the top. The number of ele-ments thereby increases by one.pop remove the element added last. The number ofelements decreases by one.Furthermore it can be asked (by means of a condition)whether the stack is empty. A stack may have a limi-tation on the number of elements, e.g. because a �xedamount of space has been reserved for it. In that caseit must also be possible to �nd out whether the stackis full, so that no further element can be added. (Ofcourse in real life every stack is limited in some way, be-cause cafeterias and computers are not in�nitely large.There may however be stacks whose maximum numberof elements cannot be computed in advance).A straightforward realization of a stack of elements(each of the abstract type EL) uses a row of elements.Such a row has a �xed number of elements, so that theupper limit is also �xed.With this representation we can realize the stack asfollows:make an empty stack:LET max = ...;ROW max EL VAR stack;INT VAR top:: 0.The integer variable top gives the index of the lastelement pushed, which is equal to the number of ele-ments in the stack. This variable should not assume avalue greater than max. The further operations can beindicated schematicallypush x:IF stack is fullTHENexplosionELSEtop INCR 1;stack[top]:= xFI.stack is full:top >= max.

pop x:IF stack is emptyTHENimplosionELSEx:= stack[top];top DECR 1FI.stack is empty:top < 1.In case of implosion or explosion there is probablynothing better to do than to report the problem andterminate the execution of the program.With the language mechanisms introduced in thenext volume of this book we can realize a stack some-what more elegantly (for example through a separatepacket that de�nes an abstract type STACK). Also it ispossible to choose such a representation (as a \linearlist") that the necessity to give an a priori limit tothe stack size disappears. We shall then return to thesubject of the stack.By the aid of a stack we can rewrite the procedureto:PROC p (INFO CONST x):make an empty stack;INFO VAR x1:: x;WHILE c(x1)REPn(x1);push x1;x1:= f(x1)ENDREP;d(x1);WHILE NOT stack is emptyREPpop x1;m(x1)ENDREPENDPROC p;It is easy to see that the stack contains the argumentsfor the calls of m to be performed later.This piece of program closely resembles the code thata compiler makes from the recursive version. We aredoing the work that a good compiler would do by itself.16.3.2 Example: Printing a naturalnumberLet us consider a recursive procedure print number forthe paper-saving printing of natural numbers, assum-ing the availability of a procedure print digit thatcan print one digit.The recursive solution given in section 12.1.1 is es-sentially:133



PROC print number (INT CONST n):IF n >= 10THENprint number(n DIV 10);print digit(n MOD 10)ELSEprint digit(n)FIENDPROC print number;Rewriting this with the use of a stack yields:PROC print number (INT CONST n):INT VAR n1:: n;make an empty stack;WHILE n1 >= 10REPpush n1;n1:= n1 DIV 10ENDREP;print digit(n1 MOD 10);WHILE NOT stack is emptyREPpop n1;print digit(n1 MOD 10)ENDREP.make an empty stack:ROW 12 INT VAR stack;INT VAR top:: 0.stack is empty:top < 1.We have assumed here that the integer range is suchthat the number has at most 12 digits. We therefore donot have to check explicitly that top does not becometoo large.push n1:top INCR 1;stack[top]:= n1.pop n1:n1:= stack[top];top DECR 1.ENDPROC print number;16.3.3 Using an inverse functionA simpler solution without the use of a stack is possiblewhen the following two conditions are met:� Besides the algorithm f(x) we also have its in-verse, g(y), such that for any x in the rangeg(f(x)) = x.� The function f(x) is strictly monoton (which isthe usual case in programming practice).If these conditions are met we can transform the recur-sive procedure to:

