
Elan 1.7 Manual
Manual for the Elan Programming Environmentfor personal computers

November 16, 1998
C.H.A. KosterTh.P. van der Weide

University of NijmegenDepartment of InformaticsThe Netherlands

Elan 1.7 Manual
Manual for the Elan Programming Environmentfor personal computers

November 16, 1998
C.H.A. KosterTh.P. van der Weide

Copyright c1991 University of Nijmegen. All rights reserved.Elan is an educational programming language for learning and teaching systematic pro-gramming. The Elan project group at the University of Nijmegen in the Netherlands hasdeveloped an educational programming environment around Elan. This document is themanual for that programming environment which is herewith made freely available to theinternational computing community for educational purposes. No commercial use is allowedwithout written prior consent from the authors.

ii Elan 1.7 Manual, University of Nijmegen, The Netherlands

IntroductionAbout this manualThis is the user manual for version 1.7 of the Elan Programming Environment developed atthe university of Nijmegen in the Netherlands, which is currently available on various UNIXmachines, MS-DOS machines, Apple Macintosh, Atari and Amiga.This manual gives a short description for the user of the Elan Programming Environment.It assumes the reader to have a good knowledge of programming in algorithmic languages.About the languageElan was developed in 1974 by a group at the Technical University of Berlin (see [1]) as analternative to BASIC in teaching, and approved for use in secondary schools in Germany bythe \Arbeitskreis Schulsprache". It is presently in use in a number of schools in WesternGermany, Belgium, the Netherlands and Hungary for informatics teaching in secondaryeducation, and used at the university of Nijmegen in the Netherlands for teaching systematicprogramming to students from various disciplines and in teacher courses.Elan was especially designed for one speci�c application area: the teaching of system-atic programming. The language is not oriented towards general usage or towards otherapplication areas. It can be seen as a didactic framework embodying a number of ideasabout systematic programming and supporting, through speci�c language mechanisms, thelearning of the two complementary programming styles� Top-Down programming, using suitable control structures and data structures, re�ne-ments, and shorthand declarations; and� Bottom-Up programming, using procedure-, operator- and type-declarations in con-junction with encapsulation and interfaces;as well as a number of related programming styles (recursive programming, modular pro-gramming, syntax-directed programming).Elan is a typical algorithmic language in the ALGOL family, more related to ALGOL68than to PASCAL. The language is not an experiment in language design; both syntacticallyand semantically it is quite conventional. Its control structures are the conventional Dijkstrastructures, in conjunction with a leave-statement. Its data structures are limited to the (�xedsize) row and structure - not as rich as ALGOL 68 but much simpler due to the absence ofthe reference concept.In order to support the learning of systematic programming, it stresses instead the useof abstraction mechanisms. Its striking features are:� The re�nement as a syntactic construct for the support of Top-Down programming;� Declarations for recursive and polymorphic types;iii

iv Elan 1.7 Manual, University of Nijmegen, The Netherlands� Generic and polymorphic procedures and operators for the support of Bottom-Up pro-gramming; and� Packets with explicit interfaces for the support of modular programming.About this implementationThe Elan Programming Environment is a portable environment. On any machine, it willbehave as described here, apart from some frills and idiosyncrasies typical for the machineused (such as self-explanatory pull-down menus, etc.). Therefore it allows a high degree ofmachine independence in producing courseware.The simplest industry standard PC, with at least one oppy drive and 256 K of memory,is su�cient for its use. For people having even smaller computers (like Apple II, Commodore64 and Philips P2000), implementations of the smaller Elan-0 Programming Environmentare available fromKatholieke Universiteit Nijmegen,Informatica/Elan project,Toernooiveld 1,6525 ED Nijmegen, the Netherlands.Email elan@cs.kun.nlIt should be realized that the present version 1.7 is an intermediate product. It is relativelyslow, with severe limitations on the available memory. A more complete implementation ofElan is in preparation, including a compiler back-end. In the mean time the present versionshould be su�cient for most teaching purposes - and it will only get better.Any problems or requests about the Elan Programming Environment can be sent to theabove address. Note however, that the University of Nijmegen gives no warranty, and doesnot promise to correct errors reported in this version.

Elan 1.7 Manual, University of Nijmegen, The Netherlands vBibliographyThe Elan standard is described in:[1] G. Hommel, J. J�ackel, S. J�ahnichen, K. Kleine, W. Koch, C.H.A. Koster,ELAN-Sprachbeschreibung,Akademische Verlagsgesellschaft, Wiesbaden 1979, ISBN 3-400-00384-0.Some Elan textbooks in various languages are:[2] C.H.A. Koster, Top-Down Programming with Elan.Ellis Horwood, 1987, ISBN 0-7458-0187-0.[3] C.H.A. Koster, systematisch leren programmeren,deel 1: Top-Down programmering,Academic Service, 1988, ISBN 90-6233-371-0.[4] C.H.A. Koster, systematisch leren programmeren,deel 2: Bottom-Up programmering,Academic Service, 1991, ISBN 90-6233-382-6.[5] L.H. Klingen, J. Liedtke, Programmieren mit ELAN.Teubner Verlag, Stuttgart 1983, ISBN 3-519-02507-8.Some textbooks using Elan:[6] Baeten et.al., Initiatie in de informatica,handleiding voor de bijscholing leraren secundair onderwijs,2 delen, Acco Leuven/Amersfoort 1985.[7] R. Danckwerts, D. Vogel, K. Bovermann,Elementare Methoden der Kombinatorik, mit Programmbeispielen in Elan,Teubner Verlag, Stuttgart 1985, ISBN 3-519-02529-9.[8] L.H. Klingen, J. Liedtke, Elan in 100 Beispielen,Teubner Verlag, Stuttgart 1985, ISBN 3-519-02521-3.[9] A. Otto, Analysis mit dem Computer,Teubner Verlag, Stuttgart 1985, ISBN 3-519-02528-0.A toolkit for an advanced data structure course can be obtained (in the form of a oppydisc) from the project group in Nijmegen.

vi Elan 1.7 Manual, University of Nijmegen, The Netherlands

Contents
1 An example-session 11.1 Starting... : 11.2 ... and stopping : 21.3 Reading a program : 21.4 Inspecting and executing a re�nement : 31.5 Shifting the focus : 31.6 Modifying a re�nement : 41.7 Saving a program : 41.8 Clearing the memory : 51.9 Directory of �les : 51.10 Entering a new program : 51.11 Automatic guidance of input : 61.12 Entering procedures and types : 71.13 Inspecting the standard library : 81.14 Packets : 91.15 Reading a packet : 91.16 Conclusion : 102 A brief introduction to Elan-0 112.1 Some concepts of programming languages : 112.1.1 Entities : 112.1.2 Elementary and composed entities : 112.1.3 Abstract and concrete entities : 112.1.4 Composition mechanisms : 122.1.5 Where does Elan �t in this taxonomy? : : : : : : : : : : : : : : : : : : 122.2 The notation of algorithms : 122.2.1 Names of algorithms : 122.2.2 Control structures : 122.2.2.1 Sequence : 132.2.2.2 Repetition : 132.2.2.3 Choice : 142.2.2.4 Control structures yielding a value : : : : : : : : : : : : : : : 152.2.3 Re�nement : 152.2.4 Leave-statement : 162.3 The notation of objects : 162.3.1 Declaring objects : 162.3.1.1 Names : 172.3.1.2 Types : 172.3.1.3 Values : 172.3.1.4 Access attributes : 172.3.2 Declarations : 182.3.3 Denotations : 18vii

viii Elan 1.7 Manual, University of Nijmegen, The Netherlands2.3.4 Expressions : 192.3.5 Assignments : 192.3.6 Composed objects: rows : 192.3.7 Synonym declarations : 203 Examples Elan-0 subset 213.1 Horse race : 213.2 Drawing a box : 223.3 Circular shifting : 233.4 Converting numbers into texts : 243.5 Guessing numbers : 253.6 Guess my age : 264 The Elan Programming Environment 294.1 Components of the Elan Programming Environment : : : : : : : : : : : : : : 294.1.1 Modules of the Elan Programming Environment : : : : : : : : : : : : 294.1.2 The memory : 304.1.3 File store : 304.2 The user interface : 304.2.1 Moods : 304.2.2 Commands : 314.2.3 Names : 314.2.4 Focus and prompt : 314.2.5 Program and root : 334.2.6 Initial state : 334.3 The command-mood : 334.4 Reading and editing of programs : 364.4.1 Local editing : 364.4.2 Incremental correction : 374.4.3 Alternative representations : 384.4.4 Break : 384.5 The execute- and related moods : 384.5.1 The checker : 384.5.2 The backtrace-mood : 394.5.3 The trace-mood : 394.5.4 The verify-mood : 405 An overview of Elan 415.1 Programs and packets : 415.2 Declarations : 435.2.1 Bottom-Up declarations : 435.2.1.1 Procedure-declarations : 435.2.1.2 Operator-declarations : 455.2.1.3 Type-declarations : 455.2.1.4 Synonym-declarations : 455.2.2 Top-Down declarations : 465.2.2.1 Re�nements : 465.2.2.2 Object declarations : 465.3 Declarers and the type-system : 475.3.1 Abstract and polymorphic types : 475.3.2 Composed types : 475.4 Paragraphs and their constituents : 485.4.1 Units : 485.4.2 Denoters : 49

Elan 1.7 Manual, University of Nijmegen, The Netherlands ix5.4.3 Names : 505.4.4 Calls : 515.4.5 Subscriptions : 515.4.6 Selections : 525.4.7 Abstractors : 525.4.8 Concretizers : 525.4.9 Terminators : 525.5 Control structures : 535.5.1 Choice : 535.5.1.1 Conditional-choice : 535.5.1.2 Numerical-choice : 535.5.2 Display : 545.5.3 Repetition : 545.5.4 Comments : 556 Examples Elan subset 576.1 Points and line segments : 576.2 Points and line segments example : 596.3 Intersection and projection : 606.4 Intersection and projection example : 61A Standard library 63A.1 Integer : 63A.2 Real : 64A.3 Text : 65A.4 Boolean : 66A.5 File : 66A.6 Screen handling : 67A.7 Graphics : 67A.8 Turtle-graphics : 68A.9 Random numbers : 68A.10 Miscellaneous : 68B Ascii-table 71

Chapter 1An example-sessionThis example session introduces you in a hands-on fashion to the use of the Elan Program-ming Environment. By following the session to the letter you obtain a quick tour of most ofits facilities. If you use a later version than 1.7.2, you might notice some minor di�erences.In this chapter we will mark output from the Elan Programming Environment with aline in the left margin; the input of the user is given without such a mark. The cursor will cursorbe depicted as . In input from the user we will explicitly indicate the \return" or \enter" return keydelete keykey by <RET> and the \delete" key by . The <BREAK> is a special key to notify the break keyElan Programming Environment to stop whatever it is doing. Its realization may well bedi�erent for the various implementations (usually CNTL-C, BREAK-key, special buttons,etc.; read the documentation which is distributed on the oppy disk with the software).1.1 Starting...After you have booted and started the Elan Programming Environment, the following iden-tifying message appears on the screen:| Elan Programming Environment| version 1.7.2| Copyright KUN, Aug 1989||| Free space: 16349|| PACKET standard libraryImmediately underneath you will �nd the focus, i.e. the name of the re�nement that is the focuscurrent focus of interest. The default focus is| program ?The question mark means that program is not the name of a known re�nement, i.e. it hasnot yet obtained a meaning. At the bottom of the screen, on the status line, you �nd the status linemessage| Command, please...indicating what is expected from you. By giving the help-command help-commandhyou are shown on the status line a list of the applicable commands. The commands aredescribed in 4.3. The help-command serves only as a reminder.1

2 Elan 1.7 Manual, University of Nijmegen, The Netherlands1.2 ... and stoppingOnce having learned how to start you must learn how to stop, just like the apprenticesorcerer. You can stop the programming environment by giving the quit-commandquit-command qwhere upon you are asked for a con�rmation| program ? QUIT ?The possible answers (as elicited by the help-command) are y and n. Upon answeringcon�rmation nthe quit-command does nothing and the con�rmation message disappears from your screen.Upon answeringythe programming environment halts and returns control to the system on which it is running.Upon quitting, the program that is then in memory is forgotten (but of course all programsthat have been written to a �le are retained).1.3 Reading a programAs an example we will read, execute and modify the program called race, which can be foundon the distribution diskette containing the Elan Programming Environment. We make surethe oppy disk is inserted and give the read-commandread-command rThe programming environment reacts by asking| Name:The status line now says| Reading...We now have to indicate the name of the �le. Assuming that the �le race from the distri-bution diskette is available, we type inrace<RET>Notice that this time we have to give a <RET> at the end in order to indicate that the name iscompleted. Since commands consist of one single letter they do not need such an indication.The names of the re�nements of the program pass over the screen. Upon completion of thereading, the interpreter gives a view, a list of all known re�nements and an indication of theview remaining memory space. The view shows the calling hierarchy of re�nements.| Free space: 16021|| PACKET standard library|| LET no of horses| program| | start horses| | | display title, put horse at startpos,| | | mark start of track, mark end of track| | choose horse, move horse, finished, display winner|| program:

Elan 1.7 Manual, University of Nijmegen, The Netherlands 3The status line again says| Command, please...This view you now have can also be obtained by giving the list-command list-commandl1.4 Inspecting and executing a re�nementYour current focus, the re�nement program has, by the reading, obtained a value, which canbe displayed on the screen by means of the show-command show-commands| program:| start horses;| REP| choose horse;| move horse| UNTIL finished| ENDREP;| display winner.|| program:The focus is still program, but now its meaning is de�ned, as is shown by the fact that it isfollowed by a : instead of a ?. We can execute the program with this re�nement as root by rootgiving the execute-command execute-commandxJust try it, and see what happens.1.5 Shifting the focusIn order to inspect or execute another re�nement, e.g. start horses, we have to changethe focus by means of the focus-command. focus-commandf| Name:start horses<RET>| start horses:We can now inspect this re�nement by means of the show-command. The focus-command(f) can be used to focus on any name, be it already de�ned or unknown. For focussing onknown names, a shorthand mechanism exists: we may replace the last part of the name by abbreviatednamea *, e.g. start h*<RET>Notice that if we had given a shorter part of the name, e.g. start*<RET> we would havefocussed on the object start conversion instead.

