PROGRAMMING WITH ELAN

Partl: Top-Down Programming

The systematic design
of sequential algorithms
over simple data structures
and their realization
in Elan.

C. H. A. Koster
Informatics Department
University of Nijmegen

The Netherlands

November 17, 1998

Introduction

This textbook is intended for teachers, for students
in the first year of university and in high school as
well as for the more advanced students in secondary
schools who wish to acquire a solid understanding of
systematic programming.

In view of the wide range and diverse character of
the intended audience, it makes very few demands on
the knowledge of mathematics. The examples intro-
duced have been chosen such that they presume only
an elementary knowledge of mathematics, but of course
many illuminating and useful examples can be found
in that field. Some of the larger examples are con-
cerned wit certain application areas of Informatics, but
there is no orientation towards any particular applica-
tion area. The teacher or reader can add such an orien-
tation by the choice of suitable examples for practical
work.

The central issue of all programming methodologies
is the controlled use of abstraction. In this particu-
lar textbook we rely much more on linguistic abstrac-
tion than on mathematical abstraction. The language
used, the Educational Language Elan, can be seen as
a daughter of ALGOLG68, designed specifically for the
teaching and practice of systematic programming. The
didactic approach followed here can be applied in using
other languages, provided they possess the necessary
concepts. But only Elan is specially designed to sup-
port a number of systematic programming methods:

e Top-Down programming,

e recursive programming,

e Bottom-Up programming, and
e modular programming.

This first part deals predominantly with Top-Down
programming. It exploits the fact that, in Elan, the re-
finement is not a paper-and-pencil technique but a cen-
tral language mechanism, supported by a sophisticated
programming environment. It furthermore deals with
the possibilities offered by the exploitation of recursion.
The second part will be concerned with Bottom-Up and
Modular programming, and presupposes a good under-
standing of Top-Down programming.

This somewhat arbitrary and dogmatic division is
motivated by a difference in the intended audience: the
second part is aimed at a more professional user, who
wants to learn how to design and implement non-trivial
programs in a systematic fashion. The second part will
therefore also be much more formal in its approach.

The book attempts to be very careful and consistent
in the introduction of concepts and terms, both regard-
ing the programming language and regarding the pro-
gramming process itself. Standard terminology is used
as far as possible, but jargon is avoided. The concepts
and terms used here are not confined to Elan, but can
be used to understand programming in any language.
Once systematic programming in Elan has been mas-
tered, it should be easy to learn to use other languages
as well.

It should be pointed out that, apart from studying
the book, the hands-on experience of doing a number
of exercises is indispensable, in order to acquire the
necessary skills and to experience the possibilities and
limitations of the methods taught. For such practical
exercises, some computer with an Elan implementation
will have to be available.

From the publisher of this book, Ellis Horwood, in-
terpreters for two subsets of the full language can be
obtained. The smallest subset, Elan-0, is available on
small microcomputer systems and is sufficient for exer-
cises about the first ten chapters of the book. For the
rest of the book the larger subset, Elan-1, is needed,
which is available on MS-DOS computers and other
medium-size microcomputer systems. Another imple-
mentation (of full ELAN) is the EUMEL-system, avail-
able from the GMD, Postfach 1240, D-5205 St. Au-
gustin (Germany).

In order to avoid confusion between the different sub-
sets, it is clearly indicated in the text whenever some
remark applies only to a particular subset.

It is hoped that this book and the various Elan im-
plementations will provide a sensible alternative to BA-
SIC and an improvement over PASCAL in the teaching
of systematic programming.

Nijmegen, October 1988

C.H.A. Koster

Chapter 1

Algorithms

In programming we try to tell a computer what to
do, i.e. we describe what the computer should do in
such a form that the computer can obey that descrip-
tion. Such a description we call an algorithm. In formu-
lating algorithms we can learn quite a lot from study-
ing other descriptions, intended to tell people what to
do: instruction manuals, cooking recipes, knitting pat-
terns, and so on.

In this chapter we will investigate some algorithms
from daily life, and identify some important aspects of
algorithms. In particular we shall draw attention to
the importance of abstraction in the formulation of al-
gorithms. The chapter ends with a tentative definition
of the notion of algorithm.

1.1 Algorithms in daily life

The following examples, whether actual examples from
daily life or contrived, show a number of important
aspects of algorithms.

1.1.1 Paybox telephone

As a first example of an algorithm we give instructions
for the use of a public paybox telephone, such as might
be found next to the telephone.

INSTRUCTIONS FOR USE
1. Take the telephone from the hook,
2. wait for the dialtone,

3. put in coins,

4. choose the desired number.

Inspecting this algorithm somewhat more closely, we
notice a number of important points.

e The algorithm is a description that is intended to
guide the actions of a human being. The descrip-
tion is ezecutable, in contrast to the notice that the
telephone is property of the telephone company.

e The execution of the algorithm proceeds in steps.
The sequence of steps taken in a specific execution
of the algorithm we call a process described by that

algorithm. The executor of the algorithm, in this
case a human being, is called the processor.

One step in the execution of the algorithm consists
in its turn of the execution of one or more (other)
algorithms that are indicated in the algorithm by
a name (such as take the telephone from the
hook). In these instructions such named algo-
rithms are considered as elementary. The given al-
gorithm is composed from elementary algorithms.
Whoever wants to execute the algorithm must
know the elementary algorithms and be capable
of executing them. He must know the language
in which the algorithm is written; he must know
what a dialtone is and how to put in coins.

We demand from an algorithm that it is suffi-
ciently precise, i.e. that each step as well as the
order of their execution is not open to conflicting
interpretations. To that end, the algorithm must
be formulated at a suitable level of detail (level of
abstraction,).

In order to make clear how to take the phone from
the hook, we may of course indicate which hand
has to be extended to the phone (distinguishing
between left- and right-handed people), with what
force (in newtons) the various fingers have to grasp
the phone and with what speed that end of the
phone to which the cord is not connected has to
be moved with its flat side until it is no more than
one sixteenth of an inch from the right ear of the
processor (if the right ear is absent one has to take
the left ear). But this is by no means the end of
the story: we must define how and when the indi-
vidual muscles of hand and arm are to be applied.
In this way the description threatens to sink in a
bottomless swamp of more and more extensive de-
tails. Only a coherent choice of not too detailed el-
ementary algorithms (take the telephone from
the hook, wait for the dialtone) and a formu-
lation of the algorithm on the thus defined level of
abstraction allows us to be precise.

Precision entails the choice of a specific level of
abstraction.

The algorithm, i.e. the text of the description,
must be finite, and even short when the processor

is to be a human being. The execution of the algo-
rithm (the process) is not necessarily finite (think
of an algorithm for walking a treadmill).

1.1.2 Cooking recipe

In cookbooks one finds recipes, i.e. instructions for the
preparation of some food, written with a typical use of
language and typical notational conventions.

CHICKEN a LA MARSEILLAISE.

2 broilers, 6 tomatoes, 2 paprikas, 1/2 cup of white
wine, 1/2 cup of bouillon, 1/2 lemon, salt, pepper,
thyme and a clove of garlic.

Divide the broilers into pieces. Salt and pepper and
put into the clay pot, which has been soaked in water.
Add the finely cut paprikas, the quartered and peeled
tomatoes and the garlic. Add the white wine and
bouillon which has been seasoned with pepper, thyme
and lemon juice, mix thoroughly. Put the closed pot
into the oven and cook the dish at a temperature of
225 Centigrade in circa 90 minutes.

For a cook who is not too inexperienced this is a precise,
executable and, of course, finite description of a process
that he learns to know under the name of “preparation
of chicken & la Marseillaise” ([EXN70]).

The execution of this algorithm consists of the execu-
tion of other algorithms (cut, season) manipulating
objects (broilers, pepper). Again we notice a num-
ber of important aspects of this algorithm.

e At the start of the description a list is given of the
necessary ingredients that will be used in perform-
ing the algorithm. The algorithm describes opera-
tions on named objects, such as the peeling of the
tomatoes, and the cutting of the paprikas. Some
objects must be available for the execution of the
algorithm (input), others become available as the
result of the execution of the algorithm (output)
and yet others exist only during the process (local
objects).

e Objects can be elementary, i.e. indicated in the
algorithm by their name and showing no further
structure, or they can be considered as composed,
when their structure is essential to the execution of
the algorithm. In the previous example the tele-
phone consisted of a phone, a hook, a dial, etc.
This is also a matter of abstraction level — to
a chemist, salt can look quite different than to a
cook. And a physicist may even be interested in
the state of the sodium ions in the salt.

There is an interdependency between algorithms
and objects: the choice of the elementary objects
decides the level of detail of the elementary al-
gorithms operating on them and conversely, the
choice of the elementary algorithms fixes the kinds
of objects to which they are applied.

Together the algorithms and objects form the building

stones of the algorithmic universe, that we can subdi-
vide as follows:

algorithms

elementary algorithms
composed algorithms

objects
elementary objects

composed objects

1.1.3 Khnitting pattern

In fashion magazines one can find knitting patterns like
the following.

STRIPED PULLOVER (3 - 4 YEARS)
Materials: 250 gms middle weight dralon/mohair mix
in each of pink, white, dark green and light green.
Ribbing: 2 knit, 2 purl ending with purl.

Body: knit in stocking stitch (knit across and purl on
the way back).

Stitch tension: 26 stitches and 37 rows = 10 x 10 cm.
Stripe pattern: * 4 rows pink, 4 rows white, 4 rows
dark green, 4 rows light green, 2 rows pink, 2 rows
white, 2 rows dark green, 2 rows light green, repeat
from * three times ending with 4 rows pink, 4 rows
white, 4 rows dark green. Pattern equals 108 rows.
Back: Cast on 130 stitches in pink.

Begin with 4 rows of ribbing for the border then
continue in stocking stitch following the stripe
pattern. After 78 rows (21 cm) ...

Again we make a number of observations.

e The algorithm (of which we showed only a frag-
ment) consists of the description of a number
of sub-algorithms, such as Ribbing, Body or
Stripe pattern. These sub-algorithms in their
turn are described in terms of elementary algo-
rithms, such as purl and knit.

These sub-algorithms are defined in the algorithm
itself, and they can be invoked by mentioning their
name.

e Some of these sub-algorithms have parameters to
influence the result of their execution. As an ex-
ample, 4 rows white will give a white stripe in
the pullover, whereas 2 rows dark green will
give a somewhat smaller dark green stripe.

e In the sub-algorithm Stripe pattern the marker
* gerves to indicate a place from which a part of
it has to be repeated. The repetition is a descrip-
tional trick to keep the algorithm short.

e The algorithm contains a number of statements
that are not by themselves intended to be executed
(such as Stitch tension and Pattern equals

108 rows) but serve to allow a plausibility check
on the execution of the algorithm. They are re-
dundant but useful.

For somebody who does not know how to knit, this al-
gorithm is nearly incomprehensible. It is written in a
language that can be understood only by people who
know the elementary algorithms. But without the for-
malism, one would have to describe the movements
that the hands, the needles and the threads would have
to make during the knitting, which in itself would again
raise the problem of describing such movements.

However precisely one tries to describe some actions
algorithmically, there always remain some elementary
algorithms whose meaning is not indicated in the algo-
rithm. An algorithm is always written in such a way
that a great many details of the process described are
abstracted from. Such an abstraction is unavoidable.

One form of abstraction lies in the fact that we give
a name to an algorithm, so that this name can be used
in other places instead of a detailed algorithm (this
also leads to brevity in this description). Once one
knows what is the description of such an elementary
algorithm, at places where this algorithm has to be
applied it suffices to mention only its name. The ab-
stract algorithms form an extension of the elementary
algorithms.

1.1.4 Driving a car

The following example could have been taken from an
instruction manual for driving a car (on the continent
or in the U.S.A.).

STARTING FROM THE KERB

1. Wait until the direct environment of the car is free
(beware of playing children), apply the hand-brake,
put the gear shift into neutral and if the engine is
cold pull out the choke.

2. Push the start button briefly.
3. Repeat from step 2 if car engine is not running.
4. Look over left shoulder and wait until road is free.

5. Left foot: depress clutch.
Right hand: disengage hand-brake.

6. Left foot: keep clutch depressed.
Right hand: put into first gear.

7. Left foot: slowly lift clutch.
Right foot: push accelerator.
Both hands: turn steering wheel to the left.

8. Left foot: release clutch.
Right foot: push accelerator.
Both hands: turn the steering wheel so that the
car moves in the right direction.

Without concerning ourselves with the complexity or

correctness of this algorithm we make the following re-
marks about its structure.

e The algorithm consists of a number of steps that
have to be executed in the order indicated (serial
ezecution,).

e The first step consists of four parts that can be
performed in any order, or even simultaneously
(collateral execution,).

e The last three steps contain parts that have nec-
essarily to be performed simultaneously (parallel
execution,).

e Step 3 consists of the conditional repetition of step
2 and one of the parts of step 1 is also conditional.

The collateral parts of an algorithm can be performed
in parallel, provided sufficient processors, in this case
hands and feet, are available, but they can also be per-
formed in any order one after another or simultane-
ously without influencing the results (apart from some
influence on the execution time). The parallel parts of
the algorithm however have to be performed simulta-
neously in order to reach the desired result. We call
an algorithm sequential if it does not make any es-
sential use of parallelity. This algorithm therefore is
non-sequential.

For a number of reasons, non-sequential algorithms
are much harder to understand than sequential ones.
In the remainder of this book we therefore restrict our-
selves to sequential algorithms, in this way also laying
a basis for the understanding of non-sequential ones.

1.2 Summary

An algorithm is a precise, finite description of one or
more processes. This description is composed of other
algorithms and, ultimately, elementary algorithms.

An algorithm describes a process in the form of ma-
nipulations of objects that are composed of other ob-
jects and finally of elementary objects.

The structure of algorithms and the structure of ob-
jects manipulated by those algorithms show a strong
similarity that can be depicted as follows:

program text, consisting of

algorithms

elementary algorithms

concrete elemen-
tary algorithms
abstract elemen-

tary algorithms
composed algorithms
objects

elementary objects
concrete
elementary objects
abstract
elementary objects

composed objects

An algorithm must be executable for a processor, be
it a human being or an automaton, that knows the
formalism in which the algorithm is written and the
meaning of the elementary algorithms.

An algorithm can be sequential or non-sequential. A
sequential algorithm has the property that all its parts
may be executed serially. A non-sequential algorithm
has some parts that have to be executed in parallel.

Chapter 2

Notation of algorithms

In the previous chapter we found, more or less intu-
itively, a number of aspects of algorithms and objects.
In this chapter we will introduce a notation for most
of these aspects, as a preparation for the introduction
of the programming language.

We shall not immediately start with a systematic
treatment of a language but try to focus more on the
stepwise development of algorithms. The purpose of
this chapter is to get used to a number of essential al-
gorithmic ingredients of programming languages such
as actions, conditions, control structures and refine-
ments, while avoiding (at first) difficult concepts like
objects, types and data structures.

2.1 Karel the robot

In this chapter we shall make use of a didactic model,
introduced in the book Karel the Robot [PAT81]. This
model, that is obviously based on ideas of S. Papert
[PAPS80], allows us to avoid in first instance the notion
of the object from informatics and instead rely on the
world of daily experience.

Karel the robot lives in a simple algorithmic world on
a flat surface. He spends all his time on street corners.
In the following figure you see him standing on the
corner of the second street and the 8th avenue, with
his nose pointing east:

At the start of his world, Karel stands in the origin
(first Street, first Avenue) in the lower left-hand corner
of the screen, with his nose pointing north.

Apart from Karel himself, his world contains also
beepers and walls. Beepers can lie on street corners.
Karel can pick up a beeper and put it in his pocket,
or take one from his pocket and drop it on the corner

where he is standing. To that end, he has a pocket
containing an unlimited supply of beepers.

On the screen a wall will be depicted as X, and a
beeper as o. In order to keep Karel within the visi-
ble part of his world, the screen is surrounded by an
imaginary wall (just outside of the screen).

. Xo

. Xo

. XV

XL L

. XXXXX
X
X

Walls may block street corners. Karel cannot stand
on such a corner. Therefore he sometimes has to take
a roundabout route in order to arrive where we want
him to go.

2.2 Karel fetches his morning
paper (1)

In the course of an example we shall design an algo-
rithm for Karel, while at the same time introducing a
specific notation for algorithms.

Karel is lying in bed in his home, facing west. In
front of the outside wall of his house lies a newspaper,
under the guise of a beeper.

We shall write an algorithm for Karel to fetch his
newspaper and take it to bed with him.

2.2.1

We shall split Karel’s task into three parts, that he has
to perform in the listed order.

First attempt

go to garden;
take newspaper;
go back to bed.

Each of the three sentences appearing here we shall
consider as the name of an algorithm. We write their

. XXXXXX.

. XXX.

Lol T o - B -
DI B4 Dd DA D D4 X

> A
54 . .
>

>3

names, separated by semicolons, in order to indicate
that they have to be performed sequentially and in the
given order. At the end of the algorithm we put a
period. Such a sequence of actions (units) separated
by semicolons, we call a paragraph.

We choose the names of algorithms to be such that
they indicate what the execution of the algorithm
achieves. The names of the algorithms are therefore
verbal formulations of their effect, that have to be cho-
sen with care.

Now it would of course be unreasonable to suppose
that an algorithm like go to garden is one of Karel’s
concrete algorithms. We will rather attempt to de-
scribe how the algorithm go to garden has to be per-
formed in terms of simpler algorithms. The notation
that we use for this purpose is called a refinement,
which gives a name to a paragraph.

go to garden:
walk along wall;
walk through entrance;
walk to newspaper.

This refinement defines the algorithm go to garden as
the sequential execution of the other algorithms men-
tioned. This does not take us much farther, because
those algorithms are still much too particular to let
them be part of Karel’s repertoire of concrete algo-
rithms. At any rate we have already gained some de-
tail. We define analogously

go back to bed:
go back to entrance;
walk back through entrance;
walk back along wall.

As a newspaper we shall of course take a beeper.

take newspaper:
take beeper.

2.2.2 Concrete algorithms of Karel

What are Karel’s concrete algorithms? We shall choose
at least the following:

start karel makes the world of Karel appear on your
computer screen; Karel appears in the origin, with
his nose pointing north.

turn right makes Karel turn 90 degrees to the right
on his flat world.

turn left same to the left.

move makes him move to the next street corner in the
direction of his nose. We shall have to take care
that Karel does not try to move through a wall.

take beeper Karel takes the beeper, which must be
present at this street corner, and puts it in his
pocket.

drop beeper Karel takes a beeper from his pocket and
drops it at the current street corner. We shall have
to take care that there is no beeper lying there
already.

stop puts an end to Karel’s world.

These instructions are reasonably suitable for a simple
robot like Karel. Later on we shall add some more to
his repertoire.

2.2.3 Continuation of the example

In terms of these concrete algorithms we can now define
the remaining refinements.

walk along wall:
turn right;
move;
move;
move;
move;
move.

walk through entrance:
turn left;
move;
move;
move;
move.

walk to newspaper:
turn left;
move;
move;
turn left;
move;
move;
turn right;
move.

2.2.4 The limited repetition

The algorithms given above are of course rather bor-
ing, because they contain so many repetitions of the
algorithm move. If we want Karel to move over larger
distances this will get even worse. We obviously need
a notation to indicate that a specific paragraph has to
be repeated a number of times. For that, we introduce
a notation, the limited repetition:

UPTO number
REP

action
ENDREP

which means that the action is repeated this number
of times.

We can now write (it is not much shorter, but cer-
tainly less boring):

walk along wall:
turn right;
UPTO 5
REP
move
ENDREP.

The text of this refinement can be shortened even more
(without any effect on its meaning) by using a some-
what denser layout.

walk along wall:
turn right;
UPTO 5 REP move ENDREP.

The refinement walk to newspaper is also simplified
somewhat.

walk to newspaper:
turn left;
UPTO 2 REP
turn left;
UPTO 2 REP
turn right;
move.

move ENDREP;

move ENDREP;

We can exploit the regularity in this algorithm to make
another realization.

walk to newspaper:
UPTO 2
REP
turn left;
move;
move
ENDREP;
turn right;
move.

We may even write:

walk to newspaper:
UPTO 2
REP turn left;
UPTO 2 REP move ENDREP
ENDREP;
turn right;
move.

According to the jargon of Elan, the body of this refine-
ment is a paragraph consisting of three units separated
by semicolons, the first of which is a repetition; the ac-
tion repeated is in its turn a paragraph consisting of
two units, of which the second is a repetition. We see
that a repetition may occur as a unit within another

repetition. This is called a nested use of the repeti-
tion (think of a number of bowls, one nested within
another).

We realize the remaining refinements.

go back to entrance:
turn about;
move;
turn left;
UPTO 2 REP move ENDREP;
turn right;
UPTO 2 REP move ENDREP.

turn about:
turn right;
turn right.

Of course we might just as well have taken turn left.

walk back through entrance:
turn right;
UPTO 4 REP move ENDREP.

walk back along wall:
turn right;
UPTO 5 REP move ENDREP.

Our first concrete program is now complete. We can
execute it with the aid of the Karel-environment which
is delivered along with our Elan implementation, so
that we can see Karel move over the screen. The struc-
ture of our program can be depicted in a diagram which
indicates for each refinement which other refinements
it uses, as follows:

program
go to garden
walk along wall
walk through entrance
walk to newspaper
take newspaper
go back to bed
go back to entrance
turn about
walk back through entrance
walk back along wall

2.2.5 Summing up

Up to now we have met two mechanisms for the com-
position of algorithms:

e the paragraph consisting of units, separated by
semicolons, and

e the repetition, written with the keywords UPTO
..REP ...ENDREP.

Such composition mechanisms for algorithms are
termed control structures. Furthermore we have seen
how abstract algorithms can be defined with the aid of
refinements.

2.3 Karel fetches his morning
paper (2)

We now modify the problem statement somewhat, in
order to illustrate more language constructions and
concepts. We assume the same problem as before, ex-
cept that

e the newspaper is not lying at a specific place but
is lying somewhere in Karel’s front garden at one
of the places indicated in the following figure by a
question mark;

e Karel does not necessarily start with his nose fac-
ing north, so that we first have to turn him with
his nose to the north. In the figure we indicate
Karel, whose nose direction we do not know, by
means of a letter K.

P4 D4 D4 B DA DD D DD O

B R R

The program now begins slightly differently.

go to front garden;
find the newspaper;
go back to bed.

go to front garden:
turn to the north;
walk along wall;
walk through entrance;
walk to wall.

go back to bed:
walk back to entrance;
walk back through entrance;
walk back along wall.

2.3.1 The choice

In refining turn to the north we have to decide, in
one way or another, whether Karel is already point-
ing his nose in the right direction, and otherwise turn
him in the desired direction. We shall have to choose
between different actions, depending on the condition
whether Karel is already pointing north. The notation
that we introduce for that purpose is the choice.

IF condition
THEN the one
ELSE the other
FI

which means: if the condition is true then the one
is done and otherwise the other. Using this notation
we write

turn to the north:
IF not pointing north
THEN turn around
ELSE do nothing
FI.

turn around:

IF pointing south

THEN turn about

ELSE
IF pointing east
THEN turn left
ELSE turn right
FI

FI.

Notice the nesting of choices in this refinement.

turn about:
turn left;
turn left.

How do we instruct Karel to do nothing? The sim-
plest thing is to leave out the second alternative of the
choice.

turn to the north:
IF not pointing north
THEN turn around
FI.

The meaning of this is: If Karel is not pointing north
the further execution of turn to the north consists
of turn around and otherwise the execution of the al-
gorithm is immediately complete.

2.3.2 The conditional repetition

By the use of a limited repetition we can give a some-
what shorter definition for turn to the north:

turn to the north:

UPTO 3
REP IF not pointing north
THEN
turn right
FI
ENDREP.

This is a typical robot solution. In the stupidest way
imaginable we three times decide whether Karel is al-
ready pointed the right way and otherwise make a right
turn. If Karel happens to be pointed the right way ini-
tially, all the work is for nothing. Furthermore it takes
some thought to establish that three times is enough.
The repetition with a fixed number of turns (the lim-
ited repetition) is not what we need here. We want
the repetition to take place as long as a specific condi-
tion is met (a conditional repetition). To that end we
introduce a new notation

WHILE condition
REP action
ENDREP

which means: as long as the condition is true, the
action is performed and then the condition tested
again, until it turns out that the condition does not
hold any more.

We can now write

turn to the north:
WHILE not pointing north
REP
turn right
ENDREP.

2.3.3 Conditions

A condition is an algorithm that as result of its exe-
cution yields a truth value (yes or no). We give Karel
the following repertoire of concrete conditions

pointing north yes only if Karel’s nose is pointing
north (and no otherwise).

pointing east yes only if Karel’s nose is pointing
east.

pointing south yes only if Karel’s nose is pointing
south.

pointing west yes only if Karel’s nose is pointing
west.

wall ahead yes only if the following corner is covered
by a wall so that Karel cannot go there.

wall right yes only if the street corner to Karel’s
right contains a wall.

at beeper yes only if there is a beeper at the current
street corner.

We furthermore introduce a notation for the denial of
a condition:

NOT at beeper

will mean: yes only if the current street corner does not
have a beeper, and no otherwise. Using this notation
we may write

not pointing north:
NOT pointing north.

The meaning of this definition is rather subtle: we
define an abstract algorithm named not pointing
north, that yields a truth value, the denial of the result
of the condition pointing north.

The introduction of this operator NOT, that inverts
truth values, saves us the introduction of particular
algorithms for the denial of each of those conditions.

2.3.4 Continuation of the example

Once Karel’s nose is pointing the right way, he can
be brought to the front garden by the refinement go
to front garden which we had already written. In
Karel’s front garden, the newspaper lies in one of the
following four possible places:

. XXXXXX.
D
. XXX.

N N N N V.
Lol i o - B - Y
L I - B - I B]

><
5.
54 .
<

Once he has arrived in his garden at the first ques-
tion mark, with his nose pointing south, we let Karel
perform a systematic search.

find the newspaper:

move;
IF at newspaper
THEN

take newspaper
FI;
move;
IF at newspaper
THEN

take newspaper
FI;
move;
IF at newspaper
THEN

take newspaper
FI;
move;
IF at newspaper
THEN

take newspaper
FI;

four steps back.

at newspaper:
at beeper.

take newspaper:
take beeper.

four steps back:
turn about;
UPTO 4
REP move
ENDREP.

Exploiting the regularity in the previous algorithms,
we may make use of the limited repetition.

find the newspaper:

UPTO 4

REP
move;
IF at newspaper
THEN take newspaper
FI

ENDREP;

four steps back.

But that is yet another of those typical robot solutions.
A better technique is:

find the newspaper::
walk until newspaper;
take newspaper;
turn about;
walk back until wall.

walk until newspaper:
WHILE not at newspaper
REP
move
ENDREP.

not at newspaper:
NOT at beeper.

What happens if there is no newspaper at all in the
front garden? With this last solution, Karel disappears
south like a meteor, because he does not meet a beeper,
until he drops off the screen.

The previous solution with the limited repetition is
somewhat more robust: in that case at least Karel re-
turns to his bed without his newspaper.

In designing an algorithm, questions like these have
to be put explicitly. An algorithm is intended to func-
tion under specific conditions. If these are not satisfied
(for instance by a human error) strange things may
happen.

2.3.5 Another form of conditional rep-
etition

There is something artificial in the realization of walk
until newspaper: Actually we don’t want Karel to
walk as long as he is not at the newspaper, but to walk
until he is at the newspaper. With the current for-
mulation, Karel repeatedly looks whether he is at the
newspaper, and moves if he isn’t. It is a “prechecked
loop”. The first time around, the condition will cer-
tainly be false and Karel will have to make a move.
There exists in Elan another form of conditional repe-
tition (a “postchecked loop”), which would be slightly
more natural in this example:

walk until newspaper:
REP move
UNTIL at newspaper
ENDREP.

at newspaper:
at beeper.

Notice that we got rid of a NOT sign. We define simi-
larly:

walk back until wall:
REP move

UNTIL wall ahead
ENDREP.

A repetition of the form

REP action
UNTIL condition
ENDREP

means the following: The action is performed once,
and after that, as long as the condition is false, the
action is performed and then the condition tested
again, until it becomes true. This repetition is there-
fore equivalent to the paragraph

action;

WHILE NOT condition
REP action

ENDREP

It is useful to have both forms of conditional repeti-
tion available, although strictly speaking one, e.g. the
WHILE-form, would satisfy all needs.

2.3.6 Conclusion

Writing a few missing refinements, or taking them from
the previous example, we again obtain a complete pro-
gram, whose structure can be depicted as:

program
go to front garden
turn to the north
not pointing north
turn around
walk along wall
walk through entrance
walk to wall
find the newspaper
walk until newspaper
at newspaper
take newspaper
turn about
walk back until wall
back to bed
walk back to entrance
walk back through entrance
walk back along wall

go

2.4 Delimiters

The notation that we have introduced makes use of
magic words (delimiters) like IF and REP that give the
impression of being (parts of) English words. Note
that these words are not used with their natural mean-
ing and also are not names of algorithms or objects.
Delimiters are parts of specific conventional figures of
style and for that reason are written in large capital

10

letters, in distinction to names that consist of small
letters and possibly digits.

Some people may find that abbreviated delimiters
like REP are too cryptic and would rather see complete
words. For this reason Elan allows alternative repre-
sentations for a number of symbols like:

REP REPEAT
ENDREP ENDREPEAT
FI ENDIF

We shall however systematically use the shorter ver-
sions in preference.

2.5 Summary

We have now made our acquaintance with the Top-
Down programming style, in which we introduce ab-
stract algorithms as needed and afterwards define
them, until the concrete level has been reached.

Abstract algorithms are introduced by means of a
refinement:

name : paragraph .

The name is written with small letters, digits and (pos-
sibly) spaces, and starts with a letter.

A paragraph consists of one or more units, separated
from one another by semicolons:
; unit ; ; unit

’ ’

unit

Such a wunit may either be elementary (e.g. the invoca-
tion of an algorithm) or it may be composed (e.g. with
the aid of a control structure) from other units.

Apart from the paragraph, the choice and the repe-
tition belong to the control structures. The choice has
two forms:

IF condition

THEN this paragraph
ELSE other paragraph
FI

and

IF condition
THEN paragraph
FI

The condition is a unit yielding a truth value, on the
basis of which a choice is made. For the repetition we
give three forms. The limited repetition has the form

UPTO expression
REP paragraph
ENDREP

in which the expression is an algorithm yielding a whole
number, the number of times that the paragraph has to
be executed. The conditional repetition has two forms

WHILE condition
REP paragraph
ENDREP

and

11

REP paragraph
UNTIL condition
ENDREP

In both forms, the number of repetitions of the para-
graph is determined by the condition.

All these constructions belong to the language Elan.
Furthermore we have introduced a number of concrete
actions and conditions that belong to the environment
of Karel the robot and appear only in this chapter.
They serve to provide some exercises with Karel. Im-
mediately after this chapter you may forget them again.

If we want to go further in the direction of learning
a real programming language we have to get to know
its concrete algorithms and especially its notations and
concepts for dealing with objects. We shall introduce
those in the succeeding chapters.

2.6 Exercises

In these exercises we shall make use of the Karel-packet
that is distributed together with the Elan interpreter.
At the start of each exercise we bring Karel to the
origin of an empty world, with his nose pointing north,
by invoking start karel.

1. One of Karel’s concrete algorithms turn left and
turn right is in fact superfluous. Define this one
in terms of the other.

. (Square) Let Karel move around a square whose
side has length 10.

. (Potato field) Consider the screen as a field with
furrows in the horizontal direction. Let Karel seed
with potatoes a field of 16 furrows of 20 moves
each. Karel must return to the origin at the end.

(Fisherman) Teach Karel how to draw a Dutch
folkloristic figure looking like in Fig. 2.1.

Try to express the drawing of this fisherman (and
his flag) as neatly as possible in terms of the draw-
ing of his component parts.

. (House) Do the same for drawing a house (of your
own design).

. (Staircase) The lowest line of the screen is con-
sidered to be a floor on which stands a staircase.
The north is therefore interpreted as “above”. De-
velop an algorithm that can walk over a floor with
stairs (independent of the place, form and height
thereof) until a beeper is found. A typical stair-
case can be constructed by calling make stairs.

(Maze) Karel finds himself in a maze. He must
try to get to the outside by walking with his right
hand touching the wall. Outside the maze, to the
right of its entrance, lies a beeper. Develop an
algorithm to get out of the maze. An example
of a maze can be constructed by means of make
labyrinth.

O O O O O

O O O 0O O ©O

Figure

« + + « + « +. 00O
0ooo0oo0. . 0.
o o o 0 O
o o o
o o o o
. 0. 0. . 0. 0.
o . [Oe) . O .
o
o O 0 00O
o o
o . . .0
o . . .0
... 00O0. . .
o
O 0O o
. 0. 0. .0 . ..
. 0.0 . .0 . ..
0o . o000 . . .

2.1: The fisherman with his flag

12

Chapter 3
The whole numbers

In this chapter we shall begin the systematic intro-
duction of Elan. First we shall deal with the four con-
crete elementary types: the whole numbers, real num-
bers, truth values and texts. These concrete types of
Elan are more or less the same as in other programming
languages and have, on most computers, a direct rep-
resentation. (The direct representation means that the
computer can operate on such elementary objects with
single machine instructions, e.g. it can add or multiply
directly two integers or two reals. In this respect the
texts, and in some cases the reals, are exceptions. Texts
— as we shall see later — are sequences of characters,
so called (character) strings, and most computers can
operate on a single character only.)

The concrete types of Elan are defined in the stan-
dard packets, (hypothetical) pieces of program contain-
ing declarations for all concrete objects, types and al-
gorithms. In the second volume of this book we shall
also learn how to construct our own packets, a facility
for Bottom-Up programming that is typical for mod-
ern languages like Elan and ADA. (This description is
likely unsufficient for the reader to understand the no-
tion of packet. For a while, this understanding is not
necessary, and it will be explained later in full detail.)

The first elementary type we describe implements
the whole numbers. The name of this type is INT and
the conventional name for those whole numbers that
can be represented within the computer is integers. For
each of the types we describe in this and the following
chapters we present

¢ (denotation) how do you write down a value of this
type,

¢ (operations) what operations are specific for this
type, and

e a number of examples.

3.1 Integer denotations

In our algorithms we want to indicate in some way
that the computer has to manipulate specific whole
numbers. In order to indicate such a whole number
we have to denote it in the algorithm. (Any notion,
i.e. numbers too, may have arbitrarily many different
representations. To avoid misunderstanding, a group
of people agrees upon how to denote a given notion;

13

this is called denotation. E.g. in the decimal system 10
means a mathematical notion, namely a given whole
number. This same mathematical notion is denoted
by ten in English, tien in Dutch, and ¢/z in Hungarian.
This same number can be written as 1010 in the binary
and as A in the hexadecimal system. The Romans
denoted it as X. When we count something we often
put bars onto paper like Jf ' and this may also mean
the number ten. While using a programming language
its denotations must be applied. Hence, let us see how
integers are denoted in Elan.)

The conventional denotation for integers is the dec-
imal notation for (positive) whole numbers, i.e. a se-
quence of one or more decimal digits. We shall indicate
this fact in the form of a syntaz diagram.

integer-denotation

=25

Figure 3.1: Integer denotation

T

Figure 3.2: Digit

Those two diagrams define the notions integer-
denotation (Fig. 3.1) and digit (Fig. 3.2). By starting
in the upper left hand corner and going through them
keeping to the right and downwards or, following the
direction of flow, to the left and upwards we see that
an integer-denotation consists of one or more digits, and
that a digit is one of the digits 0 to 9.

In later chapters we shall introduce much more com-
plicated constructs with the aid of syntax diagrams.
In appendix A of this volume you will find a com-
plete description of the syntax of Elan in another for-
malism, context-free grammar, which is introduced in
chapter 11.

The wvalue that is represented by an integer-
denotation follows from its usual interpretation as a

decimal number. Observe that strictly speaking only
positive whole numbers can be expressed with the aid
of an integer-denotation; we can prefix it with a + or —
but this sign does not form part of the denotation —
it is an operator. Observe furthermore that different
denotations may represent the same value, e.g. 0023
and 23.

The diagrams given above do not indicate any upper
limit to the size of an integer-denotation. Of course in
reality there is always a smallest and a largest num-
ber that can be represented in the computer. Those
whole numbers that can be represented in a (specific)
computer are called the integers (of that computer).
The range between the smallest and largest integer of
a computer is called the integer range of that com-
puter. In Table ?? we have indicated for a number of
computers the smallest and largest whole number that
can be represented on that computer.

smallest largest integer
calculator. —108 +1 10% — 1 = 99999999
32-bits mach. —23! 231 — 1 = 2147483647
16-bits mach. —21° 215 — 1 = 32767

From this table it appears that both positive and neg-
ative whole numbers can be represented, and that the
limits of the range are in general at or near a power
of 2. Observe the asymmetry in many integer ranges.
The strange number 32767 holds for most mini- and
microcomputers. For didactic reasons, the Elan-0 in-
terpreter has a power of ten as its limit.

The fact that integers are usually represented inter-
nally in the binary system (and not in the decimal sys-
tem) is in itself of no consequence except for the fact
that the integer range has somewhat curious limits.
However, it is not necessary to understand the binary
system in order to work with integers.

Although the integers in a computer have been ex-
pressly provided in order to represent the whole num-
bers there are a number of pitfalls that make it neces-
sary to be cautious in programming with them.

3.1.1 Overflow

During a computation on integers, like, for example,
addition, it may occur that the result is not repre-
sentable on the particular computer. We call this sit-
uation overflow. Some computers are nice enough to
report overflow, others deliver as a result of the ad-
dition, without any comment, an integer that has no
obvious relationship with the intended answer. For this
reason it is necessary to avoid overflow.

Even when the final result of a computation is repre-
sentable, it may occur that an intermediate result gives
rise to overflow and destroys this result. As a conse-
quence, a simple algebraic law like (a+b)+c = a+(b+c)
may not always be valid on a computer; it holds only
if no overflow occurs.

In this context it may be interesting for the reader
to determine what percentage of all possible additions

14

of integers gives rise to overflow, and similarly for mul-
tiplications.

3.1.2 Machine dependence

A second source of problems comes from the fact
that different computers have different integer ranges.
These differences can be quite large. In comparison
with the PDP 11 it turns out that the CDC Cyber
deals with integers that are about 10'° times greater.

In order to make it possible to write programs that
can be executed on diverse computers, an Elan pro-
gram can make use of a constant with the name maxint
whose value is the greatest concrete whole number
representable on this computer. The smallest repre-
sentable whole number is usually equal to - maxint,
on some machines it may be one smaller. Thus it is
guaranteed that the integer range contains at least the
interval - maxint : maxint. By an adroit use of this
constant it is possible to formulate algorithms in such
a way that they are independent of the integer range
of the machine used.

3.1.3 Terminology

In order to avoid confusion, the following terms have
to be carefully distinguished:

whole number a certain mathematical concept

integer a whole number that can be
represented in the computer

INT the name of the type of the
integers

integer-denotation the way to denote a (positive)
integer.

3.2 Some important concepts

We will now introduce, in the course of an example,
a number of important concepts and notations that
are not only applicable to integers but that allow the
manipulation of all types of objects.

Let start with the example. It is told that Blaise
Pascal was already as a boy in school a clever math-
ematician. One day, when his teacher wanted to keep
the class occupied and quiet for some time, he gave to
his pupils the task of computing the sum of all numbers
from 1 up to 100. Pascal discovered the summation for-
mula for the arithmetic progression and finished suspi-
ciously soon. Of course a modern pupil would, rather
than think, go for his pocket computer. Let’s do some-
thing similar. We let the computer compute this sum,
according to the schema

with the number 1;
with the sum zero;
number <= 100

begin

begin

WHILE

REP
add the number to the sum;
increase the number by one

ENDREP;

show the result.

In this schema, number and sum appear as a variable:
a name with a fixed meaning and a changeable value.
Such a name is introduced by means of a declaration;
to a variable you may give another value by means of
an assignment. The result can be displayed by means
of an output algorithm. For each of those fundamental
actions, Elan has a specific notation, specific concrete
algorithms belonging to the language.

3.2.1 Declaration of a variable

We use the term object for a name, occurring in the
program, with which during execution of the program
a value is associated. A wariable is an object with a
name, a type and a changeable value. A variable (or
another object) may be used in a program only after
the execution of an object declaration. In order to in-
troduce an integer variable i with actual value 1, we
have to write

INT VAR i:: 1

The type of i is here given as INT which means that i
can have only integers as values. The sign :: followed
by the expression 1 causes the initialization of i with
the value one. It can be read as “initialized to”. Such
an initialization is optional; if it is left out the variable
has an undefined initial value, as in

INT VAR j

The declaration of a number of variables of one same
type may be combined, as in

INT VAR i:: 1, j

which is a contraction of the two preceding declara-
tions, or as in the contraction of

INT VAR lower; INT VAR upper

to

INT VAR lower, upper

The relevant syntax diagram is given in Fig. 3.2.1.

A name (“identifier”) is written with (lower case)
letters and digits, and has to start with a letter
(Fig. 3.2.1). It may contain spaces to enhance readabil-
ity, but they do form part of the name only in Elan-0
and Elan-1.

The rather boring syntax diagram for letter will be
omitted here.

3.2.2 Assignment

The value of a variable can be changed by means of
an assignment (“assignation”). But beware: the value
itself is not modified, the variable just obtains a new
value!

As an example, after the previous declaration i pos-
sesses the value one (Fig. 3.3). Immediately after the

name i name i

value 1 value 1 2

Figure 3.3: Value one Figure 3.4: Value two

assignment,
ir= 2

i possesses the value two (Fig. 3.4).

Such an assignment is written as the “becomes sym-
bol” := with to its left the name of a variable and to
its right an expression (Fig. 3.5).

assignment

4»(operand

Figure 3.5: Assignment

(.=)
NG

expression '—»

The notions of wariable and expression will be dis-
cussed in detail in section 7.3 and 7.2, respectively.
The effect of the execution of an assignment like

V:= expr
is as follows:
e the value of the expression expr is computed,

e this value is made to be the value of v. An eventual
previous value of v is lost.

3.2.2.1 Examples of assignments

The effect of an assignment can best be studied in a
number of examples like the following. For all of them
we assume that a and b are integer variables, declared
as

INT VAR a, b
Consider the following assignments:
e a:= 13
Now a has the value thirteen.)

e a:= 13; b := 7

(The assignment to b does not change the value of

a.)

15

variable-declaration

—>| type-declarer

VAR

C—{ variable-name

expression

name, variable-name, constant-name

4»(letter

e a:= 13; b := a

(Now a and b have the same value.)

e a:= 13; b :=a - 6

(Now b is six less than a.)

e a:= 13; a := 14

(The effect of the first assignment is lost because
of the second.)

e a:= 13; a := a

The current value of a is again assigned to a.)

e a:= 13; a :=a + 1

(The result of adding the current value of a and 1
is assigned to a.)

e a:=6; b :=7;
a:=a + b; b :=a-D>b - b;
a:=a+b; b:=a-b-0>»

(Observe that this curious piece of program dou-
bles the initial values of a and b, provided no over-
flow occurs.)

3.2.3 Output

In order to make visible the value of a variable or, more
in general, an expression you can write

put (expression)

Here put is the name of an output algorithm and the
expression between the brackets is the parameter with
which it is called. The value of this expression is com-
puted (yielding, for example, an integer). This value
is then written on the output medium in the form of
a denotation, possibly preceded by a sign. The output
medium is usually the screen of the microcomputer or
terminal at which we are working. On this screen a cur-
sor indicates the position where the next output will
appear.

Actually it is more difficult to describe exactly the
effect of the output algorithm than to try it out, so just

P

igit

sit down in front of the computer and try a very small
program like

program:
put (1); put (2 + 3); put (4 - 10).

Observe how the cursor moves over the screen during
writing. If you attempt to write too much on one line,
the cursor leaves this line and continues at the begin-
ning of the next line. Such a move to a new line can be
obtained also by a call of the algorithm line. In this
way, a nicer layout of the screen can be achieved than
by writing haphazardly on the screen. It is possible to
give more than one new line by calling the algorithm
with an integer parameter, like

line (5)

A call of 1ine with the parameter 1 has the same effect
as a call without a parameter.

3.2.4 Input

It is possible to input numbers during the execution of
a program, by means of the input algorithm get, with
a variable as its argument. Let number be an integer
variable whose value we want to input. The call

get (number)

has the following effect:

e The execution of the program is stopped while
the computer waits until a line has been typed
in at the keyboard followed by the RETURN- or
ENTER-key. The characters typed in appear on
the screen at the current cursor position.

e This line should contain an integer denotation,
possibly preceded by a plus or minus sign. The
value of that (signed) denotation is computed.

e This value is assigned to the variable number.

Actually things are more complicated, because on a
line more than one denotation may appear. The first
call of get waits until the line has been fully typed

16

in, but the next call can then proceed with the next
denotation without further waiting, until the line has
been completely processed, after which a further call
of get has to wait for input again.

3.2.5 Continuation of the example

In order to apply all this we shall now write a complete
program, which computes the sum of the numbers 1 to
max, in which max is a variable we read in.

problem of pascal:

read the maximum;

start with the number 1;

begin with the sum O0;

WHILE number <= max

REP add number to sum;
take the next number

ENDREP;

show the result.

We shall now refine each of the subalgorithms.

read the maximum:
INT VAR max;
get (max).

start with the number 1:
INT VAR number:: 1.

start with the sum O:
INT VAR sum:: O.

add number to sum:

sum:= sum + number.

take the next number:
number := number + 1.

show the result:
line;
put (sum).

We have followed very closely the formulation of the
algorithm given at the beginning of the chapter, which
results in a rather large number of small refinements.
In learning to program it does not hurt to be overly
explicit. The consequence is that the algorithm is easy
to follow but rather lengthy. This doesn’t mean that
all programs should be refined to this level of detail.
Refinements are means to direct the creative thinking
in programming and to fix the intermediate stages of
that thinking. As our programming experience grows,
somewhat greater leaps of imagination become possi-
ble, but initially we try to refine as clearly as possible,
in such a way that the solution reflects very explicitly
the thoughts of the programmer.

3.2.6 Declaration of a constant

Besides variables there also exist constants, objects
with (after their declaration) a fixed unchangeable
value. A constant is always initialized in its declaration
(Fig. 3.6).

There may be all kinds of reasons to give a specific
name to a value and use that name rather than the de-
notation: it may be that the value by itself is uninter-
esting but its importance lies in the role it plays. For
example, on a specific machine the constant maxint,
which is already known to us, may have a declaration
like

INT CONST maxint:: 2147483647

This is the value which maxint has on an IBM 370
computer. On other machines this constant might have
another value but we would still call it maxint. A
declaration of an integer constant that might be of use
in a chess program is

INT CONST number of fields:: 8 * 8

Again the declaration for a number of integer constants
can be combined into one composed declaration. Ex-
ample:

INT CONST ace:: 14, king:: 13, queen:: 12,
jack:: 11

Once a constant has been declared it has an unchange-
able value. In distinction to variables it is not possible
to assign to a constant. Not even by accident. This
too may be a reason to use a constant rather than a
variable wherever applicable. As a rule of thumb: if
we do not wish to assign to an object it had better be
a constant.

The difference between variables and constants is
only a difference in access: from both a variable and a
constant a value can be obtained (“read access”), but
only to a variable can a new value be assigned (“write
access”).

3.3 Integer operations

In the programming language Elan a number of con-
crete algorithms for the manipulation of integers are
given that do not need a further declaration in a pro-
gram. These have been declared in a standard packet,
a box full of useful algorithms, objects and types given
to you for free (see appendix B).

3.3.1 Arithmetic operations

To begin with, we have the well-known arithmetical
operations (Table 3.1).

operator | meaning example | result
+ addition 1+1 (=2)
- subtraction 5-9 (= —4)
* multiplication 3*4 (=12)
DIV division 13DIV6 | (=2)!
MOD rest 13MOD 6 | (=1)
*k to the power 5 ** 2 (= 25)

Table 3.1: Arithmetical operations on integers

17

constant-declaration

type-declarer

"| constant-name

(M
&

expression

Figure 3.6: Constant declaration

Besides these dyadic integer operators, which have
two integers as operands and an integer result, the +
and the - also exist as monadic integer operators, that
is having one integer operand and with an integer re-
sult. Examples:

+ 8
-4

For positive arguments the result of the modulo op-
erator MOD is always positive and smaller than the nom-
inator. The operators DIV and MOD should not be
used with denominator zero, otherwise overflow occurs.
They have the following properties:

xDIV—y = —(xDIVy) (3.1
xMOD —y = =xMODy (3.2)
(-x)DIVy = —(xDIVy) (3.3)
(—x)MODy = —(xMODy) (3.4)

3.3.2 Expressions

With the aid of operators, operands and brackets, ex-
pressions (“formulae”) can be formed in the usual man-
ner, keeping in mind that each of the operators has
its own priority (“precedence”). Raising to the power
has a higher priority than multiplication and division,
which in turn have a higher priority than addition and
subtraction. Priorities being equal, the operations are
executed from left to right. Examples:

a* b+ c DIV d
a DIVDb * c

(a * b) + (c DIV 4d)
(a DIV b) * c

The monadic operators always have the highest prior-
ity. Examples:

3 x -1
-1 *x 2

(= -3)

(= +1) watch out !!

Because of the high priority of the monadic operator -
this last expression yields the value +1 and not -1 as
one might expect.

If desired, another order can be indicated by means
of brackets, as in:

- (1 xx 2) (= -1)

3.3.3 Comparison operators

There exist a number of dyadic operators having two
integer arguments and a truth value as result. They
are shown in Table 3.2.

operator | meaning
< less than
<= at most
> greater than
>= at least
= equal to
<> unequal to

Table 3.2: Comparison operations on integers

These can be used in a condition like

x <=0

The priorities of these comparison operators are lower
than that of the arithmetic operators, so that a + 1
<= x means the same as (a + 1) <= x.

3.3.4 Operations combined with as-
signment

The combination of an addition with an assignment
to an integer variable as in x:= x + 1 appears so fre-
quently that a shorter way of writing has been intro-
duced. Using this, the assignment

subtotal:= subtotal + term

can be written as

subtotal INCR term

This is not only shorter but it also makes more ex-
plicit the intention to increment the variable (it is not
just any old assignment). The assigning operator INCR
needs as its left operand an integer variable. Its right
operand can be any integer expression.