PROC p (INFO CONST x):INFO VAR x1:: x;WHILE c(x1)REPn(x1);x1:= f(x1)ENDREP;d(x1);WHILE x1 <> xREPx1:= g(x1);m(x1)ENDREPENDPROC p;This transformation is preferable when the computa-tion of the inverse of f is \cheaper" than the use of astack.We can see the formulation with a stack as a gen-eral technique to memorize the inverse rather than tocompute it.In the case of the procedure print number the �rstcondition is not met since in x1:= x1 DIV 10 infor-mation (namely, the remainder) is lost that cannot berecovered. Of course it must be possible to �nd an it-erative version, based on division by suitable powers often, but this cannot be obtained in an evident fashionby rewriting the procedure in the form given. This iscaused by the fact that in a sense we have not givenenough information explicitly as a parameter.
16.3.4 Complete parametrizationThe INFO parameter in the transformation schemesgiven is conceptually one single object that howevermay often have to be realized as more than one Elan-object. In this case the procedure obtains more thanone parameter (or a composed object as a parameter).These parameters together must contain all informa-tion that plays a role in the recursion. In the previousexample this can be achieved as follows.Rather than dividing n repeatedly by 10, we intro-duce an extra parameter, the power of ten by which wewant to divide, and leave n unchanged. To this end wedeclare a completely parametrized recursive auxiliaryprocedure to which we shall give the tremendous nameprint number1.PROC print number (INT CONST n):print number1(n, 1)ENDPROC print number;134



PROC print number1 (INT CONST n, power often):IF n DIV power of ten >= 10THENprint number1(n, 10 * power of ten);print digit(n DIV power of ten MOD10)ELSEprint digit(n DIV power of ten)FIENDPROC print number1;In comparison to the scheme given above, the parame-ter INFO CONST x has been split into two objects INTCONST n, power of ten. The (symbolic) assignmentx1 := f(x1) of the pattern must therefore be realizedas two assignments, one for each of the components.Also, n(x1) turns out to be empty, so that only thisassignment ends up in the �rst repetition.Applying this transformation to print number1leads to:PROC print number1 (INT CONST n, power often):INT VAR n1:: n, power of ten1:: powerof ten;WHILE n1 DIV power of ten1 >= 10REPn1:= n1;power of ten1:= 10 * power of ten1ENDREP;print digit(n1 DIV power of ten1 MOD10);WHILE n1 <> n OR power of ten1 <> powerof tenREPn1:= n1;power of ten1:= power of ten1 DIV 10;print digit(n1 DIV power of ten1 MOD10)ENDREPENDPROC print number1;The procedure print number1 is now iterative and iscalled only once. We substitute its body for the callin print number, remove the spurious variable n1 andmake some further small simpli�cations with as result:PROC print number (INT CONST n):INT VAR power of ten:: 1;WHILE n DIV power of ten >= 10REPpower of ten:= power of ten * 10ENDREP;print digit(n DIV power of ten MOD 10);WHILE power of ten <> 1REPpower of ten:= power of ten DIV 10;print digit(n DIV power of ten MOD10)ENDREPENDPROC print number;

A further simpli�cation is possible but this is alreadya quite respectable iterative program.16.3.5 Other methods to remove recur-sionIn closing we want to mention two other points of viewfrom which a transformation of recursion to iterationwith the aid of a stack can be performed.The �rst point of view is the incarnation stack : as-sociate with every incarnation of the procedure one el-ement in the stack, that comprises both the values ofthe parameters and its eventual local variables. A callof the procedure is turned into a repetition of the bodyof that procedure after the element belonging to thecurrent incarnation has been stacked. After each rep-etition of the body one element is popped.Yet another point of view is possible: looking uponthe stack as a set of tasks to be performed. As anexample, in a iterative version of Quicksort the stackwill contain a number of intervals yet to be sorted.We will not elaborate on these ideas because the re-sult resembles greatly the use of the stack already men-tioned, only the motivation is di�erent.16.4 ConclusionIt is not the intention of the transformations given toserve as a complete recipe, but to show the essenceof such transformations. In every concrete case somebrainracking and legwork will be necessary before sucha transformation succeeds. Some further transforma-tion rules can be found in [BIR77].As long as our translators do not become apprecia-bly smarter and as long as computing time is moreexpensive than human time, there may be situationsin which it may be worthwhile to rewrite a recursivealgorithm in an iterative version.The elimination of recursion from an algorithm hasa very limited e�ect on its speed. Often however it ispossible to eliminate simultaneously the (implicit) useof a stack for the recursion (which concludes in usingless memory).The correctness of the resulting iterative algorithmis generally di�cult to see, but can be guaranteed bystarting out with a correct recursive version and trans-forming this while retaining correctness. A numberof important algorithms have had such a developmenthistory.Increasingly a speci�c school of programmingmethodology is developing, that looks upon program-ming as a repeated transformation process (from ideavia formal speci�cation via correct but ine�cient re-alization to correct and also e�cient realization). Anexposition of this attitude can be found in [BAU76].16.5 Exercises1. Eliminate also the mid-135