4 Elan 1.7 Manual, University of Nijmegen, The Netherlands1.6 Modifying a re�nementWe will now modify one of the re�nements of the program. We are focussed on starthorses and give the show-commands| start horses:| INT CONST start pos :: 12;| INT CONST end pos :: 50;| ROW no of horses INT VAR horse;| display title;| INT VAR i;| FOR i FROM 1 UPTO no of horses| REP| put horse at start pos;| mark start of track;| mark end of track;| ENDREP.|| start horses:We wish to change the 50 in the second line of the body of the re�nement into 70. To thatend we give the edit-commandedit-command eThe same text appears, with on the status line| Input, please...By means of the cursor keys (marked with arrows) we move the cursor to the right position,cursor keys strike out the 5 by means of the -key and insert a 7 instead. We then strike the<RET>-key to indicate that the modi�cation is complete.We now want to see what e�ect this modi�cation has on the execution of the program.We �rst have to focus again on the rootf| Name:We make use of the shorthand mechanismprog*<RET>| program:By giving the execute-command we can verify that the race track has indeed become a littlelonger now.1.7 Saving a programWe can save the program to a �le by means of the write-commandwrite-command w| Name:On the status line the message| Writing...appears and we have to choose a name for the �le, e.g.

Elan 1.7 Manual, University of Nijmegen, The Netherlands 5longrace<RET>After some time we again obtain the promptprompt | program:1.8 Clearing the memoryWe can clear the whole memory by means of the clear-command clear-commandcwhereupon the interpreter asks for con�rmation| program: CLEAR ?The two possible answers arenwhereupon the command has no e�ect, andywhich causes the interpreter to come back to its initial state with an empty memory.1.9 Directory of �lesThe programs saved in this fashion can be read back from �le into memory by means of theread-command. Since we may in time forget the names of our �les, it is possible to get adirectory, i.e. list of �le names. We obtain this by a somewhat roundabout way, viz. by directorytrying to read a �le that is de�nitively not there, e.g.r| Name:rrrrr<RET>We can now inspect the directory to decide what is the name of the �le we want to read.1.10 Entering a new programIt is of course possible to input a program from scratch. It is not at all advisable to programwhilst sitting in front of the computer screen, so we assume the reader to have written thefollowing little program, that he now wishes to enter into the computer:my first program:read two numbers;print their sum.read two numbers:read first number;read second number.read first number:INT VAR first;put ("First number = ");get (first);line.

6 Elan 1.7 Manual, University of Nijmegen, The Netherlandsread second number:INT VAR second;put ("Second number = ");get (second);line.print their sum:line;put ("Sum = ");put (first + second).After starting the Elan Programming Environment, �rst focus on the name of the re�nementwhich is to serve as the root of the program. Since it is rather hard to change the name ofroot the root once it is chosen, we have to choose it with care.f| Name:my first program<RET>The prompt tells us we have focussed successfully.| my first program ?We now supply a de�nition for the root by means of the editor.e| my first program:|We type: read two numbers;print their sum.<RET>| my first program:The prompt now tells us that the root is a re�nement. Notice that we need not take particularpains to make a nice layout, because the pretty printing function of the show-command willpretty print standardize the layout anyway.s| my first program:| read two numbers;| print their sum.|| my first program:1.11 Automatic guidance of inputThe prospect of entering the remaining re�nements one by one, by �rst focussing on theirname and then using the editor, is rather forbidding. Luckily there is a possibility to avoidall the e�ort of focussing and retyping names: we can be guided by the Elan ProgrammingEnvironment, so that we have to input only the bodies of the re�nements.inputguidance We are focussed on the root and try to execute it.| my first program:xImmediately we are warned of the fact that the �rst re�nement is unknown.

Elan 1.7 Manual, University of Nijmegen, The Netherlands 7| read two numbers| read two numbers| Can't identify Backtrace command, please...We are now in backtrace-mood, and give the edit-commandeThe Elan Programming Environment responds by| read two numbers:|After having entered the body, we return to the root of the program, which we try to executeagain.In this way, we are made to enter one re�nement at a time, until the program is complete.This guidance during input allows us to type most re�nement names only once, thus alleviat-ing one of the drawbacks of Top-Down programming and encouraging the use of meaningfulidenti�ers.1.12 Entering procedures and typesOnce you reach the stage of Bottom-Up programming, you must learn how to input your owntypes, procedures and operators. You do this by �rst focussing on any name (for instancethe name of the type or procedure you want to enter), give the edit-command and then enterthe declaration followed by a semicolon.Some examples. Let us �rst enter a procedure new number.f| Name:new number<RET>| new number ?The Elan Programming Environment takes this for a re�nement name.e| new number:|We edit the text on the screen until we have obtained a complete procedure declaration,followed by a semicolon.INT PROC new number:<RET>INT VAR n;<RET>get(n);<RET>n<RET>ENDPROC new number;<RET>We can now see from the prompt that our focus is a procedureINT PROC new numberAs a second example, let us enter a type-declaration.f| Name:COMPL<RET>| COMPL ?

8 Elan 1.7 Manual, University of Nijmegen, The NetherlandsWe massage this text on the screen into the type-declaration we want to have.TYPE COMPL = STRUCT (REAL re, im);<RET>| TYPE COMPLDo not forget the semicolon at the end.The order of re�nements, type-declarations, procedure-declarations and operator-decla-rations is free, but the �rst re�nement which is entered becomes the root of the program.1.13 Inspecting the standard libraryBy means of the focus- and show-command we can inspect not only the de�nitions which wehave entered ourselves but also those of the standard library. In 4.2.4 the mechanics of thisfacility are explained. We will use it to look at the available addition operations.f| Name:+<RET>| FROM PACKET standard library| TEXT OP + (TEXT CONST a, b)| REAL OP + (REAL CONST a, b)| INT OP + (INT CONST a, b)| REAL OP + (REAL CONST a)| INT OP + (INT CONST a)We observe there are several de�nitions, of which the �rst one is presently the focus. Bymeans of the (repeated) use of the next-commandnext-command nor the up-commandup-command uThe cursor keys might serve the same purpose. We can make any of these de�nitions thefocus. We can inspect it by giving a show-commands| PACKET standard library| TEXT OP + (TEXT CONST a):| CODE 88|| ENDOP +|| FROM PACKET standard library| TEXT OP + (TEXT CONST a, b)| REAL OP + (REAL CONST a, b)| INT OP + (INT CONST a, b)| REAL OP + (REAL CONST a)| INT OP + (INT CONST a)which does not really make us much wiser.A name with more than one de�nition (such as + or put) is called generic.generic name

Elan 1.7 Manual, University of Nijmegen, The Netherlands 91.14 PacketsIn a classroom situation it will not always be the case that a complete program is writtenfrom scratch. Rather the teacher will supply a packet of de�nitions, or even a completeprogram that the pupils have to use. For this reason, the Elan Programming Environmenthas a simple facility for reading packets.By a packet we mean a collection of declarations that the pupils may use in a program packetof their own without the necessity to type them in.For reading these, a variant of the read-command has been introduced, the packet-command (p), which has the property that it keeps the contents of the packet practicallyinvisible: the pupil can inspect but cannot modify or delete them. When, by accident, readinga normal program with this packet-command the program will be read as if a read-commandwas issued.1.15 Reading a packetThe program charles is a packet, not a standard program, since it is protected by aPACKET encapsulation from which it exports some de�nitions. This gives us the oppor- exporttunity to add our own program, in which all the exported de�nitions of the packet can beused. The packet as it were extends the language with a number of concrete algorithms.In order to use this packet charles we �rst read it with the packet-command. Then weread the packet environ in the same way. Finally we read the program morning by meansof a read-command and give the execute-command. Only the de�nitions of this last programcan be modi�ed or deleted in the usual way.A packet usually contains de�nitions that are exported and de�nitions that are usedonly within the packet. The local de�nitions can only be shown by stepping into the packet localusing the into-command. The exported de�nitions can be focussed on everywhere, it doesn't into-commandmatter if you are inside the packet or not. They are, however, not shown by the list-commandif your focus is outside the packet.Below an example using the PACKET standard library. First we focus on the namestandard library.f| Name:standard library<RET>| PACKET standard libraryNow we can step into the packet standard library.i| PACKET standard library|[inventory list of packet]|| ENDPACKET standard library|| PACKET standard library| No packet root.Now you can focus on all the de�nitions within the packet and inspect them. Use theout-command to step out of the packet. out-command

10 Elan 1.7 Manual, University of Nijmegen, The Netherlandso| Free space: 16349|| PACKET standard library||| program ?1.16 ConclusionIn this quick tour we have missed many important aspects of the programming environment,such as� deleting a re�nement, object, type or generic operation;� the incremental syntax check during input of new re�nements;� the backtrace facility for semantic errors;� the edit-on-the-y upon detection of syntactic or semantic errors;� the trace facility;� the packet write facility.We have not discussed useful tricks, such as� how to change the name of a re�nement (take it into the editor, edit its name, deletethe original);� how to inspect the value of a variable or constant after execution of the program (focuson its name and show it);� the use of the <BREAK>-key to halt execution or input.Since these are all consequences of things described in Chapter 4, it may be useful to readthat chapter.

Chapter 2A brief introduction to Elan-0Elan-0 is a small subset of Elan, which is intended for learning systematic Top-Down pro-gramming. The best way to get acquainted with Elan and to appreciate the programmingstyle it aims to support is to start with the Elan-0 subset.This chapter of the manual is intended for readers who already have some experience inprogramming in an algorithmic language. Notice that a careful distinction is made betweenremarks which pertain to Elan as a whole and remarks con�ned to the Elan-0 subset. Inchapter 4 the syntax of the full language (with the exception of packets) can be found, whichis available in the Elan Programming Environment.2.1 Some concepts of programming languagesThe following terminology and concepts are applicable to any programming language, butin particular to Elan, since they lie at the heart of its design. Readers not interested inphilosophy may skip this section.2.1.1 EntitiesA program is a text, viz. the formulation of some algorithm, expressed in a programminglanguage. This text obeys the syntax of the programming language, and according to thatsyntax consists of a nested collection of constructs. Among these constructs, three generalclasses can be distinguished: algorithms, objects and types, which have the distinction thatthey can be denoted by names. The program text consists of such entities, glued together bycontrol structures, data structures and further composition mechanisms such as expressionsand functional application.2.1.2 Elementary and composed entitiesAn entity which is denoted by a name we will term elementary; the others are composed. Itmay very well be that a composed entity at one place of the program obtains a name, bymeans of a declaration, and at other places of the program is denoted by that name. Such adeclaration serves as an abstraction mechanism. Besides a shortening of the program, thisnaming of entities allows the introduction of various levels of abstraction.2.1.3 Abstract and concrete entitiesSome elementary entities belong to the language and are available without further e�ortby the programmer, with their speci�c semantics. These we will term concrete. Others wewill term abstract: they are constructed by the programmer and abstracted by means of a11

12 Elan 1.7 Manual, University of Nijmegen, The Netherlandsdeclaration. We might de�ne programming along these lines as the construction of abstractalgorithms.2.1.4 Composition mechanismsIn the design of an algorithm a programmer should not try to express it in all detail atonce. Instead, the programmer should split it into major parts which can be re�ned in astepwise fashion down to the elementary entities belonging to the programming language.Algorithms are thus composed of other algorithms which in their turn are either composedor elementary.Particular composition mechanisms for the algorithms on the one hand, and the objectsand types on the other hand, are termed control structures and data structures, respectively.2.1.5 Where does Elan �t in this taxonomy?Traditionally, composition mechanisms have been seen as the central mechanisms in sys-tematic (\structured") programming. Elan has rather conventional control structures andrelatively simple data structures. In contrast, in Elan the abstraction mechanisms are seenas the central issue in any programming methodology and consequently highly developed.The Elan Programming Environment further stresses this view by making the de�nitionof abstract algorithms (re�nements) the basis for the development and manipulation ofprograms. It considers a program as a collection of re�nements, rather than one text.2.2 The notation of algorithms2.2.1 Names of algorithmsNames are either the names of concrete algorithms, which means that they are prede�ned inthe Elan Interpreter, or they are introduced by the programmer by the de�nition of abstractalgorithms using re�nements. Here we explain their formation rules.Names for abstract algorithms can be freely invented. Such a name has the form of anidenti�er, consisting of a leading (lower case) letter, followed by letters, digits, and possiblyembedded spaces. The latter serve to enhance the readability of programs. In contrast tofull Elan, such spaces in Elan-0 are considered signi�cant and are part of the name. Someexamples: find upper limitword occurs on this pageNames shall be chosen such that they express concisely what is done by an algorithm, notspelling out in detail how it is performed. Inventing suitable names is a non-trivial task andneeds experience which can be gained only by the study of good examples, exercises, and bythe contemplation of programming problems.2.2.2 Control structuresThe �rst step towards a precise description of algorithms is the use of a collection of stylis-tic patterns for connecting together the algorithmic steps performed in the execution ofprograms. These patterns are called control structures. Elan-0 knows the following:� sequence;� repetition;� choice.