Analogously, there also exists an operator DECR to
indicate subtraction combined with assignment, as in

income DECR expenses

which means the same as

income:= income - expenses

These operators are very useful, particularly if the vari-
able has a long name.

18

3.4 Example: Maximum of a se-
ries of whole numbers

As an example of the use of these concepts, we shall ad-
dress the problem of finding the largest of a nonempty
sequence of positive whole numbers.

We assume that the numbers are input via the stan-
dard input medium (the keyboard). The amount of
numbers that will arrive is not known beforehand, but
it is at least one (the sequence is not empty). The end
of the sequence is indicated by a negative number. We
wish to determine the maximum, i.e. find the value of
the largest number.

The algorithm which solves our problem is based on
the idea of reading, after some preparation, the num-
bers one by one, and remembering at each moment the
largest one found up to that point. In this way we have
obtained at the end the largest one of all the numbers
read.

determining the maximum:
take zero as initial maximum;
read the first number;
REP
look if it is larger;
read the next number
UNTIL all positive numbers considered
ENDREP;
write the definitive maximum.

We use a variable to build up the current maximum.
Before the repetition, this variable has to be initialized.
Two strategies offer themselves:

e initialization to zero, which is the maximum of
zero positive numbers;

e initialization to the first number read, because the
maximum is at least equal to that number.

We shall follow the first strategy.

take zero as initial maximum:
INT VAR current maximum:: 0.

Observe that frequently a refinement can be realized as
an initialized declaration. It serves to establish a well-
defined situation, which can easily be given a name.

read the first number:
INT VAR number;
get (number).

look if it is larger:
IF number > current maximum
THEN
current maximum:= number
FI.

read the next number:
line;
get (number).

Because of the call of 1ine, each number which is read
in will appear on a separate line.

all positive numbers considered:
number < 0.

write the final maximum:
line (3);
put (current maximum) ;
line.

By means of the call of 1ine we have put the solution
on a line of its own.

The idea behind this algorithm is the fact that the
assertion

the value of the variable current maximum is
the mazimum of all numbers read until now

is true after every step of the repetition. Before the
repetition this assertion is true because the maximum
of an empty sequence of positive numbers is 0. When
the repetition is completed all numbers have been read
and the assertion is still true. Therefore the current
maximum at that point is equal to the final maximum.
This property is also reflected in the choice of the name
current maximum for the variable, which might also
have been called maximum up to now or something like
that.

The termination of the algorithm is assured by the
fact that in every step of the repetition a number is
read, while only a finite amount of numbers will be
input before a negative number is given.

Ezercise
What would the solution look like according to the
second strategy (take the first number as initial
maximum)?

3.5 Example: Fibonacci num-

bers

It is told that in the year 1202 the Italian mathe-
matician Leonardo Pisano, also known as Leonardo
Fibonacci (Filius Bonaccio), solved the important eco-
nomic problem:

How many pairs of rabbits can be produced in
the course of one year, starting from one pair
of rabbits?

Of course he made some simplifying assumptions. Each
pair of mature rabbits produces one pair of young each
month, one of which is male and the other is female.
A pair of newborn rabbits after one month is able to
procreate similarly. Rabbits never die unless they are
eaten. (Obviously in this world of rabbits things go
differently than in the world of humans. For more in-
formation about the life of rabbits we refer to [ADAT72].

The solution to this problem is found as follows. As-
sume the number of rabbit pairs in month n to be
F(n). (The letter F is used here in commemoration
of Fibonacci.) Assume that among these F'(n) pairs
of rabbits the number of mature ones is V(n). What
is the number of pairs in month n 4+ 1, F(n + 1)7 In
the month n + 1 there will be F(n) mature pairs of

19

rabbits because the number of mature pairs in a spe-
cific month is equal to the total number of pairs in the
preceding month. Moreover, each of the V(n) mature
rabbit pairs have produced a pair of young, so that
Fn+1) =F(n)+V(n) = F(n)+ F(n —1). When
we assume that our pair of rabbits in month 1 is born
in that month (the number of rabbits in the preced-
ing month was zero, presumably because they were all
eaten), then the problem can be formulated as:

Find the value of F'(12) when it is given that

F(0)=0
F(1)=1
and
Fn+1)=Fn)+ F(n—-1)forn > 1.

After some computation we find that master Fibonacci,
starting in January with one pair of young rabbits,
could feast by Christmas on one hundred and forty
four pairs of rabbits.

We shall now investigate the problem of finding, with
the aid of the relationship for the Fibonacci numbers
given above, the limit of the ratio between two consec-
utive numbers. In order to get some insight into the
behaviour of Fibonacci numbers we will first deduce
the value of this limit.

Let us call the limit of F'(n)/F(n—1) for n to infinity
F. We already know that F\(n) = F(n—1)+ F(n—2)
so for sufficiently large n

F(n—1)=F(n)/F,
Fn-2)=F(n-1)/F=F(n)/(Fx*F),
and therefore

Y

which can be simplified to
F?-F—-1=0
from which we deduce that

__F)
F(n-1)

145
2

for n to infinity.

We choose the positive solution (= 1.61803...), since
because of our choice of F(0) and F(1) all F(n) are
positive. Therefore each Fibonacci number is about
1.6 times larger than the preceding Fibonacci number.

Considering for simplicity the Fibonacci numbers as
a geometric sequence with this limit as its ratio, it fol-
lows that the largest Fibonacci number which is still
representable on the IBM 370 computer (with maxint
= 2147483647) would be F'(43). Through experiment
we can find out that this estimate is too pessimistic
and that even F(46) can still be represented for this
value of maxint.

An algorithm that computes the first 46 Fibonacci
numbers and prints their ratios can be formulated as
follows (in order to prevent problems with overflow, we
shall stop at the 46th Fibonacci number):

20

initialize;
WHILE not yet last number
REP
compute next number;
print number and ratio
ENDREP.

From the relationship for Fibonacci numbers it follows
that in order to compute F(n+1) we need only the two
preceding numbers F'(n) and F'(n—1); other Fibonacci
numbers need not be remembered. In this algorithm we
shall call those two terms the variables last number
and last number but one. Also we need a variable to
indicate the sequence number of the number computed.
The initial values of last number, last number but
one and sequence number follow from F(0) = 0 and
F(1) = 1. We obtain:

initialize:
INT VAR last but one:: 0, last::
sequence number:: 1.

1,

We can continue as long as the sequence number is
smaller than 46.

not yet last number:
sequence number < 46.

The action compute next number has to establish the
relationship F'(n+ 1) = F(n) + F(n —1). In each step
of the repetition, last has to be the newly computed
number of the previous step and the last but one has
to be the last of the previous step. For this shifting of
values we need a temporary name to indicate the value
of the newly computed number. This value is constant
during the shift.

compute next number:
INT CONST new::
last + last but one;
last but one:= last ;
last:= new ;

sequence number INCR 1.

Observe that the order of the first three lines is crucial.
We will print the sequence number, last and the
ratio on a new line.

print number and ratio:
line;
put (sequence number) ;
put (last) ;
put (real(last) / real(last but omne)).

In the expression given the ratio between the last and
the last but one we have (rather prematurely) used
the division operator / and the conversion algorithm
real, which yield as their result a real number. We
shall discuss real numbers and their operators in the
next chapter.

The program given above has the drawback that
it is suitable only for computers whose maxint is at
least 2147483647. Therefore it is better, rather than to
count until a specific sequence number, to try to find

precisely the largest Fibonacci number which is rep-
resentable on our computer. We can achieve this by
continuing the computation of the new number as long
as no overflow can arise and stopping just before over-
flow would arise. We need only modify the algorithm
not yet last number. There will be no overflow as
long as

last + last but one <= maxint

But we cannot use this test since it might cause exactly
the overflow we want to avoid! We therefore write:

not yet last number:
last <= maxint - last but one.

which gives the same result without causing overflow.

Table 3.3 has been produced by the thus modified
program on an IBM 370 computer. We see that the
computed ratio does not change after sequence number
40. From this, however, we cannot deduce that that
number is really the limit: a computer computes real
numbers with some imprecision, as we will see in the
next chapter.

From [KNU72] we quote the limit truncated to 41
decimal digits:

1.6180339887498948482045868343656381177203

We see that the ratio found by us is somewhat too low
in the last decimal.

In this example we proved that for large values of n
the Fibonacci numbers behave as a geometric sequence.
In higher mathematics such seqences are called asymp-
totically geometric seqgences.

The Fibonacci numbers as defined by the equations
above play an important role in all kinds of natural
processes. As an example, the limit of the ratio be-
tween two consecutive Fibonacci numbers is a number
which is called the Golden ratio. In botany the Fi-
bonacci numbers appear in the Phyllotaxis (the order-
ing of leaves along a stem), and we have just dealt with
a problem from zoology.

3.6 Network of types and oper-
ations

In this chapter, we have introduced a number of opera-
tions (procedures and operators) on integers which are
joint to other operations (often with the same name)
on other types which will be introduced later. How can
we keep an overview of the operations belonging to a
type, otherwise than by some enumeration?

A very telling representation is the Network of Types
and Operations (NTO) [CRAS87]: a type is represented
as an oval, inscribed with the name of that type, and an
operator or procedure as a rectangle, again inscribed
with its name. These ovals and rectangles are con-
nected by arrows:

e An arrow from an oval (type) to a rectangle (oper-
ation) indicates that that operation has an argu-
ment of that type. In case an operation has more

21

00~ O UL i W N

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

Table 3.3: Fibonacci numbers and their ratios

Ot W N =

8

13

21

34

35

89

144

233

377

610

987

1597

2584

4181

6765
10946
17711
28657
46368
75025
121393
196418
317811
514229
832040
1346269
2178309
3524578
5702887
9227465
14930352
24157817
39088169
63245986
102334155
165580141
267914296
433494437
701408733
1134903170
1836311903

1.0000000000000000
2.0000000000000000
1.5000000000000000
1.6666666666666665
1.5999999999999999
1.6250000000000000
1.6153846153846152
1.6190476190476188
1.6176470588235292
1.6181818181818182
1.6179775280898876
1.6180555555555554
1.6180257510729612
1.6180371352785146
1.6180327868852458
1.6180344478216817
1.6180338134001251
1.6180340557275541
1.6180339631667064
1.6180339985218033
1.6180339850173577
1.6180339901755969
1.6180339882053250
1.6180339889579018
1.6180339886704431
1.6180339887802426
1.6180339887383028
1.6180339887543225
1.6180339887482036
1.6180339887505408
1.6180339887496480
1.6180339887499890
1.6180339887498587
1.6180339887499084
1.6180339887498896
1.6180339887498967
1.6180339887498940
1.6180339887498951
1.6180339887498947
1.6180339887498947
1.6180339887498947
1.6180339887498947
1.6180339887498947
1.6180339887498947
1.6180339887498947

than one argument, we will also draw more than
one arrow to that particular rectangle, in which
the arguments are indicated strictly from left to
right.

e An arrow from a rectangle (operation) to an oval
(type) means that either that operation yields a
result of that type or it changes the value of its
argument. In the latter case the access right of
that argument must be VAR which is indicated by
a double arrow.

e A double-headed arrow from an oval (type) to a
rectangle (operation) and back indicates that that
operation awaits an argument which must have
a value and it modifies this value. This means
that the access right of this argument must be VAR
which again is indicated by a double arrow.

Notice that an NTO is a very convenient notation for
operators, and also for procedures with a couple of pa-
rameters. However, if the number of parameters ex-
ceeds three such a graphical representation is not really
useful.

Below and in the following chapters, the signatures
of the four basic types in the form of NTO’s will be
presented. However, none of the NTQ’s will contain
the denotation of that type or the assignation (:=) and
initialisation (::) as these are always present with the
type.

By combining the NTO’s of the different types you
may, if you wish, obtain the complete picture.

3.6.1 NTO of the integers

The NTO for the type INT has to be composed of a
number of parts:

e the monadic +, -;

e the dyadic +, -, *, DIV, MOD, **, INCR and DECR;
e the comparison operators =, <>, <, <=, > and >=;
e the output procedure put;

e the input procedure get;

e the integer constant maxint.

All these parts can be found back in the scheme of
Fig. 3.7. This NTO in its turn forms part of a larger
framework together with other NTO’s which we have
not included in this picture.

For a complete set of operations on integers see ap-
pendix B.

3.7 Exercises

1. Find a sequence of assignments that interchanges
the value of two variables a and b. Can this also
be done without the use of an auxiliary variable
(mind the overflow)?

22

get maxint®
INT |
<
v
w
\
w
v
¥
= < +o- ok
INCR
put < <= DIV MOD
DECR > >= et
BOOL
t Not Elan-0

Figure 3.7: NTO of integers

. (Interval sum) Write a program that finds, for a

given number s, all pairs of integers i and j with
1 <4 < j such that the sum of all numbers in the
interval ¢ up to and including j is equal to s.

. (Counting grid points) Read an integer r and

count how many points of the unit grid fall within
the circle with radius r, i.e. how many pairs (z,y)
exist with z2 4+ y2 < r2.

. (Maximum sum of divisors) Determine that num-

ber in the interval [a :] with 1 < a < b for which
the sum of divisors is maximal. Note that 1 and
the number itself are also divisors.

. (Pythagoras numbers) Determine for a given k& > 0

all numbers ¢ and j with 0 < ¢ < 7 such that
Z'2 +]2 — k2.

. (Pythagoras numbers) Find all pairs (i,j) with

1< i < imas and 1 < j < jmas that form
Pythagoras numbers (i.e. 2 + j2 is a square num-
ber).

. (Ulam’s rules) The number theoretician Ulam es-

tablished that a sequence of natural numbers al-
ways ends up with 1 if, starting with any nonzero
number, the following rules are applied repeatedly:

e an even number is divided by 2,

e an odd number is multiplied by 3 and then
incremented by 1.

10.

11.

Write a program executing Ulam’s rules and ob-
serve its behaviour.

(Perfect numbers) Numbers equal to the sum of
their true divisors are called perfect. Write an ef-
ficient program producing all perfect numbers less
than one million (ten thousand with Elan0).

(Friendly numbers) Let s(n) denote the sum of the
true divisors of a number n. If for the numbers n;
and ny s(ny) = ny and s(n2) = ny, ie. s(s(ny) =
n1, then ny and no are called friendly numbers.

Write an efficient program producing all friendly
numbers less than one million (ten thousand with
Elan0). Mind the symmetric pairs!

(Related numbers) Again, let s(n) denote the sum
of the true divisors of a number n. If for the
numbers nq,na,n3,...,n, s(n1) = ng,s(n2) =
ns,...,s(ni) = ny then ny,no,...,n; are called
related numbers.

Write an efficient program producing all related
numbers less than one million (ten thousand with
Elan0) for k= 1,2,.... Mind the permutations!

(Five sailors, many coconuts and a monkey) Five
sailors are shipwrecked at a small island, together
with their monkey. To their good luck, the island
is rich in coconuts, of which they collect a big pile
before they retire to rest. One of the sailors wakes
up in the night, feels hungry, gives one nut to the
monkey and then honestly takes his fifth; this di-
vision is possible without rest. When the second
sailor wakes up and feels hungry he proceeds sim-
ilarly, and so do the others; the division is in ev-
ery case possible without rest. When they come
together later in the morning, although wondering
at the tiny pile, they divide equally, and also with-
out rest, what they have found — but this time
leaving out the monkey [KLI85].

Write a program to solve this difficult Diophantine
equation and answer the question: how many co-
conuts did the sailors collect on the previous day?

23

24

Chapter 4
The real numbers

The next elementary type implements the real num-
bers. The name of this type is REAL, and its values are
customarily called reals. Real numbers play a role in
all kinds of physical and technical computations; for
this reason, reals are available in practically every pro-
gramming language.

4.1 The denotation of reals

The customary denotation for reals is a decimal no-
tation. It consists of a sequence of decimal digits in
which a decimal period should occur and which may
be followed by a part indicating a power of ten.

The syntax diagrams for real denotations are shown
in Fig. 4.1, 4.2 and 4.3.

real-denotation

fixed-point-numeral

floating-point-numeral

Figure 4.1: Real-denotation

fixed-point-numeral

digit digit
‘.) ‘.

Figure 4.2: Fixed-point-numeral

floating-point-numeral

digit

.. 8

Figure 4.3: Floating-point-numeral

Some examples of real denotations are

1.432E-19 1.0 1234.0 0.001234

whereas the following notations have a strong resem-
blance to them, but are not correct according to the
syntax diagrams (check this!).

1.E+2 0001E2 E.2 3.

The value represented by a real denotation is its usual
interpretation as a decimal number; the exponent in-
dicates a power of ten as a scale factor.

Just as in the case of integer denotations, negative
reals can be denoted by a denotation for a positive real,
preceded by the operator -.

One same real value can be denoted in a number of
different ways. For example a certain approximation
of the number 7 might be denoted as 3.141592654 or
0.3141592654E+001 or 314159265.4E-8.

4.1.1 Precision errors

The following list of properties of reals makes clear that
they are but a meagre substitute for true real numbers.

e Reals are represented internally not in base 10 but
generally in base 2. Of course this makes no differ-
ence for most properties of the real numbers, but
it makes the distance between our conceptions and
the realities of the computer noticeable.

e The number of binary digits (“bits”) that a com-
puter uses for the internal representation of a real
is limited and differs from computer to computer.

e The number of binary digits used for the internal
representation of the exponent is also limited and
different.

These facts have a number of consequences.

e Within a particular computer, only a finite num-
ber of real numbers can be represented exactly or,
more precisely, only a finite subset of the rational
numbers. Maybe the reals could better have been
called “rats”: rational numbers.

e All other real numbers within a specific range are
represented approximately by one of the exactly
representable rational numbers.

e Therefore the value of this representation differs
by some amount from the intended real number.
This difference is called the absolute representation
error.

e In representing the result of a real operation, the
result is often truncated to some number of bits,
giving rise to rounding errors.

e Because of the representation of real numbers as
floating point numbers, the absolute representa-
tion error is large for those real numbers that have
a large absolute value. (In consequence of the lim-
ited precision the least significant digits get lost.)

e When a computer internally uses the binary sys-
tem, many decimal fractions like 0.1 are not ex-
actly representable. This has as a consequence
that on such computers 10%0.1 is not equal to 1.0.

4.1.2 Machine dependence

The properties of reals differ from computer to com-
puter. In order to allow you to formulate programs
involving reals that will work on any computer, in the
standard packets two constants have been defined.

The constant smallreal is the (in absolute value)
smallest positive real that, when added to 1.0, gives
a result differing from 1.0. Therefore the number
smallreal is a measure for the relative precision.

The constant maxreal is the largest real that can still
be represented in the computer. The number maxreal
therefore gives an idea of the range of reals in the com-
puter.

Table 4.1 gives, for a number of computers, the val-
ues of smallreal and maxreal. The notation used in
the table also indicates the internal number system.

smallreal maxreal
CDC Cyber 217 (28—) *(21022
SIEMENS 2002 | 10~2 (1 —-10719) | %(10%°
IBM 370 166 (1- 16 %) *(16%3)
DEC 20 2-63 (1—2753) *(2127)
PDP 11 223 (1-2"2%) *(2127)

Table 4.1: smallreal and maxreal on some computers

4.1.3 Overflow and underflow

Apart from overflow, which occurs when a computed
result is larger than maxreal, in real arithmetics also
underflow can occur, when a result is too small to be
represented, e.g. when the exponent is more negative
than the number representation allows. In that case
the result may be rounded to zero. That is somewhat
less tragic than overflow.

4.1.4 Terminology
Notice the distinctions between the following terms:
real number a mathematical concept;

real a rational number, representable in the language,
used as an approximation to a real number;

REAL the name of the type of the reals;

real denotation the denotation for (positive) reals in a
program.

4.2 Real constants and variables

Declarations for real constants and variables have the
same form as those for integer constants and variables,
apart from the fact that they start with the type name
REAL.

The following constants are standard in Elan and
therefore need not be declared by the programmer.

REAL CONST maxreal very large,
smallreal:: very small,
pi:: 3.141592653589793238 ...;

The constants maxreal and smallreal have been dis-
cussed in the previous paragraph. The constant pi is
the well-known ratio between the circumference and
diameter of a circle.

Notice that Elan, like so many programming lan-
guages, does not have one general notion of number
but comprises two different concepts, reals and inte-
gers, that are much more related to the construction
of the central processing unit in computers than to our
expectations. As an example, 12 is an integer deno-
tation and therefore is not a real denotation. Since in
an assignment the types of left-hand and right-hand
side have to be equal, 12 cannot be assigned to a real
variable. Therefore we cannot write:

REAL VAR x; x:= 12
but have to write
REAL VAR x; x:= 12.0

4.3 Operations on reals

4.3.1 Arithmetical operations

Reals are especially intended for performing compu-
tations. All the usual arithmetic operations for real
numbers are therefore included among the standard
operators in Elan (Table 4.2).

operator | meaning example result
+ addition 1.0 + 3.0 (= 4.0)
- subtraction 75— 1.1 (=6.4)
* multiplication 2.0 *4.7 (=94)
/ division 3.8/20 (=1.9)
MOD | rest 3.4 MOD 2.0 | (= 1.0)

Table 4.2: Arithmetical operations on reals

These dyadic operators are defined for real operands
and yield a real result.

The priority of these arithmetical operators for reals
is the same as those for integers; the priority is a prop-
erty of the operator which is inherited with its name.

Exponentiation has as its left operand a real and as
its right operand an integer which has to be larger than
zero (Table 4.3).

result
(= 1.69)

example
—1.3 ¥* 2

operator
x5k

meaning
exponentiation

Table 4.3: Exponentiation

4.3.2 Real functions

The functions, listed in Table 4.4, with one real argu-
ment and a real result are also available in Elan:

Name Meaning
sqrt taking the square root
exp e-to-the-power

1n the natural logarithm
the sine function

sin

cos the cosine function

tan the tangent function
arcsin the arcsine function
arccos the arccosine function
arctan the arctangent function
abs taking the absolute value

Table 4.4: Real functions

The six trigonometric functions expect their
argument to be in radians, respectively deliver their re-
sult in radians. These are not operators but procedures
whose argument has to be placed between the brack-
ets (and). (Procedures will be discussed in detail in
chapter 10). A function call can appear as an operand
in an expression. Examples:

sin (x) ** 2 + cos (x) ** 2
exp (1.0)

Some of these functions have limitations on their ar-
guments that are customary in mathematics. As an
example, the function sqrt (“square root”) is defined
for nonnegative arguments only. Therefore never try
to take the square root of a negative number.

4.3.3 Comparison operators

Two reals can be compared with the aid of the well-
known operators:

= <= < > >= <>

Be careful in comparing reals: owing to the possibility
of rounding errors, the representation of a result de-
pends strongly on its history, and it is possible that an
expected equality does not occur. Instead of a = b one
should rather write

abs(a - b) < threshold

with a sufficiently small value for threshold.

4.3.4 Conversion operations

The functions, listed in Table 4.5, have been introduced
to allow the conversion from an integer to an equivalent
real number or from a real number to an integer value.

The function round yields an integer result, the

Name Meaning

real to convert an integer into an equivalent real

round for rounding a real number to the nearest integer
trunc for truncating a real number down to the nearest inte

Table 4.5: Converting functions

nearest integer.

round (4.3) = 4.0
round (4.8) = 5.0
round (-4.3) = -4.0
round (-4.8) = -5.0

A real number ending on .5 is supposed to be rounded
up, but of course if it ends on .4999999999 it may be
rounded downwards.

The function trunc delivers the greatest integer
which does not exceed its operand.

trunc (4.3) = 4.0
trunc (4.8) = 4.0
trunc (-4.3) = -5.0
trunc (-4.8) = -5.0

Because of the inherent imprecision of the reals you
can not find out easily that an expression like trunc
(10.0 * 0.1) yields zero or one. Its explanation is
the following. The decimal fraction 0.1 is an infinite
fraction of the form 0.0001010101. .. in the binary sys-
tem and is normalized as 0.1010101...%23. The com-
puter, of course, can store a finite number of digits only.
Suppose the computer represents the mantissa with an
even number of bits which means that the first omit-
ted bit is a 1. When the computer rounds the number
according to the omitted bits the mantissa will end up
in ...011; therefore the number will be larger than 0.1
and its tenfold larger than 1! In this case the above ex-
pression yields 1. On the other hand, if the computer
does not round the mantissa then the number will be
less than 0.1 and its tenfold less than 1. Thus, the
expression results 0.

An important application of conversion operators is
to allow arithmetic on operands of differing type, for
instance REAL and INT:

INT VAR k:: O;
REAL CONST dx::
WHILE k <= 100
REP
k INCR 1;
REAL const x:: real(k) * dx

0.001;

ENDREP

27

4.3.5 Input and output of reals

Just like integers, reals can be read and written by
means of the concrete algorithms get and put. When
called with a real variable as its argument, the proce-
dure get reads a number in the same form as a real
denotation, possibly preceded by a sign. Similarly, put
with a real argument outputs a denotation for that ar-
gument, possibly preceded by a - sign and some spaces.
(So far, we used the names get and put to identify con-
crete algorithms of Elan and now, suddenly, we say get
is the name of a procedure. There is no contradiction
since procedures, like programs and operations, are al-
gorithms and in a sense the term procedure is used as
a synonym for algorithm. The notion of procedure will
be defined more precisely in chapter 10).

The number of digits written by put depends on
the precision with which the computer represents re-
als. This number is in any case sufficient to show all
significant digits of a real, but you have to be aware
of the possibility that rounding errors have occurred.
Therefore do not be surprised when you have computed
with great labour a result which should be equal to two
and it is printed as 0.199999994E+1 or some such.

4.4 Example: The roots of a
quadratic equation

Although the reals are specially intended to perform
computations with real numbers, in practical compu-
tation a great deal of prudence has to be exercised.
Reals form only a meagre realization of the real num-
bers. We cannot just take a formula and turn it into a
program. In many cases its result will be rather differ-
ent from what we expect, especially when intermediate
results approach the precision limits of the reals. We
will illustrate this with a shocking example.

A well-known formula for the roots of a (non-
degenerate) quadratic equation is the abc-formula.
The equation

az’ +bx +c¢=0

has as roots, according to your highschool mathematics

—b+ Vb? —4dac
T1,0g = ——(F———
2a

The formulation of an algorithm to compute these
roots for a number of values for a, b and ¢ is an ex-
ercise in the linear notation of formulae.

roots of quadratic:
read the coefficients;
see if there are roots.

28

read the coefficients:
REAL VAR a, b, c;
line;
put ("
line;
put ("The roots of
C");
line (2);
put ("Give a:
get (a);
line;
put ("Give b:
get (b);
line;
put ("Give c:
get (c);
line.

2");

ax + bx +

")

")

")

We have used here the procedure put with a text as its
parameter which of course we do not introduce until
chapter 6. We hope its use is self-explanatory: a call
like put ("Give a: ") writes the text Give a: (with-
out the quotes) on the screen, starting at the current
position.

see if there are roots:
IF the equation is degenerate

THEN
compute roots of degenerate equation
ELSE
IF discriminant is negative
THEN
report that there are no real roots
ELSE
compute the roots;
print them
FI
FI.

the equation is degenerate:
a = 0.0.

compute roots of degenerate equation:
IF b 0.0
THEN
IF c
THEN
report that there are too many

0.0

roots
ELSE
report that there are no roots
FI
ELSE
give the only root
FI.

report that there are too many roots:
put ("There are too many roots.");
line.

report that there are no roots:
put ("There are no roots.");
line.

report that there are no real roots:
put ("There are no real roots.");
line.

give the only root:

put ("The only root is: x = ");
put (- ¢ / b);
line.

discriminant is negative:
REAL CONST discriminant::
a * c;
discriminant < 0.0.

bxb-4.0 %

compute the roots:
REAL CONST x1:: (-b -
sqrt(discriminant)) / (2.0 * a);
REAL CONST x2:: (-b +
sqrt(discriminant)) / (2.0 * a).

print them:
line;
put ("x1
put (x1);
line;
put ("x2
put (x2);
line.

")

")

In Table 4.6 we have given for the quadratic equation
(z —10.0") % (z — 1.0) = 0 for i = 1,2,3,...

the results according to this algorithm in the left col-
umn and the correct values in the right column. The
computations have been done on a computer with

smallreal = 1.1920929E-7 and maxreal =
1.7014117E+38.

We observe that beyond ¢ = 7 according to the abc-
formula the value of the smallest root is 0 instead of
1! These strange results are not the fault of the algo-
rithm, but are due to the fact that we use reals rather
than real numbers. We see that the smallest root can
have a large relative error, especially if the roots of the
equation differ greatly in absolute value. This is easy
to explain when we note that in that case a and c are
small with respect to b. Therefore b and the square root
of the discriminant /(b2 — 4ac) will be about equal to
one another. Owing to the limited precision, the dif-
ference between those two values will therefore have a
large relative error.

We get better results by using the following math-
ematically equivalent formulae for obtaining the roots
of this quadratic equation:

V)

c

= —— b
1+ 4/1— dae
and
c
L9 = ———
ary

With these formulae we obtain as the smallest root x¢
and as the (in absolute value) largest root zs.

29

In serious computations the pitfalls may be much
larger than illustrated by this example. In such cases
you should go for advice to the branch of mathematics
that knows how to cope with limited accuracy, viz.
numerical mathematics.

4.5 Example: Mean and vari-

ance

An important problem in production processes is the
control of the quality of the product. Assume that
we have a factory producing bottles of noodle soup.
The number of noodles in one bottle of noodle soup
should be on the average equal to fifty. It should not
be too low, otherwise we will no longer be entitled to
call our product noodle soup. It should not be too high,
because noodles are relatively expensive in comparison
to the other ingredients of the soup.

One way to check the quality of our noodle soup is to
count the number of noodles in every bottle produced
and adjust the production process as soon as we see
important deviations.

Important deviations occur whenever the average
number of noodles per bottle strays too far from our
goal value (i.e. 50). But that is not enough. We would
also get into trouble if one bottle of the soup were to
contain one hundred noodles and the next bottle no
noodles at all. If we alternate bottles like that, the
average will be fifty but we still may have trouble sell-
ing our stuff. We should insist that the variance of the
number of noodles per bottle is not too large.

Of course it is not feasible to count the number of
noodles in each and every bottle. In practice we will
therefore count only the noodles from a relatively small
fraction of the bottles. Any handbook of elementary
statistics will tell us how often we have to measure a
batch of bottles in order to obtain (according to the
formulae given below) a reasonable indication of the
mean and the variance of the number of noodles per
bottle.

Let W, be the number of noodles in the ith bottle of
the batch and let n be the total number of bottles in
the batch. The average is given by the formula:

E:Z;1WQ
n

and the variance (exactly, corrected empirical variance
is its name in mathematical statistics) by:

S W2 —n x average?
n—1
Notice that for n = 1 the corrected empirical variance
is undefined.

The mean and corrected empirical variance can now
be computed according to these formulae by a program,
which has to read the size of the batch and the values
for W; and compute the sum and the sum of squares
of Wl

with abc-formula

(x —10.0°) % (x —1.0) =0.0fori =1,2,3,...

with improved formula

T1

Z2

Z1

T2

+1.0000000E +0
+1.0000000E +0
+1.0000000E +0
+1.0000000E +0
+1.0000000E +0
+1.0000000E +0
+1.0000000E +0

+1.0000000E +1
+1.0000000E +2
+1.0000000E +3
+1.0000000E +4
+1.0000000E +5
+1.0000000E +6
+1.0000000E +7

+0.0000000E +0
+0.0000000E +0
+0.0000000E +0
+0.0000000E +0
+0.0000000E +0
+0.0000000E +0
+0.0000000E +0
+0.0000000E +0
+0.0000000E +0
+0.0000000E +0
+0.0000000E +0
+0.0000000E +0

+1.0000000E +8
+1.0000000E +9
+1.0000000E410
+1.0000000E+11
+1.0000000E+12
+1.0000000E+413
+1.0000000E+414
+1.0000000E+15
+1.0000000E+416
+1.0000000E+17
+1.0000000E+18
+1.0000000E+419

+1.0000000E +0
+1.0000000E +0
+1.0000000E +0
+1.0000000E +0
+1.0000000E +0
+1.0000000E +0
+1.0000000E +0
+1.0000000E +0
+1.0000000E +0
+1.0000000E +0
+1.0000000E +0
+1.0000000E +0
+1.0000000E +0
+1.0000000E +0
+1.0000000E +0
+1.0000000E +0
+1.0000000E +0
+1.0000000E +0
+1.0000000E +0

+1.0000000E +1
+1.0000000E +2
+1.0000000E +3
+1.0000000E +4
+1.0000000E +5
+1.0000000E +6
+1.0000000E +7
+1.0000000E +8
+1.0000000E +9
+1.0000000E+10
+1.0000000E+11
+1.0000000E+12
+1.0000000E+13
+1.0000000E+14
+1.0000000E+15
+1.0000000E+16
+1.0000000E+17
+1.0000000E+18
+1.0000000E+19

Table 4.6: Computation of the roots of a quadratic equation

Upon closer consideration it is not necessary to keep
all values W;: we only want to compute the sum of the
values W; and the sum of the squares W?. For that we
have to take into account only one W; at a time.

During these summations, overflow can occur. This
would happen with virtual certainty if we were to com-
pute both sums as integers. We shall therefore compute
the sums as reals, trusting that the real range of our
computer is large enough.

We come to the following program:

read number of measurements;
compute sum and squaresum;
compute mean and variance;
print values.

read number of measurements:
put ("Batch size = ");
INT VAR n;
get(n);
line(2).

compute sum and squaresum:
INT VAR number:: O;
REAL VAR sum:: 0.0, squaresum:: 0.0;
WHILE not last value
REP
read next value;
adjust sum and squaresum
ENDREP.

not last value:
number < n.

30

read next value:
REAL VAR value;
put ("Next value, please:
get (value);
line;
number INCR 1.

")

adjust sum and squaresum:
sum:= sum + value;
squaresum:= squaresum + value ** 2,

compute mean and variance:
REAL CONST mean:: sum / real(n);
REAL CONST variance::
sqrt ((squaresum - real(n) * average
*x2) / real(n-1)).

Notice that we have to convert n explicitly into a real
in order to use the real division and multiplication. The
refinement can be simplified somewhat to

compute mean and variance:
REAL CONST mean:: sum / real(n);
REAL CONST variance::
sqrt ((squaresum - sum * average) /
real(n-1)).

print values:

line;

put ("Number of measurements= ");
put(n); line;

put ("Average= "); put(mean); line;

put ("Variance= "); put(variance);
line.

We install this little program in the computer on the
work floor of the factory, give the necessary instructions
to the personnel and, after some time, conclude with
pride that the quality control is now so much better

that the clients find on the average fewer noodles in
their soup than before.

But one day the foreman, his face ash-grey, runs into
our office with the cry: “It doesn’t work ...”. We
follow him to the computer and read upon the screen
the message

FATAL ERROR AT ADDRESS 000247 IN MODULE
ECOOD3E4

OVERFLOW IN REAL DIVISION

SYMBOLIC DUMP FOLLOWS

followed by a load of drivel. After some searching we
find that the operator by mistake had indicated a batch
size one. The program could not cope with this input.
After some thought we modify one refinement

read number of measurements:
INT VAR n;
REP put ("Batch size =
get(n);
line(2)
UNTIL n > 1
ENDREP.

")

thus making the program somewhat more robust.

4.6 NTO of the reals

The NTO for the type REAL has to be composed of a
number of parts:

e the monadic +, -;

e the dyadic +, -, *, /, MOD and *x;

e the comparison operators =, <>, <, <=, > and >=;
e the output procedure put;

e the input procedure get;

e the real constants maxreal, smallreal and pi;

e the real functions sqrt, abs, sin,
arcsin, arccos, arctan, 1n and exp;

cos, tan,

e the conversion functions real, round and trunc.

All these parts can be found back in the scheme of
Fig. 4.4. This NTO in its turn forms part of a larger
framework together with other NTO’s which we have
not included in this picture.

For a complete set of operations on reals see ap-
pendix B.

4.7 Exercises

1. (Square root) One of the eldest algorithms is the
following determination of the square root of a
number. If z is an approximation of the square
root of a then a better approximation can be ob-
tained by the formula z;41 := 0.5(2; + a/z;).

31

Write a program to compute the square root of
some number. Compare the results with those
gained by the built-in sqrt(x) function of Elan.

. Explore the behaviour of real arithmetics by per-

forming the following computations
¢ 1-1/3-1/3-1/3,
e1-1/6-1/6—-1/6-1/6—-1/6—1/6,
e v — /z2 for some values of z,

.« 2 (V3

e z — tan(arctanz).

. Compute e and 1/e by means of the sequences

e=1+1/1141/204+1/3+ ...,

1Je=1-1/11+1/2 —1/3!+ ...

After every step, the product of the approxima-
tions should be computed as a check.

. (Minimization) Write an algorithm that finds a

minimum of a concave function in one variable by
repeated halving of the interval in which this min-
imum should lie. Find, with the aid of this algo-
rithm, that value in [3.0 : 4.0] for which cosz is
minimal.

. Compute 7/4 by means of the following sequence

wm/4=1-1/3+1/5-1/7+1/9—...

After every step, show the value of the approxi-
mation and compare it to the value the computer
gives for 7 /4.

. Compute In 2 by means of the sequence

In2=1-1/2+1/3—-1/4+1/5—...

Compute the power of e with your approximations
as a check.

. Determine experimentally the values of maxreal

and smallreal on your computer.

maxreal
get smallreal

pi

round
trunc

put

+_
sqrt
N abs sin
- cos tan

Vv A
A
|

INT

real

arcsin
arccos
arctan
In exp

BOOL

Figure 4.4: NTO of reals

32

Chapter 5

Truth values

In Elan two truth values are distinguished: true and
false. In honour of George Boole (1815-1864) who in-
vented the logical algebra or “switching algebra”, these
values are called Boolean values; in computer jargon:
booleans. Their type has the name BOOL.

Truth values can be regarded in two ways. In the
first place they appear as values of objects that can
be manipulated by algorithms. In this respect they
behave similarly to integers and reals. On the other
hand, truth values can also control the execution of al-
gorithms. In the choice and repetition, the execution of
the algorithm is controlled by the result of a condition.

In Elan, no distinction is made between those two
aspects of truth values, but experience shows it is dif-
ficult for the beginner to reconcile those two different
uses.

5.1 Boolean denotations

Since there are only two truth values, the syntax of
the boolean-denotation consists of an enumeration of
the possibilities.

boolean-denotation
FALSE

Figure 5.1: Boolean denotation

The yes-value is represented as TRUE and the no-
value is represented as FALSE. In the standard packets
two boolean constants, true and false, are predefined
for the use of those people who (like this author) do
not like conspicuous uppercase letters. Therefore we
can write TRUE and FALSE in small letters instead if we
prefer.

Also for this type we have to distinguish between a
number of concepts:

truth value the concepts true and false

boolean the representations of those truth
values in the programming languaﬁ(]a
BOOL the name of the type of the

booleans

boolean-denotation the notation for boolean values.

33

5.2 Elementary algorithms for
booleans

Instead by way of a boolean denotation, a truth value
can be introduced by means of an algorithm yielding a
boolean value (a condition or “test”). This is the usual
way to obtain such a value.

5.2.1 Comparison operators

In Elan for all elementary types, including the
booleans, there exist two comparison operators that
compare the values of their operands for equality.

These operators are shown in Table 5.1. The two
operator | meaning
= equal to
<> not equal to

Table 5.1: Comparison operators for equality

operands must be of the same type, be it INT or REAL
or BOOL (or, as we will see in chapter 6, TEXT). The
result of the comparison is a truth value. For operands
of type BOOL these are also the only comparison opera-
tors. In addition, for those elementary types for which
an ordering relationship exists, such as INT and REAL,
but also TEXT (see chapter 6), there exist four more
comparison operators. They are shown in Table 5.2.

operator | meaning
< smaller than
> greater than
>= at least
<= at most

Table 5.2: Comparison operators for ordering

These also take two operands of one same type and
yield a truth value. Just like the arithmetic operators,
these comparison operators are not defined for combi-
nations of integer and real operands; the types of their
operands have to be the same.

The priority of comparison operators is lower than
e priority of the arithmetic operators, so that a for-
mula like:

b **x 2 < 4 x g x ¢

means the comparison of b ** 2 with 4 * a * ¢; no
brackets are needed here.

The two different aspects of truth values — elemen-
tary object as well as control of the execution — is
reflected in the use of formulae such as the one above.
This formula might for instance be used in a choice
like:

IF

b xx 2 <4 % axc
THEN

compute complex roots
ELSE

compute real roots
FI

Here the result of the test is used immediately to choose
between the computation of the complex or the real
roots of a quadratic equation. The result of a test is,
however, a truth value. Therefore the test can also be
used in an assignment or an initialization, e.g.

BOOL CONST
discriminant is negative ::
* a * c

b xkx 2 < 4

The result of the test is now kept as the value of a
constant and can be used later in a choice like:

IF

discriminant is negative
THEN

compute complex roots
ELSE

compute real roots
FI

Of course this constant declaration makes the most
sense if its value is used more than once. Observe, by
the way, that the value of this constant of course does
not change if we happen to change the values of a, b
and c afterwards. Its value will not be recomputed, in
distinction to, for example, a refinement

discriminant is negative: b *x 2 < 4 x*
a * c.

whose value is recomputed afresh each time the refine-
ment is invoked.

5.2.2 Logical operators

For the manipulation of truth values as elementary ob-
jects, the following operators are given: NOT (negation),
AND (conjunction), OR (disjunction, inclusive OR), and
XOR (exclusive OR).

The result of these operators for various values of
their operands follows from Table 5.3. The operator
AND has a higher priority than the operators OR and
XOR, but a lower priority than the comparison oper-
ators. The monadic operator NOT has, like all other
monadic operators, the highest priority.

With the help of these operators and the boolean
comparison operators = and <>, the sixteen operators

34

operands operations
p | q NOTp [pANDq[pORgq[pXORq
TRUE | TRUE || FALSE | TRUE TRUE | FALSE
TRUE | FALSE FALSE TRUE TRUE
FALSE | TRUE | TRUE | FALSE TRUE | TRUE
FALSE | FALSE FALSE FALSE | FALSE
Table 5.3: Boolean operators

of the proposition calculus can be realized simply. As
an example, both

p=9q0Rq
and
NOT p OR q

are formulae computing the implication p — q.

5.2.3 Combined conditions

Some care has to be exercised in the use of comparison
operators. The formula

p=q=r

does not mean what you hope. Because the priority
of the operators is equal, this formula is executed from
left to right, and therefore it is equivalent to

p=q =r

i.e. the boolean result of the comparison p = q is com-
pared to the (supposedly logical) value of r. If we wish
to ensure that we get the result TRUE exactly when p,
q and r all have the same value, we must write

p=9q AND q-=r

In testing on an ordering, a formula of the form

a<=b<=c

is syntactically wrong, because the result of the left-
most operation is a value of the type BOOL which does
not allow comparison with the integer c. Therefore we
have to write

a<=b AND b <= c

if we wish to achieve our goal.

Note that both operands of a dyadic logical opera-
tor are computed even when, after the computation of
the first operand, the result is already decided. As an
example,

a <> 0 AND b DIV a >= 10

is not a suitable way to prevent a division by zero.
Instead one has to write

IF

a<>0
THEN

b DIV a >= 10
ELSE

false
FI

For the convenient handling of such cases, some pro-
gramming languages and systems, e.g. EUMEL, offer
the so called conditional AND and conditional OR op-
erators (shortly CAND and COR). Here, the second
operand will not be computed if the result may already
be determined from the first one. Then you can write

a <> 0 CAND b DIV a >= 10

5.2.4 Input and output of booleans

For the input and output of truth values, Elan does
not provide algorithms. Instead of these truth values,
one will have to read and write a text, as is shown in
chapter 6.

5.3 Trusting the booleans

The twofold character of booleans (value and control)
leads many people to strange circumlocutions and er-
rors of style that can all be explained as a lack of
trust in the booleans. Assume for example that a is
a boolean variable. Many programmers write

IF a = true THEN ...

where simply

IF a THEN ...

would suffice. Obviously they do not realize that the
expression a by itself already yields a boolean and try
to turn it into a control by means of a test. It must be
conceded that the last line looks a bit naked, but not
if you use a meaningful identifier like

IF it is raining THEN ...

A comparable distrust of the integers would lead to the
absurd

put (i + 0)

in order to ensure that the value of the integer variable
i is really a whole number. Strange contortions like

BOOL VAR t;
t := IF a > b THEN true ELSE false FI;
IF (t = true) = true THEN t := false FI

show a lack of understanding of the booleans and a lack
of trust in their dual character.

It is instructive to invent shorter versions for the
following boolean expressions:

IF a > 0 THEN true ELSE false FI

IF a THEN NOT a ELSE true FI

35

IF a THEN false ELSE a FI

5.4 Example: Prime numbers

(1)

Consider the problem of determining whether a given
positive whole number is a prime number, i.e. whether
it has no divisors except 1 and itself. We start with a
rough formulation

read the number;
determine whether the number is prime;
print the answer.

Reading the whole number gives no problems.

read the number:
INT VAR number;
put ("Number, please: ");
get (number) .

The easiest way to find out whether a number is prime
is to look it up in a table of primes, but in order to
keep the problem interesting we shall assume that such
a table is not available.

We can try to divide the number by all prime num-
bers that are smaller than that number and check ev-
ery time whether the rest is zero, but for that we again
need a table! On the other hand, we might just as well
simply divide by all numbers that are smaller than the
number, including the non-prime ones. This costs more
work but leads to the same result. After all, that’s what
we have computers for.

The answer to the primality question we shall record
in a boolean variable no divisors, that initially is
TRUE and is made FALSE as soon as we find a divisor.
The first candidate we try is 2.

determine whether the number is prime:
BOOL VAR no divisors :: TRUE;
INT VAR candidate :: 2;
WHILE yet candidates to try
REP
look if candidate fits;
take the next candidate
ENDREP.

look if candidate fits:
IF number divisible by candidate
THEN no divisors := FALSE
FI.

How does one decide whether a number is divisible by
another number? One way to do it is the following. We
first divide the number by the candidate and ignore the
remainder. Then we multiply the quotient obtained by
the candidate and compare the result with the original
number. The result is only equal to the original number
if the first division had zero as remainder.

number divisible by candidate:
(number DIV candidate) * candidate =
number.

Strictly speaking, the brackets are superfluous here,
but we leave them in to make this refinement more
transparent.

Somewhat simpler is the use of the operator MOD
that, for positive operands, yields the remainder of the
division.

number divisible by candidate:

number MOD candidate = 0.

As candidates we can try all numbers smaller than the
number itself

yet candidates to try:
candidate < number.

take the next candidate:
candidate INCR 1.

For the last refinement, print the result, we steal a
leaf from chapter 6 and print one of two texts.

print the answer:
IF no divisors
THEN put ("prime number")
ELSE put ("not a prime number")
FI.

The program is now complete, but it relies very much
on the brute force of computers. Let us try to make it
somewhat cleverer.

A first criticism of the program is that we try far
too many divisors. It is sufficient to try only those
candidates that are smaller than the square root of
n. For if k is a divisor larger than that square root,
then alson DIV kis a divisor, smaller than that square
root! For large values of n this makes a tremendous
difference, e.g. having to try 100 divisors rather than
10000.

yet candidates to try:
candidate * candidate <= number.

A second improvement follows from the observation
that, once a divisor has been found, there is no reason
to continue the repetition. In the current formulation
the process inexorably continues until all candidates
have been tried. We can improve upon this by insist-
ing in the condition of the repetition that no divisors
is true.

yet candidates to try:
candidate * candidate <= number AND no
divisors.

We can now also simplify the refinement look if
candidate fits somewhat:

look if candidate fits:

no divisors := division does not fit.

not fit:
MOD candidate = 0).

division does
NOT (number
or as

not fit:
candidate <> 0.

division does
number MOD

Notice that the brackets in the first version of division
does not fit are necessary because of the high prior-
ity of the operator NOT. We prefer the second version.

Because of the role played by the variable no
divisors in assuring fast termination of this repeti-
tion, we call this form a repetition with a boolean auz-
iliary variable.

The repetition can end in one of two ways: either
the number turns out to be prime, after all candidates
have been tried, or one of the divisions fits and the
variable no divisors obtains the value FALSE.

5.5 The LEAVE-construct

The use of such a boolean auxiliary variable is a trick to
obtain two things in one stroke. The problem is that at
a place deep in the algorithm we have a certain knowl-
edge (viz. that a divisor has been found) with which
we do not know what to do at that place (in the very
interior of look if candidate fits). Another refine-
ment determine whether the number is prime can
be completed due to use of this knowledge.

For this purpose, Elan knows a specific construct,
the LEAVE-construct (called terminator in the syntax;
see Fig. 5.2).

terminator

LEAVE

WITH

Figure 5.2: Terminator

refinement-name

expression

This construct causes the present execution to be dis-
rupted; and instead of it, the refinement mentioned is
completed from within in one fell swoop. Obviously,
only such an algorithm can be named in a LEAVE-
construct whose execution led to it. The WITH-part,
which is optional, serves to complete an algorithm
which yields a result. It will be discussed in more detail
later on.

Using this construct, we can write

look if candidate fits:
IF division fits

THEN no divisors := FALSE;
LEAVE determine whether the number is
prime
FI.

division fits:
number MOD candidate = O.

Now we can simplify another refinement

yet candidates to try:
candidate * candidate <= number.

The resulting program is somewhat more efficient but
especially more perspicacious. In languages without

36

the LEAVE-construct we have to make use of boolean
auxiliary variables instead.

5.6 Example: Prime numbers

(2)

The program that we have obtained now is already an
enormous improvement over the previous version. Still
a number of superfluous divisions are made. Let us try
another improvement,.

After having tried the divisor 2 we do not have to
try any other even number and can restrict ourselves
to the odd numbers as candidates. We can achieve
this by, after the test whether the number is not even,
starting with the candidate 3 and computing the next
candidate by increasing the divisor 2.

However, after the candidate 3 we need not try any
other multiples of 3 so that, having found that the
number is not divisible by 7, we can continue with the
candidate 11. We will now compute the next candi-
date by increasing the candidate alternately by 2 and
4. Why? Here is the explanation.