dle recursion from quicksort by making use ofa stack. This can most simply be done by tem-porarily introducing an auxiliary procedure PROCquicksort1 (INT VAR p, q) which is explicitlyparametrized with the boundaries p and q and hasglobal access to the row f.2. Eliminate the middle recursion from the programfor the 8 Queens. A separate stack turns out to beunnecessary because the row column queen canplay that role. Then compare the result with thatin [WIR71].3. Eliminate for as far as possible the recursion froma procedure computing the Ackermann functionack(m;n) = m = 0 ! n+ 1m 6= 0; n = 0 ! ack(m� 1; 1)m 6= 0; n 6= 0 ! ack(m� 1; ack(m;n� 1))This exercise demands quite a lot of inventivenessand perseverance. Further information about thisfunction can be found in, for example, [SUN71].

136



Appendix AGrammar of ElanThe following context-free grammar of Elan isa paraphrase of the o�cial syntactic description[HOM79], in which the terminology at a number ofplaces is chosen di�erently, and including a few revi-sions of the syntax that have later been agreed uponby the Elan community.We give a complete context-free grammar in the no-tation of chapter 11. It can be seen as a recapitulationof the syntax diagrams that occur here and there inthe text, but it also contains those constructs of Elanthat have not yet been introduced.There is a good reason why we do not simply reprintthe syntax diagrams: the mechanism of syntax dia-grams has the advantage of being immediately obvi-ous to the beginner, but it has the danger that greatamounts of information can be introduced in one pic-ture, while the abstraction (in the form of useful in-termediate concepts) is lost. The use of a context-freegrammar is much more conducive to a careful \re�n-ing" of the concepts than the use of pictures, whilst re-taining the overall view. Furthermore there exist manypeople (like the author) who can better memorize ahierarchical system of carefully formalized de�nitionsthan collections of two-dimensional pictures.A.1 Syntactic abbreviationsIn order to keep this syntax short and concise, we makeuse of a number of conventions for omitting redundantrules. For example, in the grammar we shall need theconcept of a list of identi�ers, with a syntax rule likeidenti�er|list:identi�er;identi�er, comma|token, identi�er|list.But we shall also have unit|list, with a similar rule;and there will be still more forms of lists. We thereforeintroduce the convention that for any notion of theform N|list (in which N stands for some word) we canassumea1) N|list: N; N, comma|token, N|list.Applied to the word unit, this leads tounit|list:unit;unit, comma|token, unit|list.

Of course this is yet another device to increase the ab-straction and enhance the readability of the grammar.Further abbreviations are:a2) N|option: N; .Something that is optional may be left out.a3) N|sequence: N; N, N|sequence.A sequence of things consists of one or more of thosethings, one after another. Notice the di�erence: inan N|list there is a separator, the comma|token, be-tween two consecutive elements, but there is no sepa-rator in an N|sequence.a4) N|pack: open|token, N|list, close|token.A pack is a list enclosed between parentheses.a5) N|token: comment|option, N-symbol.This rule expresses the fact that a comment is allowedbefore each symbol | although most symbols will notbe preceded by a comment. At the end of this chapter,the representations of symbols are listed.A.2 Programs and packetselan-program:packet|sequence|option, main-packet.In the sublanguage Elan-0 packets have not been im-plemented.packet:packet-head, packet-body, packet-tail.packet-head:packet|token, packet-name, packet-interface,colon|token.packet-interface:export-interface.Elan has no explicit import-interfaces. A packet im-plicitly imports everything that preceding packets haveexported.export-interface:de�nes|token, export-name|list.137