Elan 1.7 Manual, University of Nijmegen, The Netherlands 13The forms available in Elan are also available in most other programming languages. Elanuses a notation with keywords written in upper case. They will be introduced by way ofexamples in the next subchapters.2.2.2.1 SequenceThe sequential execution of the steps of an algorithm is denoted by placing a semicolonbetween them.read the current page ;turn page over ;read the current pageThese are the names of three abstract algorithms to be executed one after the other. Thesemicolon is a separator between them (not a terminator), and can be read as \and then".We call such a sequence a paragraph, and its constituents units. The example paragraphabove contains 3 such units and its execution consists of the execution, in that order, of thethree units. In this way the e�ect of the paragraph is the composition of the e�ects of itsunits. The value of a paragraph (if any) is the value of its last unit.2.2.2.2 RepetitionRepetition can be expressed in a number of ways. An important paradigm of repetition isthe while-loop, e.g.WHILEthe word does not occur on this pageREPlook at the following pageENDREPThe condition between WHILE and REP is a unit which, upon evaluation, yields a truth value(true or false).The paragraph between the keywords REP and ENDREP is executed only if the conditionyields true. After the execution of the paragraph (the \loop-body") the condition is evaluatedagain, and accordingly the loop-body may be executed repeatedly. The execution ends assoon as the condition upon evaluation yields false. For those who prefer more readablekeywords, REP may be also written as REPEAT, and ENDREP as ENDREPEAT.WHILEthe sun is shiningREPhave a drink ;sing another songENDREPIn this kind of repetition a test of applicability is performed before each cycle (\pre-checked-loop"). If in this example it is rainy, the loop-body is never executed, and you have to staysober.For cases where there is always something to be done �rst, and checked for repetitionafterwards (\post-checked-loop") Elan has the following complementary repetitive construct:REPdrink a glass of tea with rum ;sing a christmas carolUNTILit stops snowingENDREP

14 Elan 1.7 Manual, University of Nijmegen, The NetherlandsIn this case the condition which stands between UNTIL and ENDREP is executed after eachexecution of the �rst paragraph, the repetition continues if the condition yields false andstops if the condition yields true.For cases where the number of repetitions is known in advance, Elan o�ers a \counting-loop", also called for-loop.FOR i FROM min UPTO maxREPtally i th entryENDREPThe units min and max yielding integers are evaluated once at the beginning of the for-loop.The controlled integer variable i gets the value of min. As long as i is less or equal tomax, the loop-body between REP and ENDREP is executed, followed by an increment of the\loop-variable" i by one. Within the loop-body i may be used, but not assigned to. Itsvalue is unde�ned after the execution of the for-loop.In case you want to count not upwards, but downwards from a larger value to a smallerone, there is a variant of the counting-loop:FOR nr FROM stock DOWNTO minimumREPsell oneENDREPIn this variant, nr is counted down from stock to minimum. If stock was already belowminimum, then the loop-body is not executed.In case the value of the from-part is one and the controlled variable is of no interest, thefor- and from-parts may be left out, leading to the shorter formUPTO 20REPhit him over the head ;pick him upENDREPA later section will demonstrate the use of the counting-loop in processing rows of dataelements.2.2.2.3 ChoiceChoosing between two alternatives depending on a condition is written in Elan as:IF conditionTHEN part for condition trueELSE part for condition falseFIIf the condition evaluates to true, then the paragraph between THEN and ELSE (the \then-part") is executed, and the rest up to the FI skipped. In the contrary case, the then-part isskipped, and the paragraph between ELSE and FI is executed (the \else-part"). The keywordFI may also be spelled as ENDIF.This primary form of choice has two variations for common needs. If there is nothing todo in the else-part, then the choice can be simpli�ed by leaving out the else-part:IF it looks like rainTHEN take the umbrella with youFI

Elan 1.7 Manual, University of Nijmegen, The Netherlands 15In case the weather is �ne you do nothing (ELSE do nothing was omitted). For decisioncascades likeIF condition 1THEN action 1ELSEIF condition 2THEN action 2ELSEIF...FIFIFIElan o�ers another variant of the choice construction:IF condition 1THEN action 1ELIF condition 2THEN action 2ELIF...ELSE action for all conditions above failingFIAlso in this case, an empty else-part may be omitted.2.2.2.4 Control structures yielding a valueThe execution of a paragraph or a choice can also yield a value, namely that of the last unitexecuted. The paragraphcompute sum of integers 1 to 10 ;that sum + 1suggests that �rst the integers 1, 2, ... 10 are summed up, resulting in a value of 55, andthen the value 56 is yielded by that paragraph. If the last unit of a paragraph yields a value,then the paragraph as a whole yields that value.In case of a choice, the value yielded is that of the paragraph in the then-part or inthe else-part, depending on the condition. These values must have the same type. As anexample, the unitIF a < b THEN a ELSE b FIyields the smaller of the two integer values a and b. Repetitions cannot yield a value.2.2.3 Re�nementThe most striking construct of Elan is the re�nement, a simple mechanism for de�ningabstract algorithms which forms the basis for the Top-Down programming style, which canbe summarized:\A program is developed by �rst giving a rough but potentially correct formu-lation composed of abstract entities. Thereupon each of these abstract entitiesis similarly de�ned, in terms of other abstract and concrete entities, until at lastall necessary abstract entities have a suitable de�nition."

16 Elan 1.7 Manual, University of Nijmegen, The NetherlandsA re�nement gives a name to a paragraph, and looks likename: paragraph.Executing the name of a re�nement means executing its constituent paragraph (its body).The value of the re�nement is the value of its body.In distinction to procedures (which could also in principle be used as re�nements) re�ne-ments may appear in any order, and may in particular appear after any invocation of there�nement. Re�nements can not have parameters, in order to keep the \visual overhead"in their de�nition and application to a minimum. A re�nement does not form a separatescope of naming. Therefore it is possible to put a declaration in one re�nement and use itin another. For these reasons, re�nements are better suited than procedures for capturingthe \eeting abstractions" in programming.In Elan-0, a program consists of one or more re�nements, where the �rst re�nement isthe root of the program. Such programs correspond to procedure-bodies in full Elan.2.2.4 Leave-statementElan has a special mechanism for terminating the execution of a particular re�nement, whichlooks like LEAVE refinement nameThis mechanism can in particular be used to terminate repetitions from the inside.Although it looks much like the infamous goto-statement, the leave-statement is verydi�erent: It does not allow arbitrary continuation of program execution at some other partof the program with all its known dangers, but completes the execution of an algorithm.For this reason, you may name in a leave-statement only a re�nement of whose executionthe execution of the leave-statement is part. It is even possible to leave a re�nement with avalue, by LEAVE refinement name WITH expressionThis causes the re�nement with that name to be left, yielding the value of the expression.2.3 The notation of objectsAlgorithms to be executed on a computer do not work on thin air, but need objects tooperate on. In this chapter we describe what kinds of objects are available in Elan-0, andwhat are the basic algorithms to handle them. Objects occur in programs in two forms:� Elementary objects are variables and constants which come into life by the executionof declarations;� Composed objects are the expressions. Expressions are a convenient notation for thecomputation of values. A particular kind of expression are denotations, a way of writingdown values in the program text.2.3.1 Declaring objectsIn Elan all elementary objects must be declared. This declaration may occur at any placein the program, provided there is only one such place, and in executing the program thedeclaration of an object precedes all its applications. Thus there is no necessity to collectall declarations at the head of the program but declarations can appear at the place wherethey are �rst needed. A declaration may even occur within the body of a loop.A declaration is a unit which introduces an elementary object with four attributes:

Elan 1.7 Manual, University of Nijmegen, The Netherlands 17� a type;� a name;� a value, which may be unde�ned; and� an access right.A declaration makes the name of the object known throughout the whole Elan program.2.3.1.1 NamesThe names of objects are identi�ers, just like those for algorithms, and may be chosen freely,as long as they di�er from the names of any other entities in the program.2.3.1.2 TypesThe type of an object serves two purposes:� It expresses what operations can be applied to the objects in question. In a way, itcontrols that apples cannot be added to oranges;� It determines the internal representation of values in the computer's memory.There are four basic types in Elan, denoted in program texts by the keywords:� INTintegral numbers in the range -2147483647 to 2147483647;� REALreal numbers in a precision of 14 decimals;� BOOLtruth values, true and false; and� TEXTsequences of characters.Furthermore, objects of any type can be composed into one dimensional rows. These com-posed types are discussed in the subchapter on rows.2.3.1.3 ValuesSince values of the various types are kept within the memory of the computer, little canbe said about them. Knowledge of their internal representation is not at all necessaryto understand their relevant properties. It should be noted that the Elan programmingenvironment detects and reports the manipulation of unde�ned values, e.g. an attempt touse the value of an uninitialized variable.2.3.1.4 Access attributesThe access attribute of an object is either VAR or CONST and the objects are correspondinglyclassed as variables and constants. The value of a variable can be changed by an assignment,whereas the value of a constant cannot.

18 Elan 1.7 Manual, University of Nijmegen, The Netherlands2.3.2 DeclarationsA variable declaration may give an initial value to a variable,INT VAR middle :: (1 + max) DIV 2otherwise its initial value is unde�ned, as inVAR xTwo or more variable declarations can be combined into one unitVAR left pointer :: 1 ,right pointer :: max ,middle pointerA constant declaration must give an initial value to a constantINT CONST small :: 4711 ;TEXT CONST capital :: "monaco"Each execution of a declaration causes a new elaboration of the initialization. In this way aconstant may have a di�erent value after each declaration executed. The term \constant" istherefore somewhat misleading: its value is not changeable by an assignment, therefore it isconstant over part or all of the program.2.3.3 DenotationsValues of basic type can be written down (denoted) in a program text by denotations:� INTNatural numbers can be written as a sequence of digits, e.g. 3, 198, 10000 are all threevalid INT denotations.Negative numbers can be written as expressions consisting of a monadic minus operatorand an INT denotation, e.g. -57, as you might have suspected.� REALElan admits the conventional �xed point and oating point representation for (approx-imations) of real numbers, like 3.1415269, 1.3e-8.� BOOLThere are only two values for truth values, which are denoted by the constants TRUEand FALSE respectively. People allergic to capital letters may use the concrete standardconstants true and false instead.� TEXTText denotations consist of sequences of characters enclosed in quotation marks, e.g."Hello world!"All printable characters of your computer are allowed within text denotations. If aquote character is to appear in a text denotation, then it has te be doubled, e.g. "Hesaid ""Don't!""" The empty text consisting of no characters is denoted by "".

Elan 1.7 Manual, University of Nijmegen, The Netherlands 192.3.4 ExpressionsAn expression in Elan is composed in the conventional fashion out of operands, monadicoperators and dyadic operators with brackets to indicate grouping. An operand may inElan-0 be the name of an object, a denotation, a subscription, an invocation of a re�nementor the call of a standard procedure. The priority of operators, from high to low, is as follows:� the monadic operators +, -, NOT, HEAD, TAIL, LENGTH� *, DIV, MOD� dyadic +, -� =, <>, >, >=, <, <=� AND� OR� SUB� INCR, DECR, CAT� the assignment operator :=2.3.5 AssignmentsThe assignment is a unit of the formvar := exprwhere var is a variable of some type and expr an expression of the same type.The assignment serves to change the value of the variable. It is executed by �rst executingthe expression and then making its value the new value of the variable. The value of all othervariables remains unchanged. Thus the assignmentx := x + 1which can be read as \x becomes x plus one" does not mean that in some curious way xbecomes equal to itself plus one, but rather that �rst the sum of the present value of x andone is computed and then that value is made to be the new value of x.2.3.6 Composed objects: rowsIn Elan-0 the only composed objects are (one-dimensional) row-variables and row-constants.A declaration for a row-variable looks likeROW 5 INT VAR weight| | | | name of the variable| | | access attribute| | type of each element| number of elementsAfter this declaration, the row-variable weight has 5 elements, numbered from 1 to 5. Eachelement has an (as yet unde�ned) value of the type INT.The subscriptionrow [i]

20 Elan 1.7 Manual, University of Nijmegen, The Netherlandsdenotes its i-th element provided the value of the expression i (the index) is between oneand the number of elements. A subscription of a row-variable has the access attribute VAR,so it can be assigned to, e.g.weight [i] := 144After this assignment, the element whose index is equal to the value of i, which must be inthe range 1 to 5, is equal to 144. Similarly, a row-constant can be declared likeROW 5 INT CONST first 5 primes ::[2, 3, 5, 7, 11]The construct with the square brackets in this example is a row-display, which acts as adenotation for a row. As with other constant declarations, the initialization (with a row-display or another row) in a row-constant declaration is obligatory. A subscription from arow-constant has the access attribute CONST, so it can not be assigned to.Apart from the possibility of manipulating individual elements of a row, it is also possibleto deal with the row as a whole, e.g. in the assignmentweight := first 5 primesIn assignments and initializations, the number of elements in the left and right hand sidemust match. The elements of a row can in their turn be rows again, with a declaration likeROW 10 ROW 20 INT tableand a subscription liketable [i][j + 1]provided, of course, that 1 <= i <= 10 and 1 <= j + 1 <= 20.2.3.7 Synonym declarationsIn Elan the number of elements (\upper-bound", \cardinality") in a row declaration mustbe given by a denotation, that is, it can not be dependent on the execution of the program.A row therefore has a statically �xed number of elements. (This is something of a nuisancebut reects the fact that rows in Elan do not serve like arrays in other languages. They areintended to be somewhat inexible and primitive, and more convenient data types shouldbe built upon them. In a beginners environment, their simplicity is an advantage).Since this upper bound may have to appear in many places in a program, a mechanismis available which allows the naming of denotations. Such a synonym declaration looks likeLET max = 5which causes the identi�er max to stand for the denotation 5 in suitable places. The identi�ermax can now be used as a denotation, e.g.:ROW max INT VAR weight ;FOR t FROM 1 UPTO maxREPget (weight [t])ENDREPIn this example, the elements of the weight are read successively with the operation get. Asshown in this example, rows and for-loops work together nicely; the use of synonyms assuresthat the same range of index values is used.

Chapter 3Examples Elan-0 subsetThe following examples are intended to give a avour of the Elan-0 subset and of the styleof programming that can be achieved with it. Further examples (and much more advancedexamples) can be found on the distribution disc.3.1 Horse raceThe following program performs a race with 6 horses. It was developed by pupils from aschool in Hungary, under supervision of Peter Hanak. It could be extended with a mechanismto accept bets. The program makes use of the cursor function to organize the layout of thescreen. It uses choose128 to produce (quasi-)random numbers.LET no of horses = 6 ;program :start horses ;REPchoose horse ;move horseUNTILfinishedENDREP ;display winner .start horses :INT CONST start pos :: 12 ;INT CONST end pos :: 50 ;ROW no of horses INT VAR horse ;display title ;INT VAR i ;FOR i FROM 1 UPTO no of horsesREPput horse at startpos ;mark start of track ;mark end of trackENDREP .display title :cursor (endpos DIV 2 , 1) ;put ("H O R S E R A C E") . 21

22 Elan 1.7 Manual, University of Nijmegen, The Netherlandsput horse at startpos :horse [i] := startpos .choose horse :INT CONST ix :: (choose128 MOD no of horses) + 1 .mark start of track :cursor (1 , 2 * i + 1);put (i) ;put ("*") .mark end of track :cursor (endpos , 2 * i + 1) ;put ("|") .move horse :cursor (horse [ix] , 2 * ix + 1) ;put (".*") ;horse [ix] INCR 1 .finished :horse [ix] >= endpos .display winner :cursor (start pos - 1 , 2 * no of horses + 4) ;put ("The winner is horse number:") ;put (ix) ;line (2) .3.2 Drawing a boxThis example is a suitable demonstration for Top-Down programming. How does one drawa box on a conventional screen?draw box :ask size ;draw lid ;draw sides ;draw bottom .ask size :INT VAR size ;line ;put ("size = ") ;get (size) ;line (2) .draw lid :put (size * stripe) ;line .draw sides :INT VAR i ;FOR i FROM 1 UPTO sizeREP draw sliceENDREP .