The number p is either divisible by 3 or pmod 3 =1
or pmod 3 =2. If pmod 3 =1 then (p+2) mod 3 =0
and (p+4) mod 3 = 2, i.e. p should be increased by 4 if
we want to skip the numbers divisible by 3. Similarly,
if pmod 3 = 2 then (p+4) mod 3 =0 and (p+ 2) mod
3 =1, i.e. now p should be incremented by 2 in order
to skip the unwanted numbers. Hence treating 2 and
3 as special cases, we then try the divisors 5, 7, 11, 13,
17,19, 23,

In this way we have to try at most |v/n/3| +2 candi-
dates, including 2 and 3, rather than n—2 and |/n|—1
candidates in the first and second versions, respec-
tively. Even for fairly large values of n, for instance
n < 10%, this algorithm can still be used.

The following program works according to this idea.
The alternating addition of 2 and 4 to the value of
candidate is achieved by increasing its value with
the value of the variable increment, which there-
upon obtains the value 6 - increment. The variable
increment in this way assumes the values 2,4, 2,

Of course we could go still farther and omit also the
multiples of larger prime numbers as candidates. The
values that increment then has to take become rather
difficult to compute and the returns are diminishing,
partly because of this additional computing. We there-
fore leave such an amelioration to the reader.

determine whether the number is prime:
BOOL VAR no divisors :: FALSE;
IF number MOD 2 = 0 OR number MOD 3 = 0O
THEN
it was not prime
ELSE
INT VAR candidate :: 5, increment
WHILE yet candidates to try
REP
look if candidate fits;
take the next candidate
ENDREP
FI;
it was prime.

All refinements are as in the previous example, except:

take the next candidate:
candidate INCR increment;

increment := 6 - increment.

it was not prime:
LEAVE determine whether the number is
prime.

it was prime:

no divisors: = TRUE.

For yet larger values we have to use quite different
methods. These are often based on the theorem of
Fermat. We shall not discuss them as they require a
firm knowledge of higher mathematics. But we can, at
least, draw the lesson that when the amount of data
to be processed increases significantly we have to apply
more efficient algorithms based on higher mathematics.
It may even be better if we turn to an expert.

5.7 Comments

We will discuss the construct called a comment at
this place, although properly speaking it does not be-
long here. Comments are pieces of text which are not
directed at the computer but at the human reading
the program. They are not a functional part of the
program and therefore do not fit into the systematic
scheme of the programming language. For that reason
we might just as well discuss them here as anywhere
else.

In Elan, comments can appear anywhere between
symbols, denotations and identifiers, and have no effect
at all on the meaning or execution of the program. A
comment starts with a comment-open-symbol and ends
with a comment-close-symbol. Between those symbols,
all characters may appear that can not be confused
with a comment-close-symbol. There are two represen-
tations for these symbols:

comment-open-symbol { (¥
comment-close-symbol } %)

Some examples of comments:

37

version 7.3 of 23 October 1976, H.F.
(* now the fun starts! x)

Comments serve such purposes as:
e Indicating name, version and author of a program.

e Giving a short characterization, limitations and
preconditions for the use of a program or some
part of a program, e.g.:

{ Solution of the equation system AX = B
and computation of the determinant as a
check

on the precision, according to the method
of

Gauss-Jordan.

A, B and X must have the same size.

The algorithm should not be used for large
systems because of instabilities. }

e Asserting invariant properties for the benefit of the
human reader and for a proof of correctness, e.g.:

find maximum of a sequence of positive
integers:
INT VAR max :: O;
{ maximum of an empty sequence }
FOR i FROM 1 UPTO n
REP
IF max < row[i]
THEN max := row[i] FI
{ max is the maximum of row[j] for j
1..4}
ENDREP
{ max is the maximum of row[j] for j
1..n}.

e Giving only absolutely necessary explanations,
e.g.

(* In the interest of efficiency we have
omitted the test on overflow. *)

Comments are not intended to conserve stupid
remarks for posterity as in the second example
(* now the fun starts! *) or asin

x := 0; X is set to zero

It is much more preferable to include abstractions func-
tionally in the program, by the use of refinements for
the algorithms and by the choice of meaningful names
for the objects, rather than to add to the program
(mostly in hindsight) comments that try to make it
understandable.

A refinement might, of course, have a misleading
name, but that can usually be noticed by inspection
of a small part of the program. A comment on the
other hand is not functionally part of the program so
nobody cares whether the comments remain up to date
in any modifications to the program.

In this book we lay so much stress on abstraction
that the use of comments turns out to be largely super-
fluous. In a more industrial environment, the careful

38

true false

BOO

A\

L

J

“\
A\
vy

A\
/2
- AND
< OR NOT
XOR

Figure 5.3: NTO of booleans

and formalized use of comments is absolutely neces-
sary, due to restrictions of the programming languages
used that do not allow the retention of the abstractions
that occurred in the programming process. Due to the
lack of refinements, the program by itself does not give
enough documentation.

We end this section with a pearl of wisdom:

A badly structured program cannot be saved
by the addition of any number of comments.
Its chaotic origin will always remain obvious.

5.8 NTO of the booleans

The NTO for the type BOOL has to be composed of a
number of parts:

e the monadic NOT;

e the dyadic AND, OR and XOR;

e the comparison operators = and <>;

e the boolean constants true and false.

All these parts can be found back in the scheme of
Fig. 5.3. This NTO in its turn forms part of a larger
framework together with other NTO’s which we have
not included in this picture.

Chapter 6

Texts

The algorithmic manipulation of texts is the key to
a whole world of non-numeric applications:

e the presentation of the results of computations in

an attractive form,

translators and interpreters for programming lan-
guages,

linguistic research and other research with a lin-
guistic component,

the processing of texts in newspapers and in the
office,

e various forms of office administration.

The applications mentioned last may be the most pro-
saic, but economically they are the most important.
With the advent of machines speaking and understand-
ing human speech, the scope for non-numerical appli-
cations will certainly grow.

For the manipulation of texts, special programming
languages have been designed (such as SNOBOL and
all kinds of macro processors) that allow a concise for-
mulation of complicated text manipulations. The stan-
dard library of Elan offers a whole collection of cutting
and pasting instruments for dealing with texts. The
language mechanisms of the subset Elan-0 are in this
respect more primitive but still adequate.

6.1 Denotation of texts

Texts are composed of characters, chosen from a spe-
cific alphabet. The type of such a text is TEXT. A text
can be thought of as a row of characters, each of them
representable in the computer (Fig.6.1). What char-
acters are representable in the computer depends on
the implementation used, but this alphabet in any case
comprises the signs with which Elan programs are writ-
ten (lower case and capital letters, digits, punctuation
marks, operator tokens, spaces, etc.).
A text is denoted by putting it between quotes, e.g.:

"this is a text"

The value of the denotation is the sequence of charac-
ters obtained by omitting the enclosing quotes.

In order to represent a quote within a text, the con-
vention is used to double such a quote sign (a typical

39

text-denotation

©)

any-character-except-quote

{ nn\
—/

Figure 6.1: text denotation

trick from informatics, used over and over again). Ex-
ample:

" ""Silence!"" spoke Gandalf, ""Hear
Thorin’s speech""."

In particular the text consisting of a single quote is
denoted as follows:

The empty text (a row of zero characters) is denoted
as

To avoid confusion, in this chapter we will indicate the
space within a text denotation by the sign # in order
to make it easier to count how many spaces are meant,
in, for example:

" ###ll

This character does not appear on your computer,
where the space will be represented by an empty posi-
tion.

Although, in principle, texts of any length can be
denoted, a particular implementation may impose an
upper limit on the length of representable texts. As
an example, the Elan-compiler in the EUMEL system
limits the length of texts to 255 characters (the value
of the INT-constant max text length). Larger texts
have to be treated in that system as rows of lines (see
chapter 8 on rows).

6.2 Operations on texts

For the manipulation of texts, Elan offers a number of
standard operations. Unfortunately only a small part
of those is also available within Elan-0. This is one

of the places where the language had to be severely
reduced. In their stead, Elan-0 has a simpler set of
operations. We shall first describe the operations that
Elan-0 has in common with Elan and afterwards those
which are particular to Elan-0. The remaining Elan
operations are described in section 6.6.

6.2.1 Common text operations

1. The operator + concatenates two texts, e.g.:
"abc" + "def" = "abcdef"

. The operator LENGTH yields the number of charac-
ters in the text, an integer greater than or equal
to zero. As an example

LENGTH "abc

is equal to 3, and
LENGTH munn

yields 1.

The operator * with a non-negative integer n as its
left operand and a text as its right operand yields
the n-fold concatenation:

3 * "abc" = "abcabcabc"

. The characters of a text x can be considered to be
numbered starting from 1. In order to select the
kth character from the text we have an operator
SUB (its left operand a text x, its right operand
an integer k, yields a text composed out of one
character, viz. the kth character of x). Example:

(llabcll SUB 2) = llbll

If the right operand of SUB is smaller than one or

larger than the number of characters in the left

operand then the result is an empty text, for ex-

ample in

"abc" SUB 37

. The dyadic operator CAT (with a text variable as
its left operand and a text as its right operand)
combines a concatenation with an assignment,
e.g.

t CAT "abc"

means the same as

t =t + "abc"

Remark: The notation CAT, from concatenation, is
somewhat inconsistent with the generally accepted
terminology. In text processing, the term concate-
nation usually means the previously introduced +
operation of Elan.

40

The operator SUB has a blemish: it has an extremely
low priority, so that expressions involving SUB in many
contexts have to be enclosed between brackets. If we
omit the brackets we may discover to our surprise that

abc" SUB 2 = "b"

means:

"abc" SUB (2 = "b")

which is rejected by the Elan implementation with a
rather bizarre error message. Namely, an integer can
not be compared to a text, and a boolean value can
not be the operand of SUB.

It is rather bewildering for that the seemingly sim-
ilar expression LENGTH s - 1 is correct and has the
same meaning as (LENGTH s) - 1. The difference is
caused by the fact that SUB is a dyadic operator with
low precedence while LENGTH is a monadic operator and
therefore has the highest possible priority.

For this reason it is advisable to include in expres-
sions involving the operator SUB a sufficient number of
brackets to avoid unintended interpretations, e.g.

3% ("abc" SUB i)

6.2.2 Comparison of texts

The comparison operators for texts are the same as
those for integers and reals:

<= < > >= <>

The ordering relation meant is the alphabetic lexico-
graphic ordering. This implies that

nn < llall

"a" < "b"
"a" < "ab"
llaall < llbll

llaall < llabll

and so on. You may know that this ordering has the
property that, if some text x is the same as an initial
segment of a text y (i.e. y consists of x possibly followed
by some more characters), we then know for sure that
y >= X.

Each character has a code, a small positive whole
number (mostly < 128 or < 256) that serves as internal
representation. The individual characters of a text are
compared on the basis of their codes. Since different
implementations may each use their own code, apart
from the ordering of letters and the ordering of digits
not much is certain (does the space come before or
after the small letter “a”? Do the small letters come
before or after the capital letters? Does the dollar sign
($) come before or after the “at-sign” (@)? To such
questions no general answer can be given: it depends
on the code used).

The two codes that are most widely used are

EBCDIC (Extended Binary Coded Decimal Inter-
change Code) on IBM main frames,

ASCII (American Standard Code for Information In-
terchange) on nearly all others

but the situation is further complicated by the fact
that ASCII is actually the American variant of ISO,
which has a number of other national variants contain-
ing such signs as i and ¢. If you do not know in what
code you are working you should avoid making difficult
comparisons.

6.2.3 Subtexts in Elan-0

The sublanguage Elan-0 has a number of algorithms
for working with parts of a text (the complete language
Elan has a whole collection as described a few sections
down, in section 6.6).

The monadic operator HEAD yields a text consisting
of the first character of its operand, for example:

HEAD "abc" = "a"

and the HEAD of an empty text is the empty text. The
monadic operator TAIL yields a copy of the value of
its operand but with its first character removed, for
example,

TAIL "abc" = "bc"

The TAIL of an empty text is again empty, just like the
TAIL of a text of length 1. In all cases

HEAD s + TAIL s = s

and

HEAD s = (s SUB 1)

6.2.4 Input and output of texts

A text can be written onto the screen with the output
algorithm put. Where it crosses the end of the line, it
is continued on the next line. In this way the layout
can never become a total mess, but it is still advisable
to keep the layout in hand by means of the procedure
line. Example:

line; put ("Sum#=#"); put (sum); line

The algorithm get, called with a TEXT-variable as pa-
rameter, reads the input until the end of the line
(marked by RETURN, ENTER, CR, etc.). An empty
line is skipped and the next non-empty line is taken.
The resulting text is assigned to its parameter. Exam-
ple:

TEXT VAR message; get (message)

After this, the value of message will be a non-empty
text.

6.2.5 First summary

The elan-0 subset comprizes the following text opera-
tions:

e the monadic HEAD, TAIL and LENGTH;

41

the dyadic +, CAT, SUB and *;

the comparison operators =, <>, <, <=, > and >=;

the output procedure put;
e the input procedure get;
e the conversion procedure ascii.

The NTO in figure 6.2 gives an overview.

6.3 Example:
paper

We want to make a grid of squares according to the
pattern given in Fig. 6.3.

Making crossed

o o o o= +
| | | | |
| | | | |
o o o - +
| | | | |
| | | | |
o o o o= +
| | | | |
| | | | |
o o o +m——— +
| | | | |
| | | | |
o o o o= +
| | | | |
| | | | |
o o o o= +

Figure 6.3: Crossed paper
We program:

draw grid:
INT VAR row number :: 1;
REP
draw row of squarecaps;
row number INCR 1
UNTIL row number = 5
ENDREP;
draw horizontal stripe.

draw row of squarecaps:
draw horizontal stripe;
draw vertical lines;
draw vertical lines.

draw horizontal stripe;

put (4 * (cross + 5 * horizontal) +
cross) ;

line.

draw vertical lines:

put (4 * (vertical + 5 * blank) +
vertical);

line.

=
m
N neap| | +
Put | (EENGTHI IS | |TAIL | | caT
SuU ascii

|

Figure 6.2: Text operations in Elan-0

horizontal: "-".
vertical: e,
cross: ",
blank: "H#",

Notice that, instead of the refinements horizontal,
vertical, cross and blank, we might just as well have
declared text constants. Refinements yielding a value
are often an alternative to the declaration of a constant.

Notice also that the priority of + and * for texts
is the same as that for integers or reals. You may
remember that the priority is a property of the operator
and independent of the type of the operands.

6.4 Example: Converting inte-
gers to a given radix

We construct a program that reads a sequence of whole
numbers. The first is taken as the radix of some num-
ber system, to which the other numbers have to be
converted.

We are used to the decimal number system, with
radix 10: a number is represented decimally as a
weighted sum of powers of 10, using the digits of the
number as weights. For example

decimal 4711 = 4% 10> + 7% 102 + 1% 10" + 1 % 10°

Each of those digits is a positive whole number smaller
than the radix (so 0 < digit < radiz).

We can generalize this system to radices other than
10; for example we can take radix 2

decimal 23 = 1%2* +0%2% +1%2%2+1%2' +1%2° = binary 10111

We can also take radices larger than 10 where A,B,...
will be used to represent the curious “digits” ten,
eleven, etc.

A rough formulation of such a program can be:

radix conversion:
ask for a radix;
WHILE another number to convert
REP
represent the number to this radix;
print the representation
ENDREP.

ask for a radix:
line;
put ("The#radix,#please:#");
INT VAR radix;
get (radix).

another number to convert:
line;
put ("A#number,#please:#");
INT VAR number;
get (number) ;
number > O.

We determine the representation of the number in this
radix by, from back to front, splitting off digits in the
radix number system.

represent the number to this radix:
TEXT VAR representation :: "";
REP
split off the rightmost digit;
append it to the representation
UNTIL no digits left
ENDREP.

42

split off the rightmost digit:
INT CONST digit :: number MOD radix;
number := number DIV radix.

We append a text, corresponding to the digit just split
off, at the front of the representation.

append it to the representation:
representation :=
representation of this digit +
representation.

We shall introduce a representation for the digits up
to fifteen; higher digits will be printed as a question-
mark.

representation of this digit:
IF digit > 16
THEN
ll?ll
ELSE
"0123456789ABCDEF" SUB (digit + 1)
FI.

We have to add one to the value of the digit, because
the numbering of characters in a text does not start at
zero but at one.

no digits left:
number = O.

print the representation:
line (1);
put ("Representation#is#");
put (representation);
line (2).

This example is particularly useful because it deals
with the relationship between texts (that may contain
digits) and numbers (composed of digits). The reader
is urged to try out this algorithm for some values of
radix and number.

6.5 Example: Circular shifting

of texts

The next example is intended to clarify the use of the
operators HEAD and TAIL. By “circularly shifting the
text to the left” we mean a cyclic movement as in

ABCDE
BCDEA
CDEAB

where each element is moved one place to the left, ex-
cept for the first, which is moved to the far right.

We shall construct a program that shifts a string cir-
cularly to the left until the original is obtained again.

circular shift:
declare string;
REP
shift string circularly one place to
the left;
display string
UNTIL same as original
ENDREP;
line.

declare string:
TEXT VAR string;
put ("String,#please:#");
get(string);

TEXT CONST original :: string.

shift string circularly one place to the
left:

string := TAIL string + HEAD string.

display string:
line;
put (string).

same as original:
string = original.

This program shifts a string like AAAAAA only once to
the left, and a string like ABABAB only twice since after
one, or two, steps string will be the same as original.
In this example we do not make a difference between
similar characters at different places. However, the de-
scription of the problem is ambiguous and allows var-
ious interpretations: we may consider even the same
characters different if they are at different places. In
this case the algorithm circular shift must be mod-
ified:

circular shift:
declare string;
UPTO LENGTH string
REP
shift string circularly one place to
the left;
display string
ENDREP;
line.

Now the same as original refinement is not neces-
sary.

The example illuminates that the description of a
problem, i.e. its specification is often ambiguous. Be-
ginners as well as professional programmers frequently
misunderstand the problems to be solved. We shall
return to this question later, in chapter 11.

6.6 Subtexts in Elan

Besides +, *, SUB, CAT and LENGTH, the full Elan lan-
guage knows a whole collection of special algorithms
for cutting and pasting texts. Although none of these
algorithms is absolutely necessary (with the operators
+ and SUB and some trouble any effect could already

43

be achieved), they do make the manipulation of texts
a lot easier than in Elan-0.

In many applications it is nice to have more pow-
erful algorithms at your disposal, as described in the
following sections.

6.6.1 Standard constants

In the standard environment, a number of TEXT-
constants are predefined:

TEXT CONST niltext :: "",
blank :: "#",
quote v nnun

These can be used without further declaration.

Programmers often use the word blank as a syn-
onym for space but even more frequently as a synonym
for niltext. This latter seems to carry the day. By
tradition Elan-0 uses the name blank as given above
but, if you like, you may declare another constant with
the name space.

6.6.2 Subtexts: the algorithm text

A text t can be turned into one of length len (by
cutting it if len < LENGTH t and by padding it on the
right with blanks if len > LENGTH t) by means of the
call

text (t, len)

In all following examples we will assume that t has the
value abc.

"ab"
"abc##"

text (t, 2)
text (t, 5)

We can also cut a text at a specific position p by the
aid of a call of the form

text (t, len, p)

Its meaning is: a text of length len is formed from
the text t but starting at the character with index p.
Examples:

"pe!
"bc###"

text (t, 2, 2)
text (t, 5, 2)

It is easy to see that generally

text (t, 1, p)

= (t SUB p)
text (t, len, 1) =

text (t, len)

A more complicated example (cyclic shifting):

text (t, LENGTH t - 1, 2) + (t SUB 1)
="bca"

Strictly speaking there are two different algorithms de-
fined in the standard environment, both with the name
text, but with different number and type of parame-
ters. (We shall later on meet more algorithms with
this same name.) They all have in common that they
turn “something” into a text, as the name tries to sug-
gest. (The careful reader might notice that so far we

44

have introduced three different get and three differ-
ent put algorithms although we have not emphasized
it. These get and put procedures differ in the type of
their parameter.) Such a collection of algorithms with
the same name, different number and/or types of pa-
rameters and a comparable function is called generic.

6.6.3 Subtexts: the algorithm subtext

The generic algorithm subtext is a practical pair of
scissors. In its simplest form

subtext (t, from)

it yields the text obtained from t by starting at the
position from. Example:

subtext (t, 2) = "bc"

In general

subtext (t, 1)
1, i)

The call

text (t, LENGTH t - 1 +

subtext (t, from, to)

yields the subtext from t starting at the position from
and ending at the position to, for example:

subtext (t, 1, 2) = "ab"
In case from > to the result is the empty text.

subtext (t, 2, 1) = ""

Generally

subtext (t, p, p) (t SUB p)

As an example we will once more formulate the cyclic
shift:

subtext (t, 2) + (t SUB 1) = "bca"

Since it has more than one definition with the same
name, but different parametrization, the algorithm
subtext is also generic.

6.6.4 Searching a text: the algorithm
pos

It is possible to look in a text t for a text x by means
of the call

pos (t, x)

This call yields the index of the leftmost occurrence
of x in t, provided x occurs in it, and zero otherwise.

Examples (assuming x = "a"):
pos (t, "b") =0
pos (t, "ab") =1
pos (t, "ba") = 2

Its generic brother

pos (t, x, from)

yields the index of the first occurrence of x in t starting
from the position from (and zero if x does not occur).
Thus the second occurrence of x in t can be found by
the call

pos (t, x, pos (t, x) + 1)

6.6.5 Replacing a subtext:
rithm change

the algo-

A subtext of a particular text can be replaced by an-
other text by a call of

change (text variable, subtext, other
text)

in which the leftmost occurrence of subtext in the
text variable is replaced by the other text. If the
subtext does not occur in the value of text variable
nothing happens. Since the length of subtext and
other text may differ, it is possible that this call
changes the length of the value of the text variable.

We can, as an example, change every occurrence of
John in a text into Jim by means of

WHILE

pos (my text, "John") > O
REP

change (my text, "John", "Jim")
ENDREP

Remark: This short algorithm shows nicely the effect
of a call of change but it hides dangerous traps, too.
E.g. if the loop body is modified to change (my text,
"John", "Johnson") the repetition continues forever.
Be cautious!

6.6.6 Reading and writing:
rithms get and put

the algo-

As in Elan-0, a text is written by means of the algo-
rithm put.

For the reading of a text, in full Elan a number of
algorithms are available. Let x be a TEXT-variable. The
simplest one

get (x)
has the following effect:

1. spaces and new lines are skipped in the input until
a non-space is found;

2. from the current position until the next space or
end of line, characters are read and combined into
a text;

3. this text is assigned to the variable x.

The difference with the get of Elan-0 is that spaces are
considered as separators between texts.

Notice that the text read in this way can not con-
tain spaces and that the new lines in the input are
practically invisible. This form of input is evidently

45

particularly suited for more or less linguistic applica-
tions.

A generic variant of this one, with a whole number
as its second parameter

get(x, length)

assigns to x a text of at most length characters,
read from the current position without skipping ini-
tial spaces. There is no automatic skip over the end
of line and spaces at the end of a text are disregarded.
Therefore a blank line is read as an empty text.

If one wishes to achieve in Elan the same as the get
in Elan-0, then one has to use this last version with
length equal to the line length of the input.

6.6.7 Converting texts: the algorithms
text, int and real

There are a number of algorithms for converting val-
ues of other types into texts and converting texts into
values of other types.

To begin with there is an algorithm with the name
text (in lower case letters) that converts a REAL or
INT value into a text resembling a denotation for it.
An example:

TEXT VAR t :: text(123)

The value of the integer 123 is converted to a text con-
sisting of some spaces followed by the characters 1, 2
and 3, in that order, for example ####123.

In the other direction (TEXT to INT), the procedure
int can be used with, as parameter, a text resembling
an integer denotation, possibly preceded by a + or -
sign. For example:

put (7 + int(t))

now will print the number 130. With the procedure
real we can convert texts resembling real denotations
to REAL values:

REAL VAR x :: real(t + ".0")

assigns to x the value 123.0.

Conversely, the procedure text can be called with
a real parameter and then yields a text resembling a
denotation in “floating point” form. As an example,

text (0.1234)

yields a value like 1.2340000E-1.

In using those conversion algorithms many things
can go wrong, especially when starting out from a text.
After all, one wrong character in the text is enough to
make conversion impossible, as in

int("123a")

In order to inquire whether the conversion performed
last was successful, a boolean standard procedure, last
conversion ok, exists that can be used to program a
reaction to errors:

IF NOT last conversion ok

THEN put ("conversion#failed");
bang

FI

Exercise: Refine the algorithm bang using the vari-
ous cutting, pasting, and converting algorithms you
learned about in this chapter.

6.7 Example: A desk calculating
machine

In this example we will try to imitate a pocket calcu-
lator of the kind that is available in every department
store at bargain prices. For simplicity we confine our-
selves to the whole numbers and their four basic oper-
ations.

The calculator holds a kind of dialogue with us.
When it is ready to start computing it gives a dollar
sign (as a “prompt”). The input consists of an expres-
sion. As an answer, the machine prints the value of
that expression and then gives another prompt to in-
dicate that more input is expected. If we want to stop
calculating, we give as input the text halt. (Of course
we would never get rich selling such rubbishy calcula-
tors, but we leave it to the reader to design a more
realistic one.)

The dialogue between calculator and user could look
like:

$4x3

12
$5+8

13
$halt

First we implement the dialogue

desk calculator:
ask for first input;
WHILE further computation desired
REP
print value of formula;
ask for next input
ENDREP.

ask for first input:
TEXT VAR input;
ask for next input.

ask for next input:
line;
put ("$");
get (input).

Using Elan-1 and this version of the generic get we
cannot put spaces between operands and operators for
a space terminates a text. But that is not required.

further computation desired:
input <> "halt".

The input will have to be scanned from left to right,
in order to determine what operators and operands it

46

contains. We will do this by inspecting the first charac-
ter of the input and, whenever it has been recognized,
removing the first character of the input. We will call
that first character the “head” of the input.

head:
input SUB 1.
skip head:
input := subtext (input, 2).

The rest of the program is based on a number of syntax
diagrams, expressing the difference in priority between
operations (Fig. 6.4).

formule

term
=
.
factor D,

==

Figure 6.4: Syntax diagrams for desk calculator

For each of the the syntactic notions we introduce a
refinement that tries to recognize this notion in the in-
put and yields as value the result of the corresponding
expression.

formula:
INT VAR result formula ::
WHILE head = "+"
REP
IF head = "+"
THEN
skip head;
result formula INCR term
ELSE
skip head;
result formula DECR term
FI
ENDREP;
result formula.

term;
OR head = "-"

term:
INT VAR result term :: factor;
WHILE head = "*" QR head = "/"
REP
IF head = "x"
THEN
skip head;
result term :=
ELSE
skip head;
result term :=

result term * factor

result term DIV
factor
FI
ENDREP;
result term.

factor:
IF head = "+"
THEN
skip head;
number
ELIF head = "-"
THEN
skip head;
- number
ELSE
number
FI.

We will recognize numbers in the same way. A number
must consist of one or more digits. Notice that two
numbers in a formula will always be separated from one
another by at least one operator, so that a sequence of
digits always forms one number.

number:
IF head is digit
THEN
INT VAR value :: 0;
WHILE head is digit
REP
skip head;
value := 10 * value + digit
ENDREP;
value
ELSE
error;
0
FI.

head is digit:

INT CONST digit ::
head) - 1;

digit >= 0.

pos ("01234567879",

We make explicit use of the fact (deducible from the
diagrams) that a number is always followed by an op-
erator. We complete the example

print value of formula:
INT CONST result :: formula;
IF head = ""
THEN
line;
put (result)
ELSE
error
FI.

error:
line;
put ("error#in#formula") ;
LEAVE print value of formula.

Notice that our desk calculator does not allow spaces
in the input. This is realistic in so far as a pocket
calculator does not even have a space key, but on a
(micro)computer the space key (and a lot of other spu-
rious keys) are present. A more intelligent version of
the desk calculator could take this into account.

For all its shortness, the example is not simple. The
use of syntax diagrams as guidance in programming is
a very powerful technique, which however needs some
knowledge of grammars.

The solution given can easily be expressed in Elan-0.
In doing so, we have to substitute the standard proce-
dures subtext and pos by rewriting the refinements
that call them:

skip head:
input := TAIL input.

head is digit:
INT CONST digit
digit >= 0.

: pos of head - 1;

pos of head:
INT VAR i :: 1;
WHILE i <= 10
REP
IF ("0123456789" SUB i) = head
THEN
LEAVE pos of head WITH i
ELSE
i INCR 1
FI
ENDREP;
0.

Notice that the name pos has also been changed to
pos of head. pos is the name of a number of stan-
dard generic procedures and if we redefined it as a re-
finement then those procedures would become hidden
i.e. they could not be called any longer. This is not
what we want as it could lead to various problems. In
chapter 10 you will learn more about the scope rules of
procedures and refinements.

A nicer version should skip the spaces in the input
stream. But this is left as an exercise to the reader.

47

6.8 NTO of the texts

An overwiew of the text-operations in the Elan0 subset
was given in figure 6.2. In the Elan-1 level we find a
number of further operations:

e the text constants niltext, blank and quote;

e the “scissor” procedures text, subtext, pos and
change;

e the conversion procedures text, int and real;
e another version of the input procedure get.

These are depicted in the form of an NTO in Fig. 6.5.
The NTO’s of text in their turn form part of a larger
framework together with other NTO’s which we have
not included in this picture.
For a complete set of operations on texts see ap-
pendix B.

6.9 Exercises

1. (Palindromes) A “palindrome” is a text that, read
from left to right, is the same as read from right to
left. In order to obtain interesting palindromes, it
is customary to admit, besides the letters, spaces
and other punctuation marks, but they play no
role in the comparison. E.g. a palindrome from the
last century is: a man, a plan, a canal: panama.

Write an algorithm that reads a line of text and
reports whether the letters occurring in it form a
palindrome.

2. (Cryptology) In a simple form of secret code, all
letters and the space are shifted circularly by some
number of places. For example, shifting the alpha-
bet by 3 places to the left we write d instead of a,
e instead of b, b instead of z, ¢ instead of space,
etc.

Write a program that reads a text and then prints
it with circular shift 1,2,...,26.

Use that program to read the following (partly
distorted) = messages: “zerdidomdidrizix-
drigdmwqivm” and “txvwidradrzxbiwtvpgstc”.

3. (Arabic to Roman) Write a program that reads a
whole number and prints it out in Roman numer-
als.

4. (Roman to Arabic) Write a program that reads a
number in Roman numerals and prints it out in
the decimal system.

5. (Calculator) Modify the ask for next input re-
finement (and also others if needed) in order to
skip possible spaces in the input. Recall that the
procedure get with a single text parameter has a
slightly different meaning in Elan-0 and Elan-1.

48

6. (Children’s language) Children like “secret”

speech. In one of their favourite languages each
vowel is doubled and the consonant b is inserted
between them. For example, the word today will
be spelled as tobodabay [KLI85].

Write a program that reads a sentence and then
converts it into this language.

. (Ticket vendor machine I) Program a simple ticket

vendor machine that endlessly

e informs about the available tickets (for the
sake of simplicity, use a number of price cat-
egories),

e asks for the ticket required,

e requests the money until the paid sum
reaches or exceeds the price,

e returns the excess money, if any, and issues
the ticket.

. (Ticket vendor machine IT) Program a more real-

istic ticket vendor machine, performing the same
task as the previous one, but working with a lim-
ited set of coins, say, 1, 2 and 5 ducats. Initially,
the machine has a limited supply of coins. If, later
on, there will be any possibility that the excess
money can not be returned, it should display the
message Exact payment, please! and refuse ex-
cess coins. You may also program a cancel button.

. (Supermarket bill) Program a cash-register that,

with a limited choice of articles,
e accepts (abbreviated) names and amounts of
purchased goods;

e prints bills containing names, unit prices,
subtotals and total;

e tracks sales and stocks, and gives warning if
a stock becomes too low;

e sums up the daily takings and calculates the
(article-dependent) tax.

If you want your program to be realistic explore a
near-by supermarket.

change

I

. TEXT
J
Z // \
pos pos int get real
G
text text
text text
subtext subtext
] l l l

Figure 6.5: Text operations in Elan-1

49

50

Chapter 7
Control structures

The control structures are amongst the most impor-
tant stylistic properties of a programming language and
to a large extent determine its appearance for the pro-
grammer. They serve for the construction of composed
algorithms, just as data structures are means for the
construction of composed objects. Syntactically, con-
trol structures indicate how a number of algorithms
can be composed to make one algorithm that in its
turn can be used in the composition process. They
are the cement of the programming language. The
control structures also decide how the meaning of the
composed algorithm is to be expressed in terms of the
meaning of its parts, i.e. how its value and its effect
are to be expressed in terms of the value and the ef-
fect of its subalgorithms. Control structures control
the execution of the program, which gives them their
name.

We have already described most of the control struc-
tures of Elan. In this chapter we shall give some addi-
tions and clarifications.

7.1 Paragraphs and units

One of the most fundamental control structures in al-
gorithmic languages is the sequence, realized in Elan
by the paragraph (Fig. 7.1).

paragraph

==
&)

Figure 7.1: Paragraph

A paragraph consists of a number of units, separated
from one another by semicolons. Notice that a para-
graph may even be empty.

Such a unit (Fig. 7.2) in its turn can be either a sim-
ple form of declaration or an expression or a composed-
unit (a control structure, see Fig. 7.3).

In reality (see appendix A) the syntax is more com-
plicated, but these diagrams provide sufficient detail.

o1

c
=

synonym-declaration

object-declaration

composed-unit

expression

Figure 7.2: Unit

composed-unit

epetition

r

choice

III

Figure 7.3: composed unit

7.1.1

The effect and value of a paragraph can be deduced
from the value and effect of its parts.

The execution of a paragraph consists of the exe-
cution in the given order of its units (subalgorithms).
Therefore the effect of that execution also consists of
the serially composed effect of its subalgorithms. The
value of a paragraph ending on an expression is the
value of that expression; paragraphs not ending on an
expression are actions and yield no value.

Observe that every unit in a paragraph can itself be
a composed-unit.

Effect and value of a paragraph

7.2 Expressions

Ezxpressions are composed of operands and operators
(Fig. 7.4 and 7.5).

We have already dealt with most forms of operand;
the others will follow later.

7.2.1

Observe that the syntax diagram for expression is am-
biguous for expressions with more than one dyadic op-
erator. In order to give to expressions their (unambigu-
ous) meaning we have to take into account the priority

Priority of operators

expression

operand

monadic-operator }*)

dyadic-operator

Figure 7.4: Expression

operand

denotation

name

procedure-call

subscription

display

choice

ST
]

expression

Figure 7.5: Operand

of the operators. These priorities (from low to high)
can be deduced from Table 7.1.

The operators with the highest priority bind most
strongly. Operators with the same priority bind from
left to right. As an example

2 + x DIV 2 DIV a+3-c

means the same as

(((2 + ((x DIV 2) DIV a)) + 3) - ¢)

In evaluating an expression, the operands of the oper-
ator with the lowest priority are evaluated, after which
the operator is applied to their values. The same holds
for the evaluation of those operands which are, in their
turn, expressions. The effect is, loosely speaking, that
the operations with the highest priority are performed
first.

7.2.2 Side effects

Both operands of a dyadic operator are evaluated col-
laterally, i.e. nothing can be said about the order of
their computation. In a program like

IN
X:
pu

a:

—

VAR x;
0;
(a+ b+ x).

t

X + 4;

= M

i

2 * x;

92

The assignment and the operators combined with
an assignment

INCR DECR CAT

All abstract dyadic operators (declared by the
user, using a form of declaration to be introduced
later) as well as SUB

OR XOR

AND

<>
<= < >= >

The dyadic operators

+ -_
*x / DIV MOD

* %k

10. All monadic operators, such as

+ - LENGTH ABS SIGN

Table 7.1: Priority of operators

you can not assume that a, b, and x are computed in
that order in expression a + b + x: any other order is
also correct! Therefore you do not know whether the
result printed is 11 (first a, then b, finally x) or 7 (first
b, then a, then x) or even 3 (first x, then a, then b).

A program like this, in which the execution of one
operand influences the value of another operand (a side
effect) must therefore be avoided. Keep in mind that
the textual order of the operands and of the operations
need not at all be the order of execution.

7.3 Object declarations

Declarations in general serve to define an object by
binding a name to a value. The simplest declarations
are the two kinds of object declaration (see Fig. 7.6).

object-declaration

variable-declaration

constant-declaration

Figure 7.6: Object declaration

You are already familiar with both forms of object
declaration (see Fig. 3.2.1 and Fig. 3.6. These differ
only in their access attribute and in the fact that a vari-
able need not be initialized whereas a constant must
be.

7.3.1 Effect of an object declaration

The execution of an object declaration with a unit as
initialization has as effect that this unit is executed
and an object is introduced with the given type, ac-
cess attribute, name, and the computed value. If the
initialization is missing, an (as yet) undefined value is
taken. A declaration does not yield a value.

7.3.2 Scope of declarations

An object declaration is valid in a specific scope, i.e.
within a specific part of the program a specific object
is indicated with that name.

In the kind of programs we have been writing until
now, consisting of a paragraph and some refinements,
every declaration is valid in the whole program. In
Elan constructs to be introduced later, more limited
scopes may appear.

Notice that an object may not be used before its dec-
laration has been executed: it does not have a value
yet. It is of course possible to mention the name of an
object earlier in the program, for example in a refine-
ment which textually precedes the refinement in which
the declaration occurs. This does no harm as long as
the object has obtained a value at the moment it is
first used.

Within the scope of a declaration, no other declara-
tion may occur with the same name. For every object
in the program there has to be exactly one declaration.
Of course this one declaration may appear within a rep-
etition, for example

WHILE i <= LENGTH message
REP
TEXT CONST sign::
put (3 * sign);
put (li.ll);
i INCR 1
ENDREP

message SUB 1i;

The object sign is a constant that in every turn of the
repetition has as value the next sign of the message.
Yet it is a constant, because it is impossible to assign to
it. It is a constant whose value is different at different
moments (admittedly a strange kind of constancy —
it resembles a person who falls in love time and again,
and each time is sure that true happiness has now been
found).

7.4 The choice

A choice is made between a number of paragraphs
depending on either a truth value or on a number
(Fig. 7.7).

7.4.1 Conditional choice

The choice based upon a condition has already been
introduced. Its syntax diagram is shown in Fig. 7.8.

33

choice

conditional-choice

numeric-choice

Figure 7.7: Choice

conditional-choice

Figure 7.8: Conditional choice

There are many paths through this syntax diagram.
In particular the ELSE-part may be absent and there
may be any number of ELIF-parts. An alternative rep-
resentation for FI is ENDIF.

The meaning (value and effect) of a conditional
choice is the meaning of the paragraph that is executed
on the basis of its condition. We will not describe this
meaning any further but draw the attention to some
details.

The choice can be made between paragraphs that do
not yield a value, so that the choice itself also does not
yield a value. Only in that case the ELSE-part may
be omitted. If all paragraphs deliver a value of one
specific type then this is also the type of the result of
the choice. In this case, the ELSE-part is obligatory.

The ELIF-construction serves to distinguish between
a larger number of possibilities without incurring an
avalanche of FI-brackets (this form is called also mul-
tiple choice):

IF x > 0.0 AND y > 0.0

THEN put ("point lies in first quadrant")
ELIF x < 0.0 AND y > 0.0

THEN PUT ("point lies in second quadrant")
ELIF x < 0.0 AND y < 0.0

THEN put ("point lies in third quadrant")
ELIF x > 0.0 and y < 0.0

THEN put ("point lies in fourth quadrant")
ELSE put ("point lies on an axis")

FI

For a declaration appearing in the THEN- or ELSE-part,
the scope is the whole program, as said above. The
object declared in this fashion can not be used to bring
a result to the outside, because there also exists a way
through the program on which this declaration is not
executed.

IF the first case
THEN

INT VAR result;

compute result in the first way
ELSE

compute result in the other way
FI;
put (result)

is wrong, because it is possible to follow a way through
the program in which the declaration of result is not
executed. It does not help to put a declaration for
result in both the THEN-part and ELSE-part: in that
case the program contains two declarations with the
same name, which is forbidden:

IF the first case
THEN
INT VAR result;
compute result in the
ELSE INT VAR result;
compute result in the
FI;
put (result)

first way

other way

The declaration will have to
choice.

INT VAR result;
IF the first case
THEN

compute result in the
ELSE

compute result in the
FI;
put (result)

take place before the

first way

other way

7.4.2 Numerical choice

Elan knows another form of choice, the numerical
choice or SELECT-construct, that serves to choose a
specific paragraph on the basis of a whole number. In
other languages, this control structure may be called
case clause, switch or computed goto. This construct
is not included in Elan 0. Its syntax is depicted in
Fig. 7.9.

This is quite complicated, therefore we first give an
example:

weekday:

SELECT day OF
CASE 1: "monday"
CASE 2: "tuesday"
CASE 3: '"wednesday"
CASE 4: "thursday"
CASE 5: "friday"
CASE 6: "saturday"
CASE 7: "sunday"
OTHERWISE "no day at all"

ENDSELECT.

We assume here that the days of the week have been
encoded in the obvious fashion as the whole numbers
1 to 7 and the numerical choice maps these codes onto

texts. This solution is somewhat shorter and may be
somewhat faster than through a cascade of ELIFs.
The CASE-parts in this example were very simple; of
course, they may be much more complicated. Observe
that the cases need not be ordered, and that two cases
with the same paragraph can be taken together, as in

is the digit even:
SELECT digit OF
CASE 0, 2, 4, 6, 8: true
OTHERWISE false
ENDSELECT.

(This might be programmed in a simpler fashion using
MOD).

The SELECT-construct is of most use in mapping
whole numbers onto a choice between algorithms. As
we have seen in the previous examples, it can also yield
a value but then each case must yield the same type
of value; even the — otherwise optional — OTHERWISE-
part.

7.5 The repetition

For repetition, Elan has a number of notations that all
are variants of one same basic form. The repetition is
a control structure that does not yield a value.

7.5.1 The basic form

The simplest forms of the repetition are the prechecked
loop

WHILE there is something to do
REP

do it
ENDREP

and the postchecked loop

REP

whatever there is to do
UNTIL ready
ENDREP

If we omit both the WHILE- and UNTIL-part, we obtain
a repetition which is in principle unending, like the fol-
lowing loop which appears in many operating systems:

REP
read a program text;
translate it and check for errors;
IF the text contains no errors
THEN
execute the program;
print the results
ELSE
print the errors found
FI
ENDREP

Only a disaster (or operator action) can stop this rep-
etition.

numeric-choice

expression

integer-denotation

synonym-name

M)

o

paragraph
OTHERWISE paragraph ENDSELECT

Figure 7.9: Numerical choice

Many non-sequential algorithms, that are not cov-
ered in this book, make use of indefinitely repeating
processes.

7.5.2 The controlled variable

In many repetitions, a variable appears whose value
is changed incrementally until a specific situation is
reached. In most cases this is an integer variable, the
controlled variable, whose value is increased by one as
long as a specific condition holds or until a specific limit
is reached, e.g.:

INT VAR i:: 1;
WHILE i <= limit
REP
repeated action;
i INCR 1
ENDREP

This example shows the following characteristic ele-
ments:

e the controlled variable 1i;
1.

bl

the initialization ::

the test i <= limit;

the repeated action depending on i;

the incrementing of the controlled variable i INCR
1.

In the order of these elements, there are a number of
degrees of freedom.

It is, for example, possible to exchange the incre-
menting and testing, which then must be done slightly
differently. Where we are assured that limit > 0 we
can write

INT VAR i:: 1;
REP
repeated action;
i INCR 1
UNTIL i > limit
ENDREP

35

and also

INT VAR i:: O;
WHILE i < limit
REP
i INCR 1;
repeated action
ENDREP

In proving the correctness and termination of an algo-
rithm the controlled variable often plays a central role.
After completing the text of a program, it is good prac-
tice to check whether all controlled variables will start
and end with the intended values, before executing the
program for the first time.

7.5.3 The limited repetition

The use of the prechecked loop carries the danger that
one forgets to initialize the controlled variable. For the
normal case, that is when this is an integer variable
that has to step by one through a specific range, the
programmer can express his intentions by

FOR index FROM start value UPTO limit
value
REP
repeated action
ENDREP

or

FOR index FROM start value DOWNTO limit
value
REP
repeated action
ENDREP

This construct, the limited repetition or FOR-loop, has
the following properties:

e index must be an integer variable that has been
declared before. Its value before the repetition
is irrelevant. After the repetition it has the first
value rejected.

e start value and 1imit value have to be integer
expressions. They are computed collaterally once,
at the beginning of the repetition.

Programming languages usually eval-
uate first the start value and then
the 1imit value as the latter may de-
pend upon the first. The designers of
Elan preferred the collateral execution
for it allows, in principle, the parallel
evaluation of the two expressions pro-
vided more than one arithmetic units
are available. The parallel evaluation
of expressions may speed up programs
a lot therefore this topic has great sig-
nificance in modern programming lan-
guages.

e The controlled variable index runs through a spe-
cific repetition range with step size 1 in case of
UPTO and —1 in case of DOWNTO, starting at the
start value, until the 1imit value is passed.
For each of the (zero or more) values in this range,
the repeated action is performed once.

Examples (what results are displayed?):

FOR t FROM 1 UPTO 10 REP put (t) ENDREP
Displays the result 123456789 10.

FOR t FROM -10 UPTO O REP put (t) ENDREP
Displays —10 -9 -8 -7 —6 —5 —4 -3 -2 -1 0.

FOR t FROM 10 DOWNTO 1 REP put (t) ENDREP
Displays 109876543 2 1.

FOR t FROM 10 DOWNTO 1 REP put (11 - t)
ENDREP

The result 123456 789 10 is displayed.

FOR t FROM 10 UPTO 10 REP put (t) ENDREP
Displays 10.

FOR t FROM 1 UPTO -1 REP put (t) ENDREP
Nothing is displayed: since the step size is positive, 1
is already beyond —1.

7.5.4 Abbreviated forms

This form of repetition admits a number of abbrevia-
tions:

e FOR index may be left out if the controlled vari-
able does not occur in the repeated action.

e FROM 1 may be left out.

e UPTO maxint may be left out. (Remember:
maxint is the largest integer representable in
Elan.)

Example:

96

UPTO 3 REP line ENDREP

has the same effect as

line (3)

7.5.5 Limited repetition with condi-
tions

Combining the limited repetition with the conditional
repetition, one obtains the most general form of repe-
tition (Fig. 7.10).

repetition
FOR variable-name ’—>

f
FROM expression

f
expression
DOWNTO expression

f
WHILE expression

f

REP paragraph

expression

ENDREP

Figure 7.10: Repetition

This construct is reminiscent of a Swiss army knife
with large and small blades, a small screwdriver, bottle
opener and corkscrew and even a very small hammer
and tongs. In spite of its overwhelming multi-purpose
character it is still a practical instrument, because one
can leave out the parts one doesn’t need.

7.5.6 About the controlled variable

In a limited repetition, it is intended that the counting
variable runs through a specific range. If the repeated
action itself modifies the value of i, the program can
be very hard to understand. It is better to avoid tricks
and to let the controlled variable go its way without
side effects. In order to convince the reader we do
not answer the question of what the following piece of
program means. Is it the counting mechanism of the
repetition or the assignment in its body that carries
the day?

INT VAR i;
FOR i FROM 1 UPTO n
REP
put (i);
iri= 2 % i
ENDREP

If the controlled variable of the limited repetition is
allowed to run through its range, after the repetition
it has the first value rejected, i.e. the first value it ob-
tained that does no longer lie in the range.

7.5.7 Example: Trailing blanks

We give an example of the interplay between a limited
repetition range and a condition in a WHILE-part. We
want to eliminate from a text the blanks at its end. To
this end we have to determine the position of the first
trailing blank, i.e. of the first space in the line which is
followed only by spaces.

first trailing blank:
INT VAR place;
FOR place FROM LENGTH text DOWNTO 1
WHILE another space
REP
ENDREP;
place + 1.

another space:
(text SUB place) = " ".

When there are no trailing blanks, this yields the value
1 + LENGTH text and if the whole text consists of
spaces it yields the value 1.

7.6 Conclusion

This was a somewhat tough chapter, full of syntax di-
agrams and nitpicking, with few convincing examples,
but it was necessary to take a closer look at a num-
ber of constructions we have been using for some time
rather loosely, as a preparation to the introduction of
composed objects.

7.7 Exercises

1. (Morse code) Consider the problem of converting
a text to morse code. In the morse alphabet every
sign is represented by a sequence of short and long
signals with pauses in between. A short signal
is called a dot, a long signal a dash. The morse
alphabet looks as follows:

57

A - K -.- U - 1 - —— -
B - L - A% - 2 -——
c -.- M -- w - 3 -
D - N - X - - 4 -
E o --—- Y - —-—= 5 ...
F - P - — Z - 6 -

G —- Q -—-.- A - - 7 —-

H R - CH ---- 8 ——-

I S o} - - 9 ———-
J --- T - U - 0 -=—=—-
Period L=

Error ...

SOS ==

Start of message —.-. -
End of message . -. —.

Between two letters we give one space, between
two words we give 3 spaces. Write a program to
convert a message consisting of one line to morse.
You may make use of a numerical choice.

. (Decoding morse) Write a program that reads a

line of morse code and deciphers it. Try it out,
together with the previous program.

a8

Chapter 8

Composed objects: Rows

In the previous chapters we have dealt with the ele-
mentary types of Elan. In this chapter we introduce a
mechanism for the composition of types from elemen-
tary types and discuss the meaning and use of com-
posed objects.

8.1 Values, objects and types

A composed object is an object that can assume values
of a composed type. Before discussing composed types,
we shall recapitulate a number of important concepts
and terms that have been introduced in the course of
the preceding chapters.

8.1.1 Recapitulation of terminology

To begin with, there are ideas and physical objects,
facts and figments of the mind. In writing a program,
we may devise for these some representations in the
computer, in order to perform some computations on
those representations. By a value we mean an element
of some abstract set for which there exists a represen-
tation in the computer, as well as that representation
itself.

When we speak of “the value three” we may mean
both a specific familiar mathematical concept, the fol-
lower of two, and some particular representation for it
in the computer. In a wider context, we can even speak
of “the value of the dollar” or “the values of Western
Civilization”. The word value has a multiple meaning.
Usually we are not bothered about such ambiguities in
the meaning of words, since the context will make clear
which particular meaning is intended.