The export-interface contains the names of those en-tities, de�ned in the packet, that are made visible insubsequent packets. Re�nements and variables can notbe exported.packet-body:packet-paragraph, re�nement-train|option;packet-paragraph, re�nement-train|option,period|token, packet-body|option.packet-paragraph:packet-unit;packet-unit, semicolon|token, packet-paragraph.packet-unit:basic-declaration;closed-declaration;expression.Closed-declarations can only occur in a packet-paragraph. They form the Bottom-Up part of thepacket.packet-tail:end-packet|token, packet-name|option,semicolon|token.main-packet:packet-body.An Elan-1 program has the form of a packet-body.A.3 Procedures and operatorsprocedure-declaration:procedure-head, procedure-body, procedure-tail.procedure-head:result|option, proc|token, procedure-name,formal-parameter-speci�cation|pack|option,colon|token.result:type-declarer.formal-parameter-speci�cation:formal-declarer, formal-parameter-name|list.procedure-body:paragraph, re�nement-train|option.An Elan-0 program has the form of a procedure-body.paragraph:unit;unit, semicolon|token, paragraph;.A paragraph obtains the type and yields the value ofits last unit. Notice that a paragraph may be empty, inwhich case it yields no value and is of the (hypothetical)type VOID.unit:basic-declaration;expression.procedure-tail:end-proc|token, procedure-name|option.

operator-declaration:operator-head, operator-body, operator-tail.operator-head:result|option, op|token, operator-name,formal-parameter-speci�cation|pack, colon|token.operator-body:procedure-body.operator-tail:endop|token, operator-name|option.A.4 Re�nementsre�nement-train:period|token, re�nement, re�nement-train|option.re�nement:re�nement-head, re�nement-body.re�nement-head:re�nement-name, colon|token.re�nement-body:paragraph.A.5 DeclarationsThe scope of a declaration occurring in a procedure-body is that procedure-body; the scope of a declarationoccurring outside a procedure-body is the directly sur-rounding packet and (where the object-declarer is ex-ported) all following packets.basic-declaration:object-declaration;synonym-declaration.A basic-declaration is a VOID unit.object-declaration:object-declarer, object-association|list.object-association:object-name, object-initialization|option.A variable may have an initialization, but a constantmust have one.object-initialization:initial|token, expression.synonym-declaration:let|token, synonym-association|list.synonym-association:synonym-value-association;synonym-type-association.synonym-value-association:synonym-value-name, equal|token, denoter.synonym-type-association:synonym-type-name, equal|token, type-declarer.closed-declaration:procedure-declaration;operator-declaration;type-declaration.138



The closed-declaration is not implemented in Elan-0.type-declaration:type|token, type-association|list.type-association:type-name, equal|token, type-declarer.A.6 Declarersobject-declarer:type-declarer, access-declarer|option.access-declarer:const|token;var|token.A missing access-declarer is assumed to be CONST.type-declarer:elementary-type-declarer;composed-type-declarer.elementary-type-declarer:concrete-type-declarer;abstract-type-declarer.concrete-type-declarer:int|token;real|token;bool|token;text|token.abstract-type-declarer:type-name.composed-type-declarer:row-declarer;struct-declarer.row-declarer:row|token, cardinality, type-declarer.cardinality:denoter;synonym-value-name.The cardinality of a row must be of type INT, and eithera denoter or a synonym for one.struct-declarer:struct|token, �eld-speci�cation|pack.�eld-speci�cation:type-declarer, �eld-name|list.formal-declarer:object-declarer;procedure-declarer.procedure-declarer:result|option, proc|token, parameter-declarer|pack|option.parameter-declarer:formal-declarer.

A.7 ExpressionsAn expression is a formula, which is either a primary,or is composed of other formulae by means of opera-tors, according to their priorities. In appendix B, theavailable operators are listed, together with the typesof their operands and results.expression:priority-i-formula.priority-i-formula:priority-ii-formula, rest-priority-i-formula.rest-priority-i-formula:priority-i-operator, priority-i-formula;.priority-ii-formula:priority-iii-formula, rest-priority-ii-formula.rest-priority-ii-formula:priority-ii-operator, priority-ii-formula;.priority-iii-formula:priority-iii-i-formula, rest-priority-iii-formula.rest-priority-iii-formula:priority-iii-operator, priority-iii-formula;.priority-iii-i-formula:priority-iii-ii-formula, rest-priority-iii-i-formula.rest-priority-iii-i-formula:priority-iii-i-operator, priority-iii-i-formula;.priority-iii-ii-formula:priority-iii-iii-formula, rest-priority-iii-ii-formula.rest-priority-iii-ii-formula:priority-iii-ii-operator, priority-iii-ii-formula;.priority-iii-iii-formula:priority-iii-iii-i-formula, rest-priority-iii-iii-formula.rest-priority-iii-iii-formula:priority-iii-iii-operator, priority-iii-iii-formula;.priority-iii-iii-i-formula:priority-iii-iii-ii-formula, rest-priority-iii-iii-i-formula.rest-priority-iii-iii-i-formula:priority-iii-iii-i-operator, priority-iii-iii-i-formula;.priority-iii-iii-ii-formula:priority-iii-iii-iii-formula, rest-priority-iii-iii-ii-formula.rest-priority-iii-iii-ii-formula:priority-iii-iii-ii-operator, priority-iii-iii-ii-formula;.priority-iii-iii-iii-formula:monadic-operator, priority-iii-iii-iii-formula;primary.139