Elan 1.7 Manual, University of Nijmegen, The Netherlands 23draw bottom : draw lid .stripe : "--" .draw slice :put (pip) ;put ((size - 2) * blank) ;put (pip) ;line .pip : "!!" .blank : " " .3.3 Circular shiftingThe operations on texts HEAD and TAIL that are available in Elan-0 di�er markedly from thestandard operations in the language, being much more list-oriented. In standard Elan theycan be programmed asTEXT OP HEAD (TEXT CONST a) :a SUB 1ENDOP HEAD ;TEXT OP TAIL (TEXT CONST a) :subtext (2 , LENGTH a , a)ENDOP TAIL ;The following program repeatedly rotates its input text by one position until the original isobtained again.rotate :declare texts ;REPshift s circularly ;display sUNTILs = originalENDREP .declare texts :TEXT VAR original ;put ("Text, please?") ;get (original) ;TEXT VAR s :: original .display s :line ;put (s) .shift s circularly :s := (TAIL s) + (HEAD s) .

24 Elan 1.7 Manual, University of Nijmegen, The Netherlands3.4 Converting numbers into textsDesigning a program for conversion between numbers and texts is a good way to get used tothe respective properties of numbers and texts. The program illustrates the use of CAT andSUB.outint :put ("This program converts a positive integer") ;line ;put ("to a given radix in range 1 to 16.") ;line ;ask for radix ;WHILEanother number ;REPrepresent number according to radix ;print representationENDREP.ask for radix :INT VAR radix ;put ("Radix, please:") ;get (radix) ;line .another number :ask for number ;number > 0 .ask for number :INT VAR number ;put ("number, please:") ;get (number) ;line .represent number according to radix :TEXT VAR representation :: "" ;REPisolate a digit ;add this digit to the representationUNTILno more digitsENDREP .isolate a digit :INT CONST digit :: number MOD radix ;number := number DIV radix .add this digit to the representation :representation := representation of digit + representation .no more digits :number = 0 .representation of digit :IF digit > 15THEN "?"ELSE "0123456789ABCDEF" SUB (digit + 1)FI .

Elan 1.7 Manual, University of Nijmegen, The Netherlands 25print representation :put ("Representation = ") ;put (representation) ;line .3.5 Guessing numbersThe following example is due to Leo Geurts (Centrum voor Wiskunde en Informatica, Am-sterdam). By means of the halving algorithm it guesses a number chosen by the humanopponent.how to play :tell the rules ;all numbers 0 to 99 are possible ;REPmake a guess ;wait for reply ;halve the rangeUNTILgood OR impossibleENDREP ;tell result .tell the rules :put ("Think of a number from 0 to 99.") .wait for reply :TEXT VAR reply ;get (reply) ;WHILE reply <> "y" AND reply <> "h" AND reply <> "l"REPline ;put ("Possible answers are y(es), h(igh), l(ow)") ;get (reply)ENDREP .halve the range :IF reply = "l"THENmin := guess + 1ELIF reply = "h"THENmax := guess - 1FI .good :reply = "y" .impossible :min > max .all numbers 0 to 99 are possible :INT VAR min :: 0 ;INT VAR max :: 99 .

26 Elan 1.7 Manual, University of Nijmegen, The Netherlandsmake a guess :INT CONST guess :: (min + max) DIV 2 ;line ;put ("Is it") ;put (guess) ;put ("?") .tell result :line ;IF goodTHENput ("Good!")ELSEput ("Cheat!")FI .3.6 Guess my ageThis example is also due to Leo Geurts. This time the player has to guess a randomly chosen\age" It is a good opportunity to learn, by experiment, the value of the halving algorithm.how to guess :choose a number ;look for a customer ;let him guess ;WHILE not guessedREPgive a hint ;another guessENDREP ;applause .choose a number :INT VAR number :: choose128 .look for a customer :put ("Guess my age ") .let him guess :INT VAR guess ;get (guess) .not guessed :guess <> number .give a hint :line ;IF guess > numberTHENput ("Too high, try again ")ELSEput ("Too low, try again ")FI .another guess :get (guess) .

Elan 1.7 Manual, University of Nijmegen, The Netherlands 27applause :line ;put ("Correct!") ;line (3) .

28 Elan 1.7 Manual, University of Nijmegen, The Netherlands

Chapter 4The Elan ProgrammingEnvironmentThe user interface of the Elan Programming Environment is by itself simple, but its descrip-tion gets rather complicated because of the many ways of interaction with the user. Forconcise description, we will denote the \return" or \enter" key by <RET> and the \delete" or return key\rubout" key by , the \backspace" key by <DEL LEFT>. The <BREAK> is a special key delete keybackspace keyto notify the Elan Programming Environment to stop whatever it is doing. Its realization break keymay well be di�erent for the various implementations (usually CNTL-C, BREAK-key, spe-cial buttons, etc.; read the documentation which is distributed on the oppy disk with thesoftware). In showing screen output, the cursor will be depicted as .4.1 Components of the Elan Programming EnvironmentThe Elan Programming Environment conceptually consists of six functional modules, com-municating by way of a common data structure (the memory) and invoking (in some cases memoryrecursively) each other's services.4.1.1 Modules of the Elan Programming EnvironmentThe modules of the Elan Programming Environment are:� The monitor, acting as a command interpreter, provides most of the user interface and monitorinvokes all other modules.� The translator accepts input of de�nitions, translates them to internal form and stores translatorthem into memory.� The lister provides a structured overview of the de�ned names and their de�nitions. lister� The editor takes care of all text input, for example when entering or editing a de�nition. editor� The checker performs the checking of some static properties of the program prior to checkerits execution.� The executor executes checked programs. executorThe relationship between these modules is displayed in the following �gure:29

30 Elan 1.7 Manual, University of Nijmegen, The Netherlands�� ��monitor��� ��	 @@RHHj�� ��editor ? �� ��lister� �� ��checker ?�� ��translator - �� ��executor?� �
� �memory6 6@@@��@program6 results4.1.2 The memoryThe memory holds the following information:memory � a table of all names with their attributes (the name list),name list � the stack, the heap andstackheap � the de�nitions forming the program, in some internal form.program Unfortunately, present-day computers do not retain the contents of their memory upon beingswitched o�, so that the memory must be explicitly written to a �le in order to be able toread it back later.During execution the executor tries to recycle all space in the heap taken up by objectsrecycling that are no longer needed. It may however happen that a program needs more space thanis available. Thus the memory can get exhausted; the only way out is to save the programin a �le (by means of a write-command) and to start again.4.1.3 File storeThe Elan Programming Environment was designed to run under any operating system on avariety of compilers. It uses the �le system of the host computer for storing �les, adhering�le system to the conventions of that system.4.2 The user interface4.2.1 MoodsFrom the standpoint of the user, the Elan Programming Environment can be in a numberof moods (states), each with its own behaviour. In each of those moods, the Elan Program-moods ming Environment accepts a number of single-letter commands. These moods, with theirassociated commands are:� command-moodc d e f g i l n o p q r s t u v w x z (see 4.3)� edit-mood<RET> <BREAK> (see 4.4)� execute-mood<BREAK> (see 4.5)

Elan 1.7 Manual, University of Nijmegen, The Netherlands 31� backtrace-moode n q s (see 4.5.2)� trace-moodb n p x c e q s <BREAK> (see 4.5.3)� verify-moodb n p x c e q s <BREAK> (see 4.5.4)The current mood is indicated by a message in the right-hand corner of the bottom line ofthe screen, the status line. The left-hand corner of the status line is used for error messages. status lineEach mood has its own set of possible commands, some of which will cause the ElanProgramming Environment to switch into another mood.4.2.2 CommandsCommands consist of single letters. On some computers they may be realized as specialfunction keys or as choices from a menu. Commands are not echoed on the screen, and are commandobeyed immediately, without waiting for a <RET> key to be pressed. This contributes to theinteractive feeling of the Elan Programming Environment.To an unknown or unacceptable command the Elan Programming Environment reactsby showing on the status line a menu of all acceptable commands (we use the negative menu menutechnique: a menu is displayed only when an unacceptable command is given). In all moodsexcept edit-mood and execute-mood the letter h (help-command) can be used to provokesuch a menu.4.2.3 NamesThe Elan Programming Environment knows at any time a collection of names, each of whichmay be unde�ned, or have one or more de�nitions. Under the guidance and control of theElan Programming Environment names can be manipulated and de�nitions supplied to forma program. All names which are known to the Elan Programming Environment are storedin the name list. name listA name with which one or more de�nitions have been associated we will call a de�nedname. Depending on the way in which their de�nitions are brought into the Elan Program-ming Environment these are either visible or hidden. De�nitions from packets (for example visible de�ni-tionthe standard library) are hidden, the others are visible. In an overview of known names the hidden de�ni-tionElan Programming Environment will show only those names which have associated a visiblede�nition.Names which do not have any associated de�nition are called unde�ned. Once a name ismentioned to the Elan Programming Environment it will remain in the name list even whenit is unde�ned. It is important to know this when using abbreviated names (see later).Some names, as for example the keywords of Elan, look like valid names, but no de�nitioncan be associated with them. These are called unde�nable.4.2.4 Focus and promptThere is always one name, called the focus, which is the current center of interest. After focusthe completion of each command, the Elan Programming Environment prompts with thefocus, indicating its readiness to accept further commands. The focus is extended by a type promptindication, indicating whether there exists a de�nition associated with the name, and if so,what kind of de�nition (re�nement, PROCedure, OPerator, LET, TYPE or PACKET).Unde�ned names are recognized by a question mark:program ?

32 Elan 1.7 Manual, University of Nijmegen, The Netherlandsor RESL ?Re�nement names have a colon mark:take next:The names of procedures and operators are generic, i.e. they can have more than onegeneric name de�nition. The headings of all de�nitions of the name are shown. Procedures and operatorsare indicated like:FROM PACKET standard libraryPROC put (FILE CONST f, TEXT CONST t)PROC put (FILE CONST f, REAL CONST r)PROC put (FILE CONST f, INT CONST i)PROC put (TEXT CONST a)PROC put (REAL CONST a)PROC put (INT CONST a)or FROM PACKET standard libraryOP CAT (TEXT VAR a, TEXT CONST b)LET de�nitions for values and types have a let mark:LET nor LET VECTORTYPE de�nitions are displayed like:TYPE TInitially, the focus is the name program, being as yet unde�ned. Thus, the initial promptlooks like: program ?Another name can be chosen as focus by the focus-command (see 4.3). Upon focussing ona generic name the cursor appears at the heading of the �rst de�nition. By (repeatedly)giving a next-command (n) or up-command (u), it is possible to navigate over the variousde�nitions of a generic algorithms, e.g. (after one n):FROM PACKET standard libraryPROC put (FILE CONST f, TEXT CONST t)PROC put (FILE CONST f, REAL CONST r)PROC put (FILE CONST f, INT CONST i)PROC put (TEXT CONST a)PROC put (REAL CONST a)PROC put (INT CONST a)It is now the second de�nition which is the focus for e.g. an edit-, delete- or show-command.

Elan 1.7 Manual, University of Nijmegen, The Netherlands 334.2.5 Program and rootTo the Elan Programming Environment, a program does not consist of one sequential textbut rather of a collection of independent de�nitions, whose order plays no role. In orderto construct a program, its de�nitions have to be input one by one. Some commands (thecheck-command and the execute-command) require the focus to be a re�nement, taken as theentry point of the program. This re�nement is called the root of the program. By defaultroot the Elan Programming Environment assumes the �rst re�nement entered or read from a�le to be the root of the program. Apart from inspecting and modifying the program underdevellopment, it is also possible to inspect the underlying packets which each form a seperate packetsscope, similar to the main packets scope. To enter a packet scope, focus on the packet namean issue the into-command. Now you can list and inspect all de�nitions in this packet. Toreturn to te main packet scope, issue the out-command.4.2.6 Initial stateIn the initial state the Elan Programming Environment is in command-mood and its memory initial statecontains only the de�nitions of the standard library. On the screen can be seen an identi�-cation of the Elan Programming Environment. The initial prompt indicates that the focusis program, as yet unde�ned, which serves as a suitable root for many programs.4.3 The command-moodThe command-mood can be recognized by the message Command, please... on the right- command-moodhand side of the status line. In command-mood, the commands listed below are accepted.Most of them have the focus as an implicit parameter. After the execution of each commandthe Elan Programming Environment prompts with the current focus and returns to thecommand-mood.� f focus-command focus-commandThe focus-command shows Focussing... on the status line, and asks for the namewhich should become the focus of interest. The focus-command serves to focus on anew name, thus allowing navigation over program parts.The focus-command allows a de�ned name to be abbreviated by replacing its last abbreviatednamecharacters by a star (e.g. prog*). The Elan Programming Environment then searchesthe name list for a match, and complains Known name ? if no match is found.� e edit-command edit-commandThe edit-command serves to assign a new de�nition to the focus, or to modify thede�nition of the focus.The name and (if present) the body of the de�nition whose name is the focus are shownon the screen and an opportunity is given for local editing. On the status line Input,please... is displayed (see 4.4.1 for a description of the edit-mood).� s show-command show-commandThe de�nition of the focus is shown on the screen. In case the focus is a generic name,with multiple de�nitions, the de�nition indicated by the cursor is shown (the cursorcan be moved to another de�nition of the focus by the next-command n) or the up-command u. Immediately after the execution of a program it is also possible to focuson an object created during the execution; in that case its type, access attribute, nameand value can be inspected by the show-command. Any edit- or read-command hidesthe results of the previous execution.