We cannot manipulate values directly, but instead
write algorithms that achieve the intended result. In
such an algorithm we may denote a value directly, by
a denotation, a notation in the programming language
that serves to denote a specific value. We may also
give a name to a value, by means of a declaration or
an assignment. The name is our handle on that value.
The combination of a name and a value (bound to it
in the course of the execution of the algorithm) we call
an object.

The binding of a value to a name is temporary. In
the course of time, to one name different values may
be bound, for instance by the repeated execution of a

declaration with different values for its initialization.
Some objects (the variables) allow the explicit replace-
ment of their value by another, by means of an as-
signment. Others (the constants) do not allow such an
assignment,.

The values can be distinguished into different classes,
the types. Each type has a name and a collection of
operations, applicable to values of that type. The set of
values belonging to a specific type is called its domain.

The type of an object is the type its values may as-
sume. The type of an object may be elementary (given
by the name of that type) or composed (constructed
out of named types by means of a data structure). In
this chapter we shall be concerned with objects of a
specific composed type, the rows.

8.1.2 Type declarers

In a declaration for a variable or constant, its type is
indicated by a type declarer (Fig. 8.1).

type-declarer

The simplest example of a type declarer is the name
of an elementary type (Fig. 8.2).

elementary-type-declarer

composed-type-declarer

Figure 8.1: Type declarer

elementary-type-declarer

synonym-boldname

Figure 8.2: Elementary type declarer

We already know the four concrete types. The pos-

39

sibility of introducing abstract types by means of a
synonym-boldname is introduced later.

The rows and the structures are the data structures
of Elan. (Fig. 8.3). In this chapter we deal only with
rows. Structures will be described in the second volume
of this book.

composed-type-declarer

row-declarer

structure-declarer

Figure 8.3: Composed type declarer

8.2 Rows

By a (one-dimensional) row we mean a collection of a
limited number of objects of one same type, the ele-
ments of the row. These elements are numbered con-
tiguously from a lower bound 1 upto some upper bound,
equal to the number of elements (“cardinality”). The
position of an element in the row is called its index.

The type of a row is indicated by a row declarer
in which the number and the type of the elements is
stated. The syntax for the row declarer is given in
Fig. 8.4.

The representation of the row-symbol is ROW. After
the row-symbol follows the number of elements. Later,
in the context of synonym-declarations, we shall discuss
the possibility of indicating the number of elements by
a synonym-name. Examples:

e ROW 10 REAL A row of ten reals numbered from 1
to 10.

e ROW 200 ROW 60 TEXT A likely representation for
a book consisting of 200 pages of 60 lines each.

Just like the declarers INT, REAL, etc. introduced be-
fore, the row declarers are used to indicate types in
object declarations. Example:

ROW 10 REAL VAR old temperature, new
temperature

We can consider a row as one single object and assign
it in one fell swoop to a suitable variable:

old temperature := new temperature

After the assignment the value of old temperature
will be a copy of the value of new temperature. Apart
from assignment, there are no concrete operations on
a row as a whole.

8.2.1 Access to the elements of a row

The elements of a row can be manipulated separately.
One can take the value of an element (“read access”)
or give another value to the element (“write access”).

60

The latter is possible only for the elements of a row-
variable.
In the context of the declaration of the row-variable

ROW 10 REAL VAR temperature

the value of the ith temperature is indicated by

temperature[i]

Its value can be printed, for example, by

put (temperature[i])

and can be changed by the assignment

temperature[i] := 0.0

This construct is called a subscription (Fig. 8.5).

subscription

operand expression

Figure 8.5: Subscription

The value of the integer expression is called the in-
dex. The index must have a value between the lower
bound 1 and the upper bound of the row; otherwise,
the subscription is undefined and the execution of the
program is terminated.

Assigning a value to one of the elements of a row
leaves the other elements unchanged. The program
fragment

FOR i UPTO 10
REP

old temperature[i] :=
ENDREP

new temperature[i]

has the same effect as the assignment

old temperature := new temperature

in the previous section.

8.2.2 Inheritance of the access at-

tribute

The subscription temperature[i] in all aspects be-
haves like a real variable: it inherits the access at-
tribute VAR from the row which is subscribed. Letting
EL stand for the type of the elements,

Subscription of an EL-row-variable yields
an EL-variable.

Subscription of an EL-row-constant yields
an EL-constant.

The elements of a composed constant are also con-
stants. They can not be modified by an assignment.

row-declarer

integer-denotat

ion

synonym-name

}j—{ type-declarer }—»

Figure 8.4: Row declarer

8.2.3 Denotation of one-dimensional
rows

In distinction to the elementary types, INT, REAL, etc.,
the row-constants have no proper denotation. In its
stead comes another more general control structure
that constructs a composed object from the values for
its elements, the display. This construct plays the role
of denotation for rows. Its syntax is shown in Fig. 8.6.

display

expression

()
)

Figure 8.6: Display

Displays have the following constraints:

The expressions in a display, used to denote a row,
all must have one same type, the type of the ele-
ments of the intended row.

Their number determines the upper bound of the
row obtained.

Examples:

counting words:
start with an empty list;
WHILE another word follows
REP
count that word
ENDREP;
print the list.

We reserve space for at most 100 words.

start with an empty list:
ROW 100 TEXT VAR word list;
ROW 100 INT VAR frequencies;

INT VAR first free place :: 1.

The end of the input we shall indicate by a word con-

sisting of nine letters “z”.

another word follows:
TEXT VAR word;
put ("Next word, please: ");
get (word) ;
line;
word <> "zzzzzzzzz".

A word is entered into the list only once.

count that word:
IF the word already appears in the list
THEN
increment its count
ELSE
enter it
FI.

ROW 4 INT-displafhe word list is not ordered, so we have to scan through
ROW 4 REAL-displayall in order to look for a particular word.

[0, 1, 3 DIV 2, 7] is a
(0.0, 1.0, 3.0/2.0, 7.0] isa
["I", "you", "he"] isa ROW 3 TEXT-display

We can give a name to the value of a display by means
of a constant-declaration.

ROW 10 INT CONST first 10 primes ::
(2, 3, 5, 7, 11, 13, 17,
19, 23, 29]

8.3 Example: Counting words

As an example of the use of rows we shall consider the
problem of determining from an input, consisting of
words, the frequency of each word, i.e. the number of
times it appears. We use one row each to remember
the words and their frequencies.

61

the word already appears in the list:
INT VAR place;
FOR place FROM 1 UPTO first free place
1
REP
IF word list [placel
THEN
LEAVE the word already appears in
the list WITH true
FI
ENDREP;
false.

word

The counting is simple.

increment its count:
frequencies [place] INCR 1.

enter it:

IF first free place > 100

THEN
no place left

ELSE
word list [first free place] := word;
frequencies [first free place] := 1;
first free place INCR 1

FI.

What do we do when the word list is full, i.e. a hun-
dred different words with their frequencies have already
been entered and any further word we have now cannot
be added? One possibility is to stop altogether

no place left:
put ("Word list is full.");
print the list;
LEAVE counting words.

Another possibility is to continue counting the occur-
rences of the one hundred words already entered and
ignore any additional words. Then this last refinement
becomes yet simpler.

no place left:
We can print the words in any order.

print the list:
line(2);
put ("Frequencies of words:");
line;
INT VAR w;
FOR w FROM 1 UPTO first free place -1
REP
put (frequencies[w]);
put(" " + word listl[w]);
line
ENDREP.

In order to obtain two regular columns, we put the
frequencies first (for an integer uses a fixed number of
character positions on the screen).

8.4 Nested rows

A row in its turn is an object with a specific type and
therefore can occur as an element in another row. We
can use a composed type declarer in a declaration like

ROW 200 ROW 60 TEXT VAR book
—_————

declarer
~~
declarer

~

and can continue with declarations like

ROW 10000 ROW 200 ROW 60 TEXT VAR library;
ROW 200 ROW 60 TEXT VAR book;
ROW 60 TEXT VAR page

Duplicating a book in the library can be done by an
assignment

library[4711] := library[9999]

62

Obviously this is easier said (written) than done.
A composed row has a composed subscription,

library[12] [14] [8]

is an indication of the 8th line on the 14th page of the
12th book of the library.

A display for a row of rows of course is a nest of
displays. The outermost brackets of this nest display
belong to the leftmost row, and the innermost brackets
belong to the rightmost row, while the depth of nesting
has to be equal to the depth of nesting of the rows.
Examples:

ROW 15 ROW 2 TEXT CONST translation from
Dutch ::

[
[naapu , “monkey"] ,
["l’lOOt" , “nut“] ,
["Mies" , “Mary"] ,
["Wim" s “Bill"] s
["zus", "sister"],
["Jet", "Harriet"],
["Teun" , "TOl'ly"] ,
["VU.U.I‘" , “fire"] ,
["Gijs", "Gilbert"],
["lam" , "lamb"] ,
["Kees", "Cornelius"],
["bOk" , “he—goat“] ,
["weide", "meadow"],
["does", "poodle"],
["schapen", "sheep"]

]

ROW 3 ROW 3 INT CONST magic square ::
tee, 3, 4,1, [1, 5, 9], [6, 7, 2]]

8.5 On the bounds of rows

The lower bound of a row is always 1. The upper bound
must be a whole number that cannot depend on the
execution of the program. It must be a denotation,
not be the result of a computation. The reason for this
highly restrictive rule is that the number of elements
determines the type of the row:

ROW 3 INT

and

ROW 4 INT

are different types, and assigning a value of the one
type to a variable of the other type is impossible.

Usually the upper bound is repeated in more than
one place of the algorithm (in the row declaration, as
the limit for a repetition, etc.). If I want to change this
upper bound then I have to make changes in a num-
ber of places of the program. This is highly annoying
and for that reason a special mechanism has been in-
troduced in Elan, the synonym-declaration, that gives a
name to a denotation. We give the syntax diagram for
this synonym-declaration in Fig. 8.7.

synonym-declaration

LET

synonym-name

synonym-boldname

denotation

type-declarer

Figure 8.7: Synonym-declaration

We will discuss here only the first form. An example
is:

LET max = 200

This declaration introduces a synonym max for the de-
notation 200 that can be used everywhere where 200
may appear, e.g.:

ROW max REAL VAR temperature;
FOR i UPTO max
REP

temperature[i] :=
ENDREP

0.0

In this way we can abstract from the exact number of
temperatures. The synonym-declaration is an aid in
abstraction.

It can not be denied that Elan has a confusingly large
number of ways to bind a name to a value. The dif-
ferences between the following constructions are rather
subtle.

e INT VAR max :: 200

the name max gets the value of 200. It can obtain

another value by an assignment.

e INT CONST max :: 200

The name max gets the value of 200 and this value
can not be changed by an assignment.

200.

Every time it is invoked, the refinement max yields
the value of 200.

® max :

200

The name max becomes a synonym for the deno-
tation 200.

e LET max =

Only when declared in a synonym-declaration can a
name be used as the upper bound of a row.

8.6 Sorting

We shall now discuss a number of simple algorithms for
the problem of sorting a row. Assume we have a row-
variable with n elements x1, xs, ..., x, and an ordering
relation < between the elements. We say that this row
is sorted if, for any ¢ and j, i < j = z; < ;. By sorting
we mean a shuffling of the elements of the row-variable

until they satisfy the ordering relation, without gaining
or losing elements. In terms of the programming lan-
guage we have to achieve this by assigning the values
of the elements to other elements of the row-variable
x. We call this also in situ sorting, in distinction to the
possibility of leaving the original row undisturbed and
building up the sorted row in another row-variable.

For each of the following algorithms, we assume the
following declarations:

LET n = 1000;
ROW n EL VAR x

Here we mean by EL the type of the elements (you may
fill in INT or TEXT or some such), n is the number of
elements and therefore the index of the last element.

8.6.1 Example: Selection Sort

The idea behind this algorithm is as follows.

We split the row into a sorted part (initially
empty) and an unsorted part. In the unsorted
part we repeatedly look for the smallest ele-
ment which we then glue behind the sorted
part, that therefore grows by one element (see
Fig. 8.8).

selection sort:
initially the sorted part is empty;
WHILE not all elements in place
REP
take the smallest from the unsorted
part;
glue this behind the sorted part
ENDREP.

initially the sorted part is empty:
INT VAR i :: O.

Observe that here, as in so many examples, an initial-
ized declaration has a clear abstract meaning that can
easily be verbalized.

not all elements in place:
i<n-1.

We do not have to sort the end-element, because as
soon as the first n—-1 elements are in their place the nth
element has to be also.

63

swap

ongesorteerd

Figure 8.8: Selection Sort

take the smallest from the unsorted part:
start at the first;
WHILE not all considered
REP
look whether you have got a smaller
one
ENDREP.

start at the first :
INT VAR j i+ 1;
EL VAR smallest :: x[j];
INT VAR index smallest :: j.

not all considered:
j INCR 1;
j <= n.

look whether you have got a smaller one:
IF x[j] < smallest

THEN
smallest := x[j];
index smallest := j
FI.

glue this behind the sorted part:

EL CONST set aside :: x[i+1];
x[i+1] := smallest;

x[index smallest] := set aside;
i INCR 1.

How does the execution time of this algorithm depend
on n, the number of elements? An interval of dimin-
ishing size has to be searched repeatedly, in total n — 1
times, where the time to search it is practically pro-
portional to the length of that interval. Therefore the
time is of the order of Z?;ll (n — i) which for large n
is proportional to n?

8.6.2 Example: Insertion Sort

Again the first part of the row is sorted, the second
is unsorted. This time we repeatedly take the next
unsorted element and insert it in the right place in the
sorted part, according to the picture in Fig. 8.9.

64

insertion sort:
INT VAR j;
FOR j FROM 2 UPTO n
REP
insert jth element in the right place
ENDREP.

insert jth element in the right place:
determine the place where it belongs;
put it in that place.

We determine the place by linear search. Later in
this chapter we will describe a more intelligent way
of searching.

determine the place where it belongs:
INT VAR place :: 1;
WHILE x[placel < x[j]
REP
place INCR 1
ENDREP .

Observe that this repetition always terminates: in the
worst case all indices from 1 to j are tried, but on the
average half this range.

put it in that place:
take the jth element;
shift the others to the right;
drop the jth element.

take the jth element:

EL CONST element :: x[j].
Shifting the other elements to the right is necessary in
order to make room for the element. The sorted part is
enlarged by one element, overwriting the original jth
element. Observe that the shifting has to proceed from
higher to lower indices (what happens if we go the other
way?).

shift the others to the right:

INT VAR k;
FOR k FROM j DOWNTQO place + 1
REP
x[k] := x[k-1]
ENDREP.

ongesorteerd

Figure 8.9: Insertion Sort

drop the jth element:
x [place] element.

8.6.3 Example: Bubble Sort

It is well known, at least for those who are familiar with
combinatorics, that every permutation can be achieved
by a number of permutations of 2 consecutive elements.
(Permutation means a particular enumeration of all el-
ements of a sequence.) This brings to mind the idea
of going repeatedly through the row while sorting each
consecutive pair. We do this until there is nothing left
to do.

The algorithm thanks its name to the similarity that
exists between the motion of the “lighter” elements of
the row, while it is sorted, towards the end of the row
and the upwards motion of the bubbles in a glass of
soda water.

bubble sort:
REP
sweep through the row
UNTIL nothing out of order
ENDREP.

sweep through the row;
INT VAR 1i;
BOOL VAR exchange performed ::
FOR i FROM 1 UPTO n - 1
REP
may exchange pair
ENDREP.

FALSE;

may exchange pair:

IF x[i]l > x[i+1]
THEN
EL CONST set aside :: x[il;
x[i] := x[i+1];
x[i+1] := set aside;
exchange performed := TRUE
FI.

nothing out of order:
NOT exchange performed.

If the row is “nearly” sorted the algorithm Bubble Sort
will need only a small number of sweeps. Only in this

65

special case it is noticeably more efficient than the two
previous ones. (The word “nearly” needs some expla-
nation. It does not mean what you would suppose at
first. As an example, consider a row where the small-
est element happens to be at the opposite end of the
row. Now it does not matter how the other elements
are sorted, the algorithm must execute each one step.
Would you consider the row 2 3 4 56 1 “nearly” or
“far from” sorted?)

An improvement follows from the observation that
after a sweep the “greatest” element is guaranteed to
have been moved up. For this reason the next sweep
can be one shorter.

8.6.4 Should we really sort this way?

How does the complexity (in particular the execution
time) of these three algorithms depend on n, the num-
ber of elements? To begin with, this of course depends
on speed of the computer — a microcomputer may be
a factor of 1000 slower than a “real” computer. For a
comparable architecture of computers we can assume
that they have to perform more or less the same ac-
tions. In general we can express the execution time
as the number of actions times a factor indicating the
machine speed. We abstract from this last factor by
looking only at the dependence on n.

The execution time depends not only on the number
but also to some degree on the values of the elements.
We shall therefore examine how many actions are to
be performed

e in the worst case,
e in the best case,

e in the average case (but what do we mean by “av-
erage”?)

as a function of n.

Finally the execution time also depends on the char-
acter of the actions to be performed and on details of
the programming. For sufficiently large n all other ac-
tions can be neglected with respect to those repeated
most often. All those aspects can be subsumed under
the factor already mentioned.

In the worst and in the average case for the given
algorithms the execution time depends quadratically
on n, i.e. the execution time = O(n?), as argued for
the algorithm Selection Sort. Sorting twice as many
elements therefore takes four times as long!

As an example we take the sorting of a list of names
with an O(n?) algorithm on some rather slow com-
puter.

school class: 30 names, 1sec
sports club: 300 names, 100sec
Automobile Club: 300000 names, 10% sec
USA: 300 % 10% names, 10 sec

Bear in mind that the times mentioned are given only
for reasons of comparison.

The better algorithms, such as Quick Sort which we
describe later in this book, are of the order O(nlogn).
For sufficiently large n they are arbitrarily faster. In
spite of that, their sorting time still increases more than
linearly with the number of elements. The administra-
tion of the citizens of the USA will certainly not be
sorted anew every day, but a file of that size will be
kept on background memory using special data struc-
tures.

8.7 Example: Binary search

To conclude this chapter we describe the binary search
method, a classical halving algorithm for finding the
index of a given element el in a row z. For the row
Z1,Z2,...,Tn, Where z; < z; and 1 <1 < j < n, we
search an index k such that x;_; < el < zp. In other
words: if there is an element equal to el in the row,
then k is the smallest index of such an element, and
if there is not such an element, k is the index that el
would have if it were inserted in the right place of the
row.

Consider an arbitrary element of x with index t €
[1 : n] and compare it with el. Obviously one of the
relations

xy >el or xy=el or x; < el

must hold.

Looking at the value of the element with index ¢
allows us to say something about the index k:

x> el
zy < el

- ke[l
- ket+1:n]

Choosing the index t in the middle of the row allows
us to eliminate half of the elements of the row at one
time. We repeat this until we have only one element
left.

66

binary search:
start with the whole interval;

REP
choose an index t;
IF x [t] >= el
THEN
continue in left half
ELSE
continue in right half
FI
UNTIL only one element left
ENDREP.

start with the whole interval:

INT VAR lower :: 1, upper :: n.

Observe that lower < upper because 1 < n. We choose
t to be in the middle of the interval [lower : upper].

choose an index t:

INT CONST t :: (lower + upper) DIV 2.

For the termination of this algorithm we have to assure
that both halves are smaller than the whole.

By the special meaning of DIV (division dropping the
remainder) we can deduce lower < upper — lower <
t < upper.

continue in left half:
upper t.

In this case the interval gets smaller because t <
upper.

continue in right half:
lower t + 1.

In this case also the interval gets smaller, because t >
lower, so t+1 > lower.

All what we still have to do is to give the terminating
condition. Since the part yet to be sorted is between
lower and upper we write:

only one element left:
lower = upper.

Observe that in this way a sorted row of 2* elements
is searched in k steps, and in general n elements in
about logn steps. The algorithm is of the order logn.

A row of one million elements is searched in about
20 steps — much faster than linear search. We can use
this algorithm to speed up the algorithm Insertion Sort,
although the effect is not dramatic because the inser-
tion of the element of the right place remains quadratic
and takes most of the time.

The above algorithm works well until the required
element, el, is not greater than the greatest element of
the sorted row. If greater this algorithm still delivers
the index of the greatest element of the row instead of
the index that is larger by one. There is a number of
solutions. We can, for example, check at the beginning
whether the required element is greater than the great-
est element and stop if it is. We get a more elegant —
and shorter — algorithm if we use a guard. In our
case the guard will be the (n+1)th element of the row

and its value must be the greatest possible value. (In
case of a row with INT-elements, for example, maxint
would be an appropriate guard.) Now, when the re-
quired element is greater than the greatest element of
the (original) row the modified algorithm delivers the
index of the guard.

8.8 Exercises

1. (Shaker Sort) A variant of Bubble Sort is obtained
by alternating the directions of the sweep so that
alternately the next largest element is moved to
the right and the next smallest element is moved
to the left. The unsorted area is enclosed between
two growing sorted areas, so that the sweeps get
shorter and shorter.

2. (Symmetrical binary search) In the given formu-
lation of the binary search algorithm we have ex-
ploited only two of the three possibilities (because
we did not distinguish the case that t happens to
be the index of the right element). As a conse-
quence the algorithm is not completely symmetri-
cal in dealing with the left and right half. Write a
variant of the algorithm that does exploit all three
possibilities and is symmetrical. Make use of the
LEAVE-instruction.

3. (Comparison of sorting methods) Make an exper-
imental comparison between the sorting methods
given (and possibly others). Distinguish between
the best, average and worst case. Try to explain
the differences found.

4. (Calendar) Write a program that can print a cal-
endar for any year between 1901 and 2100. Make
use of the knowledge that the first of January 1901
was a Tuesday. The calendar should make an ap-
petizing impression, which means that the layout
of the output is very important. (Hint: it may be
simpler to build up the calendar in a row of texts
before printing it.)

5. Write a program that reads in a text of several
lines, computes a frequency table of the letters oc-
curring in that text and then displays this table
in the form of a bar diagram with vertical bars.
Choose the vertical scale such that the longest bar
fits exactly on the screen.

6. (Text formatter) Write a program that reads a
text (consisting of words with punctuation marks
and layout, a number of lines and ending on a dol-
lar sign) and prints it out in a minimum number of
justified lines. A line is called justified if (like most
lines in this book) the first word starts on the left-
most position of the line and the last word ends at
the rightmost position of the line. The words are
separated by one or more spaces and the spaces
are distributed as evenly as possible between the

67

words on the line. The last line need not be right-
justified. A line consisting of one overly long word
can also not be justified.

. (Game of life) Take a big board with squares and

an appropriate number of stones (e.g. a GO-board
with its stones). Put some stones as the first gen-
eration on the board. Each stone may have up to
eight neighbours. Apply the following rules (first
described by Conway in 1970) to all stones of the
board configuration to determine the next config-
uration:

e astone with two or three neighbours survives,

e a stone with less than two neighbours dies in
loneliness,

e a stone with more than three neighbours dies
in overpopulation,

e a new stone will born if an empty field is sur-
rounded by precisely three neighbours.

Establish the initial configuration by means of
some display. Show the sequence of configurations
on the screen.

68

Chapter 9

Files

Computers owe their fast development not so much
to the fact that they can calculate as to the fact
that they provide an economic solution for important
problems of administration. It is the electronic data
processing that brings in the big money. The pure
calculating applications, even for the military, would
not have justified the enormous investments over the
last thirty years. The storage and processing of large
amounts of data needs other techniques than we have
described so far.

Consider for example the administration of spare
parts in a large production plant. For thousands of
parts, a certain amount of information has to be stored,
such as the name of the article, the part number, the
number in stock and the retail price. The collection
and the processing of the data generally takes place by
different programs at different times, while over a num-
ber of terminals various programs must act in sequence
or even simultaneously on the same collection of data.

This demands a quite different form of data storage
than we have met until now. We shall not describe at
this place the physical storage methods and the conse-
quent techniques for administration and programming
that have been developed. We only give a number of es-
sential concepts and some simple programming means
by which a model can be made of such a large admin-
istration.

9.1 Some concepts

We introduce only some of the most general concepts,
and do not concern ourselves with the detailed termi-
nology that has arisen in this branch of Informatics
over the years.

A file is a stored collection of data that has a name.
The concept of file allows us to abstract from the phys-
ical properties of specific storage means (such as in the
past punched card or punch tape, nowadays magnetic
tape, magnetic drum or disk and shortly also the com-
pact disk).

The data are stored in the form of records that each
contain a line of text. Those records we consider as
split up in some way into a number of fields each con-
taining a number or text (for a spare part: the item’s
part number, number in stock and retail price followed
by a text of at most forty characters, the name). Of
course different programs can look upon the records of

one same file in different ways, but this has to be done
with great circumspection. A record that contains 3
numbers can also be looked upon as a record contain-
ing one text, but then it may be rather more difficult
to extract the 3 numbers.

By means of input procedures, the fields of a record
are read as values. Similarly, values can be written to
a file by means of output procedures. Files can be kept
or deleted, they can obtain another name, and their
contents can be modified repeatedly.

9.2 File operations in Elan-0

Elan has a concrete type of file (FILE) with a complete
set of operations that are representative of typical elec-
tronic data processing. We introduce here instead a
somewhat simpler set of operations that are adequate
for an introduction to file handling and for understand-
ing the most essential aspects. These operations are
the only ones available in Elan-0, and they can easily
be expressed by the language means of the full lan-
guage. For a description of the standard packet for file
management we refer to the Elan language definition
or to chapter 11 of [HOMS3].

9.2.1 Opening and closing files

At any moment the computer knows of a number of
files. Every file has a text as its name. In order to
access a file from a program we first have to open it,
indicating what kind of file we need (new or old, for
reading or writing) and what its name is. Finally we
must make the file available to other programs by clos-
ing it.

In simple Elan-0 systems, only one file at a time can
be open. This is a severe restriction compared to the
practical situation where quite a large number of files
can be open simultaneously. This restriction is moti-
vated by the desire to use Elan-0 also on microcomput-
ers that have only a cassette recorder for file storage. A
consequence of this restriction is that algorithms have
to be oriented more towards internal data structures
(rows) than to data structures on files. Such file struc-
tures are interesting but will not be dealt with until
the second volume of this book.

For file handling we have a number of concrete al-
gorithms, of which we shall indicate the name and the

69

parameters by means of a procedure-heading. We hope
that the notation used here to give particulars about
these procedures will be self-evident although proce-
dures are described in chapter 10.

a) PROC new file (TEXT CONST name):

An empty file with the name name is opened for
writing, which means that we can write on it but
can not read from it. Writing starts at the first
record. If there already exists a file with that
name, it is erased (beware!).

PROC old file (TEXT CONST name):

If there already exists a file with the name name
then this is opened for reading, starting at the first
record. If such a file does not exist, the execution
of the program is halted.

PROC close file:

Any file that was open is closed. After being
closed, a file can be opened by one of the two pre-
ceding procedures. The closed file is kept until it
is erased.

PROC erase file (TEXT CONST name):

If there already exists a file with the name name,
then this is erased, otherwise nothing happens. In
this way we can limit the number of files that the
computer has to keep.

If you have opened a file and forget to close it then at
the end of the program it is closed automatically. (But
better when a programmer is not absent-minded.)

9.2.2 Writing to a file

Writing is possible only to a file that has been opened
for writing. The following algorithms write on the cur-
rent line of the file starting at the current position.

e) PROC write (INT CONST x):

A denotation of the value of x is written, possibly
preceded by a negative sign.

f) PROC write (TEXT CONST x):
The characters of the value of x are written one
by one. As with the procedure put, no quotes are
given surrounding this denotation, which leads to
a nice layout but may make reading back some-
what complicated.

g) PROC writeline:

After a call of writeline, writing continues at the
beginning of the next record of the output file.

Many machines have a special file name for the printer,
for example, prn. It is the name of a file that can only
be written to. Writing to this file causes the output
to appear on the printing device of the computer (if it
has one).

70

9.2.3 Reading from a file

Reading is possible only from a file that has been
opened for reading. In reading from a file, it is pos-
sible to read back in the form of a text something that
has been written as a number and vice versa, so that
some care is necessary. Also it is not allowed to read
beyond the end of the file; in trying to read beyond the
end of file, the execution of the program is stopped.

h) PROC read (INT VAR x):

An integer denotation with eventual preceding
sign and layout (new lines, spaces) is read. Its
value is assigned to x.

PROC read (TEXT VAR x):

The rest of the record is read and assigned as a text
to x. After that, reading continues with the next
record of the file. There is no separate procedure
for going to the next input record.

BOOL PROC file ended:

Answers the question whether the end of the input
file has been reached. No other convention to test
for the end of file is needed, provided this test is
invoked in time.

Observe that a record in general contains zero or more
numbers followed by a text. If we reverse this order
(have a text followed by a number) then, in reading,
this number is assumed to be part of the text, so that
it cannot be read separately, which may lead to unfore-
seen behaviour of the program.

9.3 Editing

Besides the reading of data, its modification occurs so
often in all kinds of information systems that we shall
introduce for that purpose a special operation that can
collaborate very well with the file manipulation opera-
tions. It is somewhat complicated:

k) PROC edit (TEXT VAR t, INT CONST p):

The first parameter of edit is a text variable; its
value is displayed on the screen and then the op-
portunity is offered for modifying the text on the
screen. Finally the thus-modified text is assigned
to the actual parameter corresponding with t.

The constant p (with 1 < p < LENGTH t) gives a
threshold position. The cursor cannot be moved

before it. If one chooses p = 1, the whole text can
be modified.

With the help of edit it is simple to make information
systems such as the following example.

9.4 Example:
dress list

Keeping an ad-

I have an address list containing the names, addresses
and phone numbers of a growing number of people.

Now and then I add a person or change his address
or phone number. In the course of time, these modifi-
cations make such a muddle of my address list that I
take an evening out for copying the address list into a
fresh book, with the names alphabetically ordered and
without insertions.

We shall write a program to administer an address
list. We assume that the address list is written on a file
and that we may modify it by the following program.

9.4.1 User interface

We shall first plan the behaviour of the program from
the point of view of the user and the commands to be
given by the user. It is highly important to design this
user interface well, so that the user can easily use the
system, has a good mental picture of its workings and
cannot be suddenly confronted with surprises.

9.4.1.1 Phases

In the execution of the program we distinguish three
phases. At the beginning of the program, the current
address list is read from its file. During the second
phase of the execution of the program, a copy of the
whole address list is in memory, and we have the op-
portunity to make all manner of modifications. Finally
the thus-modified address list is written out as a new
file. Since this new file has the same name as the old
one, the old file thereby becomes inaccessible.

The modifications are not made directly to the file.
As a consequence, the old address list remains available
in unmodified form for the duration of the program, so
that it is possible to stop the execution of the program
prematurely before the new address list is written to a
file.

9.4.1.2 The information to be stored

We use a very simple file structure: three records per
person, containing their name, the first part of their
address and the second part of their address. The de-
tailed contents of those records we choose not to spec-
ify. The second line of the address might contain, for
example, the phone number, but the precise contents
of the records do not concern us.

9.4.1.3 Commands

The user interface is modelled somewhat on that of
the Elan-0 programming environment. The commands
consist, of one single letter, followed by pressing the
RETURN-key and possibly some further information.
After the file has been read initially, the following com-
mands can be given:

a adding a person. Should be followed by lines con-
taining the name, adrl and adr2. If a person with
that name is already known, then his adrl and
adr2 fields are updated, otherwise the new person
is entered at the right place in the alphabetic list.

71

Notice we cannot have more than one acquain-
tance with the same name.

deleting a person. Demands a known name. If
a person with that name occurs in the list, this
person is removed, otherwise nothing happens.

showing a person. Demands a known name. If a
person with that name is known then its entries
are shown, otherwise nothing happens.

modifying entries. Demands a known name, looks
up the corresponding adrl and adr2 and gives the
opportunity to modify these. If the name given is
unknown nothing happens.

listing the names. Gives on the screen an alpha-
betic list of the known names.

quitting. The dialogue is ended and the program
goes over to the third phase, in which the resulting
alphabetic address list is written, overwriting the
input file of the same name.

9.4.2 Program

The three phases of execution can be found back in the
main program.

program:
define all commands;
read old address list;
show all names;
REP
ask for command;
execute command
UNTIL command = quit command
ENDREP;
write new address list.

The main program is a simple interpreter for the com-
mands.

define all commands:

TEXT CONST add command :: "a";
TEXT CONST delete command :: "d";
TEXT CONST show command :: "s";
TEXT CONST edit command :: "e";
TEXT CONST list command :: "1";
TEXT CONST quit command :: "q".

The various commands are introduced here as text con-
stants, making it simple to choose a different user in-
terface.

9.4.2.1 Reading the old file

We read the old file by means of the operations in-
troduced in this chapter and store their records in the
form of three rows.

read old address list:
LET list max = 100;
INT VAR max index :: O;
ROW list max TEXT VAR namerow;
ROW list max TEXT VAR adrilrow;
ROW list max TEXT VAR adr2row;
open old address list;
REP
read person;
insert person
UNTIL file ended
ENDREP;
close file.

By modifying the value of 1ist max we can try to cope
with a larger address list, but this can only succeed if
our computer has sufficient memory.

open old address list:
ask address list name;
old file (file);
read next nonempty line.

In order to keep the program flexible and independent
of the underlying operating system we prompt the user
for a file name.

ask address list name:
TEXT VAR file;
put ("Name of address list, please: ");
get(file).

We must be careful in reading the lines from the file.
On the one hand, if we tried to read after the end of
the file we would get an error message and our program
would be stopped. On the other hand, we may wish
to insert empty lines in our address list to enhance
readability, but we do not want these empty lines to
be taken as names or addresses, so we have to skip
them. This is again a nice example for the interplay of
the WHILE- and the UNTIL-part.

read next nonempty line:
TEXT VAR textline
WHILE NOT file ended
REP
read (textline)
UNTIL textline <> ""
ENDREP.

After so much preparation we can read the old address
list.

read person:
read name;
read addressi;
read address?2.

The entries for one person consist of three records that
we read separately. Notice that we always read the next
line in advance. This is necessary if we want to detect
the end of file condition while skipping the empty lines.
It is a variant of the often used look-ahead technique.

read name:
TEXT VAR person name :: textline;
read next nonempty line.

read addressli:
TEXT VAR addressl
read next nonempty line.

:: textline;

read address2:
TEXT VAR address?2
read next nonempty line.

:: textline;

9.4.2.2 Adding a person

We keep the list of names sorted in memory. There-
fore we cannot just append a new person at the end
of the list but have to insert it somewhere in the list
(cf. Insertion Sort, Sec. 8.6.2). First we compute its
index, i.e. the position in the name table that either
contains a person with that name or is where a person
with that name should fit according to the alphabetic-
lexicographic ordering.

insert person:

find index;

IF already known

THEN
overwrite

ELSE
shift up from index;
overwrite

FI.

find index:
INT VAR index :: 1;
WHILE index <= max index
REP
IF namerow [index] >= person name
THEN
LEAVE find index
FI;
index INCR 1
ENDREP.

We use here the simplest form of linear search. To
increase efficiency, the reader might prefer a form of
binary search (see Sec. 8.7).

already known:
IF index > max index
THEN
false
ELSE
namerow [index] = person name
FI.

This condition is rather “tricky”, because a person
might have to go after the last element of the list.

overwrite:

namerow [index] :=
adrirow [index]
adr2row [index] :=

person name;
addressi;
address?2.

72

shift up from index:

IF max index = list max
THEN
address list full
ELSE
INT VAR i;
FOR i FROM max index DOWNTO index
REP
shift one up
ENDREP
FI;

max index INCR

shift one up:
namerow [i+1]
adrirow [i+1]
adr2row [i+1]

namerow [i];
adrirow [i];
adr2row [i].

address list full:
line;
put ("Address list full ..
line;
LEAVE program.

.ll);

The algorithm presented here is of poor efficiency.
Suppose we have n entries and want to add m more
entries. Then this algorithm will execute shift one
up in the order of nxm-times. A better solution would
be to first store the new entries in separate rows and
then, when the program writes the entries into a file,
merge the data from the different rows. Of course, if
we have only 100 entries it makes no difference but,
again, with large amounts of data we must be careful.

9.4.2.3 Processing a command

ask for command:
TEXT VAR command;
REP
line;
put ("Command = ");
TEXT VAR comline;
get (comline);
command := comline SUB 1
UNTIL command >= "a" AND command <= "z"
ENDREP.

execute command:

IF command =
THEN

ask person;

insert person
ELIF command = delete command
THEN

ask known name;

remove person
ELIF command =
THEN

ask known name;

show person

add command

show command

ELIF command = edit command
THEN

ask known name;

edit addressli;

edit address?2
ELTF command =
THEN

show all names

list command

ELIF command = quit command
THEN
ELSE
line;
put ("Admissible commands:
qQ");
line
FI.

adels

9.4.2.4 Asking for information

We shall use names like “ask...” for those algorithms
that read information interactively (i.e. not from file,
but via keyboard and screen directly from the user of
the program).

ask person:
ask name;
ask addressi;
ask address2.

Remember that the get algorithm with a single text
parameter behaves differently under the various Elan
implementations. Therefore, it is better if we hide the
call of get into one refinement thus making the modi-
fication easier. Here is the Elan-0 version:

nonempty textline:
get (textline);
textline.

And here is one of the possible Elan-1 versions:

nonempty textline:
get (textline,80);
textline.

ask name:
line;
put ("Name:
person name

")s;

nonempty textline.

ask addressi:

line;
put ("Addressl: ");
addressl := nonempty textline.

ask address2:

line;
put ("Address2: ");
address2 := nonempty textline.

When the requested name is not found we shall kindly
warn the user: Unknown.

73

ask known name:
ask name;
find index;
IF NOT already known
THEN
line;
put ("Unknown.");
line;
LEAVE execute command
FI.

9.4.2.5 Modifying entries

For modifying entries we make use of the procedure
edit.

edit addressli:
line;
put ("Addressi: ");
edit (adrilrow [index], 1).

edit address2:
line;
put ("Address2: ");
edit (adr2row [index], 1).

We might similarly permit also the name of a person
to be modified, but then we must take care to delete
the old person and insert the new person.

9.4.2.6 Removing persons

In order to remove a person the execute command al-
gorithm asks for a known name. If, for any reason,
our answer is wrong the ask known name refinement
gives a warning message (Unknown.) and prematurely
terminates the execution of the command. On the
other hand, if the name is known index will contain
the proper value and the entry can be deleted. Now
only the prompt will indicate that the command has
been executed.
remove person:
shift down until index.

shift down until index:

INT VAR j;
FOR j FROM index UPTO max index - 1
REP
shift one down
ENDREP;
max index DECR 1.
shift one down:
namerow [j] := namerow [j + 1];
adrirow [j] := adrirow [j + 1];
adr2row [j] := adr2row [j + 1].
9.4.2.7 Showing entries
show all names:
FOR index FROM 1 UPTO max index
REP
show name
ENDREP.

show name:
line;
tab;

put (namerow [index]).

show person:

line;

tab;

put (namerow
line;

tab;

put (adrirow
line;

tab;

put (adr2row

[index]) ;

[index]) ;

[index]) .

tab:
put (8 x M n).

9.4.2.8 Writing the new file

Before we write the address list into a file we kindly
ask the user to name the output file: the old file may
be rewritten or a new file may be created. The write
end of file mark refinement is necessary if we want
to read in the same file later. Most Elan implemen-
tations makes the file ended condition true when
the operating system indicates that the file, opened for
reading, has reached its end, others need an explicit
mark. It is safe if we always append this mark to the
end of the file.

write new address list:
ask address list name;
new file (file);
write all persons;
write end of file mark;
close file.

write all persons:
FOR index FROM
REP
write person
ENDREP.

1 UPTO max index

write person:
write (namerow
writeline;
write (adrirow
writeline;
write (adr2row
writeline.

[index]);
[index]);

[index]);

write end of file mark:
write (ascii (4)).

9.4.3 Our first address list

We are proud of having developed such a beautiful pro-
gram, we laboriously type it in — and then suddenly
realize that it has one curious property: it presupposes
that the file we want to modify is already present. This
file must exist before the execution of the program and
may not be empty. Where do we get it from?

74

The simplest way is to make another program that
writes an initial file with at least one person. Once we
have got that file, the initializing program is no longer
necessary. We choose one of the people we want to
have in the list, and write the following program:

start data base:
ask address list name;
new file (file);
write ("Aardvark, Anthony A.");
writeline;
write ("17, Hampstead Road");
writeline;
write ("Weston-Super-Mare");
writeline;
write end of file mark;
closefile.

It would have been simpler to make an empty file (we
would have needed only the first and the last unit),
but the program we have developed needs at least one
person.

9.4.4 The use of the program

We start the program and after some time see the
prompt appear

Command :

Immediately behind this we type an a and finish the
line with the RETURN-key. A new prompt appears

Name :

whereupon we type in

Cowznowsky, Melvin S.

Now we are prompted for the first part of the address.
We enter also the two address fields and again get the
prompt

Command :

Curious to see the result of our work, we give an 1 and
see

Aardvark, Anthony A.
Cowznowsky, Melvin S.

By means of a number of a commands we introduce
the other persons and give again an 1 whereupon we
obtain an alphabetic list of all persons.

Now Anthony Aardvark comes in and asks what data
we have stored about him. We give an s followed by

Aardvark, Anthony A.

(It is rather long. Maybe we had better find a con-
vention for searching for abbreviated names, such as:
Aardx*.) and see his entries appear. We give a q, where-
upon the new address list is written away and the pro-
gram is finished.

We shall not describe the use of the other commands;
you should rather try them yourself.

75

The program given is rather long, but, it is hoped,
quite comprehensible. It is one of the largest Top-Down
programs appearing in this book. All kinds of informa-
tion systems with a similar structure can be modelled
after it.

9.5 Exercises

1. (Flexible searching) Modify the ask known name
refinement in the address list program allowing

e abbreviated names, such as Aardx,

e case-insensitive searching, such as aardVARK,

anTHONy a.,

meaningless punctuation characters, such as
Aardvark Anthony A,

e combinations of the above cases.

. (Membership administration) Are you a member
of some club? Try to imagine how its administra-
tion of members should be organized. Per member
the following entries are of importance: address,
membership number, last year paid, and other en-
tries that are dependent on the nature of the club.
Take care that at least the following lists can be
obtained:

e complete list of members in alphabetic order;

e same ordered by number, with addresses, in
the form of address labels;

e list of tardy payers.

. (School administration) Design an administration
for a school, that captures

e for every pupil the courses and results;

e for every class the pupils.

What kind of modifications to this file must be
possible? What questions should be asked of it?

. (Giro system) Design and realize a simple bank-
ing system that keeps the name, address, account
number and balance of the clients, takes care of
deposits, withdrawals and transfers, sends daily
statements and periodically computes interest.

. (Booking system) Design and realize a simple
booking system for an airline, that per plane ad-
ministers the customers and the empty places and
can make booking for (groups of) customers. This
system can be made as realistic as you wish by the
addition of all kinds of aspects (like smoking/non-
smoking, waiting list, alternative routing, different
time zones ...).

76

Chapter 10
Procedures

As the means of defining abstract algorithms, we
have until now used refinements. This mechanism is
of major importance in learning a systematic way of
programming, but in most programming languages it is
not available in its pure form. Instead, these languages
have, as a means of abstraction for algorithms, the
procedure (“subroutine”, “subprogram”, “function”).
Elan distinguishes both refinements and procedures,
each associated with a specific programming style.

Just as for a refinement, a procedure is a means of
giving a name to a piece of program text, so that that
name can be used in place of that piece of text. The
purpose of this mechanism is, to begin with, simplifica-
tion of programming by shortening the program text
and reduction of the opportunity to introduce errors
in repeating pieces of text. Both mechanisms can be
used as a means of abstraction for algorithms in Top-
Down programming. Procedures additionally have a
possibility of communicating with their environment
through parameters given at their call. Therefore they
lend themselves also to a different programming style
than refinements.

From this chapter on, we leave the sublanguage Elan-
0, which is intended purely for Top-Down program-
ming. Although in this book we do not yet introduce
the Bottom-Up programming style, the following chap-
ters are a preparation for it.

10.1 Refinements: a look back

Human beings have great trouble in keeping an
overview of complicated matters. In order to compen-
sate for this human weakness, we do not try to solve dif-
ficult problems in one stroke, but are satisfied as a first
approximation to take the problem apart into smaller
parts, each of which seems to be easier to solve. Then
we repeat this decomposition process on each of the
subtasks until we arrive at tasks that are small enough
to be resolved immediately.

We use the same technique in programming: we want
to construct an abstract algorithm that precisely solves
our problem. To that end we imagine a number of
suitable abstract algorithms to solve parts of the prob-
lem, which we then stick together by means of con-
trol structures. After that, we have to realize each of
those abstract algorithms in terms of (other) abstract
algorithms and, finally, the concrete algorithms of the

programming language used.

For defining those abstract algorithms that arise as
a fleeting intermediate stage in this process we make
use of refinements.

10.1.1 Example: description of a man-

ual task

We want to construct an algorithm that describes how
to fix a hole in the front tube of a bicycle. We assume
that we have a simple but highly specialized processor
that can manipulate parts of bicycles. The example is
realistic to the extent that it can be seen as a program
for a kind of robot.

At the highest level of abstraction we consider the
bicycle as consisting of a few large parts, such as the
wheels. Those are the objects that we can talk about.
At this level we can indicate what we mean by fix
front tube of bicycle.

fix front tube of bicycle:
turn the bicycle about;
remove the front wheel;
fix the front tube;
attach the front wheel;
turn the bicycle about.

This is a complete algorithm, albeit as yet not very
detailed. It is so far not incorrect, in that it does not
say anything wrong as yet. The “only” thing we have to
do now is to realize the abstract algorithms mentioned.

We call such a formulation, at the highest level of
abstraction, the rough formulation of the algorithm.
It is important that this rough formulation captures
the essence of the solution, otherwise nothing has been
achieved. We do however have the freedom to intro-
duce useful abstract algorithms at will, even if they do
not belong to the concrete repertoire of one or other
processor. Afterwards we shall make them concrete by
means of refinements.

Consider for example the abstract algorithm with
the suggestive name remove the front wheel. The
name more or less adequately expresses what has to
be done. In the refinement we now have to indicate
how that must be done. This realization we express in
terms of a lower level of abstraction, where we conceive
of the front wheel as in its turn composed of a hub with
nuts, spokes, nave, inner and outer tube.

7

remove the front wheel:
remove the left front wheel nut;
remove the right front wheel nut;
take the front wheel from the fork.

attach the front wheel:
fit the front wheel into the fork;
attach the right front wheel nut;
attach the left front wheel nut.

Again we abstracted from a number of things. We
have for instance not mentioned at all where to keep
the nuts safely. The decision about that is part of the
refinement of remove the left front wheel nut.

A decision of detail that we have already made in
the realization given concerns the question of in which
order the nuts have to be loosened and tightened. We
indicated that first the left and only afterwards the
right front wheel nut had to be removed. Of course
the order might just as well have been the other way
around, because the result does not depend on it. But
this decision has a consequence for other details. We
might for instance deduce that the processor between
the removal of the nuts and their tightening is at the
right side of the bicycle. The decision “first left, then
right” is an overspecification. In order to keep gen-
erality as great as possible, we should have specified
collateral removal, so that some kind of octopus might
even have removed both nuts simultaneously. Since we
restrict ourselves to sequential algorithms we have no
notation to describe collateral execution. Overspecifi-
cations like this one occur in programming all the time:
time and again we see ourselves forced to make a choice
that excludes whole classes of just as good or possibly
better realizations.

We might have delayed the decision another refine-
ment step by introducing an abstract algorithm remove
both nuts; but that would merely have delayed the is-
sue.

In programming, one has to be aware all the time of
such phenomena, and must take care to make concrete
choices for a specific strategy as late as possible, in or-
der to minimize remorse about hasty decisions. On the
other hand, when taking a decision can no longer be
avoided, we should cut through the knot courageously
and accept the consequences of our decision. It is advis-
able in this process to define those abstract algorithms
that belong to the same level of abstraction first before
embarking on the next, lower, level of abstraction.

We continue refining:

fix the front tube:
loosen the outer tube;
take the inner tube out;
fix the inner tube;
stuff the inner tube in;
mount the outer tube.

In fixing the inner tube we have to take care of yet more
details, so that now the hole in the tube also belongs
to our level of abstraction. It may be that there is
more than one hole, or that we have made an error
and cannot find any hole at all.

fix the inner tube:
WHILE there is another hole
REP fix that hole
ENDREP.

And so we must continue refining until we reach (we
hope) the level of directly executable concrete algo-
rithms.

The method that we have applied here is known
as the Top-Down method, hierarchical decomposition
with the aid of refinements.

By the systematic use of refinements with well-
chosen names we strive to retain a large part of the
passing thoughts, ideas and insights that play a role
in the design process. In a later modification of the
program the meaning of the maker need not be re-
constructed painfully from his deeds (see [MEE77],
[DAHT2)).

Refinements serve to support the programming pro-
cess, but they do not perform wonders. They serve
to retain the fleeting thoughts arising during the pro-
gramming process. They give a certain rhythm to a
program. They reduce the distance in abstraction that
has to be bridged at one time. They restrict the horizon
that the programmer has to oversee at one time. They
allow him to distinguish between the “what” and the
“how”. They allow another person at a later time to
follow the kinky thoughts of the author of a program.

Once again — they serve as a means for capturing
thoughts. But they cannot suggest the thoughts.

10.2 Procedures
blocks

as building

Top-Down programming, in principle, proceeds until
the level of the concrete expression means of the pro-
gramming language has been reached.

In many cases, and especially for larger programs,
this level is definitely not the most convenient one to
end at. Much work can be saved by defining before-
hand a few well-chosen elementary algorithms and ob-
jects, intended to serve as the lowest level of detail for
this particular program.

We shall introduce for this purpose another form of
abstract algorithm, the procedure, that we use when-
ever we feel the wish to define an algorithm that is to
be used in more than one place in the program.

In that case we no longer consider it as an interme-
diate stage in the thinking process but as a supplement
to the concrete algorithms of the language, as a new
elementary building block. As an example, turning the
bicycle around, manipulating the left and right nuts of
the front and rear wheel, and also fixing of a hole ob-
viously belong to the basic capabilities of anyone who
is to repair his bicycle.