A.8 Primariesprimary:compact-primary;open-primary.compact-primary:simple-primary;closed-primary.simple-primary:denoter;entity-name.closed-primary:choice;repetition;display;open|token, expression, close|token.choice:conditional-choice;numerical-choice.conditional-choice:if|token, condition, then-part, else-part|option,end-if|token.condition:expression.A condition must have type BOOL.then-part:then|token, paragraph.else-part:else|token, paragraph;elif|token, condition, then-part, else-part|option.numerical-choice:select|token, expression, of|token,case-part|sequence, otherwise-part|option, end-select|token.The expression after the select|token must have typeINT.case-part:case|token, case-label|list, colon|token, para-graph.case-label:denoter;synonym-value-name.otherwise-part:otherwise|token, paragraph.repetition:for-part|option, while-part|option, repeat|token,repetition-body, until-part|option, end-repeat|token.for-part:for|token, variable-name, from-part|option,direction-part|option.from-part:from|token, expression.

direction-part:upto|token, expression;downto|token, expression.while-part:while|token, condition.repetition-body:paragraph.until-part:until|token, condition.display:sub|token, expression|list, bus|token.open-primary:call;subscription;selection;abstractor;concretizer;terminator.call: primary, open|token, actual-parameter|list,close|token.The primary must be a procedure, to which the actualparameters agree in number and type.actual-parameter:expression;procedure-declarer, procedure-name.subscription:primary, sub|token, expression, bus|token.The primary must be (or yield) a row. The expressionmust be of type INT.selection:primary, period|token, �eld-name.The primary must be (or yield) a structure, and the �eldname must be the name of one of its �elds.abstractor:type-name, colon|token, compact-primary.The abstractor serves to denote abstract values.concretizer:concr|token, compact-primary.The concretizer serves to break the abstraction of avalue and to obtain its realization.terminator:leave|token, algorithm-name, premature-result|option.A re�nement x may be left either from within itself,or from within one of the re�nements that x directlyor indirectly invokes. The premature-result yields thevalue, if any, that is yielded by the re�nement left.premature-result:with|token, compact-primary.140



A.9 Namesexport-name:constant-name;procedure-name;operator-name;type-name.formal-parameter-name:variable-name;constant-name;procedure-name.entity-name:object-name;procedure-name;re�nement-name;synonym-value-name.algorithm-name:procedure-name;operator-name;re�nement-name.object-name:constant-name;variable-name.constant-name:identi�er.variable-name:identi�er.procedure-name:identi�er.re�nement-name:identi�er.synonym-value-name:identi�er.�eld-name:identi�er.packet-name:identi�er.type-name:bold-identi�er.synonym-type-name:bold-identi�er.bold-operator-name:bold-identi�er.operator-name:bold-identi�er;special-identi�er.identi�er:letter, letgit|sequence|option.letgit:letter;digit.bold-identi�er:bold-letter, bold-letter|sequence|option.

special-identi�er:equal|token;not-equal|token;less|token;less-equal|token;greater|token;greater-equal|token;plus|token;minus|token;asterix|token;divide|token;int-div|token;obelix|token;becomes|token;initial|token.A.10 Operatorspriority-i-operator:becomes|token.priority-ii-operator:bold-operator-name.priority-iii-operator:or|token;xor|token.priority-iii-i-operator:and|token.priority-iii-ii-operator:equal|token;not-equal|token;less|token;less-equal|token;greater|token;greater-equal|token.priority-iii-iii-operator:plus|token;minus|token.priority-iii-iii-i-operator:asterix|token;divide|token;int-div|token;modulo|token.priority-iii-iii-ii-operator:obelix|token.Because the asterix|token happens to be an aster-isk, the unwieldy sign for exponentiation obtained thename obelix|token.monadic-operator:not|token;plus|token;minus|token;bold-operator-name.A.11 Denotersdenoter:comment|sequence|option, denotation.141