34 Elan 1.7 Manual, University of Nijmegen, The Netherlands� n next-command next-commandThe next-command serves to move the cursor over the various de�nitions of a genericname. It has no e�ect for non-generic names.� u up-commandup-command This command serves the same purpose as the next-command, but works in the oppo-site direction.� x execute-commandexecute-command The execute-command serves to execute the program whose root is the focus. It showsExecuting... on the status line. After execution of a program, its objects (variablesand constants) can be inspected by means of the show-command. At the start of anexecution, all objects are made unde�ned. See section 4.5 for a description of theexecute-mood.� g generate-commandgenerate-command The generate command (which is available in Version 2.0 and higher of the Elan Pro-gramming Environment) serves to compile the program whose root is the focus to(relatively fast) executable code. It asks for the name of a �le, to which the code is tobe written. If a �le with that name exists, it is overwritten. The program has to beloaded and executed outside the Programming Environment.� t trace-commandtrace-command Same as the execute-command, but the execution takes place in trace-mood. It showsTrace command, please... on the status line. See section 4.5.3 for a further descrip-tion of the trace-mood.� v verify-commandverify-command Special form of tracing execute-command, in which the types of the syntactical con-structs are shown rather than their values. This mode is recognized by the requestVerify command, please... on the status line. See section 4.5.4 for a further de-scription of the verify-mood.� l list-commandlist-command The list-command serves to give a overview of all names in the cuurent scope (usuallythe main packet scope) having a visible de�nition. This overview begins with a bottom-view up part:{ the names of the packets which have been read,{ the names of abstract types,{ the synonyms and{ the names of procedures and operators.After this a structured overview of the re�nements of the program is given. If the focusis a re�nement, the names of all re�nements which appear in its body are displayedwith a suitable indentation on the next line(s). The process is invoked recursively if are�nement is expressed in terms of other re�nements, with the exception that no nameappears more than once in the overview.After this, a list is given of all re�nements which remain, and so are no part of theprogram having the focus as root. Some of them might be candidates for deletion.Names from the standard library and from a packet are not listed. It is howeverpossible to focus on such a name and show its de�nition.

Elan 1.7 Manual, University of Nijmegen, The Netherlands 35� d delete-commanddelete-command The delete-command deletes the de�nitions of the current focus.The Elan Programming Environment asks for con�rmation (to be answered with y orn) before doing anything so drastic. De�nitions in packets cannot be deleted.� r read-command read-commandThe read-command serves to read a program, which was previously written to a �le,back into memory. It reports Reading... on the status line. It adds the de�nitionsof that program to the current contents of the memory, overwriting re�nements withthe same name. It may be necessary to �rst save the current program by writing it toa �le (w), or to �rst clear the memory (c).The read-command asks for the name of a �le. If a �le with that name is present,the program it contains is read. After reading, the name of its �rst re�nement (orprogram in case there is no re�nement) will be the new focus. During the reading ofthe program, the names of the de�nitions are listed on the display. Finally a view isgiven of all de�nitions. If, however, a packet is read with this read-command the packetinterface is ignored and all de�nitions in the �le are added to to the main program.If a �le with the desired name was not present, the Elan Programming Environmentproduces an overview of all program �les that are present (again a negative menu).The conventions for �le names are those of the operating system running the Elan �le nameProgramming Environment.� p packet-command packet-commandThe packet-command serves to read a packet into memory. It reports Reading... onthe status line. It is a variant of the read-command, with the following di�erences:{ When reading a program, this packet-command acts as if a read-command wasissued.{ When reading a packet, de�nitions read by the packet-command are hidden insidethe packet scope: they are not mentioned by the list-command. The exportedde�nitions can be inspected by the show-command. However, they can not bemodi�ed by an edit-command.� w write-command write-commandThe write-command serves to write all de�nitions in the current scope (de�nitionsshown by the list-command) from memory onto a �le, starting with the current focus. Ifthe current scope is inside a packet the interface is writen as well. It reports Writing...on the status line. It asks the user for a �le name. Any existing �le of that name isoverwritten.The conventions for �le names are those of the operating system running the ElanProgramming Environment.� z write-packet-command write-packet-commandThe write-packet-command has the same e�ect as the write-command, apart from thefact that it writes the visible de�nitions from memory in the form of a packet. It asksfor the name of the packet to be written, which is also the �lename (appended withsome su�x). It then constructs an interface in interaction with the user, by showing inturn all exportable names and giving the user an opportunity to indicate his desires:{ n no, don't export this name;{ y yes, export it;{ s show the de�nition(s) of the current name; or

36 Elan 1.7 Manual, University of Nijmegen, The Netherlands{ q quit, do not write this packet.Finally, if there are any visible re�nements, it asks for the name of the root (prelude:)of the packet. Only after all this interaction, the packet is written.� i into-commandinto-command After focussing on a packet name, we can step into that packet by issuing the into-command. Now it's possible to focus on all the de�nition in this packet and inspectthem.� o out-commandout-command After stepping into a packet you want to return to your main program. This can bedone by typing the out-command (o).� c clear-commandclear-command The clear-command, upon con�rmation, clears the memory, bringing the Elan Pro-gramming Environment back into its initial state. It reports Clearing... on thestatus line.� q quit-commandquit-command The quit-command, upon con�rmation, halts the Elan Programming Environment andreturns control to the operating system of the computer.4.4 Reading and editing of programsWhile reading or editing a program, the Elan Programming Environment accepts text froma �le or from the keyboard, one de�nition at a time, and translates it to internal form,performing a running Context-Free syntax check as the lines come in.incrementalsyntax check Upon �nding a syntactic error, the translator attempts to arrive at a syntactically correctprogram in interaction with the user, o�ering the incorrect de�nition for local editing as oftenas necessary. By hitting <BREAK> the user may end this attempt.The editing of existing parts of a program is based on replay: some de�nition is displayedreplay on the screen, and can be modi�ed at will by the user, after which the translator reads thetext on the screen as input. The new de�nition may overwrite the old one. Once a line hasbeen read, it can no longer be edited (the cursor refuses to go up) but whenever a syntaxerror is found, also the lines preceding it can be edited.4.4.1 Local editingLocal editing is performed in edit-mood, which is recognized by Input, please... on theedit-mood status line. Local editing allows the user to enter and modify a text �eld (which may wellbe longer than a line on the screen). Local editing is ended by hitting <RET> (or aborted byhitting <BREAK>). Up to this event, the text �eld can be modi�ed by modifying its image onthe screen.During local editing, the cursor can be moved freely over the screen within speci�c bound-aries. Assume zero or more lines have been entered and the cursor is somewhere within this�eld.� By means of <RET> the user indicates that this line of input is completed; the translatornow starts processing it. After processing a complete de�nition the translator returnsto command-mood, otherwise it recursively asks the editor for a next line of input.� With the <BREAK> key the text modi�cation or entering can be aborted in such a waythat it has no e�ect.

Elan 1.7 Manual, University of Nijmegen, The Netherlands 37� The key deletes the character under the cursor, if any.� The <DEL LEFT> key deletes the character to the left of the cursor, if any.� The arrow keys allow the movement of the cursor over the text �eld (but not outsideit).� Any key which is not a control key inserts the corresponding character at the positionof the cursor, and moves the cursor right.4.4.2 Incremental correctionWhenever the translator �nds a syntax error, i.e. it is of the opinion that a speci�c symbol syntax errorwas omitted or if it expects a speci�c syntactic construction (identi�er; attribute VAR orCONST; unit or declaration ...) it gives an error message to that e�ect in the lower left cornerof the screen and o�ers the directly surrounding de�nition for local editing. The cursor ispositioned at the place of the supposed error. As an example, suppose the user types as aunit ROW INT VOR aThe translator complains Number of elements ? and o�ersROW INT VOR aThe user dutifully inserts 10 and hits the return key. The translator now complains VAR/CONST? and o�ers ROW 10 INT VOR aThe user changes VOR into VAR and hits the return key <RET>, whereupon the translatoraccepts the rest of the line in silence and waits for the next line. This same incrementalcorrection facility is available for correcting input during reading from a �le.As the Elan Programming Environments does not impose restrictions on the order of thede�nitions and the user might introduce all kinds of weird operators, like THAN, situationscan occur in which the error signalling is not so helpful. For example, if the user typesIF a>=0 THAN a ELSE -a FIthe Elan Programming Environment will now complain THEN ? and o�erIF a>=0 THAN a ELSE -a FIapparently considering THAN to be meant as an operator and so interpreting this constructionas IF a >= (0 THAN a) ELSE -a FIThe error reported on the bottom line of the screen should be seen as just a suggestion! Itis the best the programming environment can do, but it is up to the user to decide what itwas he wanted to express and how to repair the error.

38 Elan 1.7 Manual, University of Nijmegen, The Netherlands4.4.3 Alternative representationsIn Elan, a number of symbols possess more than one representation:REP REPEATENDREP ENDREPEAT END REPFI ENDIF END IFENDPROC END PROCENDOP END OPThe same holds for comment brackets (see 5.5.4).On displaying or saving a program, the Elan Programming Environment prefers therepresentations in the left column of the table.4.4.4 BreakIf the user hits <BREAK> during input, the translator is aborted and the Elan ProgrammingEnvironment reverts to command-mood. This facility is helpful in order to recover from atotal tangle of errors during input from a �le.4.5 The execute- and related moodsThe executor calls the checker and, if no errors were found, starts executing the program.executorexecute-mood Usually, it immediately starts the program which has the current focus as its top-level re-�nement. If, however, some of the currently loaded packets contain a root (prelude), theseare executed �rst. If an error occurs, a back-trace is given (see 4.5.2).Execution can be terminated by giving a <BREAK>, upon which the Elan ProgrammingEnvironment reverts to trace-mood.4.5.1 The checkerThe checker is invoked automatically before execution. It takes at most a few seconds,checker showing Checking... on the status line. It checks, amongst others, the following:� is every applied name de�ned exactly once?� do types match in{ source and destination of an assignation?{ all parts of a conditional?{ a numerical choice?� are all operations de�ned for the type of operands given?� are all conditions of type BOOL?� are all indices and bounds of type INT?� are all identi�ers, used as bounds, synonym identi�ers?� are only rows subscripted?� are only �elds selected from?Furthermore, it performs the identi�cation of generic algorithms, reporting errors by givinga backtrace.

Elan 1.7 Manual, University of Nijmegen, The Netherlands 394.5.2 The backtrace-moodWhenever the Elan Programming Environment �nds a semantic error, it enters the backtrace-semantic error mood, displaying Backtrace command, please... on the right of the status line, with anbacktrace-mood error description on the left of the status line. The backtrace-mood o�ers to the user theopportunity of unfolding the static nesting of the present unit and listing it. After each unitlisted, the Elan Programming Environment waits for the next wish of the user, which canbe one of the following:� e edit-commandmodify the visible de�nition containing this unit and return to the command-mood.� n next-commandcontinue backtracing; return to the command-mood if the current unit is the root ofthe program, otherwise display the unit immediately surrounding the current unit.� s show-commandshow the de�nition and the value of a name, which is asked from the user. This givesan opportunity to inspect local variables, parameters etc.� q quit-commandstop backtracing, return to command-mood.This mechanism serves to pinpoint semantic errors in the program.4.5.3 The trace-moodThe trace-mood can be entered by the user by means of a trace-command (t). It can also be trace-moodentered from a program by a call of assert. In the trace-mood, which is indicated by Tracecommand, please... on the status line, the executor lists every unit before executing it,and asks for a command as follows:� If the unit is simple (i.e. not a invocation of a procedure, re�nement or operator andnot a control structure), it is executed. If this unit yields a result, this is displayed.� If the unit is such an invocation or a control structure, it is listed and the executorwaits for one of the following commands:{ b backtrace-commandThe Elan Programming Environment switches to the backtrace-mood.{ c continue-commandThe remainder of the program is executed without trace.{ e edit-commandExecution is terminated, and the de�nition that contains the current unit is o�eredfor local editing.{ n next-commandThe body of the current unit is executed in trace mode.{ p previous-commandAll the remaining units at the present level (entered by the last next-command)are executed (without trace), if the body yields a result this is displayed and thetrace-mood is re-entered.{ q quit-commandReturn to the command-mode.

40 Elan 1.7 Manual, University of Nijmegen, The Netherlands{ s show-commandA known name (may be abbreviated) is asked and the de�nition and the de�nitionof that name is displayed.{ x execute-commandThe body is executed (without trace), its result (if any) is displayed and trace-mood is re-entered.At the end of each body the executor waits again for a valid trace-command.4.5.4 The verify-moodIn some cases deeper insight in the cause of a semantic error may be acquired from stepwiseinspection of types of program constructs. This can be accomplished by the verify-command,which causes the checker to run in trace-mood. Its behaviour is analogous to the trace-verify-mood command, with the exception that the types of the program constructs are displayed ratherthan their values.