In somewhat larger programming exercises, one pro-
ceeds by first carefully defining a packet of elementary
algorithms, objects and types in terms of which the
solution of the problem can be expressed more conve-
niently, rather than by attempting to close the whole

78

distance between the given problem and the given con-
crete language in one great step.

The consequent application of this idea leads to
another programming style, Bottom-Up programming
(“The Method of stepwise Synthesis”) (e.g. [KLE81]),
for which Elan has a number of special constructions
(procedure declarations, type declarations, operator
declarations, packet mechanism with interfaces). We
shall go deeper into this subject in volume 2.

Of course there is a spectrum of possibilities be-
tween Top-Down and Bottom-Up programming style,
in which procedures play an important role.

Those abstract algorithms that are worthy to be used
more than once as elementary algorithms in the pro-
gram, we shall realize as procedures.

Abstract algorithms that play only a unique, passing
role in the design process of the algorithm we realize
by means of refinements.

As a matter of fact in the previous chapters we
have already silently made our acquaintance with pro-
cedures, because many of the concrete algorithms in
Elan are procedures. Take for example the standard
procedures put, sin and cos. In this chapter we shall
indicate how to declare procedures, how to use them
and how to classify them into various sorts.

10.3 Procedure declarations

Just like other objects (variables and constants), pro-
cedures have to be declared before they can be used.
Such a declaration looks as given in Fig. 10.1.

An example of a procedure-declaration is:

REAL PROC average (REAL CONST a, b):
(a +b) /2.0
ENDPROC average

This declaration introduces a function of two argu-
ments with the name average. (We usually say that
operators have operands, functions have arguments
and procedures have parameters. Their role is essen-
tially the same.) Each of its parts (heading, body and
tail) stands here on a line of its own. The first line is
the heading and the second one the body.

The execution of a procedure declaration has as ef-
fect that a routine (a value which serves as the internal
representation for the procedure) is bound to the name
of the procedure. As you see, a procedure is again an
object with a name and a value. The scope of a proce-
dure declaration is determined in the same way as for
other declarations.

10.3.1 The procedure-heading

In the heading of a procedure the correspondence is in-
dicated between the environment where the procedure
is executed and the body of the procedure. This corre-
spondence is effected, as it will be described later, by
binding values and variables from the environment (ac-
tual parameters) to names that are known only within
the procedure (formal parameters). As an example,

in the call sin (0.5 * x) the expression 0.5 * x is
the actual parameter of sin. The name of the corre-
sponding formal parameter we have to look up in the
declaration for sin. The syntax of the procedure-head
is shown in Fig. 10.2.

The formal-parameter-pack gives declarations for the
formal parameters, objects for which, in calling the pro-
cedure, a value will be given (Fig. 10.3. The pack of
formal parameters is omitted if the procedure has no
parameters.

A procedure may deliver as its result a value of the
type indicated in its head. The type of the eventual
result of the procedure can be deduced from the type
declarer that precedes the keyword PROC. There are
also procedures that have no value and only an effect.
In the last case the type-declarer is empty.

The result of the procedure in our example is of type
REAL.

The list of formal parameters REAL CONST a, b de-
fines two real constants a and b for use in the body of
average.

In the head of the procedure we find the names of all
formal parameters with their type and access. In call-
ing the procedure, for every formal parameter a cor-
responding actual parameter has to be supplied, i.e.
an object or expression whose value will be bound to
the formal parameter. The formal-parameter-pack indi-
cates the number, types and order of the parameters
demanded and gives them a name for use in the body
of the procedure.

From the syntax diagram given above we omitted
the possibility of passing a procedure as a parameter,
which will be described in the next book.

10.3.2 Examples of headings

The extent to which a declared procedure is un-
derstandable depends on the procedure-name chosen,
the names of the formal parameters and their types.
Through the use of short catchy names, readability can
be improved. A well chosen procedure-head indicates
clearly what the procedure does without telling how it
does it.

In order for this story not to get too dry, we shall
first give a number of examples of procedure-headings.

REAL PROC sin (REAL CONST x):
REAL PROC max (REAL CONST a, b):

BOOL PROC even (INT CONST n):

TEXT PROC multiply (INT CONST n, TEXT
CONST s):

PROC put (INT CONST x):

PROC get (INT VAR x):

Anticipating the possibility of declaring abstract types,
we will also give some examples of procedure-headings
with formal parameters of various abstract types.

79

procedure-declaration

—>| procedure-head }—>| procedure-body }——| procedure-tail }—»

Figure 10.1: Procedure declaration

procedure-head

type-declarer

<~{ procedure-name ’—T.(formal-parameter-part }7{9—»

Figure 10.2: Procedure head

These examples illustrate well the usefulness of mean-
ingful names: such names suggest the reader of the
program text what is to be expected without telling
him how it can be achieved.

REAL PROC max value (FUNCTION CONST f,
INTERVAL CONST i):

PROC invert (MATRIX VAR a):

BOOL PROC are equal (ELEMENT CONST a, b):

BOOL PROC is in (SET CONST m, ELEMENT
CONST x):

PROC perform transfer (ACCOUNT VAR
debtor, creditor,
REAL CONST

sum) :

PROC add to (ELEMENT CONST x,
COLLECTION VAR m):

PROC signal (TEXT CONST message):

PROC stop:

In all cases the head of procedure can easily be recog-
nized by the magic word PROC.

10.3.3 The procedure-body

The body of a procedure consists of a paragraph which
may be followed by some refinements (Fig. 10.4). The
execution of the body consists of the execution of its
paragraph.

In the previous example the body of the procedure is
very simple: the paragraph consists of one single unit.
The body may also contain one or more refinements as
in the (rather contrived) example

procedure-body

((M [

refinement

4»{ paragraph

\ J |

Figure 10.4: Procedure body

REAL PROC average (REAL CONST a, b):
sum of values / sum of weights.
sum of values:

a+b.
sum of weights:
1.0 + 1.0.
ENDPROC average;

10.3.4 The procedure-tail

The name of the procedure may be repeated in its tail,
a redundancy that makes it simpler to signal structural
errors (such as lost ENDPROCs) adequately. The delim-
iter ENDPROC may also be written as END followed by
PROC (Fig. 10.5).

procedure-tail

ENDPROC procedure-name }7>

Figure 10.5: Procedure tail

In the examples, we will usually give a semicolon
after the procedure-tail, but strictly speaking this does
not belong to the procedure declaration: it acts as a
separator from the next declaration.

10.3.5 The procedure-call

Once a procedure has been declared, it can be called
from different places of the program. In a procedure-

80

formal-parameter-part

s

M)

type-declarer

o

parameter-name

o

Figure 10.3: Formal parameter pack

procedure-call

Q

actual-parameter

M

J

Figure 10.6: Procedure call

call, the values of objects from the environment of the
call are bound to the formal parameters of the pro-
cedure. The syntax of the procedure-call is shown in
Fig. 10.6 and 10.7.

actual-parameter

expression

Figure 10.7: Actual parameter

The syntax diagram for actual-parameter has been
simplified by omitting the possibility of passing a pro-
cedure as a parameter.

The value and the effect of the call of a procedure
are the value and the effect of the execution of its body,
taking into account the binding of parameters (param-
eter mechanism) as described in the next sections. A
call is executed by first binding the values of the ac-
tual parameters to the corresponding formal parame-
ters, and then executing the body of the procedure.

The types of the formal parameters and the corre-
sponding actual parameters have to be the same. If
a formal parameter has the access right VAR then the
corresponding actual parameter also must be a VAR, so
that assignment to it is possible.

If the body of the procedure yields a value then this
value after returning from the call acts as the result
of that call. For example the call sin (0.2) yields
as result the real that is computed as the value of the
body of the procedure sin.

We shall now discuss the parameter mechanism.

10.3.5.1 CONST-parameters

In calling a procedure, the formal parameters with a
CONST access attribute (the formal constants) are ini-
tialized to the values of the corresponding actual pa-
rameters.

Consider the call average (1.3, 1.7) of the pro-
cedure already described. It yields the same value as

81

the paragraph

REAL CONST a ::
(a+Db) /2.0

1.3, b :: 1.7;

consisting of two declarations, one for each formal con-
stant, with the actual parameters as initializations, fol-
lowed by the body of the procedure. Therefore the call

put (average(1.3, 1.7))

writes the real number one-and-a-half.

10.3.5.2 VAR-parameters

For VAR-parameters (formal variables) the correspon-
dence between formal and actual parameters is even
tighter. Any assignment to the formal parameter is
also an assignment to the actual parameter: the for-
mal parameter is nothing other than an alias for the
actual parameter.

Consider the example:

PROC increment (INT VAR x, INT CONST y):
X 1= x +y
ENDPROC increment;

INT VAR number :: 0;
increment (number, 3)

For the duration of the call, the formal variable x is an
alias for the actual variable number. Any assignment
to x assigns also to number and vice versa. The call
has the same effect as the execution of the paragraph

{ Let x be an alias for number }
INT CONST y :: 3;
X 1= x +y

After the call, x is no longer an alias for number, but the
assignment to x has had its effect on number. Therefore
the call increment (number, 3) has as net effect that
the variable number is incremented by 3.

10.3.6 Scope of local declarations

A procedure declaration makes the name of the proce-
dure visible in the whole scope of the declaration, in
our case the whole program. The formal parameters of
the procedure and all objects declared within the body
of the procedure (local objects) have as scope the pro-
cedure declaration itself, and are not visible outside it.
This means that the names of objects, declared in the
environment of the procedure (global objects), can be
re-used within the procedure as names of formal pa-
rameters, local objects, etc. The local meaning then
holds only within the procedure and the global mean-
ing holds outside it. It is as if the local objects auto-
matically and invisibly obtain another unique name if
their name happens to be the same of that of a global
object.

In the context INT VAR y :: 13, x :: 4 con-
sider the execution of the call increment (y, x). To
avoid name conflicts, the local names x and y in the
procedure increment are, as it were, changed into
names xx and yy, so that increment (y, x) is exe-
cuted as

{ Let xx be an alias of y }
INT CONST yy :: x;
XX 1= XX + yy

The fact that a procedure can have local objects is
one of the essential differences with refinements. On
the other hand, the declarations occurring outside a
procedure have as scope the whole program!

The syntax of Elan does not allow a procedure to be
declared local to a procedure, so all procedures stand
side by side in a global environment.

10.3.7 Communication with the envi-
ronment

Procedures communicate via their formal parameters
with the environment in which they are called. An-
other form of communication is possible via a global
variable that is visible both from the call and from the
body of the procedure itself. Just like refinements, pro-
cedures can communicate via variables in their environ-
ment. The environment can influence the behaviour of
a procedure through such a variable.

The following example illustrates how we might con-
trol the behaviour of a procedure through a global vari-
able.

INT CONST is sine ::
INT VAR type ::

1, is cosine :: 2;
is sine;

82

REAL PROC sine or cosine (REAL CONST x):

IF type = is sine

THEN sin (x)

ELIF type = is cosine

THEN cos (x)

ELSE
put ("Unknown function type");
line;
0.0

FI

ENDPROC sine or cosine;

The chimaera sine or cosine behaves as the sine or
as the cosine, dependent on the value of the global
variable type.

It is an excellent example of the bad programming
style that should be, at any rate, avoided: the internal
behaviour, i.e. the control, of a procedure is influenced
through global variables (so called flags). If an error
occurs in the environment it may cause an error also in
the procedure, far from the eventual place where the
error has been made. Such an error is extremely diffi-
cult to localize. Through global data objects the pro-
cedures should exchange data and no control informa-
tion! This bad programming style roots in assembly-
level programming, and makes precisely that protec-
tion mechanism ineffective that makes the distinction
between high- and low-level programming languages.

There is an important difference between communi-
cation via parameters and communication via global
variables. In the first case, the communication via pa-
rameters, we can see at the call explicitly which objects
may be modified by the procedure. We can call the pro-
cedure with different sets of actual parameters. In case
of communication via global variables, the variables
that can be modified by the procedure are implicitly
given by the procedure declaration. At the call of the
procedure we cannot see which global variables may be
modified.

Both techniques for communication have their own
applications. Which is preferable depends on circum-
stances. When a procedure is to be called in different
environments this may be a reason to prefer the use of
parameters.

When we have a collection of collaborating proce-
dures that together realize some abstraction, and for
that purpose need some common memory, it is desir-
able to let the communication between those proce-
dures run via global variables. Communication in this
case happens behind the scenes as it were, because it is
not relevant to the environment in which the procedure
is called; it is abstracted away from.

10.3.7.1 Alias problems

As we have seen, a global variable may, via a VAR-
parameter, be known within a procedure under two
different names. It is not advisable to have assignments
to both, as in:

INT VAR total :: 10;
PROC riddle (INT VAR t):
total INCR 1;
t INCR total
ENDPROC riddle;

The meaning of the call riddle (total) is not easy
to deduce without the help of a tableau (Fig. 10.8).

total,
t

40
A
22

Figure 10.8: Alias

Indisciplined use of an alias opens the door to dan-
gerous side effects. We advise you to avoid alias prob-
lems and not to write programs whose meaning de-
pends on subtle details of the parameter mechanism.

10.4 Classification of procedures

Procedures can be classified in various ways. One cri-
terion is to distinguish whether the procedure does or
does not yield a result, i.e. whether its execution yields
a value.

Whenever a procedure (directly or via a formal pa-
rameter) modifies the value of a global variable one
says that that procedure has an effect. Note that this
effect need not be observable within the program that
uses the procedure, but may also exist in the printing
of a text on a line printer or the screen of the termi-
nal (a kind of external variable). Strictly speaking, a
procedure always has an effect, because the call of the
procedure at least uses up some computer time. How-
ever we will disregard the aspect of time. (The time as
a variable has an important role in various application
areas, e.g. in controlling industrial processes, rockets,
space ships etc.)

The observation that a procedure may or may not
have an effect and may or may not yield a value leads to
a classification of procedures in four kinds, dependent
on their behaviour with respect to their environment.

A procedure may:

1. have an effect and yield a value (function with ef-

fect),

2. have an effect and yield no value (action),
3.

4.

have no effect but yield a value (function),
have no effect and yield no value (dummy).

The first sort is a mixture between the second and the
third. These procedures are difficult to use, because
their ambiguous behaviour may be a source of errors
in programming. The fourth sort is the most innocent
and has as an important parameterless representative

83

PROC dummy:
ENDPROC dummy ;

Procedures of this last sort can be used during the
testing of programs. By taking a “dummy” procedure
for an action that has not yet been programmed, with a
suitable heading and an empty body, often other parts
of the program may be tested at an early stage.

10.4.1 Functions

An example of a function is:

REAL PROC max (REAL CONST a, b):
IF a > b THEN a ELSE b FI
ENDPROC max;

that computes the maximum value of the parameters
a and b. By the aid of max we can define

REAL PROC max of 4 (REAL CONST a, b, c,
d):

max (max (a, b), max (c, d))
ENDPROC max of 4;

which computes the maximum of four reals. A pure
function is a mapping from its parameters to a result
that depends only on the value of those parameters.
Well-known examples of pure functions are the con-
ventional trigonometric functions such as sin and cos.

Programming languages also allow impure functions,
whose result depends not only on the parameters but
also on global variables. The examples in this section
all are pure functions.

10.4.2 Actions

An action has an effect on its environment but yields no
result. Well-known examples of actions are the proce-
dures get and put for reading and writing respectively.
Other examples are:

PROC count (INT VAR number):
number INCR 1
ENDPROC count;

that increments the value of its parameter by 1.

PROC exchange (INT VAR x, y):

INT CONST aux :: Xx;
X 1= y;
y = aux

ENDPROC exchange;

This action exchanges the value of its parameters.
Strictly speaking, functions are not necessary because
we can achieve the same effect using only actions (cf.
“statement languages” like COBOL). As an example,
instead of the standard function sin we could define
an action compute sine:

PROC compute sine (REAL CONST x, REAL VAR
sine):

sine := the sine of x
ENDPROC compute sine;

In order to compute the value of the formula 1 -
sin(x) ** 2 with the aid of the procedure compute
sine, we would then have to write:

REAL VAR s, result;
compute sine (x, s);
result := 1 - s *x% 2

The example makes clear that the notation as a func-
tion is much more palatable.

It is also possible to go all out for functions (as in
pure “expression languages” such as LISP), but in gen-
eral it is most convenient to have a choice between both
forms of expression.

When seeing a procedure purely as a mapping from
its (eventual) parameters to a value, the function form
will be preferable. In other cases, e.g. when no result
or rather more than one result is to be yielded, the
procedure will be declared as an action. An example
of this last case is:

PROC division with remainder

(INT CONST dividend, divisor, INT VAR
quot, rem):

quot := dividend DIV divisor;

rem := dividend - quot * divisor
ENDPROC divide with remainder;

10.4.3 Functions with side effect

When the execution of a function has also an effect (on
a global variable) we speak of a side effect. This name
already makes clear that the purist frowns upon side
effects. A function is supposed to yield a value, not to
modify the global environment!

Upon closer consideration, legitimate examples of
the meaningful use of side effects are easy to find. They
have in common that the global environment implicitly
acts as a memory for the function and influences its re-
sult. Examples:

INT VAR n :: O;

INT PROC next client:
n INCR 1; n
ENDPROC next client;

Obviously a global memory is essential to this func-
tion.

BOOL VAR a;

BOOL PROC flipflop:
a := NOT a; a
ENDPROC flipflop;

PROC set:
a := TRUE
ENDPROC set;

PROC reset:
a := FALSE
ENDPROC reset;

For anybody conversant with electronics this set of pro-
cedures has a familiar behaviour. Notice the way in
which flipflop yields its value.

Another function with a side effect, again without
parameters, is:

INT PROC next nat:
INT VAR numb;
REP get (numb)
UNTIL numb >= 0
ENDREP;
numb

ENDPROC next nat;

which yields as a value the next non-negative number
of the input and has a side effect on that input.

10.4.4 Genericity

Procedures are generic: different procedures with the
same name may occur alongside one another as long as
they differ in the number or type of formal parameters.
In a procedure call, the number, the order and the type
of the actual parameters must agree with the number,
order and type of the formal parameters of one of the
procedures declared with that name. That procedure
will then be identified by this procedure call. In the
second part of this book we shall introduce the use of
genericity as an abstraction mechanism.

10.4.5 Encapsulation

A secure use of procedures using global variables as
memory demands a facility to protect the global ob-
jects that are necessary for the correct execution of the
procedures from the environment in which those pro-
cedures are called. The programming language Elan to
this purpose contains a mechanism, the packet mecha-
nism, which we shall describe in the second volume.

For the implementation of large program systems,
on which many people will be at work, such an explicit
encapsulation mechanism is essential.

10.5 Structure of programs

At this point we can discuss the structure of Elan pro-
grams. We shall not yet introduce the complete syntax
(which can be found in appendix A) but describe two
subsets of Elan that we shall call Elan-0 and Elan-1
respectively.

elan-0-program

procedure-body

Figure 10.9: Elan-0 program

Is Fig. 10.9 a surprise? The language mechanisms
that we introduced in the first 8 chapters turn out to
be precisely those that can be used in the body of a
procedure.

84

elan-1-program

procedure-body '—»

procedure-declaration

operator-declaration

type-declaration

Figure 10.10: Elan-1 program

One conclusion from that is that we may take any
complete Elan-0 program and enclose it between the
lines

PROC program:
ENDPROC program

thus turning it into a procedure, an action without
parameters.

By allowing the closed-declaration for procedures
(and operators and types), we obtain a second, wider
subset, Elan-1, i.e. Elan without packets (Fig. 10.10).
It can be seen that an Elan-1 program consists of a
Bottom-Up part, in which some abstract algorithms
and types are defined, followed by a Top-Down part in
which they are used.

For the rest of this book we shall employ the subset
Elan-1.

10.6 Procedures and

refinements revisited

Refinements and procedures have much in common.
Why then do we distinguish two mechanisms?

The differences between procedures and refinements
are subtle but have rather far-reaching consequences.

e A procedure has as its environment (i.e. as the
scope of its declaration) the program. The same
holds for refinements of the program but not for
refinements of procedures. Those have as environ-
ment the procedure itself, and therefore can be
used for local Top-Down programming.

Communication between refinements can occur
only implicitly via effects on common global ob-
jects. Communication between procedures takes
place explicitly, by means of parameters.

Declarations within a procedure are local to that
procedure. Declarations in a refinement are visible
in the whole program; thus it is possible to refine
a declaration! Many examples in this book show
that especially an initialized declaration (which in-
troduces a variable and at the same time leads to
a well-defined state of the program) can be verbal-
ized well.

A procedure only obtains its meaning at its dec-
laration; before that it may not be called. A re-

85

finement can be invoked everywhere in its scope
without the necessity for executing a declaration.

In other programming languages, refinements do not
appear as separate constructs. One can then use (pa-
rameterless) procedures as refinements. This does lead
to a number of problems:

e Some programming languages (like standard BA-
SIC) have such severe limitations on the choice of
names of procedures that these can no longer be
seen as abstraction means.

The fact that procedures can only be called after
execution of their declaration means that such a
declaration has textually to precede its first call.
This conflicts with the order of the Top-Down pro-
gramming process: at any moment we may postu-
late some specific abstract algorithm that we have
to declare only later. In using procedures, the
order of invention and the textual order can no
longer be the same.

Writing down a procedure declaration with a de-
tailed heading adds so much “overhead” to the de-
sign process that it restrains the programmer from
writing many short abstract algorithms. Implicit
communication raises much less overhead and fits
better into the Top-Down programming method.

The necessity in many programming languages
(like PASCAL) to declare all variables before
the algorithmic part of a procedure of program
strongly impedes a natural Top-Down style. Elan
on the other hand is very liberal as regards the
placement of declarations.

The block structure that arises through the possi-
ble nesting of procedure declarations causes great
trouble to beginners. The very simple scope rules
of Elan are easier to follow.

There is no doubt that procedures may be used strictly
as refinements, but the problems mentioned justify
the introduction of refinements as a separate syntac-
tic mechanism. Also from the point of view of system-
atization of language concepts, it is advantageous to
distinguish between the means for Top-Down program-
ming (refinements, control structures) and Bottom-Up
programming (packets, procedures, operators, types).

Refinements are above all a didactic aid in learn-
ing systematic programming. Once their use has been
fully understood it is possible to program systemati-
cally even without such an aid.

Refinements are for the programmer what the navel
is for the Zen Buddhist.

10.7 Exercises
1. (Roman numerals) Write a procedure

INT PROC value of (TEXT CONST roman
numeral)

that converts a Roman numeral to an integer.
Make use of an auxiliary procedure to obtain the
values of Roman digits.

2. (Converting to Roman numerals) Write a proce-
dure

TEXT PROC romanize (INT CONST number)

that represents a natural number in the Roman
numbering system. Test it with the previous pro-
cedure.

3. (Standard library from chapter 6) Realize the pro-
cedures pos, text, subtext and replace in terms
of the operations +, LENGTH and SUB.

86

Chapter 11

Languages and grammars

In this chapter we want to take a look at languages
and grammars. A linguistic application of Informatics
will be presented: the generation and analysis of sen-
tences according to a grammar. In passing, we shall
have to deal with the subject of random numbers.

11.1 On the description of lan-

guages

The English language can be seen as the collection of
all its sentences. Likewise, the language Elan can be
seen as the collection of all its programs.

A natural language is a living organism, part of an
intricate social, cultural and economic system. The
boundaries of a natural language are vague and sub-
ject to shifting in time. FExpressions, constructions
and words will slowly be adopted and become com-
monplace, whereas others become obsolete. There are
dialects and language variants. Pronunciation and
spelling will change over time.

For an artificial language like our programming lan-
guage, explicitly constructed by human beings, the
boundaries are much sharper. But there we have a
problem in sharing it with others: We are not im-
mersed in the language from our birth, and cannot take
recourse to native speakers of the language. The inven-
tor of an artificial language will have to describe it.

How do you describe a language? To enumerate a
complete listing of all English sentences is obviously
impossible, because there are too many. There is not
even a strict bound to the number of sentences: I can
take any sentence and make it two words longer by
embedding it in

He said: “...”.

Furthermore, such an enumeration of all sentences is
not very enlightening, because sentences have meaning
only in relation to a specific context.

In the description of a language, be it natural or
artificial, three different aspects can be distinguished:
syntax, semantics and pragmatics.

The syntaz indicates which sequences of symbols
form the sentences of the language and what syntac-
tic structure they possess. The semantics assigns a
meaning to syntactically correct sentences. The prag-
matics is concerned with the relationship between the

language and the human being who uses it, in other
words: the heart of the matter.

We shall not concern ourselves with semantic and
pragmatic description, but shall introduce one particu-
lar formalism for syntactic description from mathema-
tical linguistics, the context-free grammar. This for-
malism is related to the syntax diagrams that we in-
troduced earlier in this book, but it may lead to a more
concise notation with a somewhat higher degree of ab-
straction.

Most applications of Informatics in the human sci-
ences, and especially those in linguistics, can be classi-
fied as follows:

o Text storage.

The input, storage, modification and retrieval of
texts (“word processing”), their preparation for
printing and automatic typesetting. You will have
noticed that the text of this book has been pre-
pared with the aid of the computer (and inciden-
tally quite a number of human beings). As the
output devices of the computers get more perfect
and more professional, the computer turns more
and more into a super-typewriter.

o Calculating with texts.

The computer with its long patience and unwa-
vering conscientiousness is a very reliable aid for
counting the occurrences of certain phenomena in
texts (language statistics), for screening and sort-
ing linguistic data and for compiling indices and
concordances. More and more the computer is re-
placing the shoebox stuffed full of indexing cards
on which the old-fashioned linguist kept his notes.

e Applications of syntactic techniques to texts.

The linguist and the informatician share a com-
mon interest in the description of languages and
the automatic processing of sentences. This inter-
est is reflected in the examples in this chapter.

11.2 A syntactic notation

A context-free grammar (“CF grammar”, “CFG”)

is a formal notational system, in which linguistic con-
cepts are defined in terms of other concepts and, finally,
in terms of specific words or classes of words.

87

As an example we verbally express a part of English
grammar:

1. asentence consists of a subject, followed by a verb,
followed by an object;

2. asubject is either a personal pronoun, or an article
followed by a noun;

3. an article is one of the symbols ‘the’, ‘a’ or ‘an’.

In a context-free grammar we express this same infor-
mation by means of the three rules

sentence:
subject, verb, object.

subject:
personal pronoun;
article, noun.

article:
a-symbol;
an-symbol;
the-symbol.

The punctuation marks in this grammar can be pro-
nounced as follows:
as “is a”,
, as “followed by a”,
;as “ora”,
as a short pause.

The resemblance of this notation to the Elan notation
for refinements is no accident. Refinements have a sim-
ilar descriptive character to a grammar and we might
well call the refinements the “special grammar” of the
program.

In order to simplify the recognition of symbols we
may use the convention that their name always ends in
-symbol.

11.2.1 Context-free grammar

In a context-free grammar we distinguish between con-
cepts and symbols, each represented by their name, con-
sisting of lower case letters and possibly digits. We may
use spaces and hyphens (“-”) to enhance readability.

Words like sentence, subject and verb are names of
concepts, the so-called non-terminal symbols or non-
terminals. The grammar has for every non-terminal a
rule, that defines precisely which sequences of words
are comprised by this concept.

Words like a-symbol, the-symbol etc. are names for
the symbols of the language, the so-called (terminal)
symbols or terminals. For these terminals there is no
production rule, but instead one or more representa-
tions are given. Take for example the the-symbol. It
can be pronounced, written by hand or printed, all the
time remaining the same symbol, just like 2 or two
always retains its twoness.

A rule consists of a left-hand side (“definiendum”),
a colon, a right-hand side (“definition”) and a period.
The left-hand side consists of the non-terminal to be
defined. The right-hand side consists of one or more

88

alternatives, separated by semicolons. An alternative
in the definition of a non-terminal we also call one of
the direct productions of this non-terminal.

An alternative consists of a list of zero or more
words, i.e. terminals or non-terminals, separated from
one another by commas. An alternative may also be
empty.

Based on the notion of direct production we shall
now define the notions of production, terminal produc-
tion, sentence and language.

A production of a non-terminal x is either a direct
production of x, or a list of words, obtained by replac-
ing in a production of x some non-terminal y by a direct
production of y.

Some productions of sentence:

sentence

subject, verb, object

personal pronoun, verb, object
article, noun, verb, object
a-symbol, noun, verb, object
the-symbol, noun, verb, object

By a terminal production of x we mean a production
that contains no further non-terminals and therefore
consists solely of a list of terminals. The representation
of a terminal production is the sequence of representa-
tions of its terminals.

A sentence is a representation of a terminal produc-
tion of the syntactic notion sentence. The collection of
all sentences, described by a grammar, is the language
of that grammar.

In the back of this book can be found a context-
free syntax of Elan (appendix A). This is the syntax
which is used by the Elan implementation to determine
whether a specific sequence of symbols belongs to Elan.

With this grammar in hand, it is possible to find
answers to questions about the syntax of Elan, like:

e Is marllyn an identifier?

e Can the body of a refinement end in a LEAVE-
construct (the terminator)?

e Can the body of a refinement consist of an object-
declaration?

without trying out examples on the computers.

11.2.2 Other formalisms

The notation for context-free grammars that we have
used is not one of the various conventional nota-
tions from linguistics, but a notation from Informatics
named after A. van Wijngaarden [ALGOLGS].

To be precise, the so-called two-level grammars have
been named after van Wijngaarden. In fact we have
used a simplified version of the van Wijngaarden nota-
tion, using only one context-free level. Another nota-
tion used in Informatics is the so-called Backus-Naur
Form. All these different notational systems are how-
ever interchangeable.

11.2.3 Using a grammar

Suppose we have obtained a context-free grammar of a
substantial part of the English language. How can we
determine how good this grammar is?

One technique would be to analyse a large number
of sentences by the aid of the grammar and to de-
termine whether a sufficiently large fraction of those
sentences can be analysed according to the grammar.
The linguist who works in this fashion is called a cor-
pus linguist, named after the (huge) collections of text
(“corpora”) with which he works.

Another technique consists in generating sentences:
producing examples of sentences according to the
grammar, which are then checked for grammaticality
by human beings. A grammar suitable for generating
sentences is called a generative grammar.

Observe that there is little sense in generating, in
some order, “all” sentences of the language: their num-
ber is usually infinite. That would be extremely boring
and not very instructive. It is more interesting to gen-
erate “by chance” examples of English sentences.

We shall first indicate how you might program a gen-
erative grammar. Assume that one of the rules says:

statement:
subject, verb, object.

In order to generate an example of a statement, we
have to generate an example of a subject, followed by
an example of a verb and then an object. This sounds
remarkably like the calling of algorithms. For every
notion, we introduce a procedure written in Elan, e.g.:

PROC statement:
subject;
verb;
object

ENDPROC;

There is a striking resemblance between this notation
in the programming language and the syntax rules, but
unfortunately the punctuation marks “;” and “,” have
a different meaning in the two systems. We can con-
tinue with the syntax rule

subject:
personal pronoun;
noun group.

As an example of a subject I have to generate either a
personal pronoun or a noun group, with equal proba-
bility:

PROC subject:
IF fifty fifty
THEN personal pronoun
ELSE substantive group
FI

ENDPROC;

The condition fifty fifty has to be a boolean ex-
pression that yields true with 50% probability and false
with 50% probability. How do we achieve this?

89

11.3 Excursion: about chance

A six-sided dice is an instrument for generating num-
bers by chance. From such a dice we expect:

e even knowing the whole of history, it is unpre-
dictable what the next outcome will be;

e the six possible outcomes are homogeneously dis-
tributed, i.e. they all have an equal probability.

Every model that has those two properties can serve
instead of a dice. We can try to deduce such random
numbers from a natural process, like a white noise gen-
erator, or from the “random” contents of some part of
the memory of the computer, but the first demands
extra hardware and the second will not be very satis-
factory.

We can also try to determine algorithmically a se-
quence of real random numbers in the range 0.0 to 1.0
as

Ry = initial value,
Ry = obtained from Ry,
R, = obtained from Ry,

in such a way that the sequence R; is unpredictable and
homogeneously distributed. For practical reasons we
prefer to compute a sequence of non-negative integers
I; and then let

R; = real(I;)/real(maxint)

in which I; > 0, and of course I; < maxint. The simple
computation scheme

Iivy = (a*I; + b) mod ¢

turns out to have surprisingly good properties provided
a, b and ¢ are chosen with care. In order to simplify the
computation we choose ¢ = maxint, on most machines
a power of two minus 1. Observe that the sequence is
in every case periodical: there are only a finite number
of integers, so that after a certain number of terms an
element of the sequence must be repeated. A number
of I; occurring for the second time in the sequence as
I; 1 will have the same successor value I;41 = I;y 41
and so on.

We must obviously try to keep the period as long as
possible. It can be at most equal to maxint. Also the
sequence has to be unpredictable. We have to choose
for a and b prime numbers, such that a, b and ¢ have
no divisors in common. For well-chosen values of a
and b the elements of the sequence are homogeneously
distributed, and also stronger statistical tests do not
point to regularities. In distinction to real chance, this
sequence is reproducible. This allows us to replay a
“random process”. Such a reproducible random se-
quence is called pseudo-random.

Due to the way these pseudo random numbers are
generated, the lowest bits of consecutive random num-
bers are highly correlated. The higher bits are “more
random” .

11.3.1 Random numbers in Elan

We do not ourselves have to search for suitable values
of a, b and ¢ for our computer. Somewhere in the stan-
dard packets of Elan there is a hidden integer variable
last random declared as

INT VAR last random
and an algorithm with a real result, similar to

REAL PROC random:

last random := (a * last random + b)
MOD maxint;

abs (real(last random) / real(maxint)
)
ENDPROC random;

Using this algorithm, the expression

random < p

has a probability p to yield TRUE.

At the start of the execution of a program the vari-
able last random is automatically and mysteriously
set to some initial value, which is probably based on
the constellation of the stars or the built-in clock of
the computer. This makes the random sequence truly
unpredictable for us.

It is possible to choose your own random sequence,
initializing the hidden variable by a call of initial-
ize random (x) in which x is a real expression, whose
value has to lie between 0.0 and 1.0. By doing this
again the same random sequence follows, thus making
it possible to repeat history.

We can simulate a dice as

make a dice:
INT CONST dice :: trunc(random * 6.0) +

1.

This results in a beautiful dice: it is unpredictable,
homogeneously distributed and, if desired, also repro-
ducible.

In order to facilitate the production of integer ran-
dom numbers, there is a variant of random with two
integer parameters. It yields an integer that lies within
those two bounds. The call random (1,6) is the equiv-
alent of a dice.

The algorithm fifty fifty can now be written as:

fifty fifty:
random < 0.5.

11.3.2 Random numbers in Elan-0

In the standard library of Elan-0, the algorithms just
mentioned do not occur, but instead an algorithm
choose128 is given. The value it yields is the same
as that of random (0,127).

To simulate with this algorithm a dice with six
equiprobable results is somewhat more complicated.
One method is to take only the values from the interval
[0:125], and these modulo 6:

Y

90

make a dice:
INT VAR random, dice;
REP
random := choosel28
UNTIL random <= 125
ENDREP;

dice := 1 + random MQOD 6.

With the aid of choose128 we can realize the algorithm
fifty fifty as follows:

fifty fifty:
choosel128 MOD 2 = 0.

But this is not a very satisfactory solution, since its
value then depends on the lowest bit of a pseudo ran-
dom number which, for various reasons, is not the most
unpredictable. It is preferable to use the higher bits:

fifty fifty:
choosel128 > 63.

11.4 Example:
grammar

A generative

We now give a context-free grammar for a part of the
English language, in which we assign a probability to
each of the alternatives (a probabilistic CF grammar).
According to this grammar we will write a program to
generate random sentences. We can control only the
form of the sentences produced, their meaning escapes
our analysis. In order to make our sentences not too
nonsensical, we will restrict our vocabulary to seman-
tically strongly loaded words from a specific area. This
particular vocabulary was inspired by the verse “Mary
had a little lamb”. The symbols appearing in the gram-
mar we shall indicate by their representation between
quotes.

sentence: subject, predicate.

subject:
[.7] substantive group;
personal pronoun 1.

The notation with the square brackets serves to indi-
cate that the probability of the first alternative of this
rule is equal to 0.7 and of the second alternative is
1.0-0.7=10.3.

We program this rule as follows:

PROC subject:
IF random < 0.7
THEN substantive group
ELSE personal pronoun 1
FI

ENDPROC;

We continue the grammar:

substantive group:
article, noun phrase.

article:
[-45] “a";
“the".

We output the terminal symbol to the screen, taking
care to follow each symbol by a space.

PROC article:
IF random < 0.45
THEN put ("a ")
ELSE put ("the ")
FI

ENDPROC;

noun phrase:
[-25] adjective noun phrase;
noun part.

Notice that the concept noun phrase is defined here
in terms of itself. Such a concept is recursive. The
intention of this rule is to indicate that there is no a
priori upper limit to the number of adjectives in front
of a noun part. Of course the probability of having a
large number of adjectives is rather small. We realize
this effect with the aid of a conditional repetition with
a 25% chance of continuation.

PROC noun phrase:
WHILE random < 0.25
REP adjective
ENDREP;
noun part

ENDPROC;

We have a choice of adjectives.

adjective:
[-30] “little”;
[.60] “meek”;
[.90] “big’;
“bad”.

In order to generate an example of an adjective we com-
pute one random number and then, on the basis of its
value, choose one of the alternatives.

PROC adjective:
REAL VAR r ::
IF r < 0.30
THEN put ("little ")
ELIF r < 0.60
THEN put ("meek ")
ELIF r < 0.90
THEN put ("big ")
ELSE put ("bad ")
FI

ENDPROC;

random;

The rest of the grammar should be self-explanatory.
We do not give an Elan procedure for each individual
rule — the correspondence should by now be clear.

noun part:
noun, rel clause option.

91

rel clause option:
[.25] rel clause;

[.20]
[.40]
[.60]
[.80]

“boy”;
“girl”;
“lamb”;
“bear”;
“tree”.

rel clause:
“that”, predicate.

predicate:
adverbial option, verb, object.

adverbial option:
[.20] modifier; .

modifier:
[.33] “always”;
[.67] “often”;
“never”.

verb:
[20]
[.40]
[.60]
[.80]

“had”;
“sees”;
“likes" ;
“eats”;
“dreams about”.

object:
[.80] substantive group;
personal pronoun 4.

personal pronoun 1:
[.25] “he";
[.50] “she”;
[.75] “Mary";

W

Jim".

personal pronoun 4:
[25] “him";
[.50] “her”;
[.75] “Mary";
“Jim".
The syntax serves as a blueprint for a program gener-
ating random sentences.

11.4.1 Results

Some example sentences generated by the aid of this
program are

the bear that sees the bear likes a bad
bear
the bear likes him
the boy dreams about the bear
a girl never sees the girl
Jim sees Mary
a boy that sees the big tree always likes
a boy that always
eats a tree
Mary eats a little bear

It is obvious that a sentence appears more meaningful
if it is short. This is no wonder, since all meaning is
accidental. The longer a sentence is, the more oppor-
tunity it gets to contradict itself.

11.5 Syntax Analysis

Let us now turn to the subject of syntax analysis, which
comprises two closely related activities: sentence recog-
nition and parsing.

A recognizer for a (context-free) language G is an
algorithm that, for a given sequence of symbols s, de-
termines whether s is one of the sentences the language
of G. It gives a yes/no answer.

recognize(G,s) = s € L(G) — true

9 7P s € L(G) = false
A parser is an algorithm that, gives a sentence seL(G)
determines its structure (in the form of a parse tree).

Y

[s€ L(G) — parse tree for s
parse(G,) = { s € L(G) — undefined.

The two activities can profitably be combined: A
parser should also signal non sentences in a proper
fashion, and once a recognizer has been constructed
it can easely be extended to a parser — infact the best
proof that a sequence of symbols forms a sentence is to
construct a parse tree for it!

We shall investigate some aspects of syntax analysis,
attempting to construct a recognizer for the fragment
of english just described.

11.5.1 Recursive Descent

We want to construct a recognizer for sentences, that is,
a boolean procedure is sentence that will yield true
if and only if the input contains a terminal production
of sentence. A sequence of symbols is a terminal pro-
duction of sentence precisely if it consists of a terminal
production of subject followed by one of predicate.
Basically we proceed in the same way as we did for
constructing a generator, by writing a boolean recogni-
tion procedure for each of the non-terminal symbols in
terms of recognizers for the other non-terminal and for

92

the terminal symbols. Very simple, but we will meet a
number of complications.

Recognizing a terminal symbol amounts to snipping
off the head of the input provided it is the symbol we
want to recognize. We hold the sequence of symbols as
a text in the variable input and use an index inptr
to remember how far the recognition process has pro-
ceeded.

TEXT VAR input
recognize;

INT VAR inptr ::
next symbol }

:: the input we want to

1; { the position of the

We provide one boolean procedure to recognize a sym-
bol, which also takes care of the blanks between sym-
bols.

BOOL PROC is (TEXT CONST s):
WHILE (input SUB inptr) = " "
REP inptr INCR 1
ENDREP;
IF subtext (input, inptr, inptr + LENGTH
-1) =s
THEN
inptr INCR LENGTH s;
true
ELSE false
FI
ENDPROC is;

How should we compose a recognition procedure for

sentence: subject, predicate.

out of recognition procedures for its constituents? We
might first think of

BOOL PROC is sentence:
is subject AND is predicate
ENDPROC is sentence;

but this is wrong: rather than trying the second rec-
ognizer only in case the first one succeeds, it always
tries the second — a dyadic operator (in this case AND)
always evaluates both its operands. And what is more,
they are evaluated collaterally, so we are not even sure
of the order in which the two recognizers are called!
We have to be much more careful.

BOOL PROC is sentence:
IF is subject
THEN is predicate
ELSE false
FI

ENDPROC is sentence;

The next sytax rule

subject:
substantive group;
personal pronoun 1.

has two alternatives. We try them in order and if any
of them succeeds, a subject was found.

BOOL PROC is subject:
IF is substantive group
THEN true
ELSE is personal pronoun 1
FI

ENDPROC is subject;

substantive group:
article, noun phrase.

The next rule leads to a choice between terminal sym-
bols

article:

won
[

“ n

the".

BOOL PROC is article:
IF is ("a"
THEN true
ELSE is ("the")
FI
ENDPROC is article;

The remaining rules can be transcribed to recognition
procedures without further adventures, apart from the
treatment of the adverbial option. Since it is optional, it
cannot fail to be recognized. Rather than transcribing
it into a boolean procedure that always yields true, we
make it an action.

predicate:
adverbial option, verb, object.

adverbial option:
modifier; .

BOOL PROC is predicate:
adverbial option;
IF is verb
THEN is object
ELSE false
FI
ENDPROC is predicate;

PROC adverbial option:
IF is modifier
THEN
ELSE
FI
ENDPROC adverbial option;

The name of the resulting procedure is not prefixed
with is ., as we did in constructing other recogni-
tion procedures, in order to show that it cannot fail.

Finally we add a small driver program to read an
input line. It tries to recognize a sentence from the
input, and continues to offer the input for editing until
it is recognizable.

simple parser:
start with empty input;
REP ask further input
UNTIL is sentence
ENDREP;
congratulations.

93

start with empty input:

TEXT VAR input "y

INT VAR inptr ::
input character }

put ("Input, please ..

1; { index of next

.u).

ask further input:

line;

edit (input, inptr);

inptr := 1.
congratulations:

line;

put (inptr * "-");

line;

put ("Success!");

line.

Upon recognizing a sentence from the input, the pro-
gram stops after underlining the recognized portion of
the input text. This serves to cope with the problem
that the recognizer works from left to right and has the
property that, once it recognizes a sentence, it does not
care whether it covers the whole input or is followed by
some non-sense. It is easy enought to impose the addi-
tional condition that a sentence must cover the whole
input, but this problem gives a hint that there are some
problems in combining recognizers.

11.5.2 Some complications

This particular recognizer will work correctly for the
grammar from which it was derived, but that does not
mean that we can construct in this fashion a recognizer
for any context-free grammar.
To begin with, there is the matter of left-recursion:
a rule may very well be left-recursive, like
noungroup:
noun;
noungroup, postmodifier.

which expresses the fact that a noun can have any num-
ber of postmodifiers. Turning this rule into a recognizer
will lead to an un-ending program execution: when
the input does not start with a noun, the procedure
is noungroup will call itself, and so on until the end
of the world or until the memory of the computer is
exhausted (whichever comes first).

Furthermore, the situation where two alternatives
start with the same (terminal or non-terminal) symbol,
like

nounpart:

noun, rel clause;
noun.

leads to complete confusion of the recognizer, and to
an altogether different language being recognized than
is generated by the grammar (think of a noun followed
by another noun instead of a rel clause). That is why
this rule has to be left-factored, taking out the common
part noun.

nounpart: noun, rel clause option.

rel clause option: rel clause; .

These and other problems make that a given CF
grammar only under very restrictive conditions can be
recognized by recursive descent. The grammar pre-
sented here cleverly adheres to these so-called LL(1)-
conditions. There is a rich literature about syntax
analysis, to which we refer for further reading [WAI84]
[AHOS6].

The recursive descent analysis technique is much too
restrictive for linguistic purposes, since it can not cope
with ambiguity . A sentence is ambiguous if it can be
produced from the grammar in more than one way, like
the famous sentences

They are flying planes
and
Time flies like an arrow

Do you see the 2 respectively 4 different analyses?

Analysis techniques that can deal with ambiguity do
exist — but this is not the place to pursue this subject.

You may also have noted that the grammar stu-
diously avoids the problems of coordination between
pronouns, substantives and verb forms, by having only
the 3d person singular forms. It is possible to extend
the grammar to deal with other persons and with plu-
ral forms, but then it grows tremendously in size. Con-
text free grammars are (as the name indicates) not a
convenient formalism to express context dependency,
and although linguistics makes wide use of context free
grammars under various guises, they are mostly ex-
tended with some mechanism for dealing with context
— like Augmented Transition Networks [WOOT70].

In Informatics a number of extensions to context-free
grammars have been invented, like van Wijngaarden
Grammars, Attribute Grammars [KNUG68] and Affix
Grammars [KOS70]. Again, it would lead too far to
pursue this highly interesting subject further in this
textbook.

11.6 Beyond analysis

Translating sentences from one language to another can
be seen as the problem of first analysing a sentence ac-
cording to the syntax and semantics of the first lan-
guage and then generating an equivalent sentence in
the other language. This process is wrought with all
the problems just outlined, plus a few more: how to ex-
tract and represent the meaning of a sentence in such a
way that an equivalent sentence can be produced and
how to produce the translation from the semantic rep-
resentation.

“Machine Translation”, as this problem used to be
called, is amongst the oldest applications of computers
(then often called “electronic brains”) in the very early
fifties. After some initial successes, Bar-Hillel showed
the inadequacy of the available theory and methods
in the late fifties [BARG0], and a soberer period fol-
lowed, in which linguistic fashion turned to pragmatics

94

— syntax being considered too limited and semantics
too difficult to be of interest. In the sixties and seven-
ties powerful analysis and translation techniques were
invented in Informatics and computers became so much
larger and faster that a fresh interest in the syntax of
natural languages and, in particular, in machine trans-
lation was raised.

All kinds of applications need a linguistic interface.
With the advent of the speaking chip, the analysis and
synthesis of human speech and (written) language will
get tremendous importance. The present chapter is
meant to provide a modest initial introduction to the
linguistic application of computers — and at the same
time to present a wonderful opportunity to see proce-
dures in action in a larger real example.

11.7 Exercises

1. Describe, by way of a CF grammar, the structure
of

e a train (of waggons, locomotive, coal tender,
brake car)

e a division of the regular army (consisting of
regiments, companies, etc.), for as far as you
can obtain the necessary information

e a context-free grammar.

2. Write a generative grammar for the production of
free poetry, full of strongly evocative substantives,
adjectives and verbs (animals, sea, colours, per-
sons, sorrow, happiness).

Write a generative grammar to produce a nicely
structured letter full of insults. You can give your
opinion of the pedigree of the addressee, his habits,
psychological stability and future.

(Roulette) Smith and Jones are playing roulette.
One plays only on red, the other on black. Their
goal is to double their initial capital. Both start
with the same initial capital and a bet of one.
Jones reacts to a loss by doubling his bet. In case
of a win he returns to the basic bet 1. Smith be-
lieves himself to be even cleverer. He raises his bet
by one in case of loss and upon winning returns to
the basic bet. The probability for red and black is
of course equal, but not quite fifty percent because
with a probability 1/37 the ball ends up on the 0,
which is neither red nor black.

Write a program to simulate an interesting evening
at the casino. Try it out with initial capitals 10
and 100. The bank has an unlimited supply of
money.

(One-armed bandit) Simulate a one-armed bandit.
In order to raise the level of verisimilitude, some
field work (in pubs and gambling halls where those
things can be found) may turn out to be unavoid-
able.

10.

11.

(Shuffling I) Shuffling is the inverse of sorting.
Write a program to shuffle a sorted pack of 52
cards by randomly taking a card either from the
bottom or from the top of the pack, until the whole
pack has been taken, and repeating the process a
number of times. Display the shuffled cards dur-
ing the process and observe the effect of a longer
shuffling.

(Shuffling IT) The shuffling is more effective if we
take the cards at random from the sorted pack.
Write a program to shuffle a pack of 52 cards and
show the result.

Hint: After choosing a card from the pack remove
it indeed. If you simply mark it the random selec-
tion might result in fruitless moves which decrease
the effectiveness of the algorithm.

(Selection game) Manfred Eigen described a sim-
ple game simulating natural selection [EIG81].

In the beginning 10 individuals each of 4 different
species live in a small world. They die and are
born as other mortals. But whenever one of them
dies exactly one other comes into the world, which
is a duplicate of one of the remaining individuals.
Surprisingly, after a short period of coexistence
only one of the species will survive.

Write the program and study natural selection.

(Wasps) There are two rooms separated by a door.
One of the rooms is full of flying wasps. When we
open the door some of them will find the opening
and fly into the other room. After some time the
distribution of wasps will be more or less the same
in both rooms.

Write a program to simulate the behaviour of the
wasps.

(Ten marksmen, ten pigeons) If ten marksmen
shoot at ten pigeons simultaneously some pigeons
will survive even if all the marksmen are sharp-
shooters. Show by simulation how many pigeons
remain alive.

(Chi-square test) The most often used method of
examining random distributions is the chi-square
(x?) test [KNUG69].