denotation:int-denotation;real-denotation;bool-denotation;text-denotation.int-denotation:digit|sequence.real-denotation:digit|sequence, period-symbol,digit|sequence, exponent-part|option.exponent-part:exponent-symbol, sign|option, digit|sequence.sign:plus-symbol;minus-symbol.bool-denotation:true-symbol;false-symbol.text-denotation:quote-symbol, text-item|sequence|option, quote-symbol.text-item:quote-image;character-image;any-character-except-quote-symbol.quote-image:quote-symbol, quote-symbol.character-image:quote-symbol, digit|sequence, quote-symbol.The character-image serves to denote a character witha speci�c code (indicated by the digit|sequence).A.12 CommentsAccording to the abbreviation rule a5), any symbolmay be preceded by a comment. A comment has nomeaning within the language (but it may be useful forother reasons).comment:comment-open-symbol, comment-item|sequence|option,comment-close-symbol.comment-item:(* any symbol other than a comment-open-symbolor comment-close-symbol*).A.13 RepresentationsThe representations of the symbols mentioned are asfollows:

packet-symbol PACKETendpacket-symbol ENDPACKET END PACKETde�nes-symbol DEFINEScolon-symbol :comma-symbol ,semicolon-symbol ;period-symbol .proc-symbol PROCend-proc-symbol ENDPROC END PROCop-symbol OPend-op-symbol ENDOP END OPopen-symbol (close-symbol )sub-symbol [bus-symbol ]initial-symbol ::equal-symbol =let-symbol LETtype-symbol TYPEint-symbol INTreal-symbol REALbool-symbol BOOLtext-symbol TEXTrow-symbol ROWstruct-symbol STRUCTconst-symbol CONSTvar-symbol VARif-symbol IFend-if-symbol FI ENDIF END IFthen-symbol THENelse-symbol ELSEelif-symbol ELIFselect-symbol SELECTof-symbol OFend-select-symbol ENDSELECT END SELECTcase-symbol CASEotherwise-symbol OTHERWISErepeat-symbol REP REPEATend-repeat-symbol ENDREP ENDREPEATEND REP END REPEAT PERfor-symbol FORfrom-symbol FROMupto-symbol UPTOdownto-symbol DOWNTOwhile-symbol WHILEuntil-symbol UNTILconcr-symbol CONCRleave-symbol LEAVEwith-symbol WITHbecomes-symbol :=or-symbol ORxor-symbol XORand-symbol AND142



not-equal-symbol <>less-symbol <less-equal-symbol <=greater-symbol >greater-equal-symbol >=plus-symbol +minus-symbol -divide-symbol /int-div-symbol DIV %modulo-symbol MODasterix-symbol *obelix-symbol **not-symbol NOTquote-symbol "comment-open-symbol f (*comment-close-symbol g *)
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Appendix BStandard packetsA number of concrete algorithms, objects and typesis available in Elan thanks to the standard packets,which (are supposed to) precede the program itself andwhose exports are therefore available in the program.In particular, this is the way in which the four concretetypes and their operations are introduced.The following overview shows the most importantstandard algorithms, objects and types of Elan in theforms of declarations or of (procedure or operator)headings. From the headings can be deduced for whattypes of arguments the various operations are de�ned,and what their resulting type is.By means of a dot in the left margin we shall indicatethat the particular declaration is also part of Elan-0.The Elan-1 and EUMEL implementations include thefull standard prelude. Similarly, a plus in the marginwill indicate a (non-standard) extension, available inElan-0 and Elan-1.B.1 Priorities of operatorsThe following list shows the priorities of all operatorsof the ELAN standard packets, using 10 as the highestlevel of priority and 1 as the lowest.1. The assignment := (including the initialization::).2. All abstract dyadic operators (i.e. those de�ned bythe user) as well as SUB and the assigning opera-tions INCR, DECR and CAT.3. OR XOR4. AND5. = <>6. <= < >= >7. Dyadic + and -.8. * / DIV MOD9. **10. All monadic operators, such as +, -, LENGTH, ABS,SIGN and NOT.