Chapter 5An overview of ElanIn this overview of Elan as implemented in the Elan Programming Environment, we para-phrase the syntax of the language , introducing terminology for the most important con-stituents of a program and discussing the semantics of the various constructs. The morenoticeable di�erences with standard Elan and its Eumel variant are indicated.We assume the reader to be familiar with the notation of syntax-diagrams. For didacticreasons, there will be a large number of relatively simple syntax-diagrams rather than asmall number of complicated ones. We use those diagrams not only for describing structurebut also for introducing useful terminology.In this appendix the names of syntactic constructs will be written in sans serif font, usingsome spelling variations (like primaries rather than primarys) for linguistic reasons.5.1 Programs and packetsA program consists of zero or more packets followed by the main-packet.program - main-packet -���packet��The execution of a program consists of the execution of its packets in textual order, followedby that of its main-packet. A packet has a head, a body and a tail.packet- packet-head - packet-body - packet-tail -A packet is executed by executing its packet-body.packet-head- PACKET�
 �	 - packet-name ���USES�
 �	�packet-name-list� ����- DEFINES�
 �	 - packet-interface ��� - :�
 �	 -41

42 Elan 1.7 Manual, University of Nijmegen, The Netherlandspacket-interface- abstract-type-name -� ��- procedure-name ��- operator-name ��- synonym-type-name ��- synonym-value-name �
�
��

�
� ,�
 �	The packet-interface lists the names of all entities (objects, types and algorithms) exported bythe packet. An exported entity is made visible in all subsequent packets which do not de�neexport an entity with which it is incompatible. Re�nements and variables can not be exported.The syntax of the packet-body is somewhat simpli�ed with respect to the standard lan-guage. packet-body- bottom-up-part - root - top-down-part -�� �� �� �� ��The execution of a packet-body is the execution of its bottom-up-part followed by the executionof its root, which may in its turn involve the execution of some re�nements in the top-down-part. root - re�nement -The root of the main-packet is either (as in standard Elan) a paragraph or a re�nement. Ifthe root of the program is a paragraph, it is treated by the Elan Programming Environmentas an unnamed re�nement, which obtains the name program.bottom-up-part- procedure-declaration - ;�
 �	 -�
� �

�� ��- operator-declaration ��- type-declaration ��- synonym-declaration �The bottom-up-part comprises those declarations which precede the root and can be consideredas a language fundament on which the rest of the program is to be built. It is executed byexecuting those declarations.top-down-part- .�
 �	 - re�nement -�� ��The top-down-part comprises the re�nements that can be invoked from the root. The re�ne-ments in the top-down-part can not be invoked from a declaration in the bottom-up-part.The Elan Programming Environment accepts as input any sequence of declarations, otherunits and re�nements and distributes those elements over the three components of the main-packet in their order of arrival. Therefore the layout and order of input to the Elan Pro-layout

Elan 1.7 Manual, University of Nijmegen, The Netherlands 43gramming Environment can be in a very relaxed style. In outputting the program the ElanProgramming Environment imparts its own strict layout conventions and structure to theprogram. packet-tail- ENDPACKET�
 �	 - packet-name - ;�
 �	 -�� ��In the packet-tail, the name of the packet may appear a second time, in order to allow acheck for \runaway" packets.main-packet- packet-body -The main-packet is a packet stripped of its head and tail. In the Elan Programming Envi-ronment, a packet can be developed by interactively constructing a main-packet and thenencapsulating it into a packet.5.2 DeclarationsA declaration is a construct that, upon execution, binds a name to a value (object-declaration, declarationsynonym-declaration), to a declarer (type-declaration, synonym-declaration) or to a piece ofprogram (procedure-declaration, operator-declaration, re�nement).Apart from this dynamic e�ect a declaration has a static e�ect: Its occurrence makes thename, de�ned by it, visible in a speci�c part of the program, the scope of the declaration, scopetogether with the type and access-attribute with which it is de�ned.The scope of a declaration occurring within a procedure (operator) declaration is thatprocedure (operator) declaration. The same holds for its parameters. The scope of a decla-ration occurring within a packet is that packet plus any packets to which it is exported.In extension to the standard language, we allow procedures, operators and types to bepolymorphic, i.e. to be equipped with type parameters. polymorphic5.2.1 Bottom-Up declarationsWe will �rst describe those declarations that occur in the bottom-up-part of a program.5.2.1.1 Procedure-declarationsA procedure has a head, a body and a tail.procedure-declaration- procedure-head - procedure-body - procedure-tail -procedure-head- type-declarer - PROC�
 �	 - formal-type-part�� �� �� ����- procedure-name - formal-parameters-pack - :�
 �	 -�� ��The procedure-head gives the procedure-name, the types and access-attributes of its parame-ters (if any) and the type of its result (if any). For polymorphic procedures, the formal-type-part lists the formal-type-names that occur in the procedure-declaration.

44 Elan 1.7 Manual, University of Nijmegen, The Netherlandsformal-type-part- (�
 �	 - formal-type-name -)�
 �	 -���,�
 �	��formal-parameters-pack- (�
 �	�� ���,�
 �	����- type-declarer - name -)�
 �	 -
�

���� ��- CONST�
 �	��- VAR�
 �	��- PROC�
 �	�- virtual-parameters-pack ���Parameters are either objects or procedures, as can be deduced from this rather unwieldysyntax diagram. In case a procedure is to be passed as a parameter, the types of its param-eters are in their turn to be speci�ed precisely by means of a virtual-parameters-pack.Parameters with CONST-access are passed by value, parameters with VAR-access are passedparameterpassing by alias. virtual-parameters-pack- (�
 �	�� ���,�
 �	��- type-declarer -)�
 �	 -
�

���� ��- CONST�
 �	��- VAR�
 �	��- PROC�
 �	�- virtual-parameters-pack ���A procedure-body has the same form as a main-packet without a bottom-up-part.procedure-body- paragraph - top-down-part -�� ��The type of the procedure-body must be the same as the type of the result as given by theprocedure-head.procedure-tail- ENDPROC�
 �	 - procedure-name -�� ��The name of the procedure is repeated after the ENDPROC symbol. In the Elan ProgrammingEnvironment this name may be left out (in which case it is inserted automatically).

Elan 1.7 Manual, University of Nijmegen, The Netherlands 455.2.1.2 Operator-declarationsAn operator-declaration follows the pattern of a procedure-declaration.operator-declaration- operator-head - procedure-body - operator-tail -Only its head and tail are somewhat di�erent.operator-head- type-declarer - OP�
 �	 - formal-type-part�� �� �� ����- operator-name - formal-parameters-pack - :�
 �	 -An operator-headmust contain either one (for monadic-operators) or two (for dyadic-operators)parameters. Again, for polymorphic operators the formal-type-part lists the formal-type-namesthat occur in the operator-declaration.operator-tail- ENDOP�
 �	 - operator-name -�� ��5.2.1.3 Type-declarationsA type-declaration gives an abstract-type-name to a type-declarer, the type of its realization. realizationIn the packet in which the abstract type is de�ned, the concretizer CONCR may be used toconvert an object of that type to the type of the realization. In that packet, selection andsubscription also have access to the realization of the type. Outside its de�ning packet, anabstract type is elementary and there is no direct way to access its realization (but this maybe achieved indirectly, by the use of access-algorithms de�ned in the same packet as the access-algorithmtype).Because of these stringent restrictions on the visibility of the realization, type-declarationsare much more typical for Bottom-Up and modular programming than the synonym-declarations.type-declaration- TYPE�
 �	�� ���,�
 �	��- abstract-type-name - =�
 �	 - type-declarer -�- type-constructor - formal-type-part�� ��In extension to standard Elan, a type-declaration may be polymorphic. In that case itde�nes a type-constructor, an abstract type parametrized with one or more formal types.5.2.1.4 Synonym-declarationsA synonym-declaration binds either a name to a denoter (making that name synonymous withthat denoter) or a bold-name to a type-declarer (making that bold-name synonymous to thattype-declarer).

46 Elan 1.7 Manual, University of Nijmegen, The Netherlandssynonym-declaration- LET�
 �	����- synonym-value-name - =�
 �	- denoter -- synonym-value-name - =�
 �	- synonym-value-name- synonym-type-name - =�
 �	- type-declarer�� ���The synonym has all the properties of the denoter or type-declarer it is bound to - it may besynonym used at all places where that would be valid, with the same meaning.5.2.2 Top-Down declarationsApart from the Bottom-Up declarations already described, Elan has Top-Down declarationsfor declaring objects and re�nements.Synonym-declarations may also be used as Top-Down declarations. In the Elan Pro-gramming Environment however, a synonym for a type-declarer may only be given in thebottom-up-part.5.2.2.1 Re�nementsRe�nements serve to de�ne algorithms in a Top-Down fashion.re�nement- re�nement-name - :�
 �	 - paragraph -A re�nement gives a name to a paragraph. It is invoked by its name. The result (e�ect andvalue) of a re�nement invocation is that of its paragraph.5.2.2.2 Object declarationsAn object-declaration serves to de�ne an object.object An object has a name, a type, an access-attribute (VAR or CONST) and (during execution)typeaccess-attribute a value, which may be unde�ned. There are two forms of object-declaration:value object-declaration- variable-declaration -��- constant-declaration ��A variable-declaration declares one or more objects of one same type, with the access-attributeVAR (variables).variable variable-declaration- type-declarer - VAR�
 �	�� ���,�
 �	��- variable-name - ::�
 �	 - expression -�� ��The expression preceded by the curious sign :: is the initialization for the variable. Its valueinitialization (or, if there is no initialization, an unde�ned value) is assigned to the variable-name.A constant is an object with the access-attribute CONST and always obtains a well de�nedconstant value from its initialization.

Elan 1.7 Manual, University of Nijmegen, The Netherlands 47constant-declaration- type-declarer - CONST�
 �	�� ���,�
 �	��- constant-name - ::�
 �	 - expression -A variable can obtain another value by an assignation, whereas a constant cannot be assignedto. If so desired, the access-attribute CONST may be left out, but this is not advised since itleads to degradation of syntactic error-detection. An object-declaration may very well occurin a repetition. Each time the declaration is executed, its initialization is executed anew.5.3 Declarers and the type-systemElan has a type system based on four concrete elementary types and two mechanisms forcomposing types, and gives to its users the opportunity to add further (abstract) types.type-declarer� - BOOL�
 �	 -� - INT�
 �	 �� - REAL�
 �	 �� - TEXT�
 �	 ��- abstract-type-declarer ��- composed-type-declarer �
�

5.3.1 Abstract and polymorphic typesAn abstract type can be introduced either by a synonym-declaration, in which case thesynonym-type-name is merely a synonym for the type-declarer in its de�nition, or by a type-declaration, in which case it is to be distinguished from the type-declarer in its de�nition. Inboth cases it is represented by a bold-name.abstract-type-declarer- abstract-type-name -�- synonym-type-name ��- type-constructor - (�
 �	- type-declarer -)�
 �	��� ,�
 �	� ��� �
A type-constructor is explicitly parametrized with one or more types (in the form of type-declarers).5.3.2 Composed typesThere two types of composed values in Elan, rows and structures.composed-type-declarer- ROW�
 �	 - cardinality - type-declarer -��- STRUCT�
 �	 - (�
 �	 - �elds -)�
 �	��

48 Elan 1.7 Manual, University of Nijmegen, The Netherlandscardinality- number -��- synonym-value-name ��The elements of a row all have the same type, and are numbered from 1 up to the cardinalityof the declarer, which must be either a number or a synonym for a number. This cardinalityis therefore �xed, it can not be the value of an expression other than a number.�elds- type-declarer - �eld-name -���,�
 �	����The �elds of a structure may have di�erent types, and each �eld is tagged by a (di�erent)�eld-name.5.4 Paragraphs and their constituentsparagraph - unit -���;�
 �	���� ��The e�ect of the execution of a paragraph is the e�ect of the sequential execution of its unitsin textual order. The value (if any) of a paragraph is the value of its last unit. Notice that aparagraph may be empty. In that case it has neither an e�ect nor a value.Within a paragraph, Elan allows a free mixture of Top-Down declarations and units.5.4.1 UnitsA unit is a construct that, upon execution, may yield a value and have an e�ect (i.e. a changeyielde�ect in the state of variables, input and output). Collectively, the value yielded and the e�ect aretermed the result of the unit. Unless otherwise stated, the type of a unit is the type of theresult value yielded. A unit that yields no value is called an action and has the hypothetical typeaction VOID.All Declarations are actions.unit - object-declaration -��- expression ��An expression is either a primary (in which case its result is that of the primary) or it iscomposed by operators out of smaller constructs. Its operands must then agree in numberand type with the formal parameters of one of the de�nitions of its operator.The expression is evaluated as follows: �rst its operands are evaluated collaterally (i.e.collateral in an unspeci�ed order); then its result is that of the body of that de�nition, after bindingits formal parameters to the corresponding operands of the expression. In case of a polymor-phic operator, its formal-type-names are implicitly bound (as synonyms) to the types of itsoperands.

Elan 1.7 Manual, University of Nijmegen, The Netherlands 49expression, operand- operand - dyadic-operator - operand -�� - monadic-operator - operand ��� - primary �The syntax-diagram for expressions is ambiguous, and must be disambiguated by taking intoaccount the priorities of the operators, which are as follows:1 :=, INCR, DECR, CAT2 all abstract dyadic operators3 OR, XOR4 AND5 =, <>6 <=, <, >=, >7 +, -8 *, /, DIV, MOD9 **10 all monadic operatorsprimary - denoter -� - name �� - procedure-call �� - subscription �� - selection �� - abstractor �� - concretizer �� - terminator �� - composed-unit ��- (�
 �	- expression -)�
 �	�

� �

These constructs are explained in the following sections.5.4.2 DenotersDenoters serve to denote a value of a concrete type.denoter- int-denotation -�- real-denotation ��- bool-denotation ��- text-denotation �� �

50 Elan 1.7 Manual, University of Nijmegen, The Netherlandsint-denotation, number- digit -����Notice that the int-denotation denotes an unsigned number, which must be preceded by amonadic minus to obtain a negative number.real-denotation- number - .�
 �	 - number -����- e�
 �	 - number ���- +�
 �	��- -�
 �	�� �
text-denotation- "�
 �	 - "�
 �	 -���any-character-except-quote�� ��"�
 �	�number�"�
 �	� ��""�
 �	�A text-denotation denotes the sequence of characters, obtained by stripping o� its outermostquotes. Most characters, including the space, stand for themselves, but the quote-characteris used as an escape. A number between quotes serves to denote the character whose code isthe value of that number.bool-denotation- TRUE�
 �	 -��- FALSE�
 �	��5.4.3 NamesMany names have the form of an identi�er, a small (lower case) letter, possibly followed byidenti�er some further small letters or digits.name, packet-name, procedure-name, re�nement-name�eld-name, constant-name, variable-name, synonym-value-name- letter -���letter�� ��digit�Within a name, spaces may be used freely to enhance readability. Spaces are redundantlayout and do not form part of the name, but the Elan Programming Environment conserves thespacing in an identi�er at its �rst occurrence.Types and operators have bold-names, written in capital letters.

Elan 1.7 Manual, University of Nijmegen, The Netherlands 51bold-name, abstract-type-name, synonym-type-nameformal-type-name, type-constructor- bold-letter -����Spaces are not allowed in a bold-name. A number of operators have special symbols as names,such as + etc. These are listed in 5.4.1.5.4.4 CallsThe call of a procedure with parameters is written in the usual pre�x style.procedure-call- primary - (�
 �	- actual-parameter -)�
 �	 -���,�
 �	���� ��The primary must yield a procedure. The actual-parameters must agree in number and typewith the formal-parameters of one of the de�nitions of that procedure.The call is executed as follows: �rst its actual-parameters are evaluated collaterally; thenits result is that of the body of that de�nition, after binding its formal parameters to thecorresponding actual-parameters of the call. In case of a polymorphic procedure, its formal-type-names are implicitly bound (as synonyms) to the types of its actual-parameters.Notice that a procedure without parameters is called by just mentioning its name, withoutparameters or brackets.actual-parameter- expression -��- type-declarer - PROC�
 �	� �� ����- virtual-parameters-pack - procedure-name� �� �
�

5.4.5 SubscriptionsElan has only one-dimensional arrays (rows) of a size (cardinality) �xed at compile time. Arow can be subscripted to obtain one of its elements (which in its turn may be a row, astructure or a simple value). A multidimensional array can be realized as a row of rows.subscription- primary - [�
 �	 - expression -]�
 �	 -The primary must yield a row. The expression must yield an integer, whose value lies between1 and the cardinality of that row. The type of a subscription is the type of the element yielded.The subscription inherits the access-attribute of the primary. This implies that an assignationto a subscription is possible only if the primary is a variable.