Assume we want to test a die simulated on our
computer. Then we have to “throw” the die n
times and record how often every single result was
obtained; let us denote their number by Y. Here-
upon, the formula

k 2
V= 1 Z (Y—s> -n
n 3 \Ps
is to be computed where k is the number of pos-
sible outcomes and p, is their probability; in our
case k = 6 and the probabilities are equal, i.e.
ps = . The value V is then to be compared
against the table below so that the quality of our
“die” can be judged.

95

12.

13.

k—1=5
not random
p = 99% 0.5543
suspect
p=95% 1.1455 ——
almost suspect
p=T15% 2.675
p =50% 4.351 acceptable
p=25% 6.626 —
almost suspect
p= 5% 11.07
suspect
p= 1% 15.09 E—
not random

Write a program to test the random number gen-
erator of your Elan Programming Environment or
test a random number generator of your own mak-
ing.

(Birthdays) 23 persons are celebrating the birth-
day of a friend. One of them suggests a bet that
there are at least two persons present whose birth-
day falls on the same day of the calendar. Deter-
mine by simulation whether this is a fair proposal.

(A telephone directory, a needle and the number
7) It is possible to determine the number 7 with
a telephone directory and a needle — and with
the help of probability theory. The columns in
the directory form a raster; let its distance be de-
noted by d. A needle of length I, where [< d,
will repeatedly be dropped on this raster. The
probability that the needle crosses a raster line is
p=2xl/(mrxd). Withd=2andl=1,p=1/7.

Write a program to determine the approximate
value of 7 by experiments. Hint: use relative fre-
quency instead of probability.

96

Chapter 12

Recursive algorithms

Quite often an obvious formulation of an algorithm
contains in its turn a call of that algorithm: the prob-
lem is reduced to a simpler version of the same problem.

In mathematics it is a standard technique to describe
certain sequences by means of recurrence equations like
ty = tp—1 *xx/n.

When an algorithm calls itself, we use the term re-
cursion. We shall illustrate the use of recursion as a
programming technique by means of a number of ex-
amples.

12.1 Recursion

In order to give a recursive solution to a problem we
look for

1. A simplest case, in which the solution is trivial.

2. A way of reduction the complicated version of the
problem to a simpler version of the same problem.
In doing so we suppose in each step that the sim-
pler solution has already been found so it can be
used in solving the more complex problem.

It should be obvious that this method is soundly based
on mathematical induction.

We say a procedure is directly recursive if it contains
a call of itself, and indirectly recursive if it calls a pro-
cedure that in its turn calls it (directly or indirectly).
We say an algorithm is simply recursive if it contains
only one directly recursive call of itself which is not
contained in a repetition.

We shall first give an example of simple direct recur-
sion.

12.1.1 Example: Printing a number

We want to write a procedure print number such that
print number(x) prints the integer x in a minimal
number of positions. We assume the procedure print
digit, that prints one single digit, to be given.

A positive number less than 10 we can print directly
by means of print digit; that is a trivially simple
case.

From a number consisting of n digits, where n > 1,
we can separate out one digit so that we are left with
n —1 digits; a simpler case.

97

We could try to remove this digit at the front of the
number but then would have to go through a whole
rigmarole with powers of 10 in order to compute n,
with all kinds of possibilities to obtain overflow; once
we have determined n, we can obtain the consecutive
digits by division by 107~!, 10”72, and so on — all in
all not very appetizing.

We can also take the digit from the back of the num-
ber, by simply taking the number modulo 10. So there
we sit, holding in our hand a digit that we can only
print after all preceding digits have been printed. How
do we print all those preceding digits? Well, in the
same way: we now have one digit less than we had ini-
tially, and therefore a simpler case of the same problem.

A small complication is the fact that the integer may
be negative. In this case we simply print a minus sign,
followed by the opposite of the number, that therefore
will be positive.

The solution sketched looks as follows:

PROC print number (INT CONST number):
IF number is negative
THEN
print minus sign;
print opposite of number
ELIF number consists of 1 digit
THEN
print that digit
ELSE
print the preceding digits;
print the last digit
FI.

number is negative:
number < 0.

print minus sign:
put (n_u) .

print opposite of number:
print number (- number).

number consists of 1 digit:
number < 10.

print that digit:
print digit(number) .

print the preceding digits:
print number (number DIV 10).

print the last digit:
print digit(number MOD 10).

ENDPROC print number;

Finally we shall give a possible definition for print
digit:

PROC print digit (INT CONST value):
IF value < 0 OR value > 9
THEN put ("?")
ELSE put ("0123456789" SUB (value + 1))

FI
ENDPROC print digit;

We now have a procedure for printing an integer in a
compact way. The solution found is possibly not very
efficient, because the test number is negative may be
performed unnecessarily often, but we hope its princi-
ple is clear. Observe that in the whole procedure not a
single variable or assignment appears. This contributes
to the clarity of its structure.

In order to get an insight in the working of this pro-
cedure, we will trace a call of print number (123).

print number (123)

INT CONST number :: 123
print number (123 DIV 10)

INT CONST number :: 12
print number(12 DIV 10)
INT CONST number :: 1

print digit(1) prints a ”1”

print digit(12 MOD 10) prints a 72"

print digit (123 MOD 10) prints a ”3”

We see that at the high point of activity three instances
of print number are active. Such an “active instance”
of an algorithm, with its own local data, is called an
incarnation of that algorithm.

A non-recursive formulation of an algorithm, in
which repetition is used rather than recursion, is called
iterative. If we try to give an iterative version of this
algorithm — a sketch has already been given — we find
out that this is much more cumbersome in its formula-
tion and as a consequence will in the first instance be
likely to contain more errors.

The condition number consists of 1 digit plays
a central role in the termination of the algorithm: when
this condition is satisfied no further recursive call is
made. We call it the termination condition of the al-
gorithm.

Finding a suitable termination condition (the “sim-
plest case”) is usually the key to finding a recursive
solution.

At the end of this chapter you will find a number of
small exercises that have a simply recursive solution,

98

Figure 12.1: Initial situation

for which you are requested to find the termination
condition.

12.2 Multiple recursion

We shall now look at a number of algorithms that are
multiply recursive, in the sense that each incarnation
can make more than one recursive call. The first ex-
ample (Towers of Hanoi) is introduced because of its
high didactic value, not for its practical importance.
In later chapters we will give examples like Quicksort
that do show that with the aid of recursion short, clear
and efficient solutions for practical problems can be
obtained.

12.2.1 Example: The towers of Hanoi

One of the oldest stories in informatics is the legend
of the towers of Hanoi, as it was told to the author by
Leo Geurts, many years ago.

According to this legend there once stood, long ago,
in front of a temple in Hanoi three columns; the first
one was made of copper, the second of silver and the
third of gold. On the copper column one hundred disks
were stacked, which were made of porphyry. From the
largest one at the bottom to the smallest one at the
top the disks were decreasing in size (Fig. 12.1).

An old monk had set himself the task of carrying
the tower of porphyry disks from the copper column to
the golden column, one disk at the time, by repeatedly
taking the topmost disk from one column and putting it
at the top of another column, taking care that a larger
disk never landed on top of a smaller one. According
to the legend, once the monk had finished his work the
end of the world would be at hand.

Soon the monk understood that in this work he had
also to make some use of the silver column. He sat
down in front of his desk in order to make a plan.

He meditated and thought, thought and meditated,
and suddenly obtained enlightenment: he could solve
his problem in three steps.

(Step 1)

Transport the tower, consisting of the topmost 99
disks from the copper column to the silver one.

(Step 2)

Transport the last, greatest disk from the copper
to the golden column.

(Step 3)

Transport finally the tower of 99 disks from the
silver column to the golden one.

In considering this scheme the monk noticed that Steps
1 and 3 would be hardest to perform; and because he
was not only an old but also a wise monk, he decided to
have these steps performed by his eldest disciple. When
the disciple finished the first step, our monk would take
it upon himself to carry the largest disk from the cop-
per to the golden column; and then he would once more
invoke the services of his eldest disciple.

In order not to overly tax his eldest disciple, he de-
cided to communicate this plan to him in order to sim-
plify his work.

The algorithm that the monk on the next day nailed
to the temple door we here translate from the ancient
Vietnamese.

Method and way to transport a tower of n disks from
one column to another making use of a third column:

In the case where the tower consists of more than one
disk, request your eldest disciple to move a tower of
the top n — 1 disks from the first to the third column
making use of the other column.

Personally carry first disk from the one to the other
column.

In the case where the tower consists of more than one
disk, request your eldest disciple to move a tower of
n—1 disks from the third to the other column making
use of the first column.

After the monk had completed the nailing of this doc-
ument he rested somewhat; and upon waking up, he
asked himself what he had to do now: oh yes, he had
to move a tower of one hundred disks from the copper
column to the golden column making use of the sil-
ver column. Because he was somewhat tired after the
heavy thinking of the past day he did not remember
in detail how to do something like that; but seeing a
large knot of people in front of the temple door reading
something, he knew what he had to do. He pushed his
way up to the temple door and started reading.

And thus he called his eldest disciple to him and
requested him to transport the tower of 99 disks from
the copper column to the silver one making use of the
golden column and upon completion report to him.

Questions:

e What is the first thing that this monk does?

¢ How many monks will have been put to work be-
fore the first disk is actually moved?

e What does our old monk do when his eldest disci-
ple finally reports?

99

We will now formulate the monk’s algorithm in Elan.
The columns will be indicated by their names in the
form of texts, the disks by their numbers (the biggest
disk having the highest number).

PROC transport tower
(INT CONST n, TEXT CONST first,

second, third):

IFn>1

THEN transport tower (n-1, first, third,
second)

FI;

move disk (n, first, second);

IFn>1

THEN transport tower (n-1, third,
second, first)

FI
ENDPROC transport tower;

The movement of a disk we will indicate by printing
which disk is carried from what column to what col-
umn.

PROC move disk (INT CONST n, TEXT CONST
from, to):
line;
put ("Carry disk"); put (n);
put (" from the "); put (from);
put (" column to the "); put (to);
put (" column.")
ENDPROC move disk;

We can now solve the original problem by the call:

transport tower (100, "copper", "golden",
silver")

The procedure transport tower contains two directly
recursive calls and therefore is multiply recursive. The
condition n > 1 is the negation of the termination con-
dition. A variant in which the termination condition
is more explicit but which follows the old Vietnamese
original less faithfully is as follows:

PROC transport tower
(INT CONST n, TEXT CONST first,
second, third):
IFn>0
THEN
transport tower (n-1, first, third,
second) ;
move disk (n, first, second);
transport tower (n-1, third, second,
first)
FI
ENDPROC transport tower;

The recursion now ends at the level n = 0, where noth-
ing remains to be done.

12.2.1.1 Complexity of the algorithm

How often must a disk be moved in order to transport
a tower of height n? We call this number S,.

S =1

So = 1+2%xS5, =3
in general S, = 142xS5, for n>1
Let us test the hypothesis:
S; L o9
14258, = 21-1
1+2% (271 £ 201
1+(21-2) = 2i—1
2 1 L 92 _1 QED.

The amount of work therefore grows exponentially with
n, the number of disks.

Question: Assuming that all the monks work very
hard, so that one disk is moved every second, how long
will it take until the end of the world?

12.2.1.2 Example of output

We will complete this example with some output of the
algorithm (n = 4):

Carry disk 1 from the column to the
silver column.
Carry disk 2 from
golden column.
Carry disk 1 from
golden column.
Carry disk 3 from
silver column.
Carry disk 1 from
copper column.
Carry disk 2 from
silver column.
Carry disk 1 from
silver column.
Carry disk 4 from
golden column.
Carry disk 1 from
golden column.
Carry disk 2 from
copper column.
Carry disk 1 from
copper column.
Carry disk 3 from
golden column.
Carry disk 1 from
silver column.
Carry disk 2 from
golden column.
Carry disk 1 from the
golden column.

copper

the copper column to the

the silver column to the

the copper column to the

the golden column to the

the golden column to the

the copper column to the

the copper column to the

the silver column to the

the silver column to the

the golden column to the

the silver column to the

the copper column to the

the copper column to the

silver column to the

In the numbers of the disks moved, a regularity can be
found which has a nice relationship to counting in the
binary number system.

Figure 12.2: Mouse in maze

12.3 Example: The mouse in the
maze

In the previous example we have made use of the fact
that every monk can instruct another, namely his el-
dest disciple, to perform a task that can be done in the
same way.

This is an excellent way to understand recursion
and not very far from the execution of the algorithm
on a machine: every incarnation of the procedure
transport tower can call upon further incarnations
of the same procedure. If, in our model, four monks
are busy simultaneously in fulfilling their task, and all
but one of them are waiting for another, then there
also exist four incarnations of the procedure, of which
only the youngest is active.

A difference lies in the fact that the number of monks
with disciples, and also the measure of their patience,
is in reality severely limited. The number of possible
incarnations of a procedure, on the other hand, is prac-
tically unlimited: the processor can arbitrarily make
new incarnations and forget old ones, as long as some
maximum number of simultaneous incarnations is not
exceeded (depending on the machine used, the mem-
ory space available and details of the implementation
of the programming language used), of the order of a
few hundreds to many thousands of incarnations.

It is very enlightening to compare the recursive in-
vocation of a procedure to the giving of tasks by one
person to another. We will now give a second example,
in which again such an anthropomorphic image aids in
understanding.

A mouse wants to find a shortest path through a
maze, starting at a given point and ending at an-
other point where lies the cheese. (Notice that there
may be more than one shortest path of one same
length. Which of the shortest paths we choose is im-
material.)

We shall represent the maze as a rectangle of n *m
fields (Fig. 12.2). Every field, except for those on which
the mouse sits or the cheese lies, is either blocked by
a wall or free. We shall indicate the fields by their
position (z,y) with 1 <z <nand 1 <y <m.

By a path of length k& we mean a sequence of k fields

100

Figure 12.3: Mouse in compass

F; = (z;,y;), such that for 1 < i < k it holds that F;
has exactly one side in common with F;_q:

1<i<k—

Ti_1 = X; AND Yi—1 = ylil OR Ti—1 = wlil AND Yi—1 = Yi-

These relations describe formally that every field of a
path must be connected with its sides to the neighbour
fields.

A loopfree path is a path such that ¢ # j — z; #
z; ORy; # yj.

A successful path of length & is a path such that

(xlzyl) = A7
(a:l,yz) = fT€6 (2S2Sk_1)7
(T, ye) =
12.3.1 The length of a shortest path

The problem is to find the length of a shortest success-
ful path. Notice that such a path is always loopfree.

One could try to compute the collection of all paths,
from those eliminate all paths that are not successful
and then choose the shortest one, but this is not very
simple to formulate iteratively and costs a forbidding
amount of work from the processor.

Idea of a solution: the length of a shortest path
starting at a specific field is one more than the mini-
mum of the lengths of the shortest path starting at its
neighbour fields.

A mouse, sitting on a specific field (Fig. 12.3), sends
from each of its free neighbour fields other mice, one
form each field, with the task of finding the length of
a shortest path starting at that field. The mouse itself
remains waiting at the field (z,y) until the others have
completed their task. No other mouse may therefore
pass over this field. This guarantees that every path
considered is loopfree.

Upon the return of the other mice, the mouse com-
putes the minimum of the values they found, and adds
1 to that (for the distance from the field on which it
is sitting), reports that value to the mouse that sent it
and leaves the field. Very simple, but it does need a
large number of dedicated mice (albeit at most n *m).

As termination condition we make use of the fact
that, if the cheese lies on a specific field, the path from
that field to the cheese has length zero. In the form of
an algorithm:

IF the field contains cheese

THEN
0

ELSE
send from every free neighbour field
a new mouse with the task of finding
the length of a shortest path to the
cheese and take the minimum of the
lengths thus obtained;
1 + the minimum

FI

The status of a field (free, wall, mouse or cheese) we
will encode as an integer. For that purpose we declare:

LET free
wall
mouse
cheese = 4;

1,
2,
3

>

The maze will be represented by a row of rows:

ROW n ROW m INT VAR maze;

The behaviour of one mouse we realize as a procedure
that computes the length of a shortest path from (x,
y) to the goal:

INT PROC length of shortest path from (INT
CONST x, y):
IF already at cheese
THEN
0
ELSE
take the field;
find the minimum of four directions;
release the field;
1 + minimum
FI.

The elementary operations can be refined:

already at the cheese:

maze[x] [y] = cheese.
take the field:
maze[x] [y] := mouse.

release the field:

maze[x] [y] := free.

Observe that the procedure given is not robust against
a call with a field that already contains a mouse or
wall; we shall have to test for that before calling the
procedure.

We shall have to compute a path length even in the
case when the mouse gets into a blind alley. In such a
case we choose as path length “infinite”, that is to say:
greater than any meaningful path length. For that we
do not take maxint (why not?), but for example:

INT CONST infinite :: n * m;

If there is no path from the mouse to the cheese, the
length of the path will be at least infinite. We can
now refine

101

find the minimum of four directions:
INT VAR minimum :: infinite;
a mouse to the north;
a mouse to the south;
a mouse to the west;
a mouse to the east.

(By the way: any resemblance to T.S. Eliot’s “Cho-
ruses from The Rock” is purely accidental.)

The order of the last four units in fact plays no role,
but our sequential programming language forces us to
fix a specific order. (Observe that allowing the mice
to proceed in parallel would open the door to endless
confusion.)

We define two auxiliary procedures that obviate the
need for many similar refinements

PROC shortest (INT VAR min, INT CONST
term) :

IF min > term THEN min :=
ENDPROC shortest;

term FI

BOOL PROC can go to (INT CONST x, y):

IF within maze

THEN maze[x][y] = free OR maze[x] [y]
= cheese

ELSE false

FI.

within maze:

1 <= x AND x <= n AND 1 <=y AND y <=
m.
ENDPROC can go to;

Observe that we can only test whether a field is free
or contains cheese if we are sure that it lies within the
maze, so we cannot just write

within maze AND (maze[x][y] = free OR
maze[x] [y] = cheese)

because the subscription maze [x] [y] is meaningless for
indices x and y outside the maze.

We program very careful mice, e.g.:

a mouse to the north:
IF can go to (x, y+1)
THEN
shortest (minimum,
length of shortest path
from(x, y+1))
FI.

and analogously for other directions. We finish the

procedure with

ENDPROC length of shortest path from;

The resulting program is somewhat boring because of
its repetitive character but not badly structured. Still
it has a shortcoming.

12.3.2 Shortest path — an alternative
approach

What are the preconditions under which length of
shortest path from (x,y) can be called? The fol-
lowing must be fulfilled:

e the procedure may only be called with z € [1: n]
and y € [1 : m], otherwise a subscription error
occurs;

e the field maze[x] [y] must contain cheese or be
free. We may for instance not start in a wall.

These conditions have to be tested within the proce-
dure at every recursive call. But the same holds for
the initial call that occurs outside the procedure. Of
course it is all too easy to forget such tests.

It is much wiser to perform the test immediately
upon entry of the procedure, thereby making it ro-
bust against misuse. All the tests before sending a
new mouse are now superfluous: the mice are clever
enough to perform the testing as necessary.

With these modifications (and making use of a nu-
merical choice — see section 7.4.2) we obtain:

INT PROC length of shortest path via (INT
CONST x, y):

IF NOT within maze

THEN infinite

ELSE
SELECT maze[x][y] OF
CASE free
take the field;
find the minimum of the four
directions;
release the field;
1 + minimum
CASE wall infinite
CASE mouse infinite
CASE cheese: 0
ENDSELECT
FI.
take the field:
maze [x] [y] := mouse.

find the minimum of the four directions:

INT VAR min :: length of shortest path
via (x+1, y);

shortest (min, length of shortest path
via (x-1, y));

shortest (min, length of shortest path
via (x, y+1));

shortest (min, length of shortest path
via (x, y-1)).

release the field:

maze [x] [y] := free.

within maze:
1 <= x AND x <= n AND 1 <=y AND y <=

102

The remaining procedures stay the same. Again we
finish the procedure with:

ENDPROC length of shortest path via;

Observe that the procedures given above may make
temporary modifications to the maze by means of take
the field, but that upon their return the maze is al-
ways left in its original state. They remove, as it were,
their own garbage.

The two approaches length of shortest path
via and length of shortest path from differ in the
sense that the first one only works subject to stringent
preconditions, whereas the second one is robust. It is
good practice to prefer testing at the entry of a proce-
dure to testing at each of its calls.

Of course we should have programmed a robust ver-
sion of this algorithm right from the start. The second
version is shorter, clearer, and gives less opportunity
for errors in programming. But beginners especially
have a curious preference for solutions like the first one.
It is very hard for human beings to find obvious and
simple solutions to their problems.

12.4 Conclusion

In a number of ways, a good understanding of recursion
leads to a deeper insight into programming.

e Many problems naturally admit a constructive re-
cursive definition that can be used as a first rough
formulation of the algorithm.

e Recursion is the most economical form of refine-
ment: a recursive algorithm is also its own refine-
ment.

e Recursion leads to an economical form of think-
ing. A large problem (for example the analysis of
a maze) is reduced to a smaller local problem (the
analysis of a square in the maze) plus the original
problem in a simplified form. Once the local prob-
lem has been solved correctly, a correct induction
scheme leads to a correct solution for the global
problem.

e Recursion leads to an economic form of proof of
correctness and termination, because only the cor-
rectness of the solution of the local problem and
the induction step have to be proved.

e Recursion leads to a simple form of administra-
tion of intermediate results, that can be kept in
local variables and manipulated without interfer-
ing with global objects.

e Recursion leads to short concise programs, that
are easier to overview than equivalent iterative so-
lutions and therefore lead to fewer errors.

Of course one pays a price for these advantages: in
most implementations a recursive program is executed
somewhat slower than an equivalent iterative program.

Furthermore, some old-fashioned programming lan-
guages do not admit recursion.

In a following chapter we shall take a look at tech-
niques for deducing, starting from a correct recursive
algorithm, an equivalent iterative algorithm, while re-
taining correctness and generally raising efficiency. A
number of important algorithms have been found in
this way. A simple-minded iterative thinker would
probably never have found them.

12.5 Exercises

Find termination conditions for the following formula-
tions and program the suggested simply recursive pro-
cedures.

1. Let there be given ROW n INT CONST row. The
maximum of the n elements of the row is the max-
imum of the nth element and the maximum of the
preceding elements.

2. Let be given a ROW n INT CONST d. The value of
a decimal number, represented by d,d,_1 ...didy
(with 0 < d; < 9), is the value of the last digit
dp plus ten times the value of the decimal number
dpdpn_q...dy.

3. Again ROW n INT CONST d is given. The value of
a decimal fraction, represented by 0.dgd; . .. d,, is
one tenth times the sum of the values of the leading
digit dy and the decimal fraction 0.d; ... d,.

4. Given is the TEXT CONST a. The row of characters
a1as .. .04y 10, is Symmetric, if

e a; is equal to a, and

e the row ay ...a,_1 is symmetric.

5. a to the power n is a times (a to the power (n — 1)
).

6. Given is a ROW n BOOL CONST row. The parity of
the row is by definition TRUE if the row contains
an even number of TRUE elements, and FALSE if
the row contains an odd number of TRUE elements.
Write a procedure

BOOL PROC parity (INT CONST k)

that recursively computes the parity of the first k
elements of row.

Now follow a number of multiply recursive algorithms.

7. (Subdividing a line) In how many ways can a line
of length n be subdivided into pieces of length 1
and 2?7 (Hint: there are two kinds of divisions,
those starting with a piece of length 1 and those
starting with a piece of length 2).

8. (Mouse in maze, again) The test whether we are
still within the maze can be omitted if we surround
the maze by a wall.

103

ROW n ROW m INT VAR maze;
initialize border as wall

Rewrite the algorithm accordingly.
9. Write a procedure with the heading

PROC print all paths from (INT CONST x,
y):

that prints all loopfree paths, starting at (x, y)
and ending at the cheese. (Hint: At the moment
the cheese is reached a loopfree chain of mice lies
in the maze from the starting point to the cheese).

10. (Tabular) Print a 10-column table containing the
natural numbers up to 100. Numbers divisible by
7 and numbers in which the sum of the digits is
divisible by 7 must be replaced by #**x*x.

Hint: In order to print 10 numbers in a single
line the conversion procedure text (INT CONST i,
width) should be used. The new-line-required and
divisible-by-7 tests can be accomplished by using
the MOD-operator. You have also to separate the
digits: give first an iterative and then a recursive
solution.

104

Chapter 13

Computer graphics

In this chapter we will first introduce some concepts
and terminology from Computer Graphics and a set of
algoritms for Comuter Graphics in Elan. Then we will
discuss some recursive picture-drawing algorithms.

Computer graphics means the processing and pre-
sentation of visual information by means of the com-
puter. The technology for processing and presenting
data in graphical form is developing fast. It plays
an increasingly important role in realising user-friendly
man-machine interfaces.

Drawing pictures on the computer screen is an at-
tractive exercise in systematic programming. In par-
ticular there exist beautiful families of recursive draw-
ings that provide good examples of the design of re-
cursive algorithms. For a more comprehensive study
of computer graphics various textbooks are available
(eg. [FODB84]). Graphics software packages are also
good examples to investigate the modular and layer-
wise structure of large programs, as we shall see in
volume 2.

13.1 The physical layer

The assortment of equipment for graphical input and
output is very large. We only enumerate a number of
graphical output devices: plotters to make drawings
on paper with a mechanically controlled pen; cath-
ode ray tube (CRT) screens applying the TV princi-
ple: pictures are composed of horizontal lines which, in
their turn, are composed of either black-and-white or
coloured points — this method is called “raster graph-
ics”; CRT screens controlled by separate processor(s)
that change the pictures autonomously, with lightning
speed, or their miserly elder brothers in which a single
processor supports both picture generation and com-
puting, with the consequence that the picture disap-
pears during computing. There is a plethora of devices
for sale — only the 3-dimensional holographic colour
plotter is still music of the future.

We shall restrict ourselves to the graphics display
with which most microcomputers are equipped. The
screen is a rectangle composed of points, so called piz-
els (= picture elements). Each pixel can take on a
colour from a fixed palette (black or white; a shade of
grey; or perhaps one of 100000 Japanese colours). We
restrict ourselves further to monochrome displays that

allow black and white only.

The number of pixels in a horizontal (vertical) line
is called the horizontal (resp. vertical) resolution. For
microcomputers, a common resolution is 720x348, but
large variations can be observed. With the resolution
mentioned the structure of the lines composed of pix-
els can still be distinguished from quite near but from
some distance the dots can not be recognised.

On such a display it is very easy to draw horizon-
tal or vertical lines. However, in order to draw sloping
lines (see Fig. 13.1) some smart approximation algo-
rithm (e.g. that of Bresenham, see [FOD84]) will be
required.

Figure 13.1: Sloping line as drawn by the Bresenham
algorithm

The situation is often complicated by the fact that
many CRT screens use special hardware support (a
“character generator”) to display texts. Therefore text
output can not be alternated with graphics — first the
screen must be switched into another operating mode.
It is as though you had two screens, a text screen and
a graphics screen, between which you have to switch.

A further complication may be that the height of a
pixel usually differs from its breadth. A square, com-
posed of the same number of pixels in both directions,
may appear flattened on the screen. The ratio between
the vertical and horizontal unit of lenght is called the
aspect. In order to avoid distortions the aspect must
be taken into account.

13.2 Integer graphics

The lowest layer of graphics operations is called integer
graphics because the screen is addressed by integer co-
ordinates. It forms a uniform interface to the graphics
hardware, which itself varies from machine to machine,
and thus consistent behaviour of programs is guaran-
teed.

105

Integer graphics is a (machine dependent) packet
which is part of the standard library of each Elan Pro-
gramming Environment. We describe here what it de-
livers to the user without telling how it is implemented.

Before using any of its operations you should ini-
tialise some hidden variables and prepare the screen
by calling the procedure

PROC enter graphics mode:

{ clear the screen and switch to
graphics mode }
ENDPROC enter graphics mode;

Similarly, you should finally leave graphics mode by
calling

PROC enter text mode:

{ clear the screen and switch to text
mode }
ENDPROC enter text mode;

The drawing always occurs in a given position inside
the area

[1:graphics x limit,1: graphics y limit]
which represents the graphics screen.

720,
348,

LET graphics x limit =
graphics y limit =
aspect = 1.35;

These values, characterising the Hercules board of the
IBM PC, are machine dependent; the aspect 1.35
means the pixels are higher than wide.

The current screen position may be modified through
the effect of the various graphics actions. When the
graphics mode is switched on, the initial value of the
current screen position (the so-called reference point)
is (1,1), which corresponds to the upper left corner.

The current position can be changed by the call

PROC move (INT CONST x, y):
{ go to position (x, y) }
ENDPROC move;

Whenever either x or y, or both, are outside the ma-
chine dependent boundaries of the screen, a beep is
sounded and the coordinate concerned takes on one of
the boundary values given above.

It is possible to draw something on the screen by
moving the screen position as desired and calling the
procedure

PROC plot pixel:

{ plot the pixel in the current
position }
ENDPROC plot pixel;

The plotting of a pixel has an effect which depends on
the colour of the “brush”. We may choose a colour by
calling the procedure

PROC color (INT CONST c):

{ use, until further notice, colour
number ’c’ }
ENDPROC color;

The numbering of colours is highly machine dependent.
If you do not have a handbook describing this corre-
spondence for your machine perhaps you better keep
yourself away. After the first call to enter graphics
mode the brush is white (or amber or light green) and
the background colour of the screen is black.

By means of these procedures all possible capers can
be performed on the screen although their usage is not
at all simple because of the tedious details. Therefore,
another procedure is added for drawing lines. It plots
all the necessary pixels according to the Bresenham
algorithm.

PROC draw (INT CONST x1, y1):
{ draw a line as straight as possible }
{ from the current position to (x1, y1)

}
{ and plot all pixels en route }
ENDPROC draw;

The usual procedures get, put and line for input and
output work also in graphics mode, but the type font
used may differ from that in text mode: In graphics
mode the characters are also drawn laboriously pixel
by pixel, instead of by a “character generator”.

As you might imagine, each character is composed of
pixels arranged as a matrix (see Fig. 13.2). Both hor-
izontally and vertically a gap is needed between two
neighbouring letters in order to maintain readability.
The space used to display any character, together with
its surrounding gaps, is constant but machine depen-
dent; its height is given by line height, its width
by character width. (On the IBM PC, for example,
line height is 11 and character width is 8.) The
reference point of a character is its upper left corner.

L 4
A\l

v

Reference .
point Line

height

-~

Character
width

Figure 13.2: Letter M in a character matrix

Of course, as a side effect, the current position is al-
ways updated by draw. It is stored in a hidden variable
(or, more probable, in a pair of hidden variables) in the
packet realising the graphics interface.

The procedure line can also be called in graphics
mode in order to perform a transition to the beginning
of the next “line” on the graphics screen, going down
by 1line height pixels and to the leftmost pixel in the
line.

Starting in position (x, y), the effect of this pro-
cedure is the same as that of move (1, y + line
height).

In the sequel, a few example programs will be dis-
cussed that draw on the graphics screen. In order to

106

write portable programs we try to be careful in using
relative coordinates in terms of graphics x limit and
graphics y limit.

13.2.1 Useful auxiliary procedures

A call to enter text mode, or its alternative form
leave graphics mode declared as

PROC leave graphics mode:
enter text mode
ENDPROC leave graphics mode;

immediately clears the graphics screen. We may in-
troduce a procedure wait for confirmation which
waits for the user to hit the space bar, thus giving
him the necessary time to study the picture.

This procedure has two parameters: the integer co-
ordinates of a place on the screen where you want the
warning Hit space! to appear.

PROC wait for confirmation (INT CONST x,
y):

move (x, y);

put ("Hit space!");

TEXT CONST t:: inchar
ENDPROC wait for confirmation;

Notice that any character is accepted, not only the
space.

A group of procedures which are very useful in the
input dialogue for numbers and texts can be declared
as follows:

INT PROC ask int (TEXT CONST message):
INT VAR x;
put (message);
get (x);
X
ENDPROC ask int;

REAL PROC ask real (TEXT CONST message):
REAL VAR x;
put (message) ;
get (x);
X
ENDPROC ask real;

TEXT PROC ask text (TEXT CONST message):
TEXT VAR t;
put (message) ;
get (t);
t
ENDPROC ask text;

The trigonometric functions of the standard library as-
sume the angle as a real parameter given in radians. In
integer graphics it is more natural to compute the angle
as an integer given in degrees. To that end we declare:

REAL PROC sin (INT CONST a):
sin (pi * real (a) / 180.0)
ENDPROC sin;

REAL PROC cos (INT CONST a):
cos (pi * real (a) / 180.0)
ENDPROC cos;

13.2.2 Example: Radar

The first program draws a number of lines of one same
length, springing from the approximate centre of the
screen. In the circular pattern created in this way the
effect of the line drawing algorithm applied is clearly
recognisable. Notice the nice interference of lines in
Fig. 13.3.

radar:

enter graphics mode;

print heading;

determine parameters;

draw radar;

wait for confirmation (2 * graphics x
limit DIV 3, 1);

leave graphics mode.

print heading:
put ("Radar");

determine parameters:

REAL CONST radius::

real (min (graphics x limit, graphics

y limit)) / 2.1;

INT CONST centre x:: graphics x limit
DIV 2,

centre y:: graphics y limit

DIV 2.

draw radar:
INT VAR i;
FOR i FROM O UPTO 359
REP
move (centre x, centre y);
draw (centre x + round (aspect * sin
(i) * radius),
centre y + round (cos (i) *
radius))
ENDREP.

13.2.3 Example: Moving radar

The next program example draws similar lines, but this
time springing from a moving centre.

moving radar:

enter graphics mode;

print heading;

determine parameters;

draw moving radar;

wait for confirmation (2 * graphics x
limit DIV 3, 1);

leave graphics mode.

107

Figure 13.3: Radar

print heading:
put ("Moving radar");
line;

determine parameters:
REAL VAR radius:: ask real ("Radius?
")
radius:= min (radius,
real (min (graphics x
limit,
graphics y
limit)) / 2.1);
put ("Radius used: ");
put (text (int (radius), 3));
REAL CONST step x::
min (1.0, real (graphics x limit) /
360.0) ;
REAL VAR centre x::
260.0) ;
INT CONST centre y:: graphics y limit -
int (radius).

max (0.0, radius -

draw moving radar:
INT VAR i;
FOR i FROM O UPTO 360
REP
move (round (centre x), centre y);
draw (round (centre x + aspect * sin
(i) * radius),
centre y + round (cos (i) *
radius));
centre x INCR step x
ENDREP.

In order to allow the studying of various interference
patterns the program asks the user for the radius to be

Figure 13.4: Moving radar

used. The program limits this value so that the draw-
ing always remains within the graphics screen. The
experimental value 2.1 is used to leave enough space
for messages.

Like in the previous example we want to make a
whole turn of 360 degrees, which means that we also
have to take 360 steps horizontally, across the screen.
On some screens — and also in the laser printer that
produced this book — graphics x 1limit is less than
360. To that end, step x is introduced. It has the
value 1.0, or less if necessary.

The coordinates of the centre are stored in centre
x and centre y. The former is a real variable since
the centre must drift horizontally, in steps which may
be less than 1. Initially, centre x contains either 0.0
or — for large radii — a value that keeps the drawing
within the graphics screen. The somewhat arbitrary,
experimental value of 260.0 is motivated by the fact
that — for large radii — the leftmost point is drawn
cca. in step 260. The initial value of centre y leaves
enough space for the messages at the top, even in case
of large radii.

The loop body is similar to the previous one. Notice
the upper limit of the loop variable is 360 in the present
case.

13.2.4 Example: Mondriaan

As alast example, let us see how pictures reminiscent of
the paintings of Mondriaan can be generated by means
of integer graphics.

Please do not consider this as a serious contribution

108

Figure 13.5: A Mondriaan?

to computer art, although ithelps you to imagine how
some artists use the computer as a working tool. Com-
puter art makes extensive use of random numbers, al-
lowing the artist to study the fringe area between chaos
and order.

make a famous painting:
prepare the canvas;
stain it diligently;
painting is done.

prepare the canvas:
enter graphics mode;

INT CONST xmin:: graphics x limit DIV
10,
ymin:: graphics y limit DIV
10,
xmax:: graphics x limit -
xmin,
ymax:: graphics y limit -
ymin;
move (xmin, ymin);
draw (xmin, ymax);
draw (xmax, ymax);
draw (xmax, ymin);
draw (xmin, ymin).

stain it diligently:

INT VAR k, 1, x, y;

FOR k FROM 1 UPTO 150

REP
x:= random (2 * xmin, xmax - xmin);
y:= random (2 * ymin, ymax - ymin);
1:= int (real (ymin) * (1.0 - sqrt

(random))) ;

IF random > 0.5
THEN

move (x - 1, y);
draw (x + 1, y)
ELSE
move (x, y - 1);
draw (x, y + 1)
FI
ENDREP.

painting is finished:
wait for confirmation (5, 5);
leave graphics mode.

In conjunction with the resulting picture, this simple
program should need no further explanation.

13.3 Turtle graphics

Another packet in the standard library builds a layer
on top of the integer graphics that simplifies graph-
ics programming. The packet is inspired by Karel the
Robot (see chapter 2) and the turtle graphics of Logo.

In the first place, relative coordinates will be used
instead of absolute ones. After all, we want mostly
to draw regiments of lines. A figure is regarded as a
sequence of (visible or invisible) lines connected to each
other. The notion of current position (the “graphics
cursor”) and current angle are also introduced. A piece
of line always starts in the current position and extends
in the direction determined by the current angle; only
the length must be given explicitly (see Fig. 13.6).

In the second place, integer coordinates are replaced
by real ones. It is much easier to round off an accu-
rately computed real position to an integer afterwards
than to hold it continuously as an integer when (be-
cause of skew slope directions) all kinds of rounding
errors may occur.

AL

Figure 13.6: Current position (x,y) and current angle
@

109

13.3.1 The turtle graphics interface

Two line drawing algorithms are introduced: move for
invisible lines and draw for visible ones.

PROC move (REAL CONST 1):

{ draw an invisible line of length ’1’
in the }

{ direction determined by the current
angle }

{ and starting in the current position
}

ENDPROC move;

PROC draw (REAL CONST 1):

{ draw a visible line of length ’1’ in
the }

{ direction determined by the current
angle }

{ and starting in the current position
}

ENDPROC draw;

After a call of these, the endpoint of the line server as
a new current position. In order to steer the lines we
must be able to change the value of the current angle,
for example, by

PROC turn (INT CONST angle):

{ add ’angle’ degrees to the current
angle }
ENDPROC turn;

Recall from mathematics that the counter-clockwise di-
rection is the positive one. For the special cases of
turning 90 degrees to the left and right two faster pro-
cedures are introduced:

PROC turn left:
{ add 90 degrees to the current angle }
ENDPROC turn left;

PROC turn right:

{ subtract 90 degrees from the current
angle }
ENDPROC turn right;

In addition to the relative moves (similar to that of
Karel the Robot going after his nose) two more line
drawing procedures are defined that use absolute coor-
dinates:

PROC move (REAL CONST x, y):
{ go to position (x, y) }
ENDPROC move;

PROC draw (REAL CONST x, y):

{ draw a line from the current position
to (x, y) }
ENDPROC draw;

We may arbitrarily choose the units to be used with
distances. To that end, two constants turtle x limit
and turtle y limit are declared within the packet,
the value of which may be changed by the user.

To switch the graphics screen to and from turtle
graphics mode two actions are declared: enter turtle
graphics, leave turtle graphics.

13.3.2 Example: Drawing a rosette

Let us give one (not very ambitious) example of turtle
graphics: we shall draw a rosette.

Figure 13.7: Rosette

The rosette consists of six equilateral triangles, with
each subsequent triangle turned by 60 degrees. The
drawing starts in the centre of the screen and the edges
are equal to one third of the screen length.

draw a rosette:
enter turtle graphics;
go to the centre;
UPTO 6
REP draw equilateral hook;
turn (60)
ENDREP;
wait for confirmation (10, 10);
leave turtle graphics.

to the centre:

REAL CONST d:: turtle y limit / 3.0;
move (turtle x limit / 2.0, turtle y
limit / 2.0).

go

draw equilateral hook:
draw (d); turn (120);
draw (d); turn (120);
move (d); turn (120).

In the next section you will find some more complicated
applications of turtle graphics.

110

13.4 Recursive drawing

The following examples of recursive drawings, which
involve multiple recursion, are certainly not simple, but
they serve well to demonstrate the power and elegance
of recursion.

13.4.1 Example: Peano curves

The number theorist Peano not only gave his name to
the axiomatic treatment of the natural numbers, but he
was also concerned with the continuum, the real num-
bers. He considered, for instance, continuous mappings
from the line [0 : 1] to the square [0: 1,0 : 1].

For this purpose he defined families of continuous
curves, composed of straight lines, with the property
that the nth member of such a family passes each point
of the square at a distance of at most 27", A trivial
example of such a curve is shown in Fig. 13.8.

Figure 13.8: A simple Peano curve

There exist much more beautiful families of such
curves. In this section we introduce an algorithm by
Aad van Wijngaarden that computes and draws such
a family of Peano approximations (which was first de-
scribed by Hilbert). We define a family of Peano-
approximahts, as follows. The zeroth member of the
family has to pass each point of the unit square at a
distance of at most 27°. This condition is met by a
point in the middle of the square (Fig. 13.9).

W+E -

S

Figure 13.9: Peano approximation 0

As a next approximation (the first member of the fam-
ily) we divide the square into four squares with a side
of 1/2 each. In these smaller squares we use the pre-
vious approximation and join the small drawings by
means of three line pieces of length 1/2, the first one
in an easternly direction, the second to the north and
the third to the west (Fig. 13.10).

This is an approximation with orientation north, be-
cause the net movement is to the north. The four pos-
sible orientations for n = 1 are named as indicated in
Fig. 13.11.

N A
S

Figure 13.10: Peano approximation 1

Our algorithm is based on the idea of constructing the
nth approximation from four smaller (n — 1)th approx-
imations, joined together by means of three pieces of
length 27" with carefully chosen orientations. We
show, as an example, an approximation of order 2 with
orientation north in Fig. 13.12.

A
w E

S

Figure 13.12: Peano approximation 2

A Peano approximation of order n with orientation
north starts at the point (2-("*t1) 2-("+1)) and ends,
after a sweep through the unit square, in the point
(2—(n+1), 1— 2—(n+1)).

For example, the approximation of order n = 2, as
shown in Fig. 13.12, consists of:

approximation east (1);
line segment east;
approximation north (1);
line segment north;
approximation north (1);
line segment west;
approximation west (1)

We can now express the drawing of an approximation
of order n in the form of four mutually recursive pro-
cedures:

PROC approximation north (INT CONST n):
IF n<>0
THEN approximation east (n-1);
line segment east;
approximation north(n-1);
line segment north;
approximation north (n-1);
line segment west;
approximation west (n-1)
FI
ENDPROC approximation north;

In the case where n = 0 only a point has to be drawn;
but because such a point always lies in the crossing of
two line segments nothing has to be done.

All line segments occurring in the drawing have one
same length, d = 27"

111

=

L

N E

Figure 13.11:

PROC approximation east (INT CONST n):
IF n <> 0
THEN approximation north (n-1);
line segment north;
approximation east
line segment east;
approximation east
line segment south;
approximation south (n-1)

(n-1);

(n-1);

FI
ENDPROC approximation east;

PROC approximation south (INT CONST n):
IFn<>0
THEN approximation west (n-1);
line segment west;
approximation south (n-1);
line segment south;
approximation south (n-1);
line segment east;
approximation east (n-1)
FI
ENDPROC approximation south;

PROC approximation west (INT CONST n):
IF n <> 0
THEN approximation south (n-1);
line segment south;
approximation west
line segment west;
approximation west
line segment north;
approximation north (n-1)

(n-1);

(n-1);

FI
ENDPROC approximation west;

All line segments occurring in the drawing have one
same length, d = 27".

The current position (in the unit square [0: 1,0 : 1])
we shall administer in a couple of variables REAL VAR
x, y. In order to draw line segments of length d we
introduce four procedures:

PROC line segment north:
draw (x, y + d)
ENDPROC line segment north;

PROC line segment south:
draw (x, y - d)
ENDPROC line segment south;

W S

Four orientations

PROC line segment east:
draw (x + d, y)
ENDPROC line segment east;

PROC line segment west:
draw (x - d, y)
ENDPROC line segment west;

To put this whole machinery into movement, the
graphics cursor has to be positioned at the starting
point, e.g. (d/2.0, d/2.0), on the screen. The main
program can be:

program:
ask order;
draw curve;
end program.

ask order:

enter graphics mode;

INT VAR n:: ask int ("Peano curve of
order? ").

So far, we have concerned only with unit length but
now the real size of the graphics screen must be taken
into account. The solution is based on integer graphics.
Let us, then, consider the shorter side of the integer
graphics screen to be of unit length; for this purpose a
multiplying factor, scale, is introduced .

draw curve:
REAL VAR x, y;
REAL CONST
d:: 1.0 / 2.0 *x n,
scale:: real (min (graphics x limit,
graphics y limit
- line height));
move (d / 2.0, 4 / 2.0);
approximation east (n).

end program:

wait for confirmation (graphics x limit
DIV 2, 1);

leave graphics mode.

In the program two procedures, draw and move, ex-
pecting real parameters are used. We shall define them
in terms of their integer counterparts. The scaling and
the aspect of the pixels will be taken account here, too.
And one more thing: the starting point of the curves.
If position (0.0,0.0) has to denote the lower left corner
the drawing must be mirrored vertically.

112

PROC draw (REAL CONST xp, yp):
draw (round (scale * xp * aspect),
graphics y limit - round (scale *

yp));
X:= Xp;
y:=yp

ENDPROC draw;

PROC move (REAL CONST xp, yp):
move (round (scale * xp * aspect),
graphics y limit - round (scale *

yp));
X:= Xp;
y:=yp

ENDPROC move;

Finally, in Fig. 13.13 we show two drawings that were
generated in this way.
Some questions:

e Why must the approximations start and end in
the corners of the squares?

e The approximation north and south we have cho-
sen to rotate counter clockwise, whereas west and
east rotate clockwise. Is it possible to find a so-
lution where one approximation can be obtained
from another by rotation?

e How does the complexity, expressed as the total
number of procedure calls or draw calls, depend
on n?

e Notice that the recursion in this algorithm ends at
the level where nothing remains to be done; this
style is typical for Van Wijngaarden. It is more
usual to end the recursion at the level where the
implementation is sufficiently trivial to do it at one
stroke. What do we have to change in order to let
the recursion end at n = 1?7 What effect does this
have on the number of procedure calls?

13.4.2 Example: Pythagoras tree

A Pythagoras tree (of order n) is a recursive draw-
ing containing two Pythagoras trees (of order n — 1).
Fig. 13.14 shows three Pythagoras trees of order 0, 1
and 2. A Pythagoras tree has a number of parameters:
the stem size, the angle « of its left subtree and the
depth of recursion determining the shape of the tree.

It is quite a puzzle to derive a specific algorithm
out of this general scheme. Moreover, it is worth the
trouble to keep the number of calls of turn low since on
a microcomputer the computation of sine and cosine
consumes a lot of time. Where possible the (faster)
turn left and turn right will be used.

The following solution, based on turtle graphics, as-
sumes that the current angle initially points in the
growth direction of the tree and after termination in
the opposite direction. With these conventions the
number of rotations remains restricted.

113

Figure 13.13: Peano curves

AN\

‘ \ e
flze

Order 0 Order 1

Figure 13.14: Low-order Pythagoras trees (a = 45°)

Order 2

Figure 13.15: Pythagoras tree of order 8

PROC pythagoras tree (REAL CONST size,
INT CONST depth,
angle):
draw (size);
IF resolution achieved
THEN
turn right;
draw (size);
turn right
ELSE
turn (angle);
pythagoras tree (size * cos(angle),
depth - 1, angle);
turn left;
pythagoras tree (size * sin(angle),
depth - 1, angle);
turn (90 - a)
FI;
draw (size).

resolution achieved:
depth = 0.

ENDPROC pythagoras tree;

program:
enter turtle graphics;

move (graphics x limit DIV 2 - 60, line

height);
put ("Pythagoras tree");
line;
ask parameters;
draw frame;
draw pythagoras tree;
wait for confirmation (1,

graphics y limit

- line height);
leave turtle graphics.

draw frame:
move (0.0, 0.0);
draw (0.0, 100.0);
draw (100.0, 100.0);
draw (100.0, 0.0);
draw (0.0, 0.0).

ask parameters:
INT CONST tree depth:: ask int ("Depth?

ny.

)’INT CONST tree angle:: ask int ("Angle?
);REAL CONST tree size:: ask real ("Size
2 ny.

. ;éAL CONST tree xpos:: ask real ("Xpos
2 ny.

. ;éAL CONST tree ypos:: ask real ("Ypos
7M.

tree xpos and tree ypos determine the position of
the lower left corner of the stem. By assigning appro-
priate values to these constants you may choose a nice
layout for your drawing.

draw pythagoras tree:

move (tree xpos, tree ypos);

pythagoras tree (tree size, tree depth,
tree angle).

It is quite interesting to try different values for the
angle a and the recursion depth. Sometimes a whole
cauliflower grows out of the screen as e.g. in Fig. 13.15.
In other cases, especially with angles not far from 90°,
a large value must be supplied for depth otherwise the
drawing will be uninteresting. However, as you know,
the deeper the recursion the slower the execution. For-
tunately, deeply in the recursion the stem size becomes
so small that it can no more be displayed — and there-
fore we can use it as an alternative stop condition.

resolution achieved:
depth = 0 OR size < 0.1 * tree size.

This restriction ensures that no tree can be smaller
than the pixel size. This will result in a better balanced
tree with regards to the stem size of the subtrees.

Fig. 13.16 shows two distorted Pythagoras trees
where the second variant of the test resolution
achieved was used.

13.4.3 Example: Peano curves revis-

ited

Based on turtle graphics, the program drawing Peano
curves (see section 13.4.1) can be made shorter. The
following version exploits the observation that Peano
curves may have only two essentially different orien-
tations: turned to the left or to the right. Each case
will be covered by a recursive procedure. Notice that a
Peano curve is constructed entirely from small, straight
pieces of lines of a fixed length d. This piece will be
drawn by the procedure connect.