B.2 Integer. TYPE INT. PROC get (INT VAR x):. PROC put (INT CONST x):. BOOL OP = (INT CONST x, y):. BOOL OP <> (INT CONST x, y):. BOOL OP < (INT CONST x, y):. BOOL OP <= (INT CONST x, y):. BOOL OP > (INT CONST x, y):. BOOL OP >= (INT CONST x, y):. INT OP + (INT CONST x, y):. INT OP - (INT CONST (x, y):. INT OP * (INT CONST x, y):. INT OP DIV (INT CONST x, y):. INT OP MOD (INT CONST x, y):INT OP ** (INT CONST x, y):. INT OP + (INT CONST x):. INT OP - (INT CONST x):. OP INCR (INT VAR x, INT CONST y):. OP DECR (INT VAR x, INT CONST y):INT OP SIGN (INT CONST x):INT OP ABS (INT CONST x):INT PROC sign (INT CONST x):INT PROC abs (INT CONST x):BOOL PROC even (INT CONST x):BOOL PROC odd (INT CONST x):INT PROC max (INT CONST a, b):INT PROC min (INT CONST a, b):INT PROC trunc (REAL CONST x):INT PROC round (REAL CONST x):INT PROC int (TEXT CONST x):INT CONST maxintB.3 RealIn Elan-0, the type REAL with its operators is not im-plemented.TYPE REAL145



PROC get (REAL VAR x):PROC put (REAL CONST x):BOOL OP = (REAL CONST x, y):BOOL OP <> (REAL CONST x, y):BOOL OP < (REAL CONST x, y):BOOL OP <= (REAL CONST x, y):BOOL OP > (REAL CONST x, y):BOOL OP >= (REAL CONST x, y):REAL OP + (REAL CONST x, y):REAL OP - (REAL CONST x, y):REAL OP * (REAL CONST x, y):REAL OP / (REAL CONST x, y):REAL OP / (INT CONST x, y):REAL OP MOD (REAL CONST x, y):REAL OP ** (REAL CONST x, INT CONST y):REAL OP ** (REAL CONST x, y):REAL OP + (REAL CONST x):REAL OP - (REAL CONST x):OP INCR (REAL VAR x, REAL CONST y):OP DECR (REAL VAR x, REAL CONST y):INT OP SIGN (REAL CONST x):REAL OP ABS (REAL CONST x):INT PROC sign (REAL CONST x):REAL PROC abs (REAL CONST x):REAL PROC max (REAL CONST a, b):REAL PROC min (REAL CONST a, b):REAL PROC real (INT CONST x):REAL PROC real (TEXT CONST x):REAL CONST smallreal, maxrealREAL CONST piREAL PROC sqrt (REAL CONST x):REAL PROC sin (REAL CONST x):REAL PROC cos (REAL CONST x):REAL PROC tan (REAL CONST x):REAL PROC arctan (REAL CONST x):REAL PROC arccos (REAL CONST x):REAL PROC arcsin (REAL CONST x):REAL CONST eREAL PROC exp (REAL CONST x):REAL PROC ln (REAL CONST x):REAL PROC log10 (REAL CONST x):REAL PROC log2 (REAL CONST x):B.4 Text. TYPE TEXT

. PROC get (TEXT VAR t):PROC get (TEXT VAR t, INT CONSTmaxlen):PROC get (TEXT VAR t, TEXT CONSTdelimiter):. PROC put (TEXT CONST t):. BOOL OP = (TEXT CONST x, y):. BOOL OP <> (TEXT CONST x, y):. BOOL OP < (TEXT CONST x, y):. BOOL OP <= (TEXT CONST x, y):. BOOL OP > (TEXT CONST x, y):. BOOL OP >= (TEXT CONST x, y):. INT OP LENGTH (TEXT CONST t):INT PROC length (TEXT CONST t):. TEXT OP + (TEXT CONST x, y):. OP CAT (TEXT VAR x, TEXT CONST y):. TEXT OP * (INT CONST i, TEXT CONST t):TEXT PROC compress (TEXT CONST t):TEXT PROC text (TEXT CONST t, INT CONSTlength):TEXT PROC text (TEXT CONST t, INT CONSTlength, from):TEXT PROC subtext (TEXT CONST t, INTCONST from):TEXT PROC subtext (TEXT CONST t, INTCONST from, to):. TEXT OP SUB (TEXT CONST t, INT CONSTp): PROC replace (TEXT VAR t,INT CONST from, TEXTCONST new):PROC change (TEXT VAR t, TEXTCONST old, new):PROC change all (TEXT VAR t, TEXTCONST old, new):INT PROC pos (TEXT CONST t1, t2):INT PROC pos (TEXT CONST t1, t2, INTCONST from):+ TEXT OP HEAD (TEXT CONST t):+ TEXT OP TAIL (TEXT CONST t):+ TEXT PROC ascii (INT CONST code):TEXT PROC text (INT CONST i):TEXT PROC text (REAL CONST r):TEXT CONST niltext :: ""TEXT CONST blank :: " "TEXT CONST quote :: """"B.5 Boolean. TYPE BOOL. BOOL CONST false, true146