52 Elan 1.7 Manual, University of Nijmegen, The Netherlands5.4.6 SelectionsA structure can be selected from, to obtain one of its �elds (which in its turn may be a row,a structure or a simple value).selection- primary - .�
 �	 - �eld-name -The primary must yield a structure, one of whose �elds has �eld-name as name. The type ofthe selection is the type of the �eld yielded. As is the case for the subscription, the selectioninherits the access-attribute of its primary.5.4.7 AbstractorsThe abstractor serves to denote values of an abstract type. It will often be used togetherwith a display, to abstract from a composed realization to an abstract object.abstractor- abstract-type-name - :�
 �	 - compact-primary -The part after the colon (a compact-primary) must have the type of the realization of theabstract-type-name.compact-primary- denoter -� - name �� - composed-unit ��- (�
 �	- expression -)�
 �	�
� �

The value of an abstractor is the value of its compact-primary. The type of an abstractor isthe type of the abstract-type-name, rather than its realization. Since the realization of a typeis visible only in its de�ning packet, an abstractor with a speci�c abstract-type-name can onlybe used in the packet de�ning that abstract-type-name.5.4.8 ConcretizersA concretizer serves to break the abstraction of a value.concretizer- CONCR�
 �	 - compact-primary -The compact-primary must be of some abstract type; the concretizer is then of the type ofits realization. It yields the value (which may be nil) of its compact-primary and inherits theaccess-attribute of its compact-primary. A concretizer can only be used in an environmentwhere the realization of its abstract type is visible (5.2.1.3).5.4.9 TerminatorsA terminator serves to terminate the execution of a re�nement, a procedure or an operator.terminator- LEAVE�
 �	 - algorithm-name -����- WITH�
 �	 - compact-primary ��

Elan 1.7 Manual, University of Nijmegen, The Netherlands 53The algorithm-name must either be the name of the directly surrounding operator or pro-cedure or of some visible re�nement, of whose execution the terminator forms part. If awith-part is given, the algorithm named is terminated, yielding the value of the compact-primary, otherwise it is terminated yielding no value.5.5 Control structuresThe control structures of Elan are the choice, repetition and display. control struc-turecomposed-unit- choice -�- repetition ��- display �� �
5.5.1 ChoiceThe choice is a construct for choosing between a number of alternative algorithms. Thereare two forms of choice.choice- conditional-choice -��- numerical-choice ��5.5.1.1 Conditional-choiceThe conditional-choice chooses between two or more algorithms on the basis of one or moreboolean expressions (conditions). conditionconditional-choice- IF�
 �	 ��- THEN�
 �	 - paragraph - ELIF�
 �	���expression�� ����- ELSE�
 �	 - paragraph ����- FI�
 �	 -The result of the conditional-choice is that of the paragraph executed. Therefore all paragraphsin the conditional-choice must have the same type.5.5.1.2 Numerical-choiceThe numerical-choice is a somewhat baroque construct for choosing between a number ofcases on the basis of an integer.

54 Elan 1.7 Manual, University of Nijmegen, The Netherlandsnumerical-choice- SELECT�
 �	 - expression - OF�
 �	����- CASE�
 �	 - cardinality - :�
 �	 - paragraph���,�
 �	�� ������ ��- OTHERWISE�
 �	 - paragraph - ENDSELECT�
 �	 -The cases must be labeled either with a number or with a synonym for a number, andtherefore with a value �xed at compile-time. The labels of the cases must all be di�erentand need not be ordered.The numerical-choice is executed by �rst computing the value of the expression, whichmust yield an integer, and then executing the paragraph whose case label has that value, ifany. If there is no paragraph labeled with this value, the otherwise-part (if any) is executed.The result of the numerical-choice is that of the paragraph executed. Therefore all paragraphsin the numerical-choice must have the same type.5.5.2 DisplayThe display is a construct serving to denote values for composed types (structures and rows)and, in conjunction with the abstractor, for abstract types.display- [�
 �	 - expression -]�
 �	 -���,�
 �	��If the display is used to denote a row, the number of its constituent expressions has to be equalto the cardinality of the row, whereas each expression has to be of the type of the elements ofthe row.If the display is used to denote a structure, the number of its constituent expressions hasto be the same as the number of �elds of the structure, whereas each expression has to be ofthe type of the corresponding �eld of the structure.The display is executed by evaluating its constituent expressions collaterally, and compos-ing a composed value from the values in their textual order. Its type is the type of thatcomposed value, i.e. either a row or a structure, depending on the context.5.5.3 RepetitionThere is one, at �rst glance rather huge, construct which serves to express repetitions. Itspurpose is to repeat a paragraph under various circumstances.

Elan 1.7 Manual, University of Nijmegen, The Netherlands 55repetition- FOR�
 �	 - variable-name� ����- FROM�
 �	 - expression ����- UPTO�
 �	 - expression ��- DOWNTO�
 �	 - expression ����- WHILE�
 �	 - expression ����- REP�
 �	 - paragraph ����- UNTIL�
 �	 - expression ����- ENDREP�
 �	 -Since many of its constituents are optional, it can be tuned to di�erent applications.The expressions after WHILE and UNTIL are conditions, and therefore have to be boolean.The other expressions, as well as the variable after FOR (controlled variable) have to be integer. controlledvariableThe semantics of the repetition is quite conventional. The for-part can be omitted ifthe controlled variable does not occur in the body of the repetition. The constituents FROM1, UPTO maxint, WHILE true and UNTIL false can be omitted (i.e. are assumed if thecorresponding constituents is omitted).A repetition is an action.5.5.4 CommentsComments are remarks enclosed between comment-brackets, which have no inuence on theexecution of the program.In the Elan Programming Environment, units may be alternated with comments. A com-ment starts with a comment-open-bracket and ends with a matching comment-close-bracket.Various representations for these brackets are available, as shown below, but the �rst one ispreferred.comment-open-bracket matching comment-close-bracketf g# #(* *)

56 Elan 1.7 Manual, University of Nijmegen, The Netherlands

Chapter 6Examples Elan subsetThe following examples are intended to demonstrate speci�c Elan features, such as structures,procedures, operators and graphics facilities, as well as the de�nition of abstract data typesby means of a packet.6.1 Points and line segmentsThis section contains a packet for de�ning and drawing points and line segments in theR2. It uses straight integer-graphics (see A.7). In order to reduce complexity no clippingis performed. Drawing outside the (hardware-dependent) graphics-screen will result in dis-torted pictures. The packet should be read by means of the packet-command (p). The ElanProgramming Environment can read packets but has no special precompilation facilities.PACKET points and linesDEFINES POINT, LINE,point, line, AS, *, +, =,draw point, draw line, put coord:TYPE POINT = STRUCT (REAL x, y, TEXT name);TYPE LINE = STRUCT (POINT a, b, TEXT name);POINT PROC point (REAL x, y):# denotation-procedure for a point #POINT: [x, y, ""]ENDPROC point;POINT OP * (REAL factor, POINT point):POINT: [factor * point.x, factor * point.y, ""]ENDOP *;BOOL OP = (POINT point1, point2):point1.x = point2.x AND point1.y = point2.yENDOP =;LINE PROC line (POINT point1, point2):# denotation-procedure for a line #LINE: [point1, point2, ""]ENDPROC line; 57

58 Elan 1.7 Manual, University of Nijmegen, The NetherlandsLINE OP + (LINE line1, line2):assert (line1.b = line2.a, "lines not connected");LINE: [line1.a, line2.b, ""]ENDOP +;LINE OP * (REAL factor, LINE line):LINE: [factor * line.a, factor * line.b, ""]ENDOP *;BOOL OP = (LINE line1, line2):line1.a = line2.a AND line1.b = line2.b ORline1.a = line2.b AND line1.b = line2.aENDOP =;POINT OP AS (POINT point, TEXT name):# giving a name to a point #POINT: [point.x, point.y, name]ENDOP AS;LINE OP AS (LINE line, TEXT name):# giving a name to a line #LINE: [line.a, line.b, name]ENDOP AS;PROC put coord (POINT point):# showing the name and coordinates of a point #IF NOT (point.name = "")THEN put (point.name + " = ");FI;put ("(" + text (point.x) + "," + text (point.y) + ")")ENDPROC put coord;PROC put coord (LINE line):# showing the name and coordinates of a line segment #IF NOT (line.name = "")THEN put (line.name + " = ");FI;put ("(" + text (line.a.x) + "," + text (line.a.y) + ")");put ("(" + text (line.b.x) + "," + text (line.b.y) + ")")ENDPROC put coord;PROC draw point (POINT point):# drawing a point and its name on the screen #move (int (point.x), int (point.y / aspect));plot pixel;put (point.name)ENDPROC draw point;

Elan 1.7 Manual, University of Nijmegen, The Netherlands 59PROC draw line (LINE line):# drawing a line and its name on the screen #INT x name :: int ((line.a.x + line.b.x) / 2.0),y name :: int ((line.a.y + line.b.y) / 2.0 / aspect),len :: length (line.name) * character width;draw point (line.a);draw point (line.b);move (x name, y name);put (line.name);move (x name, y name);draw (x name + len, y name);move (int (line.a.x), int (line.a.y / aspect));draw (int (line.b.x), int (line.b.y / aspect))ENDPROC draw line;ENDPACKET points and lines;6.2 Points and line segments exampleThis example demonstrates the use of the previous packet. It draws a triangle, annotatingits points and sides with names. Note that the coordinates of a, b and c should be chosento �t the screen of the particular computer (see A.7).program:POINT a :: point (100.0, 400.0) AS "A",b :: point (400.0, 100.0) AS "B",c :: point (400.0, 400.0) AS "C";LINE ab :: line (a, b) AS "AB",bc :: line (b, c) AS "BC",ca :: ab + bc AS "AC";enter graphics mode;draw line (ab);draw line (bc);draw line (ca);TEXT VAR wait :: inchar;enter text mode.The resulting picture looks like:

�������
�������

A B
C

AB
BCAC

60 Elan 1.7 Manual, University of Nijmegen, The Netherlands6.3 Intersection and projectionThis section contains an addendum to the �rst packet. Procedures for �nding the intersectionof two lines and the projection of a point on a line are de�ned. Note that intersection ofparallel lines will result in an error message.POINT OP X (LINE line1, line2):calculate parameters;the intersection.calculate parameters:REAL VAR rc1, b1, rc2, b2;BOOL vertical1 := (line1.a.x = line1.b.x);IF NOT vertical1THENrc1 := (line1.a.y - line1.b.y) / (line1.a.x - line1.b.x);b1 := line1.a.y - rc1 * line1.a.xELSErc1 := maxrealFI;BOOL vertical2 := (line2.a.x = line2.b.x);IF NOT vertical2THENrc2 := (line2.a.y - line2.b.y) / (line2.a.x - line2.b.x);b2 := line2.a.y - rc2 * line2.a.xELSErc2 := maxrealFI;assert (rc1 <> rc2, "intersection of two parallel lines").the intersection:IF vertical1THEN POINT: [line1.a.x, rc2 * line1.a.x + b2, ""]ELIF vertical2THEN POINT: [line2.a.x, rc1 * line2.a.x + b1, ""]ELSE POINT: [(b2 - b1) / (rc1 - rc2),(rc1 * b2 - b1 * rc2) / (rc1 - rc2),""]FI.ENDOP X;POINT OP ON (POINT point, LINE line):calculate parameters;the projection.calculate parameters:REAL VAR rc1, b1, rc2, b2;BOOL vertical :: (line.a.x = line.b.x),horizontal :: (line.a.y = line.b.y);IF NOT (horizontal OR vertical)THENrc1 := (line.a.y - line.b.y) / (line.a.x - line.b.x);b1 := line.a.y - rc1 * line.a.x;rc2 := -1.0 / rc1;b2 := point.y - rc2 * point.x;FI.

Elan 1.7 Manual, University of Nijmegen, The Netherlands 61the projection:IF horizontalTHEN POINT: [point.x, line.a.y, ""]ELIF verticalTHEN POINT: [line.a.x, point.y, ""]ELSE POINT: [(b2 - b1) / (rc1 - rc2),(rc1 * b2 - b1 * rc2) / (rc1 - rc2),""]FI.ENDOP ON;6.4 Intersection and projection exampleThis example demonstrates the use of the X (intersect) and ON (projection) operators. Atriangle with its projection lines is drawn, showing the intersection of the three projectionlines trough one point. Again, the coordinates of a, b and c should be judiciously chosen to�t the screen.program:POINT a :: point (100.0, 370.0) AS "A",b :: point (460.0, 370.0) AS "B",c :: point (370.0, 100.0) AS "C";LINE ab :: line (a, b) AS "AB",bc :: line (b, c) AS "BC",ca :: line (c, a) AS "AC";POINT a on bc :: (a ON bc) AS "PA",b on ca :: (b ON ca) AS "PB",c on ab :: (c ON ab) AS "PC";POINT x :: (line (c, c on ab) X line (a, a on bc)) AS "X";enter graphics mode;draw line (ab);draw line (bc);draw line (ca);draw line (line (a, a on bc));draw line (line (b, b on ca));draw line (line (c, c on ab));draw point (x);move (1, graphics y limit - 2 * line height);put coord (x);TEXT VAR wait :: inchar;enter text mode.

62 Elan 1.7 Manual, University of Nijmegen, The NetherlandsThe resulting picture looks like:

BBBBBBB
BBBBBBB

BBBBB

�������
�������

����

A B

C
AC BC

AB�������������������
���PA

@@@@@@@
@@@@@PB

PCXX = (3.700000e+02, 2.800000e+02)Further examples are included with the distributed software.