114

PROC connect:
draw (side)
ENDPROC connect;

PROC peano right (INT CONST n):
IF n <> 0
THEN
turn left;
peano left (n - 1);
connect;
turn right;
peano right (n - 1);
connect;
peano right (n - 1);
turn right;
connect;
peano left (n - 1);
turn left
FI
ENDPROC peano right;

PROC peano left (INT CONST n):
IF n <> 0
THEN
turn right;
peano right (n - 1);
connect;
turn left;
peano left (n - 1);
connect;
peano left (n - 1);
turn left;
connect;
peano right (n - 1);
turn right
FI
ENDPROC peano left;

program:
ask order;
draw curve;
end program.

ask order:

enter turtle graphics;

move (1, 1);

INT VAR order:: ask int ("Peano curve
of order? ").

Figure 13.16: Distorted Pythagoras trees
draw curve:

REAL CONST limit:: min(turtle x limit,
turtle y limit);

REAL CONST side:: limit * 2.0 ** -
order;

turn right;

peano right (order).

end program:

wait for confirmation (graphics x limit
DIV 2, 1);

leave turtle graphics.

115

13.5 Exercises

1. (trembling line) Write an algorithm two draw a
trembling line between two points.

2. (snow) Draw a number of snow-flakes. Exploit
the fact that a snow-flake is either 6- or 12-fold
symmetric. Use reflection and rotation.

3. (cube) Draw a perspective picture of a cube, using
turtle graphics, in which the near lines are twofold
shifted or turned (in order to gain virtual depth).

116

Chapter 14

Recursive sorting

By sorting a given row f(i),1 < i < n, with respect
to a given ordering relation < we mean the problem of
finding a row f'(i) consisting of the same elements as
the row f(i) such that:

1<i<j<n— f'(i)<f()

The row f' is a permutation of the row f; no elements
have been added or lost.

Sorting can be performed by many different algo-
rithms, with different complexities in time (the num-
ber of elementary algorithms to be performed) and in
space (the number of elementary variables necessary for
the performance of the algorithm). Of all computing
time used every day a large part is spent in sorting all
kinds of files according to various criteria. It is there-
fore of great economic importance to look for sorting
algorithms that are efficient in time and space.

Efficient in space: the amount of space needed
depends at least linearly on n, the number of elements
to be sorted. We shall investigate only those sorting
algorithms that, apart from the elements themselves,
need only a small number of elementary variables, if
possible independent of n. We therefore restrict our-
selves to in situ sorting, in which f' is built up in f.
The permutation process takes place in the variable f
itself.

Efficient in time: if we program an in situ sort-
ing algorithm in a straightforward fashion we obtain a
formulation as given in chapter 8. The time complex-
ities of these obvious sorting algorithms are quadratic
in the number of elements to be sorted. This means
that in for example doubling the number of elements,
the amount of work goes up by a factor of four. Such
an algorithm may well work adequately for the sorting
of the data of a thousand employees; but for sorting
the data of 200 million inhabitants the amount of work
goes up prohibitively. It is obvious that such methods
are useless for sorting really large files.

14.1 Merge Sort

One way out is not sorting all the elements simultane-
ously but sorting the two halves of the row separately
and then in some way combining the two sorted parts.
This is another application of the “divide and conquer”
technique, a halving method.

The reason for expecting that this is faster is the
following: if the elements to be sorted are split into
two equal groups, each of those groups can be sorted
according to a quadratic algorithm in one fourth of the
time needed for the whole row. After that the two
sorted groups have to be mixed in some way. If we
now manage to perform this mixing fast enough we
shall gain in total time.

We shall now design such a Merge Sort algorithm.

PROC merge sort (INT CONST lwb, upb):

IF 1lwb < upb

THEN
INT CONST middle:: (lwb + upb) DIV 2;
merge sort (lwb, middle);
merge sort (middle + 1, upb);
in situ merge process

FI.

in situ merge process:

INT VAR down:: 1lwb;
INT VAR up:: middle + 1;
REP
IF the smallest is up
THEN

set smallest aside;
shift lower group up by 1;
drop smallest in free slot
ELSE
pass down element
FI
UNTIL lower group is up or empty
ENDREP.

the smallest is up:
f[up] < f[down].

set smallest aside:
ELEMENT CONST smallest:: f[up].

shift lower group up by 1:
INT VAR 1i;
FOR i FROM up - 1 DOWNTO down
REP
fli+1]:= f£[i]
ENDREP;
down INCR 1;
up INCR 1.

117

drop smallest in free slot:
f[down-1] := smallest.

pass down element:
down INCR 1.

lower group is up or empty:
upb < up OR up <= down.

ENDPROC merge sort;

Now the sorting of the two halves will decidely go
faster, but the in situ merge process spoils every-
thing: large sub-rows have to be shifted about more
than once, so the algorithm again has a quadratic worst
case behaviour. It is easy to see that by making use of
a second row variable as an auxiliary the merging can
be performed in linear time. But then the algorithm
needs too much auxiliary memory to be called in situ.
Variants of the Merge Sort algorithm, that do not work
in situ but make use of large background memories, are
indeed in daily use. We shall not deal with them here.

Question: How does the time complexity of this ver-
sion of Merge Sort depend on the number of elements
to be sorted?

14.2 Quicksort

In Merge Sort the two halves are sorted separately and
then merged. We might also try to first unmerge the
row into two parts and then sort those two parts sep-
arately.

For this, C.A.R. Hoare in 1961 proposed a recursive
sorting algorithm that cannot but be called elegant.
He first splits the row into two parts [1 : m] and [m +
1 : n] by moving elements until all elements from the
first part according to the given ordering relationship
precede all elements of the second part, i.e.:

(Wke[l:ml,jem+1:n] = fi <f;.

The number of elements to be moved for this purpose
is linear in n. Once the table has been split up in this
fashion, the two parts can be sorted separately in situ
(by the aid of the same algorithm Quicksort) so that
we obtain:

2)k<jel:m]— fi < fj,

B)k<jem+1:n]— fi <fj.

From (1), (2) and (3) we can deduce immediately:
(4)k<]€[1n]—)fk§f],

that is, without any further merging the whole row has
been sorted in situ.

The tricky part is the splitting process in which (just
as in Merge Sort) an element may be moved more than
once. Let us look more closely at this process.

14.2.1

What is the ideal splitting of the row? In the ideal
case the row is split into two equal parts. Then we
have most advantage from the splitting. We therefore
have to find an element x such that as many elements
precede z as follow it. Such an element is called the me-
dian: it is that element which after sorting of the row
would occur in the middle. But this has not brought
us any nearer to a solution:

Splitting the row

e clements may be equal so that the median is not
uniquely defined;

e when the number of elements is even, there is no
middle element: the middle lies between two ele-
ments;

e the obvious algorithm for finding the median is:
sorting the table and then taking the middle ele-
ment.

We shall therefore be satisfied with an approximation
to the median; if this approximation is reasonable, we
shall not be far from optimal behaviour of the algo-
rithm; we shall later investigate the behaviour for a
bad approximation. There are still two different ways
in which we may proceed:

e choosing a specific element from the row;

e choosing a value (not necessarily an element) as
near as possible to the median value.

Proceeding according to the first method, we may in
principle take any element of the row. Let us take the
middle element as the approximate median. Then we
are in luck if the whole row happens to be (nearly)
sorted.

What is the worst possible split? That is one in
which one of the two parts is empty and the other the
whole original row. With this split we do not advance
at all, because sorting the greatest part then consists
of sorting the original row — if we are not careful the
algorithm may even get into a never-ending loop. We
shall therefore see to it that each of the parts is really
smaller than the original row.

We will now split according to the following idea. Let
the row be non-empty. We choose an element in the
middle as the approximate median. We let a pointer p
go upwards through the row and a pointer ¢ go down-
wards through the row. Whenever we find under p an
element greater than the approximate median and un-
der ¢ an element smaller than the approximate median
we exchange those two elements. In other words, if we
find on both sides an element that is out of position we
exchange those elements.

More precisely: let there be given a global row of
elements

ROW n ELEMENT VAR f

in which ELEMENT is one or another type. Let 1 <
1 < j < n. We choose m approximately in the middle

118

of [i : j]. Let = f,, (the approximate median). We
want to order f;,. .., f; in situ and choose p and ¢ from
[i —1:j+1]in such a way that for all k in [i : j]:

k<p = fi<fm and
k=p — fi>fn and
k>q — fr>fm and
k=q —= fi<fm and
qg<p

In this process, the variable p gets as value the index
of the first element greater than f,,, and ¢ points in
the same way to the last element smaller than f,,. If
the left part is empty, ¢ obtains the value ¢ — 1; if the

shift q downwards as far as possible:
WHILE may shift q downwards
REP q DECR 1
ENDREP.

may shift q downwards:
IF q < i THEN false ELSE f[q] >= med
FI.

exchange p and q element:
ELEMENT CONST 1:: f[p];
flpl:= flql; flql := 1;
p INCR 1; q DECR 1.

if necessary bring median to middle:

right part is empty, p gets the value 7 +1. In a picture: IF m > p
THEN exchange m and p element
ELIF m < q
elements < fr, i p THEN exchange m and q element
elements > f,, q j FL.
_ exchange m and p element:
elements = f,, q+———D £m] 1= £p];
. . . f[pl:= med;
We have now split the row into three parts, of which p INCR 1.
the middle part is non-empty because it contains at
least the apprOXimate median. If the median element exchange m and q element:
does not end up automatically between p and ¢, we flm]:= £[ql;
have to shift it to this middle part. The middle part flq]:= med;
may also contain some elements other than the median q DECR 1.

and equal to it, but need not necessarily contain all
elements equal to the median. We need not sort the
middle part any more. The left part or the right part
may be empty. Since, however, both parts are smaller
than the original row, a never-ending repetition is ex-
cluded.

PROC split (INT CONST i, j, INT VAR p, q):
initialize;
WHILE p and q suitable candidates
REP exchange p and q element
ENDREP;
if necessary bring median to middle.

initialize:
p:=1i; q :=3;
INT CONST m:: (i + j) DIV 2;
ELEMENT CONST med:: f[m].

p and q suitable candidates:
shift p upwards as far as possible;
shift q downwards as far as possible;

p <aq.

shift p upwards as far as possible:
WHILE may shift p upwards
REP p INCR 1
ENDREP.

may shift p upwards:
IF p > j THEN false ELSE f[p] <= med
FI.

ENDPROC split;

The splitting process is linear in n because p and q
together will traverse at most 2n elements. The mid-
dle part is guaranteed to be non-empty. It may even
contain any number of elements, e.g. in sorting a row
consisting of only equal elements.

Observe that the order indicated in the body of the
procedure split is an overspecification: we do not re-
ally wish first to move p up and then to move q down.
These two actions should be undertaken collaterally, or
possibly even in parallel.

14.2.2 Sorting with the aid of split

Once the row has been split we can sort it recursively:

PROC quicksort (INT CONST lwb, upb):
IF the row contains more than 1
element
THEN
INT VAR p, q;
split (lwb, upb, p, q);
quicksort (lwb, q);
quicksort (p, upb)
FI.

the row contains more than 1 element:
lwb < upb.
ENDPROC quicksort;

Do you see another overspecification in this procedure?
What guarantees the termination of this procedure?

119

The splitting process gives the worst result when ac-
cidentally either the highest or the lowest element hap-
pens to be in the middle. What complexity does the
algorithm have in this worst case? And in the best
case?

The “average” complexity depends strongly on the
distribution of the values of the elements. In [KNU73|
it is proved that the time complexity of the algorithm,
under the condition that the elements have been cho-
sen at random from a homogeneous distribution, is of
the order O(nlogn), as in the best case, but with a dif-
ferent multiplying factor. For sufficiently large values
of n this is arbitrarily better than O(n?).

We end by tracing an application of Quicksort (see
figure 14.1). The elements which are still to be sorted
are underlined. The approximate median in the split-
ting process is surrounded by a box. We indicate the
situation only at some critical moments.

14.2.3 Splitting the row: an alternative
method

In [DIJ76] the problem of the Dutch National Flag is
posed and solved. We may use this solution directly
for splitting the row in Quicksort. The resulting algo-
rithm is somewhat more elegant than Hoare’s original
splitting algorithm but needs a few more movements.

Consider a row of elements each of which has one
of the colours red, white or blue. Order them in situ
until they make up a Dutch flag (red followed by white
followed by blue). In other words, we want to permute
the original row in situ until we obtain three separate
areas, from left to right: all red elements (elements
smaller than the median), all white elements (elements
equal to the median) and all blue elements (elements
greater than the median).

Half-way through the execution of the algorithm, we
have four areas: one containing red elements, one con-
taining white, one containing blue and one containing
elements yet to be considered. The coloured areas we
keep in the intended order, that much is clear; but
where do we put the fourth area? We are completely
free in this choice: initially the whole row is yet to be
considered; at the end that area is empty, so its place
does not matter. We shall make a specific choice and
leave it to the reader to reason out why other choices
in any case do not lead to better algorithms.

We choose the fourth area to be between red and
white and mark the areas by the aid of the indices r,
w and b.

red unsorted white blue
I I I I |
) p w b J
therefore
i<k<r — fp< med/(red),
w<k<b — fr= med(white),
b<k<j — fr> med(blue).

We now repeatedly look at the element f,, (the reader
may convince himself that to look at f, is less advan-

tageous). If f,, is white, we simply move w by 1 to the
left. If f,, is red, we exchange that element with f, and
shift r by 1 to the right. If f,, is blue, we exchange it
with f; and shift both b and w by 1 to the left.

It is easy to see the correctness of this algorithm.
The red, white and blue areas remain red, white and
blue. In each step the fourth area is diminished by 1
element, so the algorithm certainly terminates. If we
have chosen as med an element of the row, the white
area will be at least 1 long, so that the red and blue
areas at the end of the split will certainly be shorter
than the whole row, thus guaranteeing termination of
the algorithm.

Initially the red and blue areas will be empty. If
we choose f; as med, the white area will initially have
length 1. (Can we also allow the white area to be
initially empty?) The resulting procedure split looks
as follows:

PROC split (INT CONST i, j, INT VAR r, w):
initialize;
WHILE not all elements considered
REP
inspect element w;
IF element is white
THEN
shift w by 1 to the left
ELIF
element is red
THEN
exchange w and r element;
shift r by 1 to the right
ELSE
exchange and b element w;
shift b and w by 1 to the left
FI
ENDREP.
initialize:
ELEMENT CONST med:: f[j];
r:= 1ij;
w:=3j - 1;
INT VAR b:: j.

not all elements considered:

r <= Ww.

inspect element w:
ELEMENT CONST this:: f[w].

element is white:

this = med.

shift w by 1 to the left:
w DECR 1.

element is red:
this < med.

exchange w and r element:

flw]:= flr];
f[r]:= this.
shift r by 1 to the right:

r INCR 1.

120

3. 31426057589

q p
v 3 14[2]50567809
p q
g, 01 4[2]5356789

qp

9. 012453567809
q p

10.0]1 2453567809
q p

11, 012 4[5]3 5

q p

(=2}

789

12. 01243556789

q p
13, 01 2[4]3 5567809
q p

15, 01 234556[7]809

16. 012345567809

Figure 14.1: Trace of Quicksort

exchange w and b element:
flw]:= £[bl;
f[bl:= this.

shift b and w by 1 to the left:
w DECR 1;
b DECR 1.

ENDPROC split;

Whenever f, is red and so is this, this element is first
moved to f,; in the next iteration, it will be brought
back to the red area. This is a weakness of the al-
gorithm, a sacrifice to simplicity. We can modify the
algorithm in such a way that the index r is first moved
to the right as long as there are red elements. The al-
gorithm then becomes less clear-cut, but comes nearer
to the splitting according to Hoare. Investigate this
modification.

14.3 Exercises

1. Try to find an iterative solution for sorting in time
O(nlogn). (Hint: try Merge Sort with an auxil-
iary row, or look up the matter in [KNU73].)

2. Design a splitting algorithm in which not one ele-
ment of the row but the average of three elements
is taken as median [EMB70].

121

122

Chapter 15

Backtrack programming

The mouse in the maze was a good example of an
algorithm based on systematically first doing and then
undoing steps in the direction of the solution. The
mouse as it were retraces its steps. There are important
classes of problems that can be solved according to such
a backtrack strategy.

15.1 The enumeration problem

The problem of the mouse in the maze can be refor-
mulated as follows: find all ways to make a loopfree
chain of mice from the initial position to the cheese.
For every field of the maze that is not filled with wall
or cheese we have to decide whether we cover it with
a mouse or leave it free. We can therefore look upon
the, at most, n * m free fields of the maze as variables,
each of which has to take one of the values free and
mouse.

We shall call the collection of the values that the ith
variable (the ith free field) can assume the selection
space for that variable. We have here an instance of
the enumeration problem:

find all sequences (z1,za,...,z,) with z;
from a finite set X;, 1 < i < n, that satisfy
predicate P(zq,2s,...,z,) [KNUT5].

Let k be the number of free fields in the maze (1 <
k < ns*m). In our example the desired property
pathtocheese(x;, xa, ..., x) is the property that the
fields 1, 2,...,k form a loopfree chain of mice from the
initial position to the cheese, while the remaining fields
are free.

There are, for example, 8 free fields in the maze of
Fig. 15.1. These free fields can be enumerated from the
top to the bottom by rows and in each row from the
left to the right.

The three possible solutions are given as sequences
of field values satisfying the property path to cheese.
Here f stands for free and m for mouse.

1. path to cheese(f, f,m,m,m, [, f, f),
2. path to cheese(m,m,m,m,m, f, f, f),

3. path to cheese(f, f, f, f, fym,m,m).

We obtain an alternative formulation by taking as the
ith variable the position of the ith mouse, z; = (r,¢)

Figure 15.1: Paths to cheese

with 1 <r <n,1 < ¢ < m, which leads to another enu-
meration problem with the same result, i.e. the same
collection of loopfree paths. Possibly the second for-
mulation is somewhat more obvious and in any case
more according to the spirit of the program already
obtained.

The three solutions shown in Fig. 15.1 can now be
formulated as

1. path to cheese
((35 1)) (25 1)) (25 2)a Ty T Ty T Ty T T, __)a

2. path to cheese
((35 1)) (25 1)) (25 2)5 (la 2)) (la 3); T Ty T T __)a

3. path to cheese
((4, 2): (47 3), (3, 3)7 T T Ty T Ty T Ty __)'

Now it suffices to deal with subsequences that yield a
solution. As the remaining elements of the sequences
are unimportant we denoted these arbitrary positions
by “——".

We shall pursue the first formulation, however, in
order to have a fresh look at the problem.

We shall investigate some general methods for solu-
tion of the enumeration problem and in this way dis-
cover a natural application of recursion.

15.1.1 The brute force method

The enumeration problem is a finite combinatorial
problem and as such can in principle be programmed

123

straightforwardly: we need only go systematically
through all combinations of variable values.

WHILE not all combinations tried
REP
generate next combination;
test whether it satisfies P
ENDREP

It is not immediately obvious how to generate the next
combination but with some thought all kind of schemes
can be found.

In our case, according to the first formulation there
are 2%, and according to the second formulation there
are even at most k¥ combinations (in general: q; * o *
... % @k, in which ¢; is the number of elements of the
selection space X;). This may be somewhat overdone.
There is no sense in going blindly through the whole
selection space Xy * X5 % ... x X and we have to find
a more clever approach.

15.1.2 The selection tree

Consider the collection of all possible subsequences
over the selection space (see fig. 15.2). For the first
variable z there are ¢; different possibilities. For each
of those, the second variable x5 admits gs possibilities,
and so on.

Without loss of generality we can represent these
subsequences as a tree with branching, the selection
tree. In our case there are k variables: the selection
tree has depth k. Schematically we can depict the tree
as shown in Fig. 15.3.

Figure 15.3: Selection tree with levels 1 ...k

According to the brute force method we could walk
through the selection tree systematically, for example
(in bastard Elan):

FOR vl IN (free, mouse)
REP FOR v2 IN (free, mouse)

REP .
FOR vk IN (free, mouse)
REP IF path to cheese(vl,
v2, ., vk)
THEN report a solution
FI
ENDREP
ENDREP
ENDREP

But, as we have already established, this makes no
sense: k tree is too large.

Upon closer analysis we observe that in walking
through the tree it is often possible to decide early
(i.e. before we reach level k) that some specific branch
cannot lead to a solution, because, for example, there
is a loop in the path or the mice get into a dead end. In
this case we may discard the whole branch. In this way
we may (if we are lucky) have to visit only a fraction
of the tree (see Fig. 15.4).

Figure 15.4: Selection tree, partially discarded

We must now somehow generate the possible com-
binations in such an order that unproductive branches
of the selection tree are found as early as possible.

15.1.3 Heuristics

Heuristics is a methodology for solving new problems
by means of known methods.

In deciding the order in which the selection tree is
going to be traversed we have a number of degrees of
freedom:

e The choice of the order of the variables: we want
to go through the variables in such an order that
unproductive branches are found as early as pos-
sible, so that the selection tree is most effectively
reduced by discarding branches early in the search
process. In the case of the mouse in the maze,
for example, we must not go through the fields in
random order or in a fixed order like “from left to
right”, “from top to bottom”: it is always prefer-
able to extend a path at the end, so that the pos-
sible loops and dead ends are found early.

e Reduction of the selection space per variable: often
the values of the variables already filled restrict the
possible values of subsequent variables.

e The use of more or less strong rejection criteria for
parts of the tree: in our case, loops in the path and
dead ends. It might for example be advantageous
first to close off all dead ends in the maze since
they cannot lead to the cheese.

e The exploitation of symmetry arguments in order
to obtain more solutions at a time — not so ev-
ident in this case but in many examples simple
and often necessary in order to keep a grip on the
complexity of the algorithm.

124

all possible solutions

\

solutions
with 1 = free

A\
A\l
A\l

solutions solutions
with z2 = free

v
v \
v

solutions
with z3 = free

with zo2 = mouse

AN

solutions
with £1 = mouse

A\l
v
A\

solutions solutions
with z2 = free with o = mouse

Figure 15.2: The selection space

The way we can make use of these and other degrees
of freedom in solving a given problem depends on the
properties of that problem and on our own imagination:
we have to invent something.

In honour of Archimedes, who gave us the saying
“Fureka” and who was the first known user of heuristic
methods, the word heuristic is used for any strategy,
method, rule of thumb or trick that serves to reduce the
complexity of a search process without impairing the
correctness of the solutions found [SLA71]. (In some
scientific fields this word is also used for a method to
reduce the complexity of a search process that yields
“sufficiently good” solutions; in such a case we will
speak of an approzimate heuristic rather than the exact
heuristic meant here.)

15.1.4 The backtrack method

We want to find all sequences (z1,z2,...,2,) with
z; from X;, 1 < i < n that satisfy a property
Pn(ajlaa:Q) v 7$n)'

To solve this problem we try to find intermediate
properties Py(x1,xa,...,x) such that for 0 < k < n
we can prove that property Pyii(z1,Ta, ..., Tk, Tpi1)
implies property Py (z1, 2, ..., k).

In other words, if P, does not hold for
(z1,Z9,...,2k) then Pryy can not hold for any choice
for xpy1. Continuing this argument inductively:
the sequence (zi,x2,...,%;) can not be extended to
(21,2, . xn) that satisfies P,.

We give each Py, in the form of an algorithm to decide
whether a sequence satisfies that property.

In abstracto we can search according to the following
algorithm:

3 Ly e ey

ROW n EL VAR x; INT VAR k :: O;
PROC generate all continuations:
{Pk(Xl,---,Xk)/\OSkSn}
IF k =n
THEN
{Pp(x1,...,%n)}
report a successful sequence
ELSE

{Px(x1,...,x1) N0 <k<n}
EL VAR y;
FOR y := each element from Xy,
REP
IF Prya(x1,. .. ,Xk,Y)
THEN
x[k+1] := y;
k := k+1;
{Pg(x1,...,xx) N0 <k<n}
generate all continuations;
k := k-1
FI
ENDREP

FI
ENDPROC generate all continuations;

The expressions between curly brackets are invariants,
properties that invariably hold at that particular point
of the program. They serve here to clarify the pro-
gram but are not part of the program and therefore
are merely comments.

Observe that after dealing with one branch of the se-
lection tree the algorithm returns to a previous point in
that selection tree; from this property the name back-
track algorithm is derived. After each recursive call the
algorithm comes back (by means of k := k-1) upon
a choice made before (x[k+1] := y; k := k+1). In
the maze problem this backtrack consisted in explicitly
removing a mouse from the field.

The backtrack algorithm traverses the selection tree
in the “depth first” order: from left to right but go-
ing in such a way that every branch is traversed com-
pletely before its right neighbour is traversed, omitting
branches that are recognized to be non-productive (see
Fig. 15.5).

15.1.5 On the choice of the P;s

The predicates P, form the embodiment of the heuris-
tics mentioned a few pages ago. In choosing them quite
some knowledge of the problem and a good deal of in-
ventivity is needed. Furthermore it must be easy to
formulate them as algorithms that can be computed

125

Figure 15.5: Selection tree, order of traversal

efficiently. How do we choose them?

By choosing TRUE for P, for & < n we again obtain
the brute force method; obviously these Pys are too
weak. In the ideal case it should hold that

Py(zy,...,z1) exactly when there exist
ZTk41,- .., Ty such that
Pn(mla'"amk7$k+la"'amn)'

That is, Py indicates precisely whether there exists
some continuation. But such an algorithm may be dif-
ficult to find and may be just as time-consuming in its
execution as the original problem. (Namely, checking
the truth of such a P assumes the original problem
has been solved.)

In general we shall have to make a compromise be-
tween restrictive but time-consuming, and weak but
easily computed Pgs. If we choose them too weak, we
find the correct solutions but have to go through too
much of the selection tree. When we choose them too
strong, they do not lead to any gain in efficiency.

15.2 Example:
chessboard

8 Queens on a

A classical example of a backtrack algorithm is the so-
lution of the following problem. Place 8 Queens on a
chessboard in such a way that no Queen can attack
any other Queen (horizontally, vertically, on a right
diagonal or left diagonal).

Choice of the variables. As variables we choose the
positions of the Queens, i.e. 8 coordinates € [1: 8,1 :
8].

Reduction of the selection space. In each row only
one Queen may stand, because it could attack a second
Queen in the same row. Furthermore there must be
exactly one Queen in a row, otherwise we will never
put eight Queens on a chessboard.

Order of the variables. We (arbitrarily) number the
variables from 1 to 8 depending on the row in which
they occur.

PROC place queens from (INT CONST this
row):
IF this row > 8
THEN
report success
ELSE
INT VAR 1i;
FOR i UPTO 8
REP
IF position i is not threatened
THEN
take position 1i;
place queens from(this row + 1);
free position i
FI
ENDREP
FI.

The place of the ith Queen is kept in a global row

ROW 8 INT VAR column queen;
We refine

take position i:
column queen[this row] := i.

In order to free this position there is nothing we have
to do explicitly — the return from the procedure is
sufficient.

free position i:

position i is not threatened:

INT VAR j;

FOR j UPTO this row -1

REP
IF jth queen threatens 1
THEN

LEAVE position i is not threatened
WITH false
FI
ENDREP;
true.

jth queen threatens i:
same column OR above to the right OR
above to the left.

same column:
column queen[j] - i

1]
o

above to the right:
column queen[j] - i

this row - j.

above to the left:
column queen[j] - i

j - this row.

report success:
put ("Solution of 8 queens problem");
line;
print the chessboard.

ENDPROC place queens from;

126

PROC print the chessboard:
INT VAR k;
FOR k UPTO 8
REP
print one line;
line
ENDREP.

print one line:
INT VAR 1;
FOR 1 UPTO 8
REP
print position
ENDREP.

print position:
IF 1 = column queenl[k]
THEN put("Q ")
ELSE put(". ")
FI.

ENDPROC print the chessboard;

We need not initialize the row column queen. As main
program we can take:

ROW 8 INT VAR column queen;
place queens from(1).

Without too much work this program yields all 92 so-
lutions for the 8 Queens problem. By making a clever
use of symmetry arguments, the amount of computa-
tion could be reduced further, because only 12 of those
are essentially different.

15.3 The optimization problem

A generalization of the enumeration problem is the dis-
crete optimization problem [GOL65].

Determine that sequence (z1, s, . . .,) with
z; from a finite set X;,1 < i < n,
for which some specific criterion function
F,(z1,2s,...,z,) takes a minimal (or a max-
imal) value. Compute that value of Fj,.

When there is more than one solution, we may choose
one of them or the problem may be formulated such
that we have to give a list of all solutions.

Obviously this problem can be seen as an enumer-
ation problem, in which we remember the best of all
sequences found up to now. Conversely an enumeration
problem can be seen as a discrete optimization problem
with a two-valued criterion function (useful/useless) for
which we are asked to give all useful solutions. Ob-
serve that we restrict ourselves to finite discrete selec-
tion spaces X;. If X; is for example a segment of the
real numbers and F), a partially differentiable function,
completely different methods may be applied. In op-
erations research and cryptography many examples of
discrete optimization problems can be found.

Figure 15.6: Distorted selection tree

Now consider such a discrete optimization problem.
We shall derive from the problem formulation a back-
track algorithm by constructing a collection of partial
criterion functions

Fk(ajl,.’]ZQ,...,wk),O <k<n
that satisfy

Fk(xla"'z
kE<n

) < Fepa (21,00, Tk, Ty1),0 <

The partial criterion function Fj, can be seen to provide
a lower limit for the minimal value that the criterion
function F;, can take on for any argument starting with

In other words: Fj is a pessimistic guesser for F;
it may underestimate but never overestimate. If the
value of F}, tells us that a branch can be discarded, we
are sure that this is never unjustified.

15.3.1 Branch-and-Bound

In a certain sense more information can be expressed
in these functions Fj than in the two-valued functions
that we constructed for the enumeration problem. We
can use this information systematically: as soon as we
have constructed one complete sequence (z1,...,T,),
we know a bound for the minimal value of the solu-
tion, that we can use to reject those partial sequences

we find better and better solutions we can therefore
reject larger and larger parts of the selection tree for
which we find Fj, > bound.

Symbolically we can indicate this in the form of a
selection tree that has been distorted in such a way
that the length of a path from the root is equal to
the value that the criterion function Fj, assumes for it
(Fig. 15.6.

This variant of the backtrack algorithm is called the
Branch-and-Bound algorithm — a name that captures
both the branching of the selection tree and the bound-
ing by solutions already found.

15.4 Example: Shortest route
Between a collection of cities, numbered consecutively

from 1 to n, exists a system of roads, so that between
each pair of cities i and j there may be either no

127

connection at all or a direct connection of some spe-
cific length dw;; (a real number). See the example in
Fig. 15.7.

Figure 15.7: Road system with distances

We are looking for an algorithm shortest route(i,
j) that computes the length of a shortest route from i
to j. Of course there may be more than one shortest
route, but in that case they all have the same length.
How do we indicate that there is no direct way from
i to j?7 We shall encode this by giving a sufficiently
large value to dw[i] [j], for example infinite, so that
if there is a shortest route, it will have a length smaller
than infinite.

The matrix dw is symmetric (unless we introduce one
way roads).

LET number of cities = ...;

ROW number of cities ROW number of cities
REAL VAR dw;

REAL CONST infinite ::
real (number of cities);
learn system of roads;
ask for i and j;
compute shortest route from i to j.

maxreal /

We consider a route consisting of sequences of con-
nected direct ways and choose as variables the cities
over which they go. In terms of the definition of the
optimization problem: find that sequence of direct con-
nections (starting in 4, and forming a loopfree con-
nected path ending in j) for which the sum of the
lengths is minimal, i.e. minimize

Fn(xlz"'zxn) =
oot dw(z, 1, x,)

dw(zy,z2) + dw(za,x3) +

with z; =7 and z, = j,n > 1.

As partial criterion functions F} we obviously must
choose the length of the path from ¢ to k. This choice
is meaningful, because for every route from i to j that
starts with the segment i, ..., k must hold:

3 3

Fo(z1,. . @y) > Fr(x, ..., z1).

The essential part of the backtrack algorithm is

continuations from p:
INT VAR q;
FOR q UPTO number of cities
REP IF there is a direct way from p to
q
THEN
that direct

increase partial length with
way;

try continuations via q;
reduce partial length with
that direct way
FI

ENDREP.

As soon as one route has been found, its length will be a
bound for the partial criterion functions. If the length
of some partial route exceeds the bound we need not
look at any of its continuations, they will all exceed
that bound. Every time we find a new route whose
length is less than the bound, we adjust the value of
the bound.

try continuations via q:
via q to j
IF partial length smaller than the
bound
THEN IF q=j
THEN improve bound
ELSE on the path[q] := TRUE;
continuations from q;
on the path[q] := FALSE
FI
FI.

In order to guarantee termination we will see to it that
the path is loopfree. To that end we remember which
of the cities are on the path, keeping a BOOL variable
for each city. Observe that this information by itself is
not enough to reconstruct the path.

The algorithm is started by taking a closer look at
the start point (since i might be equal to 7). Initially
the path length is zero and the bound is infinite.

We now can concretize this algorithm:

compute shortest route from i to j:
REAL VAR bound :: infinite;
ROW number of cities BOOL VAR on the
path;
no city is on the path;
find shortest route(i, j, 0.0).

no city is on the path:

INT VAR c;

FOR c UPTO number of cities
REP on the path[c] := false
ENDREP.

128

PROC find shortest route (INT CONST i, j,
REAL CONST path

length):

IF no sense in continuing

THEN

ELIF target reached

THEN improve bound

ELSE try all continuations

FI.

The parameter path length contains the accumulated
length of the route started at i; it plays the role of the
Fy.

no sense in continuing:
path length >= bound.

target reached:
i=j.
improve bound:

bound := path length.

Observe that this is always an improvement.

try all continuations:

INT VAR k;
FOR k UPTO number of cities
REP

try continuation via k
ENDREP.

try continuation via k:
IF NOT on the path[k] AND
there is a direct way from i to k
THEN
on the path[k] := TRUE;
find shortest route(k, j, path length
+ dwlil [k1);
on the pathl[k]
FI.

:= FALSE

there is a direct way from i to k:
dw[i] [k] < infinite.

ENDPROC find shortest route;

This optimization algorithm can be turned into an enu-
meration algorithm by simply modifying one refine-
ment

no sense in continuing:
FALSE.

We shall investigate the effect of the Branch-and-
Bound heuristics by way of an example. As a measure
for the amount of work to be performed we take the
number of times that the procedure find shortest
route is called. This number depends on the number
of cities, the number of direct ways in the matrix dw
and on their distribution and ratios.

We shall therefore generate repeatedly a “random”
matrix with a specific density, i.e. of which a given
percentage of the elements is not infinite. We shall
exclude the direct way from the first to the last city (i.e.
with indices 1 and number of cities, respectively).

fill the matrix:
INT VAR i, j;
FOR i UPTO number of cities
REP
dw[i] [i] := infinite;
FOR j FROM i+1 UPTO number of cities
REP
REAL CONST distance ::
and 100;

between 0O

dwlil [j]
dw[j1[i]
ENDREP
ENDREP;
dw[1] [number of cities] :=
dw [number of cities][1]

distance;
distance

infinite;

infinite.
We make use of the procedure random that, for each

call, yields a pseudo-random real number between 0.0
and 1.0.

between 0 and 100:
IF random < density
THEN random * 100.0
ELSE infinite
FI.

By inserting a counter we now count the num-
ber of calls in find shortest route (1, number of
cities, 0.0). Since backtrack algorithms show a
strongly fluctuating behaviour we average the result
over ten times. Still the numbers measured show wild
jumps, and give no more than an idea of the be-
haviour of both algorithms. Table 15.1 shows the re-
sults of such a simulation. Especially for higher den-

density | number of | enumeration | branch-and-bound
cities algorithm algorithm

1 5 7 6
8 12 10

11 27 20

14 52 37

17 127 68

3 5 11 12
8 102 40

11 1867 99

14 4728 305

17 > 10.000 1090

5 5 32 18
8 356 7

11 > 10.000 280

14 471

17 1661

Table 15.1: Number of calls of find shortest route

sities, these numbers show a great advantage for the
Branch-and-Bound method, but for large numbers of
cities this method too will presumably demand a pro-
hibitive amount of calculation.

It should be pointed out that the “random” choice of
the dw[i] [j] was not quite realistic: for a larger num-
ber of cities, each city will be connected to a rather

129

small proportion of neighbouring cities, whereas direct
connections between distant cities will hardly ever oc-
cur. With the density as the only parameter, we cannot
model this behaviour satisfactorily. It might therefore
be that some version of the Branch-and-Bound method
may be applicable to this problem even in realistic situ-
ations. But for this simple “shortest distance” problem
there exist much more efficient algorithms.

15.5 Exercises

1. (Permutations) Print all permutations of the num-

Give a shortest sequence of camel movements that
exchanges the positions of the two caravans.

. (Spiral) Write a program that prints a narrow-

est right-going spiral of 100 fields, starting to the
north in the origin (0,0). Each field of the spi-
ral is a unit square which must have one side in
common with its direct predecessor and its direct
successor, and may not have a side or a corner in
common with any other part of the spiral. Some
of the fields of the board may contain a barricade
which may also not be touched by the spiral.

bers 1 : n. Backtrack problems galore can be found in games and

puzzles or as optimization problems in Operations Re-
2. (Cutting up) From a sheet of n by n a number of search.

squares with different whole-numbered sizes be-
tween 1 and n — 1 have to be cut, such that the
largest possible part of the area of the sheet is
used.

3. (Partitions) Under a partition of an integer n > 0
we understand a sequence z1,Zs,..., I, of inte-
gers with ; > 0 and z; + 22 + ... + 2, = n.
Write a recursive program that finds all different
partitions of an integer which is read in.

4. (Knight’s tour) Write a recursive program that
finds one tour of a Knight over a chessboard of
5 % 5, starting at a given starting point, such that
every field is reached exactly once.

5. (Paying in coins) A sum of money can be com-
posed in different ways out of a collection of coins.
Write a recursive program that, given an amount
and a system of coins, decides in how many differ-
ent ways this amount can be formed in that system
of coins. Try it out for various amounts < 1000
and the following coin systems:

(H) 10, 20, 50, 100, 200, 500,

(NL) 1, 5, 10, 25, 100, 250,

(FRG) 1, 2, 5, 10, 20, 50, 100, 200, 500,
(SU) 1,2,3,5,10, 15, 20, 50, 100.

6. (Knight’s jumps) On an — otherwise empty —
chessboard stands a Knight. Write a recursive al-
gorithm that, given the position of the Knight,
marks all fields of the chessboard with the mini-
mum number of jumps in which the Knight can
reach that field.

7. (Camels) In a tunnel two caravans meet, each con-
sisting of n camels, the nose of one camel touching
the tail of his predecessor. Between the caravans
is a free position exactly the size of a camel. The
initial situation for n = 4 may, for example, be
represented as pppp 9qqqq.

A camel standing before that empty place can
walk one camel length forward. A camel which
is separated from that empty place by one other
camel can jump over that other camel.

130

Chapter 16

Transforming recursion to iteration

Consider an iterative algorithm with a form like

a;
WHILE b REP c ENDREP;
d

Obviously, it can be rewritten into an equivalent recur-
sive form

PROC bc:

IF b THEN c; bc FI
ENDPROC bc;
a; bc; d

In this chapter we shall inquire into the possibility of
turning a recursive algorithm into an equivalent itera-
tive version, which is not always simple.

The most important reason for which we discuss this
subject is that it throws an illuminating light on the
choices and the degrees of freedom in programming.

In this chapter we shall restrict ourselves to proce-
dures with one single parameter, of the form

PROC p (INFO CONST x):
IF c(x)
THEN
n(x); p(f(x)); m(x)
ELSE
d(x)
FI
ENDPROC p;

in which c(x), d(x), n(x), £(x) and m(x) stand for
pieces of program in which x may appear, but which do
not contain local declarations that have an application
in one of the other pieces. The parameter x is therefore
the only local object. For the abstract type INFO any
concrete type may be assumed.

16.1 Eliminating right recursion

We speak about right recursion if the recursive call
is executed immediately before the procedure termi-
nated. Consider the following example of a right-
recursive procedure

PROC p (INFO CONST x):
IF c(x)
THEN
n(x); p(f(x))
ELSE
d(x)
FI
ENDPROC p;

As usual, c(x), d(x), n(x) and £(x) are pieces of pro-
gram in which x may occur and p(f(x)) is a recursive
call of p.

We can eliminate the right recursion by the intro-
duction of an auxiliary variable x1 and a WHILE-form

PROC p (INFO CONST x):
INFO VAR x1:: x;
WHILE c(x1)

REP
n(x1);
x1:= £(x1)
ENDREP;
d(x1)
ENDPROC p;

The equivalence of both procedures can be proved by
induction. Notice that both programs generate the se-
quence

L f@))

(n—1) times n times

provided all elements of the sequence

c(@);e(f(@)); s e(f(fL. - f@)..)
—_——

(n—1) times

are true and the call

n times

yields false.
Let us take as an example a procedure to calculate
the sum of the first n of a given row of reals:

REAL VAR total:: 0.0;

131

PROC summate (INT CONST n):
IF n >= 1
THEN
total INCR rowl[n];
summate (n-1)
FI
ENDPROC summate;

After transformation and simplification we obtain

REAL VAR total:: 0.0;
PROC summate (INT CONST n):
INT VAR nil:: n;
WHILE nl1 >= 1
REP
total INCR row[nil];
nl DECR 1
ENDREP
ENDPROC summate;

16.2 Application to Quicksort

In applying this transformation to

PROC quicksort (INT CONST lwb, upb):
IF upb-lwb > O
THEN
INT VAR p, q;
split(lwb, upb, p, q);
quicksort(lwb, q);
quicksort(p, upb)
FI
ENDPROC quicksort;

we can eliminate only the last recursive call. The trans-
formation is also complicated by the fact that the local
variables p and q occur in the calls of quicksort. How-
ever, the declaration of p and q can without any prob-
lems be shifted outside the repetition. Some puzzling
leads to

PROC quicksort (INT CONST lwb, upb):
INT VAR 1lwbl:: lwb, upbl:: upb, p, q;
WHILE upbl - 1lwbl > O
REP
split(lwbl, upbl, p, q);
quicksort(lwbl, q);
lwbl:=p
ENDREP
ENDPROC quicksort;

The assignment 1lwbl:= p is crucial. It corresponds to
x1:= f£(x1) of the transformation scheme. The proce-
dure obtained in this way is somewhat faster than the
original and uses somewhat less auxiliary memory. It
is no longer right-recursive but still contains a middle
TECUTSION.

A further improvement can be achieved by exploiting
the fact that the intervals [1wb1l:q] and [p:upb1] will
in all probability not have the same length. If we go
into recursion only for the shorter interval, we may

materially reduce the recursion depth. This idea leads
to

PROC quicksort (INT CONST lwb, upb):
INT VAR lwbl:: lwb, upbl:: upb, p, q;
WHILE upbl-lwbl > O
REP

split(lwbl, upbl, p, q);
IF g-lwbl < upbl-p

THEN
quicksort(lwbl, q);
lwbl:=p

ELSE
quicksort(p, upbl);
upbl:= q

FI

ENDREP

ENDPROC quicksort;

Observe that we make here a creative use of the over-
specification signalled before in the order of sorting of
both halves.

Right recursion can be eliminated so easily that some
compilers (for example for LISP but also for the lan-
guage CDL2 in which ELAN was implemented) remove
all right recursions automatically.

16.3 Eliminating middle recur-
sion

If recursion no longer takes place “at the right”, things
get more difficult. Let us investigate the following
scheme:

PROC p (INFO CONST x):
IF c(x)
THEN
n(x); p(f(x)); m(x)
ELSE
d(x)
FI
ENDPROC p;

The problem is that m(x) has to happen as often as
n(x) and for the same sequence of arguments x, but in
reverse order.

The execution of p, as it depends on the number of
times that c(x) yields true, can be depicted as follows
(by ¢ we indicate the first call of c that yields false):

none ¢(x); d(x)
c(f(x)); d(f(x)); m(x)
c(f(x)); n(f(x));

once c(x); n(x);

twice c(x); n(x);
c(f(£(x)));

d(f(£(x))); m(£(x)); m(x)

and so on.

We must try to rewrite p to an iterative procedure in
such a way that in its execution the same sequence of
calls of ¢, n, p, f and m occurs with the same arguments
as in executing the original procedure p.

132

A possible solution makes use of a stack with values
of type INFO.

16.3.1 The stack

By a stack we mean a data structure for the stor-
age of elements that later must be fetched back in
the reverse order of storing (“last-in-first-out”, “LIFO-
stack”, “LIFO-list”). A physical model for such a stack
can be found in most cafeterias: a stack of plates from
which only at the top a plate can be removed or added
(unless difficult contortions are performed).

A stack at any moment contains some number of
elements. If that number is zero, the stack is called
empty.

Typical operations on a stack are:

push add an element at the top. The number of ele-
ments thereby increases by one.

pop remove the element added last. The number of

elements decreases by one.

Furthermore it can be asked (by means of a condition)
whether the stack is empty. A stack may have a limi-
tation on the number of elements, e.g. because a fixed
amount of space has been reserved for it. In that case
it must also be possible to find out whether the stack
is full, so that no further element can be added. (Of
course in real life every stack is limited in some way, be-
cause cafeterias and computers are not infinitely large.
There may however be stacks whose maximum number
of elements cannot be computed in advance).

A straightforward realization of a stack of elements
(each of the abstract type EL) uses a row of elements.
Such a row has a fixed number of elements, so that the
upper limit is also fixed.

With this representation we can realize the stack as
follows:

make an empty stack:
LET max = ...;
ROW max EL VAR stack;
INT VAR top:: O.

The integer variable top gives the index of the last
element pushed, which is equal to the number of ele-
ments in the stack. This variable should not assume a
value greater than max. The further operations can be
indicated schematically

push x:
IF stack is full
THEN
explosion
ELSE
top INCR 1;
stack[top]l := x
FI.

stack is full:
top >= max.

pop x:
IF stack is empty
THEN
implosion

ELSE
x:= stack[top];
top DECR 1

FI.

stack is empty:
top < 1.

In case of implosion or explosion there is probably
nothing better to do than to report the problem and
terminate the execution of the program.

With the language mechanisms introduced in the
next volume of this book we can realize a stack some-
what more elegantly (for example through a separate
packet that defines an abstract type STACK). Also it is
possible to choose such a representation (as a “linear
list”) that the necessity to give an a priori limit to
the stack size disappears. We shall then return to the
subject of the stack.

By the aid of a stack we can rewrite the procedure
to:

PROC p (INFO CONST x):
make an empty stack;
INFO VAR x1:: x;
WHILE c(x1)

REP
n(x1);
push x1;
xl:= £(x1)
ENDREP;
d(x1);
WHILE NOT stack is empty
REP
pop x1;
m(x1)
ENDREP
ENDPROC p;

It is easy to see that the stack contains the arguments
for the calls of m to be performed later.

This piece of program closely resembles the code that
a compiler makes from the recursive version. We are
doing the work that a good compiler would do by itself.

16.3.2 Example:
number

Printing a natural

Let us consider a recursive procedure print number for
the paper-saving printing of natural numbers, assum-
ing the availability of a procedure print digit that
can print one digit.

The recursive solution given in section 12.1.1 is es-
sentially:

133

PROC print number (INT CONST n):
IF n >= 10
THEN
print
print
ELSE
print
FI
ENDPROC print number;

number (n DIV 10);
digit(n MOD 10)

digit(n)

Rewriting this with the use of a stack yields:

PROC print number (INT CONST n):

INT VAR nil:: n;
make an empty stack;
WHILE n1 >= 10
REP

push ni;

nl:= nl1 DIV 10
ENDREP;
print digit(nl MOD 10);
WHILE NOT stack is empty
REP

pop nl;

print digit(nl MOD 10)
ENDREP.

make an empty stack:
ROW 12 INT VAR stack;
INT VAR top:: O.

stack is empty:
top < 1.

We have assumed here that the integer range is such
that the number has at most 12 digits. We therefore do
not have to check explicitly that top does not become
too large.

push ni:
top INCR 1;
stack[top] := nl.

pop nl:
nl:= stack[top];
top DECR 1.

ENDPROC print number;

16.3.3 Using an inverse function

A simpler solution without the use of a stack is possible
when the following two conditions are met:

e Besides the algorithm f(x) we also have its in-
verse, g(y), such that for any x in the range
g(f(x)) = x.

e The function f(x) is strictly monoton (which is
the usual case in programming practice).

If these conditions are met we can transform the recur-
sive procedure to:

PROC p (INFO CONST x):
INFO VAR x1:: x;
WHILE c(x1)

REP

n(x1);

x1:= f(x1)
ENDREP;
d(x1);
WHILE x1 <> x
REP

xl:= g(x1);

m(x1)
ENDREP

ENDPROC p;

This transformation is preferable when the computa-
tion of the inverse of f is “cheaper” than the use of a
stack.

We can see the formulation with a stack as a gen-
eral technique to memorize the inverse rather than to
compute it.

In the case of the procedure print number the first
condition is not met since in x1:= x1 DIV 10 infor-
mation (namely, the remainder) is lost that cannot be
recovered. Of course it must be possible to find an it-
erative version, based on division by suitable powers of
ten, but this cannot be obtained in an evident fashion
by rewriting the procedure in the form given. This is
caused by the fact that in a sense we have not given
enough information explicitly as a parameter.

16.3.4 Complete parametrization

The INFO parameter in the transformation schemes
given is conceptually one single object that however
may often have to be realized as more than one Elan-
object. In this case the procedure obtains more than
one parameter (or a composed object as a parameter).
These parameters together must contain all informa-
tion that plays a role in the recursion. In the previous
example this can be achieved as follows.

Rather than dividing n repeatedly by 10, we intro-
duce an extra parameter, the power of ten by which we
want to divide, and leave n unchanged. To this end we
declare a completely parametrized recursive auxiliary
procedure to which we shall give the tremendous name
print numberl.

PROC print number (INT CONST n):
print numberl(n, 1)
ENDPROC print number;

134

PROC print numberl (INT CONST n, power of
ten):
IF n DIV power of ten >= 10
THEN
print numberl(n, 10 * power of ten);
print digit(n DIV power of ten MOD
10)
ELSE
print digit(n DIV power of ten)
FI
ENDPROC print numberl;

In comparison to the scheme given above, the parame-
ter INFO CONST x has been split into two objects INT
CONST n, power of ten. The (symbolic) assignment
x1 := f(x1) of the pattern must therefore be realized
as two assignments, one for each of the components.
Also, n(x1) turns out to be empty, so that only this
assignment ends up in the first repetition.