. BOOL OP NOT (BOOL CONST b):. BOOL OP AND (BOOL CONST b1, b2):. BOOL OP OR (BOOL CONST b1, b2):BOOL OP XOR (BOOL CONST b1, b2):. BOOL OP = (BOOL CONST b1, b2):. BOOL OP <> (BOOL CONST b1, b2):B.6 File handlingIn standard Elan, a rather comprehensive �le handlingsystem is available, whereas the �le handling in Elan-0is much simpler but not according to the standard.B.6.1 Standard �le handlingThe standard �le handling is available in the Elan-1and EUMEL implementations.TYPE FILE, DIRFILEFILE PROC sequential file(TRANSPUTDIRECTION CONST d, TEXT CONSTident):FILE PROC direct file(TRANSPUTDIRECTION CONST d,TEXT CONSTident):TRANSPUTDIRECTION CONST input, output,updatePROC close (FILE CONST f):PROC close (DIRFILE CONST f):PROC erase (FILE CONST f):PROC erase (DIRFILE CONST f):PROC putline (FILE CONST f, TEXT CONSTt):PROC getline (FILE CONST f, TEXT VARt):INT PROC maxlinelength (FILE CONST f):INT PROC maxlinelength (DIRFILE CONSTf):INT PROC maxpagelength (FILE CONST f):PROC line (FILE CONST f):PROC line (FILE CONST f, INT CONST i):PROC page (FILE CONST f):PROC reset (FILE CONST f):PROC put (FILE CONST f, INT CONST i):PROC put (FILE CONST f, REAL CONST r):PROC put (FILE CONST f, TEXT CONST t):PROC get (FILE CONST f, INT VAR i):PROC get (FILE CONST f, REAL VAR r):PROC get (FILE CONST f, TEXT VAR t):PROC get (FILE CONST f,TEXT VAR t, TEXT CONSTdelimiter):PROC get (FILE CONST f, TEXT VAR t, INTCONST maxlen):

PROC putline (DIRFILE CONST f, TEXTCONST key, t):PROC getline (DIRFILE CONST f,TEXT CONST key, TEXT VARt):BOOL PROC opened (FILE CONST f):BOOL PROC opened (DIRFILE CONST f):BOOL PROC new (FILE CONST f):BOOL PROC new (DIRFILE CONST f):BOOL PROC eof (FILE CONST f):B.6.2 File handling in Elan-0The �le handling in Elan-0, as described in chapter 9of this book, is small and simple, but not according tothe standard. It is also available in the Elan-1 imple-mentation.+ PROC new file (TEXT CONST name):+ PROC old file (TEXT CONST name):+ PROC close file :+ PROC erase file (TEXT CONST name):+ PROC write (INT CONST x):+ PROC write (TEXT CONST x):+ PROC writeline :+ PROC read (INT VAR x):+ PROC read (TEXT VAR x):+ BOOL PROC file ended:B.7 Screen handling. PROC line:. PROC line (INT CONST i):PROC page:+ PROC cursor (INT CONST x,y):+ PROC get cursor (INT VAR x, y):INT CONST max line length+ PROC edit (TEXT VAR t, INT CONST p):B.8 Generating random num-bersPROC initialize random (INT CONST a):PROC initialize random (REAL CONST a):INT PROC random (INT CONST a, b):REAL PROC random:+ INT PROC choose128:
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