Appendix AStandard libraryA library of concrete algorithms, objects and types is available in Elan. Conceptually, theyare declared in the "standard packets" which are presupposed for every execution. Version1.7 of the Elan Programming Environment includes practically all standard packets (see [1])apart from matrices and vectors, as well as a small number of extensions from the Elan-0and EUMEL libraries. In this chapter the headings of all de�nitions in the library are listed.No attempt is made to explain their meaning, since this can be found in the Elan textbooks.A.1 IntegerTYPE INTPROC get (INT VAR i)PROC put (INT CONST i)BOOL OP = (INT CONST i1, i2)BOOL OP <> (INT CONST i1, i2)BOOL OP < (INT CONST i1, i2)BOOL OP <= (INT CONST i1, i2)BOOL OP > (INT CONST i1, i2)BOOL OP >= (INT CONST i1, i2)INT OP + (INT CONST i1, i2)INT OP - (INT CONST i1, i2)INT OP * (INT CONST i1, i2)INT OP DIV (INT CONST i1, i2)INT OP MOD (INT CONST i1, i2)INT OP ** (INT CONST i1, i2)INT OP + (INT CONST i)INT OP - (INT CONST i)OP INCR (INT VAR i1, INT CONST i2)OP DECR (INT VAR i1, INT CONST i2)INT OP SIGN (INT CONST i)INT OP ABS (INT CONST i)INT PROC sign (INT CONST i)INT PROC abs (INT CONST i)BOOL PROC even (INT CONST i)BOOL PROC odd (INT CONST i)INT PROC max (INT CONST i1, i2)INT PROC min (INT CONST i1, i2) 63

64 Elan 1.7 Manual, University of Nijmegen, The NetherlandsINT PROC trunc (REAL CONST r)INT PROC round (REAL CONST r)INT PROC int (TEXT CONST t)INT PROC ascii (TEXT CONST t)INT PROC code (TEXT CONST t)INT PROC digit (TEXT CONST t)INT PROC maxintINT PROC minintA.2 RealTYPE REALPROC get (REAL VAR r)PROC put (REAL CONST r)BOOL OP = (REAL CONST r1, r2):BOOL OP <> (REAL CONST r1, r2):BOOL OP < (REAL CONST r1, r2):BOOL OP <= (REAL CONST r1, r2):BOOL OP > (REAL CONST r1, r2):BOOL OP >= (REAL CONST r1, r2):REAL OP + (REAL CONST r1, r2):REAL OP - (REAL CONST r1, r2):REAL OP * (REAL CONST r1, r2):REAL OP / (REAL CONST r1, r2):REAL OP / (INT CONST i1, i2):REAL OP MOD (REAL CONST r1, r2):REAL OP ** (REAL CONST r, INT CONST i):REAL OP ** (REAL CONST r1, r2):REAL OP + (REAL CONST r):REAL OP - (REAL CONST r):OP INCR (REAL VAR r1, REAL CONST r2):OP DECR (REAL VAR r1, REAL CONST r2):INT OP SIGN (REAL CONST r):REAL OP ABS (REAL CONST r):INT PROC sign (REAL CONST r)REAL PROC abs (REAL CONST r)REAL PROC max (REAL CONST r1, r2)REAL PROC min (REAL CONST r1, r2)REAL PROC real (INT CONST i)REAL PROC real (TEXT CONST t)REAL PROC maxrealREAL PROC smallreal

Elan 1.7 Manual, University of Nijmegen, The Netherlands 65LET pi = 3.141592653589793REAL PROC sin (REAL CONST r)REAL PROC cos (REAL CONST r)REAL PROC tan (REAL CONST r)REAL PROC arcsin (REAL CONST r)REAL PROC arccos (REAL CONST r)REAL PROC arctan (REAL CONST r)LET e = 2.71828182845904REAL PROC sqrt (REAL CONST r)REAL PROC exp (REAL CONST r)REAL PROC ln (REAL CONST r)REAL PROC log10 (REAL CONST r)REAL PROC log2 (REAL CONST r)A.3 TextTYPE TEXTPROC get (TEXT VAR t)PROC get (TEXT VAR t, INT CONST maxlen)PROC get (TEXT VAR t, TEXT CONST delimiter)PROC put (TEXT CONST t)BOOL OP = (TEXT CONST t1, t2)BOOL OP <> (TEXT CONST t1, t2)BOOL OP < (TEXT CONST t1, t2)BOOL OP <= (TEXT CONST t1, t2)BOOL OP > (TEXT CONST t1, t2)BOOL OP >= (TEXT CONST t1, t2)INT OP LENGTH (TEXT CONST t)INT PROC length (TEXT CONST t)TEXT OP + (TEXT CONST t1, t2)OP CAT (TEXT VAR t1, TEXT CONST t2)TEXT OP * (INT CONST i, TEXT CONST t)TEXT PROC compress (TEXT CONST t)TEXT PROC text (TEXT CONST t, INT CONST length)TEXT PROC text (TEXT CONST t, INT CONST length, from)TEXT PROC subtext (TEXT CONST t, INT CONST from)TEXT PROC subtext (TEXT CONST t, INT CONST from, to)TEXT OP SUB (TEXT CONST t,INT CONST i)PROC replace (TEXT VAR t, INT CONST from, TEXT CONST new)PROC change (TEXT VAR t, TEXT CONST old, new)PROC change all (TEXT VAR t, TEXT CONST old, new)INT PROC pos TEXT CONST t, pat)TEXT OP HEAD (TEXT CONST t)TEXT OP TAIL (TEXT CONST t)TEXT PROC ascii (INT CONST i)TEXT PROC code (INT CONST i)TEXT PROC digit (INT CONST i)

66 Elan 1.7 Manual, University of Nijmegen, The NetherlandsTEXT PROC text (INT CONST i)TEXT PROC text (INT CONST i, width)TEXT PROC text (REAL CONST r)TEXT PROC text (REAL CONST r, INT CONST width)TEXT PROC text (REAL CONST r, INT CONST width, after period)LET niltext = ""LET blank = " "LET quote = """"A.4 BooleanTYPE BOOLLET true = TRUELET false = FALSEBOOL OP NOT (BOOL CONST b)BOOL OP AND (BOOL CONST b1, b2)BOOL OP OR (BOOL CONST b1, b2)BOOL OP = (BOOL CONST b1, b2)BOOL OP <> (BOOL CONST b1, b2)A.5 FileTYPE FILETYPE TRANSPUTDIRECTIONFILE PROC sequential file (TRANSPUTDIRECTION CONST d,TEXT CONST t)TRANSPUTDIRECTION PROC inputTRANSPUTDIRECTION PROC outputPROC close (FILE CONST f)PROC erase (FILE CONST f)PROC line (FILE CONST f)PROC line (FILE CONST f, INT CONST i)PROC putline (FILE CONST f, TEXT CONST t)PROC put (FILE CONST f, INT CONST i)PROC put (FILE CONST f, REAL CONST r)PROC put (FILE CONST f, TEXT CONST t)PROC getline (FILE CONST f, TEXT VAR t)PROC get (FILE CONST f, INT VAR i)PROC get (FILE CONST f, REAL VAR r)PROC get (FILE CONST f, TEXT VAR t)PROC get (FILE CONST f, TEXT VAR t, INT CONST maxlen)PROC get (FILE CONST f, TEXT VAR t, TEXT CONST delimiter)INT PROC max line length (FILE CONST f)TEXT PROC name (FILE CONST f)BOOL PROC opened (FILE CONST f)BOOL PROC new (FILE CONST f)BOOL PROC eof (FILE CONST f)

Elan 1.7 Manual, University of Nijmegen, The Netherlands 67PROC new file (TEXT CONST name)PROC old file (TEXT CONST name)PROC close filePROC erase file (TEXT CONST name)PROC write (INT CONST i)PROC write (REAL CONST r)PROC write (TEXT CONST t)PROC write linePROC read (INT VAR i)PROC read (REAL VAR r)PROC read (TEXT VAR t)BOOL PROC file endedA.6 Screen handlingPROC linePROC line (INT CONST i)PROC pagePROC beepINT PROC xsizeINT PROC ysizePROC cursor (INT CONST i1, i2)PROC get cursor (INT VAR i1, i2)PROC edit (TEXT VAR t, INT CONST start pos)PROC edit (TEXT VAR t, INT CONST start pos, left margin,TEXT CONST end)PROC edit (TEXT VAR t,INT CONST start pos, left margin, right margin,TEXT CONST end, TEXT VAR c)PROC inchar (TEXT VAR t)TEXT PROC incharTEXT PROC incharetyA.7 GraphicsINT PROC graphics x limitINT PROC graphics y limitREAL PROC aspectPROC enter graphics modePROC enter text modeBOOL PROC in text modePROC color (INT CONST i)PROC clear graphics screen

68 Elan 1.7 Manual, University of Nijmegen, The NetherlandsINT PROC current x positionINT PROC current y positionPROC move (INT CONST x, y)PROC draw (INT CONST x, y)PROC plot pixelPROC plot text (TEXT CONST t)INT PROC character widthINT PROC line heightThe console input-output routines are applicable also in graphics mode (example: put, get,line, page, inchar, cursor, get cursor,xsize, ysize, etc.).A.8 Turtle-graphicsTurtle-graphics is not a part of the standard library, but a packet, which can be read intothe Elan Programming Environment by means of the packet-command (p).enter turtle graphicsleave turtle graphicsPROC turtle window (INT CONST xmin, xmax, ymin, ymax,REAL CONST x range, y range)PROC move (REAL CONST x, y)PROC move (REAL CONST length)PROC draw (REAL CONST length)PROC turn (REAL CONST radian)PROC turn (INT CONST angle)PROC turn leftPROC turn rightA.9 Random numbersPROC initialize random (INT CONST i)PROC initialize random (REAL CONST r)INT PROC random (INT CONST i1, i2)PROC random (INT CONST i)REAL PROC randomINT PROC choose128A.10 MiscellaneousBOOL OP ISNIL (NILTYPE CONST x)BOOL PROC isnil (NILTYPE CONST x)BOOL PROC last conversion okBOOL PROC yes (TEXT CONST question)BOOL PROC no (TEXT CONST question)INT PROC freespaceINT PROC exectimePROC sleep (INT CONST seconds)

Elan 1.7 Manual, University of Nijmegen, The Netherlands 69PROC trace onPROC stopPROC assert (BOOL CONST b)PROC assert (BOOL CONST b, TEXT CONST t)Note: there are some other routines in the standard library not mentioned in the above list,but those are for internal use within the library, therefore we strongly advise against usingthem.

70 Elan 1.7 Manual, University of Nijmegen, The Netherlands

Appendix BAscii-tableThe Elan interpreter uses a slightly modi�ed ASCII code.0 1 2 3 4 5 6 70 nul 0 @ P p1 cls ! 1 A Q a q2 cll " 2 B R b r3 brk # 3 C S c s4 del $ 4 D T d t5 right % 5 E U e u6 left & 6 F V f v7 bel ` 7 G W g w8 up (8 H X h x9 down brk) 9 I Y i yA lf * : J Z j zB + ; K [k fC ' < L l |D cr - = M] m gE . > N ^ nF / ? O ' oThe control characters have the following meanings:nul null charactercls clear the screencll clear to end of linedel delete character under cursorright cursor rightleft cursor leftup cursor updown cursor downbel produce the bell-soundlf line feedcr carriage returnbrk break
71

Indexabstract-type-declarer, 47abstract-type-name, 51abstractor, 52actual-parameter, 51bold-name, 51bool-denotation, 50bottom-up-part, 42cardinality, 48choice, 53compact-primary, 52composed-type-declarer, 47composed-unit, 53concretizer, 52conditional-choice, 53constant-declaration, 47constant-name, 50denoter, 49display, 54expression, 49�eld-name, 50�elds, 48formal-parameters-pack, 44formal-type-name, 51formal-type-part, 44int-denotation, number, 50main-packet, 43name, 50numerical-choice, 54object-declaration, 46operand, 49operator-declaration, 45operator-head, 45operator-tail, 45packet, 41packet-body, 42packet-head, 41packet-interface, 42packet-name, 50packet-tail, 43paragraph, 48primary, 49procedure-body, 44procedure-call, 51procedure-declaration, 43procedure-head, 43

procedure-name, 50procedure-tail, 44program, 41real-denotation, 50re�nement, 46re�nement-name, 50repetition, 55root, 42selection, 52subscription, 51synonym-declaration, 46synonym-type-name, 51synonym-value-name, 50terminator, 52text-denotation, 50top-down-part, 42type-constructor, 51type-declaration, 45type-declarer, 47unit, 48variable-declaration, 46variable-name, 50virtual-parameters-pack, 44abbreviated name, 3, 33access-algorithm, 45access-attribute, 46action, 48backspace key, 29backtrace-mood, 39break key, 1, 29checker, 29, 38clear-command, 5, 36collateral, 48command, 31command-mood, 33Comments, 55condition, 53con�rmation, 2constant, 46control structure, 53controlled variable, 55cursor, 1cursor keys, 472

Elan 1.7 Manual, University of Nijmegen, The Netherlands 73declaration, 43delete key, 1, 29delete-command, 35directory, 5edit-command, 4, 33edit-mood, 36editor, 29e�ect, 48Eumel, 41execute-command, 3, 34execute-mood, 38executor, 29, 38export, 9, 42�le name, 35�le system, 30focus, 1, 31focus-command, 3, 33generate-command, 34generic name, 8, 32heap, 30help-command, 1hidden de�nition, 31identi�er, 50incremental syntax check, 36initial state, 33initialization, 46input guidance, 6into-command, 9, 36layout, 42, 50list-command, 3, 34lister, 29local, 9memory, 29, 30menu, 31monitor, 29moods, 30name list, 30, 31next-command, 8, 34object, 46out-command, 9, 36packet, 9packet-command, 35packets, 33parameter passing, 44polymorphic, 43pretty print, 6

program, 30prompt, 5, 31quit-command, 2, 36read-command, 2, 35realization, 45recycling, 30replay, 36result, 48return key, 1, 29root, 3, 6, 33scope, 43semantic error, 39show-command, 3, 33stack, 30status line, 1, 31synonym, 46syntax error, 37trace-command, 34trace-mood, 39translator, 29type, 46up-command, 8, 34value, 46variable, 46verify-command, 34verify-mood, 40view, 2, 34visible de�nition, 31write-command, 4, 35write-packet-command, 35yield, 48