Applying this transformation to print numberil
leads to:

PROC print numberl (INT CONST n, power of
ten):
INT VAR nl:: n, power of tenl::
of ten;
WHILE n1 DIV power of tenl >= 10
REP
nl:=

power

ni;
power of tenl:= 10 * power of tenl
ENDREP;
print digit(nl DIV power of tenl MOD
10);
WHILE n1 <> n OR power of tenl <> power
of ten
REP
nl:= nil;
power of tenl:= power of tenl DIV 10;
print digit(nl DIV power of tenl MQOD
10)
ENDREP
ENDPROC print numberl;

The procedure print numberl is now iterative and is
called only once. We substitute its body for the call
in print number, remove the spurious variable n1 and
make some further small simplifications with as result:

PROC print number (INT CONST n):
INT VAR power of ten:: 1;
WHILE n DIV power of ten >= 10
REP
power of ten:= power of ten * 10
ENDREP;
print digit(n DIV power of ten MOD 10);
WHILE power of ten <> 1
REP
power of ten:= power of ten DIV 10;
print digit(n DIV power of ten MQOD
10)
ENDREP
ENDPROC print number;

A further simplification is possible but this is already
a quite respectable iterative program.

16.3.5 Other methods to remove recur-
sion

In closing we want to mention two other points of view
from which a transformation of recursion to iteration
with the aid of a stack can be performed.

The first point of view is the incarnation stack: as-
sociate with every incarnation of the procedure one el-
ement in the stack, that comprises both the values of
the parameters and its eventual local variables. A call
of the procedure is turned into a repetition of the body
of that procedure after the element belonging to the
current incarnation has been stacked. After each rep-
etition of the body one element is popped.

Yet another point of view is possible: looking upon
the stack as a set of tasks to be performed. As an
example, in a iterative version of Quicksort the stack
will contain a number of intervals yet to be sorted.

We will not elaborate on these ideas because the re-
sult resembles greatly the use of the stack already men-
tioned, only the motivation is different.

16.4 Conclusion

It is not the intention of the transformations given to
serve as a complete recipe, but to show the essence
of such transformations. In every concrete case some
brainracking and legwork will be necessary before such
a transformation succeeds. Some further transforma-
tion rules can be found in [BIR77].

As long as our translators do not become apprecia-
bly smarter and as long as computing time is more
expensive than human time, there may be situations
in which it may be worthwhile to rewrite a recursive
algorithm in an iterative version.

The elimination of recursion from an algorithm has
a very limited effect on its speed. Often however it is
possible to eliminate simultaneously the (implicit) use
of a stack for the recursion (which concludes in using
less memory).

The correctness of the resulting iterative algorithm
is generally difficult to see, but can be guaranteed by
starting out with a correct recursive version and trans-
forming this while retaining correctness. A number
of important algorithms have had such a development
history.

Increasingly a specific school of programming
methodology is developing, that looks upon program-
ming as a repeated transformation process (from idea
via formal specification via correct but inefficient re-
alization to correct and also efficient realization). An
exposition of this attitude can be found in [BAU76).

16.5 Exercises

1. Eliminate also the mid-

135

dle recursion from quicksort by making use of
a stack. This can most simply be done by tem-
porarily introducing an auxiliary procedure PROC
quicksortl (INT VAR p, q) which is explicitly
parametrized with the boundaries p and q and has
global access to the row f.

. Eliminate the middle recursion from the program
for the 8 Queens. A separate stack turns out to be
unnecessary because the row column queen can
play that role. Then compare the result with that
in [WIRT1].

. Eliminate for as far as possible the recursion from
a procedure computing the Ackermann function

ack(m,n) =
m =0 - n+l
m#0,n=0 — ack(m-—1,1)
m#0,n#0 — ack(m—1,ack(m,n—1))

This exercise demands quite a lot of inventiveness

and perseverance. Further information about this
function can be found in, for example, [SUNT1].

136

Appendix A

Grammar of Elan

The following context-free grammar of Elan is
a paraphrase of the official syntactic description
[HOMT9], in which the terminology at a number of
places is chosen differently, and including a few revi-
sions of the syntax that have later been agreed upon
by the Elan community.

We give a complete context-free grammar in the no-
tation of chapter 11. It can be seen as a recapitulation
of the syntax diagrams that occur here and there in
the text, but it also contains those constructs of Elan
that have not yet been introduced.

There is a good reason why we do not simply reprint
the syntax diagrams: the mechanism of syntax dia-
grams has the advantage of being immediately obvi-
ous to the beginner, but it has the danger that great
amounts of information can be introduced in one pic-
ture, while the abstraction (in the form of useful in-
termediate concepts) is lost. The use of a context-free
grammar is much more conducive to a careful “refin-
ing” of the concepts than the use of pictures, whilst re-
taining the overall view. Furthermore there exist many
people (like the author) who can better memorize a
hierarchical system of carefully formalized definitions
than collections of two-dimensional pictures.

A.1 Syntactic abbreviations

In order to keep this syntax short and concise, we make
use of a number of conventions for omitting redundant
rules. For example, in the grammar we shall need the
concept of a list of identifiers, with a syntax rule like

identifier—list:
identifier;
identifier, comma—token, identifier—list.

But we shall also have unit—list, with a similar rule;
and there will be still more forms of lists. We therefore
introduce the convention that for any notion of the
form N—list (in which N stands for some word) we can
assume

al) N—list: N; N, comma—token, N—list.

Applied to the word unit, this leads to
unit—list:
unit;
unit, comma—token, unit—Iist.

Of course this is yet another device to increase the ab-
straction and enhance the readability of the grammar.
Further abbreviations are:

a2) N—option: N; .
Something that is optional may be left out.
a3) N—sequence: N; N, N—sequence.

A sequence of things consists of one or more of those
things, one after another. Notice the difference: in
an N—list there is a separator, the comma—token, be-
tween two consecutive elements, but there is no sepa-
rator in an N—sequence.

a4) N—pack: open—token, N—list, close—token.
A pack is a list enclosed between parentheses.
a5) N—token: comment—option, N-symbol.

This rule expresses the fact that a comment is allowed
before each symbol — although most symbols will not
be preceded by a comment. At the end of this chapter,
the representations of symbols are listed.

A.2 Programs and packets

elan-program:
packet—sequence—option, main-packet.

In the sublanguage Elan-0 packets have not been im-
plemented.

packet:
packet-head, packet-body, packet-tail.

packet-head:
packet—token,
colon—token.

packet-name, packet-interface,

packet-interface:
export-interface.

Elan has no explicit import-interfaces. A packet im-
plicitly imports everything that preceding packets have
exported.

export-interface:
defines—token, export-name—list.

137

The export-interface contains the names of those en-
tities, defined in the packet, that are made visible in
subsequent packets. Refinements and variables can not
be exported.

packet-body:
packet-paragraph, refinement-train—option;
packet-paragraph, refinement-train—option,
period—token, packet-body—option.

packet-paragraph:
packet-unit;
packet-unit, semicolon—token, packet-paragraph.

packet-unit:
basic-declaration;
closed-declaration;
expression.

Closed-declarations can only occur in a packet-
paragraph. They form the Bottom-Up part of the
packet.

packet-tail:
end-packet—token,
semicolon—token.

packet-name—option,

main-packet:
packet-body.

An Elan-1 program has the form of a packet-body.

A.3 Procedures and operators

procedure-declaration:
procedure-head, procedure-body, procedure-tail.

procedure-head:
result—option, proc—token, procedure-name,
formal-parameter-specification—pack—option,
colon—token.

result:
type-declarer.

formal-parameter-specification:
formal-declarer, formal-parameter-name—list.

procedure-body:
paragraph, refinement-train—option.

An Elan-0 program has the form of a procedure-body.

paragraph:
unit;
unit, semicolon—token, paragraph;

A paragraph obtains the type and yields the value of
its last unit. Notice that a paragraph may be empty, in
which case it yields no value and is of the (hypothetical)
type VOID.

unit:
basic-declaration;
expression.

procedure-tail:
end-proc—token, procedure-name—option.

operator-declaration:
operator-head, operator-body, operator-tail.

operator-head:
result—option, op—token, operator-name,
formal-parameter-specification—pack, colon—
token.
operator-body:
procedure-body.

operator-tail:
endop—token, operator-name—option.

A.4 Refinements

refinement-train:
period—token, refinement, refinement-train—option.

refinement:
refinement-head, refinement-body.

refinement-head:
refinement-name, colon—token.

refinement-body:
paragraph.

A.5 Declarations

The scope of a declaration occurring in a procedure-
body is that procedure-body; the scope of a declaration
occurring outside a procedure-body is the directly sur-
rounding packet and (where the object-declarer is ex-
ported) all following packets.

basic-declaration:
object-declaration;
synonym-declaration.

A basic-declaration is a VOID unit.

object-declaration:
object-declarer, object-association—list.

object-association:
object-name, object-initialization—option.

A variable may have an initialization, but a constant
must have one.
object-initialization:
initial—token, expression.

synonym-declaration:
let—token, synonym-association—list.

synonym-association:
synonym-value-association;
synonym-type-association.

synonym-value-association:
synonym-value-name, equal—token, denoter.

synonym-type-association:
synonym-type-name, equal—token, type-declarer.

closed-declaration:
procedure-declaration;
operator-declaration;
type-declaration.

138

The closed-declaration is not implemented in Elan-0.

type-declaration:
type—token, type-association—list.

type-association:
type-name, equal—token, type-declarer.

A.6 Declarers

object-declarer:
type-declarer, access-declarer—option.

access-declarer:
const—token;
var—token.

A missing access-declarer is assumed to be CONST.

type-declarer:
elementary-type-declarer;
composed-type-declarer.

elementary-type-declarer:
concrete-type-declarer;
abstract-type-declarer.

concrete-type-declarer:

int—token;
real—token:
bool—token;
text—token.

abstract-type-declarer:
type-name.

composed-type-declarer:
row-declarer:
struct-declarer.

row-declarer:
row—token, cardinality, type-declarer.

cardinality:
denoter;
synonym-value-name.

The cardinality of a row must be of type INT, and either
a denoter or a synonym for one.

struct-declarer:
struct—token, field-specification—pack.

field-specification:
type-declarer, field-name—Ilist.

formal-declarer:
object-declarer;
procedure-declarer.

procedure-declarer:
result—option, proc—token, parameter-declarer—
pack—option.

parameter-declarer:
formal-declarer.

A.7 Expressions

An expression is a formula, which is either a primary,
or is composed of other formulae by means of opera-
tors, according to their priorities. In appendix B, the
available operators are listed, together with the types
of their operands and results.

expression:
priority-i-formula.
priority-i-formula:
priority-ii-formula, rest-priority-i-formula.

rest-priority-i-formula:
priority-i-operator, priority-i-formula;

priority-ii-formula:
priority-iii-formula, rest-priority-ii-formula.

rest-priority-ii-formula:
priority-ii-operator, priority-ii-formula;

priority-iii-formula:
priority-iii-i-formula, rest-priority-iii-formula.
rest-priority-iii-formula:

priority-iii-operator, priority-iii-formula;

priority-iii-i-formula:

rest-priority-iii-i-formula:
priority-iii-i-operator, priority-iii-i-formula;

priority-iii-ii-formula:

priority-iii-iii-formula, rest-priority-iii-ii-formula.
rest-priority-iii-ii-formula:

priority-iii-ii-operator, priority-iii-ii-formula;
priority-iii-iii-formula:

priority-iii-iii-i-formula, rest-priority-iii-iii-formula.
rest-priority-iii-iii-formula:

priority-iii-iii-operator, priority-iii-iii-formula;
priority-iii-iii-i-formula:

priority-iii-iii-ii-formula, rest-priority-iii-iii-i-formula.
rest-priority-iii-iii-i-formula:

priority-iii-iii-i-operator, priority-iii-iii-i-formula;
priority-iii-iii-ii-formula:

priority-iii-iii-iii-formula, rest-priority-iii-iii-ii-formula
rest-priority-iii-iii-ii-formula:

priority-iii-iii-ii-operator, priority-iii-iii-ii-formula;
priority-iii-iii-iii-formula:

monadic-operator, priority-iii-iii-iii-formula;

primary.

139

A.8 Primaries

primary:
compact-primary;
open-primary.

compact-primary:
simple-primary;
closed-primary.

simple-primary:
denoter;
entity-name.

closed-primary:
choice;
repetition;
display;
open—token, expression, close—token.

choice:
conditional-choice:
numerical-choice.

conditional-choice:
if—token, condition, then-part, else-part—option,
end-if—token.

condition:
expression.

A condition must have type BOOL.

then-part:
then—token, paragraph.

else-part:
else—token, paragraph;
elif—token, condition, then-part, else-part—option.

numerical-choice:
select—token, expression, of—token,
case-part—sequence, otherwise-part—option, end-
select—token.

The expression after the select—token must have type
INT.
case-part:
case—token, case-label—list, colon—token, para-
graph.

case-label:
denoter;
synonym-value-name.

otherwise-part:
otherwise—token, paragraph.

repetition:
for-part—option, while-part—option, repeat—token,
repetition-body, until-part—option, end-repeat—
token.
for-part:

for—token, variable-name,
direction-part—option.

from-part—option,

from-part:
from—token, expression.

direction-part:
upto—token, expression;
downto—token, expression.

while-part:
while—token, condition.

repetition-body:
paragraph.

until-part:
until—token, condition.

display:
sub—token, expression—list, bus—token.

open-primary:
call;
subscription;
selection;
abstractor;
concretizer;
terminator.

call:
primary,
close—token.

open—token, actual-parameter—Ilist,

The primary must be a procedure, to which the actual
parameters agree in number and type.

actual-parameter:
expression;
procedure-declarer, procedure-name.

subscription:
primary, sub—token, expression, bus—token.

The primary must be (or yield) a row. The expression
must be of type INT.

selection:
primary, period—token, field-name.

The primary must be (or yield) a structure, and the field
name must be the name of one of its fields.

abstractor:
type-name, colon—token, compact-primary.

The abstractor serves to denote abstract values.

concretizer:
concr—token, compact-primary.

The concretizer serves to break the abstraction of a
value and to obtain its realization.

terminator:
leave—token, algorithm-name, premature-result—
option.

A refinement x may be left either from within itself,
or from within one of the refinements that x directly
or indirectly invokes. The premature-result yields the
value, if any, that is yielded by the refinement left.

premature-result:
with—token, compact-primary.

140

A.9 Names

export-name:
constant-name;
procedure-name;
operator-name,
type-name.

formal-parameter-name:
variable-name;
constant-name;
procedure-name.

entity-name:
object-name;
procedure-name;
refinement-name;
synonym-value-name.

algorithm-name:
procedure-name;
operator-name,
refinement-name.

object-name:
constant-name;
variable-name.

constant-name:
identifier.

variable-name:
identifier.

procedure-name:
identifier.

refinement-name:
identifier.

synonym-value-name:
identifier.

field-name:
identifier.

packet-name:
identifier.

type-name:
bold-identifier.
synonym-type-name:
bold-identifier.
bold-operator-name:
bold-identifier.
operator-name:
bold-identifier;
special-identifier.

identifier:

letter, letgit—sequence—option.

letgit:
letter:
digit.

bold-identifier:

bold-letter, bold-letter—sequence—option.

special-identifier:
equal—token;
not-equal—token;
less—token;
less-equal—token;
greater—token;
greater-equal—token;
plus—token;
minus—token;
asterix—token;
divide—token:
int-div—token;
obelix—token:;
becomes—token;
initial—token.

A.10 Operators

priority-i-operator:
becomes—token.

priority-ii-operator:
bold-operator-name.

priority-iii-operator:
or—token:;
xor—token.

priority-iii-i-operator:
and—token.

equal—token;
not-equal—token;
less—token;
less-equal—token;
greater—token;
greater-equal—token.

priority-iii-iii-operator:
plus—token;
minus—token.

priority-iii-iii-i-operator:
asterix—token;
divide—token;
int-div—token;

modulo—token.
priority-iii-iii-ii-operator:
obelix—token.

Because the asterix—token happens to

be an aster-

isk, the unwieldy sign for exponentiation obtained the

name obelix—token.
monadic-operator:
not—token;
plus—token;
minus—token;
bold-operator-name.

A.11 Denoters

denoter:

comment—sequence—option, denotation.

141

denotation:
int-denotation;
real-denotation;
bool-denotation;
text-denotation.

int-denotation:
digit—sequence.

real-denotation:
digit—sequence, period-symbol,
digit—sequence, exponent-part—option.

exponent-part:
exponent-symbol, sign—option, digit—sequence.

sign:
plus-symbol;
minus-symbol.

bool-denotation:
true-symbol;
false-symbol.

text-denotation:
quote-symbol, text-item—sequence—option, quote-
symbol.

text-item:
quote-image;
character-image;
any-character-except-quote-symbol.

quote-image:
quote-symbol, quote-symbol.

character-image:
quote-symbol, digit—sequence, quote-symbol.

The character-image serves to denote a character with
a specific code (indicated by the digit—sequence).

A.12 Comments

According to the abbreviation rule a5), any symbol
may be preceded by a comment. A comment has no
meaning within the language (but it may be useful for
other reasons).

comment:
comment-open-symbol, comment-item—sequence—
option,
comment-close-symbol.

comment-item:
(* any symbol other than a comment-open-symbol
or comment-close-symbol

A.13 Representations

The representations of the symbols mentioned are as
follows:

142

packet-symbol PACKET
endpacket-symbol ENDPACKET END PACKET
defines-symbol

DEFINES
colon-symbol :
comma-symbol ,
semicolon-symbol
period-symbol .
PROC

proc-symbol

end-proc-symbol ENDPRQOC END PROC

op-symbol 0)3

end-op-symbol ENDOP END OP

open-symbol (

close-symbol)

sub-symbol [

bus-symbol]

initial-symbol :

equal-symbol =

let-symbol LET

type-symbol TYPE

int-symbol INT

real-symbol REAL

bool-symbol BOOL

text-symbol TEXT

row-symbol ROW

struct-symbol STRUCT

const-symbol CONST

var-symbol VAR

if-symbol IF

end-if-symbol FI ENDIF END IF

then-symbol THEN

else-symbol ELSE

elif-symbol ELIF

select-symbol SELECT

of-symbol OF

end-select-symbol ENDSELECT END SELECT

case-symbol CASE

otherwise-symbol ~ OTHERWISE

repeat-symbol REP REPEAT

end-repeat-symbol ENDREP ENDREPEAT
END REP END REPEAT PER

for-symbol FOR

from-symbol FROM

upto-symbol UPTO

downto-symbol DOWNTO

while-symbol WHILE

until-symbol UNTIL

concr-symbol CONCR

leave-symbol LEAVE

with-symbol WITH

becomes-symbol :=

or-symbol OR

xor-symbol X0R

and-symbol AND

not-equal-symbol
less-symbol
less-equal-symbol
greater-symbol
greater-equal-symbol
plus-symbol
minus-symbol
divide-symbol
int-div-symbol
modulo-symbol
asterix-symbol
obelix-symbol
not-symbol
quote-symbol
comment-open-symbol
comment-close-symbol

DIV
MOD
%

* %

NOT

{
}

[

€
*)

143

144

Appendix B

Standard packets

A number of concrete algorithms, objects and types B.2 Integer
is available in Elan thanks to the standard packets,
which (are supposed to) precede the program itself and . TYPE INT
whose exports are therefore available in the program.
In particular, this is the way in which the four concrete
types and their operations are introduced.

. PROC get (INT VAR x):
. PROC put (INT CONST x):

The following overview shows the most important . BOOL OP = (INT CONST x, y):
standard algorithms, objects and types of Elan in the . BOOL OP <> (INT CONST x, y):
forms of declarations or of (procedure or operator) . BOOL OP < (INT CONST x, y):
headings. From the headings can be deduced for what . BOOL OP <= (INT CONST x, y):
types of arguments the various operations are defined, . BOOL OP > (INT CONST x, y):
and what their resulting type is. . BOOL OP >= (INT CONST x, y):

By means of a dot in the left margin we shall indicate
that the particular declaration is also part of Elan-0. . INT OP + (INT CONST x, y):
The Elan-1 and EUMEL implementations include the . INT OP - (INT CONST (x, y):
full standard prelude. Similarly, a plus in the margin . INT 0P * (INT CONST x, y):
will indicate a (non-standard) extension, available in . INT OP DIV (INT CONST x, y):
Elan-0 and Elan-1. . INT OP MOD (INT CONST x, y):

INT OP ** (INT CONST x, y):
B.1 Priorities of operators . INT OP + (INT CONST x):

. INT OP - (INT CONST x):
The following list shows the priorities of all operators
of the ELAN standard packets, using 10 as the highest
level of priority and 1 as the lowest.

. OP INCR (INT VAR x, INT CONST y):
. OP DECR (INT VAR x, INT CONST y):

INT OP SIGN (INT CONST x):
. INT OP ABS (INT CONST x):
). INT PROC sign (INT CONST x):
INT PROC abs (INT CONST x):

1. The assignment := (including the initialization

2. All abstract dyadic operators (i.e. those defined by

the user) as well as SUB and the assigning opera- BOOL PROC even (INT CONST x):
tions INCR, DECR and CAT. BOOL PROC odd (INT CONST x):
3. OR XOR INT PROC max (INT CONST a, b):
INT PROC min (INT CONST a, b):

4. AND
INT PROC trunc (REAL CONST x):
5. = <> INT PROC round (REAL CONST x):

INT PROC int (TEXT CONST x):
6. <= < >= >

INT CONST maxint
7. Dyadic + and -.

8. % / DIV MOD B.3 Real
9. *x* In Elan-0, the type REAL with its operators is not im-
plemented.

10. All monadic operators, such as +, -, LENGTH, ABS,
SIGN and NOT. TYPE REAL

145

PROC get (REAL VAR x):
PROC put (REAL CONST x):

BOOL 0P = (REAL CONST x, y):
BOOL OP <> (REAL CONST x, y):
BOOL OP < (REAL CONST x, y):
BOOL OP <= (REAL CONST x, y):
BOOL OP > (REAL CONST x, y):
BOOL 0P >= (REAL CONST x, y):

REAL QP + (REAL CONST x, y):
REAL OP - (REAL CONST x, y):
REAL OP * (REAL CONST x, y):
REAL OP / (REAL CONST x, y):
REAL QP / (INT CONST x, y):
REAL QP MOD (REAL CONST x, y):

REAL OP ** (REAL CONST x, INT CONST y):

REAL OP ** (REAL CONST x, y):

REAL OP + (REAL CONST x):
REAL QP - (REAL CONST x):

OP INCR (REAL VAR x, REAL CONST y):
0P DECR (REAL VAR x, REAL CONST y):

INT OP SIGN (REAL CONST x):
REAL OP ABS (REAL CONST x):
INT PROC sign (REAL CONST x):
REAL PROC abs (REAL CONST x):

REAL PROC max (REAL CONST a, b):
REAL PROC min (REAL CONST a, b):

REAL PROC real (INT CONST x):
REAL PROC real (TEXT CONST x):

REAL CONST smallreal, maxreal

REAL CONST pi

REAL PROC sqrt (REAL CONST x):
REAL PROC sin (REAL CONST x):
REAL PROC cos (REAL CONST x):
REAL PROC tan (REAL CONST x):
REAL PROC arctan (REAL CONST x):
REAL PROC arccos (REAL CONST x):
REAL PROC arcsin (REAL CONST x):

REAL CONST e
REAL PROC exp (REAL CONST x):
REAL PROC 1n (REAL CONST x):

REAL PROC logl0 (REAL CONST x):
REAL PROC log2 (REAL CONST x):

B.4 Text

. TYPE TEXT

. PROC get (TEXT VAR t):
PROC get (TEXT VAR t, INT CONST
maxlen) :
PROC get (TEXT VAR t, TEXT CONST
delimiter):
. PROC put (TEXT CONST t):

. BOOL OP = (TEXT CONST x, y):
. BOOL OP <> (TEXT CONST x, y):
. BOOL OP < (TEXT CONST x, y):
. BOOL OP <= (TEXT CONST x, y):
. BOOL OP > (TEXT CONST x, y):
. BOOL OP >= (TEXT CONST x, y):

INT OP LENGTH (TEXT CONST t):
INT PROC length (TEXT CONST t):

. TEXT 0P + (TEXT CONST x, y):
. OP CAT (TEXT VAR x, TEXT CONST y):
. TEXT 0P * (INT CONST i, TEXT CONST t):
TEXT PROC compress (TEXT CONST t):
TEXT PROC text (TEXT CONST t, INT CONST
length):
TEXT PROC text (TEXT CONST t, INT CONST
length, from):
TEXT PROC subtext (TEXT CONST t, INT
CONST from):
TEXT PROC subtext (TEXT CONST t, INT
CONST from, to):
. TEXT 0P SUB (TEXT CONST t, INT CONST
p):
PROC replace (TEXT VAR t,
INT CONST from, TEXT
CONST new) :
PROC change (TEXT VAR t, TEXT
CONST old, new):
PROC change all (TEXT VAR t, TEXT
CONST old, new):
INT PROC pos (TEXT CONST t1, t2):
INT PROC pos (TEXT CONST t1, t2, INT
CONST from):

+ TEXT 0P HEAD (TEXT CONST t):
+ TEXT 0P TAIL (TEXT CONST t):
+ TEXT PROC ascii (INT CONST code):

TEXT PROC text (INT CONST i):
TEXT PROC text (REAL CONST r):

TEXT CONST niltext :: ""
TEXT CONST blank :: " "
TEXT CONST quote :: """"

B.5 Boolean

. TYPE BOOL
. BOOL CONST false, true

B.6.1

The standard file handling is available in the Elan-1
and EUMEL implementations.

. BOOL
. BOOL
. BOOL

BOOL
. BOOL
. BOOL

)3
1)
1)
1)
)3
)3

NOT (BOOL CONST b):

AND (BOOL CONST b1, b2):
OR (BOOL CONST bl, b2):
XOR (BOOL CONST bl, b2):
= (BOOL CONST b1, b2):
<> (BOOL CONST b1, b2):

B.6 File handling

Standard file handling

TYPE FILE, DIRFILE

FILE PROC sequential file
(TRANSPUTDIRECTION CONST d,

TEXT CONST
ident):
FILE PROC direct file
(TRANSPUTDIRECTION CONST d,
TEXT CONST

ident):
TRANSPUTDIRECTION CONST input, output,
update

PROC close

PROC

(FILE CONST f£):

close (DIRFILE CONST f):

PROC
PROC

(FILE CONST f£):
(DIRFILE CONST f£):

erase
erase

PROC
t):

PROC
t):

putline (FILE CONST f, TEXT CONST

getline (FILE CONST f, TEXT VAR

INT PROC maxlinelength (FILE CONST f):

INT PROC maxlinelength (DIRFILE CONST
£):

INT PROC maxpagelength (FILE CONST f):

PROC line (FILE CONST f):

PROC line (FILE CONST f, INT CONST i):

PROC page (FILE CONST f£):

PROC reset (FILE CONST f):

PROC put (FILE CONST f, INT CONST i):

PROC put (FILE CONST f, REAL CONST r):

PROC put (FILE CONST f, TEXT CONST t):

PROC get (FILE CONST f, INT VAR i):

PROC get (FILE CONST f, REAL VAR r):

PROC get (FILE CONST f, TEXT VAR t):

PROC get (FILE CONST f,

TEXT VAR t, TEXT CONST

delimiter):

PROC get (FILE
CONST maxlen):

CONST £, TEXT VAR t,

INT

PROC putline (DIRFILE CONST f, TEXT

CONST key, t):

t):

In standard Elan, a rather comprehensive file handling
system is available, whereas the file handling in Elan-0
is much simpler but not according to the standard.

PROC getline (DIRFILE CONST f,
TEXT CONST key, TEXT VAR

BOOL PROC
BOOL PROC

opened (FILE CONST f£):
opened (DIRFILE CONST f):

BOOL PROC
BOOL PROC
BOOL PROC

new (FILE CONST f):
new (DIRFILE CONST f):
eof (FILE CONST f):

B.6.2 File handling in Elan-0
The file handling in Elan-0, as described in chapter 9

of this book, is small and simple, but not according to

the standard. It is also available in the Elan-1 imple-
mentation.

+

+ + 4+

+

+
=+

+
+
=+

PROC
PROC
PROC
PROC

new file (TEXT CONST name):
old file (TEXT CONST name):
close file :

erase file (TEXT CONST name):

PROC
PROC
PROC

write (INT CONST x):
write (TEXT CONST x):
writeline :

PROC read (INT VAR x):
PROC read (TEXT VAR x):

BOOL PROC file ended:

B.7 Screen handling

. PROC 1line:
. PROC line (INT CONST i):

PROC page:

PROC cursor (INT CONST x,y):
PROC get cursor (INT VAR x, y):
INT CONST max line length

PROC edit (TEXT VAR t, INT CONST p):

B.8 Generating random num-

147

bers

PROC initialize random (INT CONST a):
PROC initialize random (REAL CONST a):
INT PROC random (INT CONST a, b):

REAL PROC random:

INT PROC choosel28:

148

Bibliography

[EXN70]

[HERT71]

[HOM?79)]

[SAMT76]

[PAPSO]

[PATS81]

[ADAT72]

[CRAST]

References chapter Algorithms.

Eva Exner: Braten und Schmoren in
Rdémertopf. Eduard Bay, D 5412 Ransbach,
1970.

H. Hermes: Awufzdhlbarkeit, Entscheidbar-
keit, Berechenbarkeit. Heidelberger Taschen-
biicher, 1971.

A more mathematical treatment of the con-
cept of algorithm can be found, for example,
in this book, giving an introduction to the
theory of algorithms.

G. Hommel
et al.: ELAN Sprachbeschreibung. Akademi-
sche Verlagsgesellschaft, Wiesbaden 1979.
The official description of Elan.

J.E. Sammet: Roster of Programming Lan-
guages for 1974-1975. Communications of
the ACM, Vol. 19, No. 12, pp. 655-699, Dec.
1976.

This article reviews the Babylonian confu-
sion in the area of programming languages.

References chapter Notation of algorithms.

S. Papert: Mindstorms. Children, Comput-
ers, and Powerful Ideas. Basic Books, Inc.,
Harper Colophon Books, 1980.

Gives an account of the philosophy underly-
ing the programming language LOGO and
also, in a much more modest form, underly-
ing our use of Karel as a stepping stone to
algorithmic thought.

Richard E. Pattis: Karel the Robot: a gen-
tle Introduction to the Art of Programming.
John Wiley and Sons, 1981.

An introduction to algorithmics, centered
wholly around Karel.

References chapter The whole numbers.

Richard Adams: Watership Down. Penguin
Books Ltd, Harmondsworth, England 1972.
The life of a number of rabbits in this tur-
bulent world.

D. Craemer: Abstrakte Maschinen und mod-
ulares Programmieren in ELAN. GMD ITF
Bericht, Bonn 1987.

[KLI&5]

[KNU72]

[DAHT74]

[GRATS]

[RALG65)]

[KNU69]

[KNU73]

[MEHS1]

149

L.H. Klingen, J. Liedtke: ELAN in 100
Beispielen. MikroComputer—Praxis. B.G.
Teubner Stuttgart, 1985.

D.E. Knuth: The Art of Computer Pro-
gramming. Vol. 1, Fundamental Algorithms.
Addison-Wesley Publishing Company, 1972.
The limit we quoted in this chapter can be
found on page 613.

References chapter The real numbers.

G. Dahlquist and A. Bjork:
Methods. Prentice Hall, 1974.
A more advanced textbook, containing a col-
lection of important numerical algorithms.

Numerical

J. van der Graft: Introduction to Numerical
Computations. Academic Press, 1978.

Two elementary textbooks on Numerical
Analysis.

A. Ralston: A first Course in Numerical
Analysis. McGraw-Hill, 1965.

References chapter Truth values.

Donald E. Knuth: The Art of Computer
Programming. Vol. 2, Seminumerical Al-
gorithms. Addison-Wesley Publishing Com-
pany, 1969.

Section 4.5.4 of this book gives an extensive
overview of methods to find prime factors of
integers and to decide primality.

References chapter Composed objects: Rows.

D.E. Knuth: The Art of Computer Pro-
gramming. Vol. 3: Sorting and Searching.
Addison-Wesley Publishing Company, 1973.
The standard work on searching and sorting.
One of the two chapters in part 3 of Knuth’s
magnum opus contains a thorough analysis
of a number of sorting algorithms.

K. Mehlhorn: Data Structures and Algo-
rithms 1: Sorting and Searching. Springer
EATCS Monographs on Theoretical Com-
puter Science, 1981.

A solid textbook including much more recent
material.

[HOMS3]

[DAHT72]

[KLES1]

[MEE77]

References chapter Files.

Hommel, Jahnichen, Koster: Methodis-
ches Programmieren. DeGruyter Lehrbuch,
Berlin, 1983.

Chapter 11 of this book describes the file op-
erations of Elan and gives an extensive ex-
ample.

References chapter Procedures.

0.J. Dahl, E.W. Dijkstra, C.A.R. Hoare:
Structured Programming. Academic Press,
1972.

K. Kleine, S. Jdhnichen, W. Koch, G. Hom-
mel: Program construction with abstract no-
tions in ELAN. in: Proceedings 3rd World
Conference on Computers in Education,
Lausanne, North-Holland, 1981.

Deals with Bottom-Up programming.

L.G.L.T. Meertens: Program text and pro-
gram structure. in: Constructing qual-
ity software, P.G. Hibbard, S.A. Schu-
man (eds.). IFIP WG2.1/WG2.4 Con-
ference, Novosibirsk, May 1977. North-
Holland, 1978, pp. 271-283.

An article about the place of refinements in
the development of programs.

References chapter Languages and
grammars.

[ALGOL68] A.van Wijngaarden (ed.): Revised Report

[BARGO]

[WAIS4

[AHOS6]

[WOO70]

[KNU68]

[KOST70]

on the Algorithmic Language ALGOLG6S.
The complete formal definition of a program-
ming language, employing a syntactic for-
malism from which the notation used here
was derived.

Y. Bar-Hillel: The present status of auto-
matic translation of languages. in: Advances
in Computers I, 1960.

W.M. Waite, G. Goos: Compiler Construc-
tion. Springer-Verlag, 1984.

A.V. Aho, R.Sethi, J.D. Ullman: Compilers,
Principles, Techniques and Tools. Addison-
Wesley Publishing Company, 1984.

W.A. Woods: Transition network grammars
for natural language analysis. in: Commu-
nications of the ACM, Vol. 13, 1970.

D.E. Knuth: Semantics of context-free lan-
guages. Mathematical Systems Theory 2,
1986.

C.H.A. Koster: Affiz-Grammars. in: AL-
GOL68 Implementation, North-Holland,
1971.

[EIGS1]

[BURT5]

[FLEG5]

[WIR76]

[FOD8A4]

[PEA9(]

[AHO74]

[D1J76]

[EMB70]

[HOA62]

150

M. Eigen, R. Winkler: Das Spiel. Naturge-
setze steuern den Zufall. Minchen und
Ziirich, 1981.

References chapter Recursive algorithms.

W.H. Burge: Recursive Programming Tech-
niques. Addison-Wesley Publishing Com-
pany, 1975.

A general introduction to recursive algo-
rithms and their application areas.

J.G. Fletcher: A Program to Solve the Pen-
tomino Problem by the Recursive Use of
Macros. Communications of the ACM, Vol.
8, No 10, October 1965.

The pentomino problem is a classic. Gener-
ations of computer scientists have tried with
more or less success to solve this puzzle al-
gorithmically.

N. Wirth: Algorithms + Data = Program.
Prentice-Hall, 1976.
Contains, amongst others, a chapter about
recursive algorithms.

References chapter Computer graphics.

J.D.Foley, A.van Dam: Fundamentals of
interactive computer graphics. Addison-
Wesley publ. cy.,1984.

G. Peano: Sur une courbe, qui remplit toute
une aire plaine. Math. Annln., Vol. 36, pp.
157-160, 1890.

References chapter Recursive sorting.

A.V. Aho, J.E. Hopcroft, J.D. Ullman:
The Design and Analysis of Computer Al-
gorithms. Addison-Wesley Publishing Com-
pany, 1974.

Treats a number of classical algorithms and
analyses their time and space complexity.

E.W. Dijkstra: A Discipline of Program-
ming. Prentice-Hall, 1976.

On the stepwise construction of algorithms
from their specifications. Contains a large
number of inspiring examples.

H.M. van Embden: Increasing the Efficiency
of Quick Sort. Communications of the ACM,
Vol. 13, pp. 563-567, 693-694, 1970.

Gives a mathematical analysis and a funda-
mental improvement of the Quicksort algo-
rithm.

C.A.R. Hoare: Quicksort. Computer Jour-
nal, Vol. 5, No 1, pp. 10-15, 1962.
The original article.

References chapter Backtrack programming.

[GARG69] Martin Gardner’s New Mathematical Diver-
sions from Scientific American, Allen and
Unwin, London 1969.

[GOL65] S.W. Golomb, L.D. Baumert: Backtrack
Programming. Journal of the ACM, Vol. 12,
No 4, pp. 516-524, October 1965.
A classical article on backtrack program-
ming.

[HOR78] E. Horowitz, S. Sahni: Fundamentals of
Computer Algorithms. Pitman Publishers,
1978.
Contains (amongst other things) an ex-
tended discussion of backtrack programming
and Branch-and-Bound methods.

[KNU75] D.E. Knuth: FEstimating the Efficiency of
Backtrack Programs. Mathematics of Com-
putation. Vol. 29, pp. 121-136, 1975.
An article by the master.

[LAW66] E.L. Lawler, D.E. Wood: Branch-and-
Bound Methods: A Survey. Operations Re-
search. Vol. 14, pp. 699-719, 1966.
A classical article on Branch-and-Bound
methods.

[SLA71] J.R. Slagle: Artificial Intelligence, The
Heuristic Programming Approach. McGraw-
Hill Series in Systems Science, 1971.
On the relation between heuristics and
problem-solving in the context of Artificial
Intelligence.

References chapter Transforming recursion
to iteration.

[BAUT76] F.L. Bauer: Programming as an Evolution-
ary Process. Proceedings of the 2nd Interna-
tional Conference on Software Engineering,
IEEE, 1976.

On the meaning of program transformations
and their place in the programming process.

[BIR77] R.S. Bird: Notes on Recursion Elimination.
Communications of the ACM, Vol. 20, No 6,
June 1977.
A good starting point; the transformation
recursion to iteration lies at the heart of
much modern research in informatics.

[SUNT71] Y. Sundblad: The Ackermann function, a
theoretical, computational and formula ma-
nipulative study. BIT, Vol. 11, pp. 107-119,
1971.

[WIR71] N. Wirth: Program Development by Step-
wise Refinement. Communications of the
ACM, Vol. 14, No 4, April 1971.
Gives, among other things, a direct deriva-
tion of an iterative solution for the 8-Queen
problem.

151

Index

actual-parameter, 81 alternative, 88

assignment, 15 ambiguity, 94

boolean-denotation, 33 approximate heuristic, 125

choice, 53 ASCII, 41

composed-type-declarer, 60 aspect, 105

composed-unit, 51 assignation, 15

conditional-choice, 53 assignment, 15, 18

constant-declaration, 18

constant-name, 16 backtrack algorithm, 125

digit, 13 backtrack method, 125

display, 61 backtrack programming, 123
BASIC, 85

elan-0-program, 84

elan-1-program, 85 BOOL, 33

elementary-type-declarer, 59 b001€3n7':.33

expression, 52 boolean j;, 33
boolean =, 33

fixed-point-numeral, 25
floating-point-numeral, 25
formal-parameter-part, 81
integer-denotation, 13
name, 16

numeric-choice, 55
object-declaration, 52
operand, 52

paragraph, 51
procedure-body, 80
procedure-call, 81
procedure-declaration, 80
procedure-head, 80
procedure-tail, 80
real-denotation, 25
repetition, 56 CASE, 54
row-declarer, 61 case clause, 54
subscription, 60 CF grammar, 87

boolean AND, 34

boolean auxiliary variable, 36
boolean conjunction, 34
boolean disjunction, 34
boolean equality, 33
boolean exclusive OR, 34
boolean inequality, 33
boolean negation, 34
boolean NOT, 34

boolean OR, 34

boolean XOR, 34
bottom-up programming, 79
bound, 127
branch-and-bound, 127

synonym-declaration, 63 character, 39
terminator, 36 choice. 8. 53
text-denotation, 39 COBO’L,’ 83
type-declarer, 59 collateral execution, 3
unit, 51 comment, 37
variable-declaration, 16 comparison operator, 33
variable-name, 16 complexity algorithm, 65
complexity average case, 65
absolute representation error real, 25 complexity best case, 65
access inheritance, 60 complexity worst case, 65
access subscription, 60 composed algorithm, 2
ackermann function, 136 composed object, 2, 59
actual parameter, 79 composed type, 59
ALGOLS6S, i composed unit, 51
algorithm, 1 computed goto, 54
algorithm level of abstraction, 1 computer graphics, 105
alias parameter, 81 condition, 8
alias problem, 82 conditional choice, 53

152

conditional repetition, 8, 54
CONST, 17

constant, 17, 59

constant declaration, 17, 52
constant parameter, 81
context-free grammar, 87, 88
control structure, 7, 51
controlled variable, 55, 56
conversion integer to real, 27
conversion integer to text, 45
conversion last conversion ok, 45
conversion real to integer, 27
conversion real to text, 45
conversion text to integer, 45
conversion text to real, 45
corpus linguistics, 89
correctness algorithm, 3
criterion function, 127

data structure, 59
declaration, 15, 52
declaration effect, 53
declaration scope, 53
DECR integer, 18
delimiter, 10
denotation, 59
denotation boolean, 33
denotation empty text, 39
depth first order, 125
description language, 87
digit, 13

direct production, 88
distribution random, 89
domain, 59

dyadic operator, 18

EBCDIC, 40

edit, 70

edit text, 70

effect choice, 53

effect paragraph, 51

effect procedure, 81
Elan-0, i

Elan-0 program, 84
Elan-1, i

Elan-1 program, 84
elementary algorithm, 1, 2
elementary object, 2
elementary type, 59
ELIF, 53

elimination middle recursion, 132
elimination right recursion, 131
ELSE, 8

encapsulation, 84

end of file, 70

ENDIF, 11

endless loop, 54
ENDPROC, 80

ENDREP, 7
ENDREPEAT, 11
enumeration problem, 123

153

EUMEL, i

exact heuristic, 125

example address list, 70

example binary search, 66
example bubble sort, 65

example circular shift, 43
example counting words, 61
example crossed paper, 41
example deciding primality, 35, 37
example desk calculator, 46
example Dutch national flag, 120
example eight queens, 126
example Fibonacci numbers, 19
example finding maximum, 19
example generative grammar, 90
example insertion sort, 64
example Karel’s morning paper, 5
example mean and variance, 29
example merge sort, 117
example mouse in the maze, 100
example Peano curves, 111
example prime numbers, 35, 37
example print natural number, 133
example quicksort, 118, 132
example radix conversion, 42
example roots of equation, 28
example selection sort, 63
example shortest route, 127
example towers of Hanoi, 98
example trailing blanks, 57
expression, 51

expression language, 84

FALSE, 33

false, 33

FI, 8

fibonacci number, 19
FILE, 69

file, 69

file close, 69

file close file, 70

file erase file, 70

file field, 69

file file ended, 70

file name, 69

file new file, 70

file old file, 70

file open, 69

file prn, 70

file read, 70

file record, 69

file write, 70

fixed point denotation, 25
floating point denotation, 25
formal constant, 81
formal parameter, 79
formal variable, 81
function, 77, 83

generative grammar, 89
generic algorithm, 44

generic procedure, 84 language symbol, 88

genericity, 84 largest integer, 14
global variable, 82 LEAVE, 36
grammar rule, 88 LIFO-list, 133

LIFO-stack, 133
heuristic, 124 limited repetition, 6, 55, 56
hierarchical decomposition, 78 line, 16

LISP, 84
identifier, 15 logical operator, 34
IF, 8 loop postchecked, 54
implication, 34 loop prechecked, 54
impure function, 84 lower bound row, 62
incarnation, 98
incarnation stack, 135 maximum sequence, 19
inclusive OR, 34 maxint, 14
INCR integer, 18 median row, 118
initialization, 15, 52 middle recursion, 132
INT, 13 monadic operator, 18
integer, 13 multiple choice, 53
integer *, 17
integer **, 17 name, 15, 59
integer +, 17 negation, 9
integer -, 17 nested row, 62
integer j, 18 nesting, 8
integer j=, 18 no-value, 33
integer j;, 18 NOT, 9
integer =, 18 notation algorithm, 5
integer ;, 18 notion, 88
integer ;=, 18 numerical choice, 54
integer addition, 17 numerical mathematics, 29
integer at least, 18
integer at most, 18 object, 59
integer decrementation, 18 object declaration, 15, 52
integer denotation, 13 object level of abstraction, 2
integer DIV, 17 optimization problem, 127
integer division, 17 OTHERWISE, 54
integer equal to, 18 output algorithm, 16
integer exponentiation, 17 overflow real, 26
integer get, 16 overspecification, 78
integer graphics, 105
integer greater than, 18 packet, 13
integer incrementation, 18 paragraph, 6, 51
integer input, 16 parallel execution, 3
integer less than, 18 parameter, 2
integer MOD, 17 parameter mechanism, 81
integer multiplication, 17 parametrization complete, 134
integer output, 16 parser, 92
integer overflow, 14 PASCAL, 8

Peano curves, 111
pixels, 105
pocket calculator, 46

integer put, 16
integer range, 14
integer remainder, 17

integer rest, 17 pop stack, 133
integer subtraction, 17 postchecked loop, 10
integer to the power, 17 pragmatics language, 87
integer unequal to, 18 precedence operator, 18
invariant, 125 prechecked loop, 10
iterative algorithm, 98 precision real, 25
predictability random, 89
Karel the robot, 5 printer, 70
priority operator, 18, 52
language, 87, 88 priority SUB, 40

154

probabilistic grammar, 90 real input, 28

procedure, 77, 78 real In, 27
procedure declaration, 79 real logarithm, 27
procedure effect, 83 real maxreal, 26
procedure parameter, 77 real multiplication, 26
procedure-body, 80 real number, 25, 26
procedure-call, 80 real output, 28
procedure-head, 79 real pi, 26
procedure-tail, 80 real power of e, 27
process, 1 real put, 28
processor, 1 real rest, 26
prompt, 75 real round, 27
pseudo random number, 89 real sin, 27

pure function, 83 real sine, 27

push stack, 133 real smaller than, 27

real smallreal, 26
real sqrt, 27

real square root, 27
real subtraction, 26
real tan, 27

real tangent, 27
real trunc, 27
recognizer, 92
recursion, 97
recursion direct, 97
recursion indirect, 97

quote image, 39

radix, 42

random, 90

random choosel28, 90
random initialize random, 90
random integer, 90

random last random, 90
random number, 89

read access, 17

read integer, 70

read text. 70 recursion multiple, 98
REAL. 25_ 26 recursion right, 131

real *,}26 ' recursion simple, 97, 103
real ** 27 recursive algorithm, 97

real +, 26 recursive definition, 91

real -, 26 recursive descent, 92

real /, 26 recursive sort, 117

real |, 27 reduction selection space, 124
real =, 27 reference point, 106

real jj, 27 refinement, 6

real =. 27 rejection criteria selection tree, 124
real L,’27 relative precision real, 26
real j=, 27 REP, 7

real abs, 27 REPEAT, 11

real absolute value, 27 repetition, 2, 54

real addition, 26 representation error real, 25
real arccos, 27 resolution, 105

real arccosine, 27 robustness, 31

real arcsin, 27 robustness procedure, 101
real arcsine, 27 rounding errors, 26

real arctan, 27 ROW, 60

real arctangent, 27 row, 59, 60

real at least, 27 row assignment, 60

real at most, 27 row bound, 62

real cos, 27 row cardinality, 60

real cosine, 27 row declarer, 60

real denotation, 25, 26 row denotation, 61

real division, 26 row display, 61

real equality, 27 row element, 60

real exp, 27 row index, 60

real exponentiation, 27

real get, 28 sample mean, 29

real greater than, 27 sample standard deviation, 29
real inequality, 27 scope declaration, 82

155

scope formal parameter, 82 text output, 41

scope global object, 82 text pos, 44

scope local object, 82 text put, 41, 45
scope procedure-declaration, 82 text quote, 44
SELECT, 54 text smaller than, 40
selection space, 123 text SUB, 40
selection tree, 124 text subtext, 41, 44
semantics language, 87 text TAIL, 41
sentence, 88 text text, 44
sequence, 6 text <=, 40

sequence control structure, 51 text <>, 40

serial execution, 3 text <, 40

side effect, 52, 84 text =, 40

smallest integer, 14 text >=, 40
SNOBOL, 39 text >, 40

sorting in situ, 63 THEN, 8

sorting row, 63 time complexity, 117
space complexity, 117 top-down method, 78
split row, 118, 120 top-down programming, 77
stack, 133 transformation recursion to iteration, 131
standard packets, 13 TRUE, 33

statement language, 83 true, 33

stepwise decomposition, 78 truth value, 33
stepwise synthesis, 79 type, 59
sub-algorithm, 2 type choice, 53
subprogram, 77 type declarer, 59

subroutine, 77

subscription, 60 underflow real, 26

iteh. 54 unit, 7, 51
switch, 5 . UNTIL, 10
symbol representation, 88
symmetry argument, 124 upper bound row, 62
’ UPTO, 7

synonym-declaration, 62
syntax analysis, 92
syntax diagram, 13
syntax language, 87

user interface, 71

value, 59

value choice, 53

value paragraph, 51

value procedure, 79, 81

Van Wijngaarden grammar, 88

terminal production, 88
termination condition, 98

terminator, 36 VAR, 15, 17

TEXT, 39 variable, 15, 59

text, 39 variable declaration, 15, 52
text *, 40 variable parameter, 81
text +, 40

text at least, 40 whole number, 13, 14
text at most, 40 write access, 17

text blank, 44 write integer, 70

text CAT, 40 write text, 70

text change, 45 writeline file, 70

text concatenation, 40

text denotation, 39 yes-value, 33

text equality, 40

text get, 41, 45

text greater than, 40
text HEAD, 41

text inequality, 40
text input, 41

text LENGTH, 40
text length, 40

text multiplication, 40
text niltext, 44

156

